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Abstract
Under large-n and fixed-T panel data asymptotics, we develop a method to test a
sufficient condition for the FE estimator’s consistency using a stacked regression
framework. The resulting test exploits a previously unnoted relation between the fixed-
effects estimator and the short- and long-differences estimators. It takes the familiar
form of a panel-robustWald test, but is also shown to be asymptotically equivalent to a
GMMtest.We provide a theoretical comparison between our test and two existing ones
from the literature, which are shown to focus on generic strict exogeneity conditions
instead of being specifically related to the FE estimator’s moment conditions. We
investigate our test’s finite-sample properties in a simulation study, where we continue
the comparison with the other tests. We show that our test has good finite-sample
properties, especially if the estimator of the covariance matrix is based on a panel
bootstrap. The practical use of our test is illustrated in two applications to existing
data from the literature.

Keywords Linear panel regression · Fixed-effects estimator · Differences
estimators · Wald test · GMM overidentifying test

JEL Classification C23 · C52

1 Introduction

Since the early days of econometrics, the fixed-effects (or within) estimator has been
widely used to estimate the linear panel regression model in the presence of individ-
ual effects correlated with the regressors (Mundlak 1961; Mundlak and Hoch 1965).
Because the fixed-effects (FE) estimator exploits a single moment condition for each

B Laura Spierdijk
L.Spierdijk@utwente.nl

1 Section Financial Engineering, Department of High-tech Business and Entrepreneurship, Faculty of
Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00181-022-02298-2&domain=pdf
http://orcid.org/0000-0002-1573-0570


1600 L. Spierdijk

covariate, it is just identified. Viewed from a GMM perspective, it is therefore not
possible to test the validity of these moment conditions by means of the J -test for
overidentifying moment conditions.1 In other situations, we may have certain suspi-
cions that some covariates are unlikely to satisfy the moment conditions imposed by
the FE estimator. If instrumental variables (IVs) are available for these covariates,
we could test the FE estimator against the FE-IV estimator using a Hausman test
(Hausman 1978).

To our best knowledge, consistency tests for the FE estimator that do not require
IVs are rare. The present study seeks to fill the gap in the literature by developing a
test to validate a sufficient condition for the consistency of the FE estimator that does
not use such side information. We derive the test by exploiting a previously unnoted
relation between the FE estimator and the short- and long-differences estimators. The
resulting test can be performed in the familiar form of a panel-robust Wald test for
certain parameter restrictions in a stacked regression framework.

Because our test turns out asymptotically equivalent to a GMM test, our approach
also fits in the familiar setting of GMM estimation and specification testing. Conse-
quently, the asymptotic properties of our Wald test are standard and well documented
in the literature (Newey 1985; Cameron and Trivedi 2005; Hall 2005). The theoretical
part of our study uses the link with GMM testing to draw a formal comparison between
our test and the ones proposed by Wooldridge (2010) and Su et al. (2016), where the
latter is an extension of the former. Both tests make use of auxiliary regressions to
assess the validity of certain strict exogeneity conditions. We show that our test val-
idates sufficient conditions for the consistency of the FE estimator, while the other
two focus on more generic strict exogeneity conditions that are neither sufficient nor
necessary for the consistency of the FE estimator.

We investigate our test’s finite-sample properties in a simulation study, where we
continue the comparison between ourWald test and the strict exogeneity test of Su et al.
(2016). We use a simulation design in which the two tests are either both consistent
or both inconsistent. Our Wald test generally exhibits good finite-sample properties,
especially if the estimator of the covariance matrix is based on a panel bootstrap.

The empirical behavior of our Wald test is illustrated in two empirical applications
that elaborate on existing studies from the literature. Both McKinnish (2008) and
Erickson and Whited (2000) apply the linear panel regression model to data sets
containing an explanatory variable that is suspected to be subject tomeasurement error,
which would render the FE estimator inconsistent. In the context of our theoretical
results, these data sets provide a particularly relevant empirical case for our Wald test.
For the linear panel regression model applied to the data of McKinnish (2008), our
Wald test rejects the sufficient condition for the FE estimator’s consistency. Applied to
the data of Erickson andWhited (2000), however, ourWald test finds no such evidence.
We also run the test of Su et al. (2016) and draw the comparison with the outcomes
of our test.

Because our test validates a sufficient condition for the consistency of the FE esti-
mator, it is possible that the FE estimator is consistent even though this condition does
not hold. Furthermore, we will show that there is also a possibility that the Wald test

1 The J -test is also known as the Hansen–Sargan, GMM or overidentifying test.

123



Assessing the consistency of the fixed-effects estimator… 1601

has low power in certain cases. We will provide recommendations on how to remedy
such type I and type II errors using additional analysis. Hence, although our test does
not require instrumental variables, it should be combined with further investigations.

Our approach connects to different strands of literature. From the time series lit-
erature, we take the idea of a test that exploits taking differences (e.g., Plosser et al.,
1982, Davidson et al., 1985, Breusch and Godfrey, 1986, Thursby, 1989).We combine
this idea with the insight of Griliches and Hausman (1986, p. 114) that the linear panel
regressionmodel is misspecified if short- and long-differences estimators differ signif-
icantly. The resulting stacked regression framework facilitates researchers to routinely
run our Wald test. In this way, we extend the panel data literature about large-n and
fixed-T specification testing, which includes but is not limited to tests for overidenti-
fying restrictions (Hayakawa 2019), random effects vs. fixed effects and FE vs. FE-IV
(Hausman 1978; Baltagi et al. 2003; Amini et al. 2012; Joshi and Wooldridge 2019),
unit roots (Harris and Tzavalis 1999), selectivity bias (Verbeek and Nijman 1992;
Wooldridge 1995), cross-sectional dependence (Sarafidis and Wansbeek 2012) and
GMM-based test for autocorrelation in error terms (Arellano and Bond 1991).

The setup of the remainder of this study is as follows. Section 2 describes the
regression framework that we propose to estimate and test the FE estimator. Section 3
introduces the test statistic and discusses its statistical properties based on the literature
(asymptotic behavior), followed by a simulation study (finite-sample behavior) in
Sect. 4. Both sections draw the comparison with the test proposed by Su et al. (2016).
Our approach is illustrated in Sect. 5, where we provide two applications to existing
data from the literature. Lastly, Sect. 6 concludes. An appendix with supplementary
material is available.

2 Regression framework

We consider the situation that we are interested in estimating the static linear panel
regression model with T ≥ 3 time observations, given by

yi = γi ιT + Xi β0 + εi [i = 1, . . . , n], (1)

where yi (T × 1) is the dependent variable, γi the individual-specific intercept, ιT
(T × 1) a vector of ones, Xi (T × k) the matrix of observed covariates, β0 (k × 1) the
unknown coefficient vector and εi (T × 1) the error term.

2.1 FE and differences estimators

LetD j be the (T− j)×T matrix that takes differences over time span j = 1, . . . , T−1
and write � j = D′

jD j . We define ̂β j as the OLS estimator of β0 in (1) after taking
differences over time span j , yielding

̂β j =
(

n
∑

i=1

X′
i� jXi

)−1 n
∑

i=1

X′
i� jyi . (2)
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We denote the centering matrix of order T by AT = IT − ιT ι′T /T . This matrix is
symmetric, idempotent of rank T −1 and orthogonal to ιT . We observe that� j has the
j th pseudo-diagonal equal to−1, with all other pseudo-diagonals are zero. Moreover,
∑

j � j has diagonal elements equal to T − 1 since all rows add to zero. As a result,
AT = (�1 + . . . + �T−1)/T .

We use the relation between AT and the � j s to rewrite the FE estimator of β0 in
terms of the differences estimatorŝβ j , resulting in

̂βFE =
T−1
∑

j=1

W j

(

n
∑

i=1

X′
i� jXi

)−1 n
∑

i=1

X′
i� jyi =

T−1
∑

j=1

W j ̂β j , (3)

where

W j =
(

n
∑

i=1

T−1
∑

t=1

X′
i�tXi

)−1 n
∑

i=1

X′
i� jXi (4)

T−1
∑

j=1

W j = Ik, W j symmetric and positive definite. (5)

The complete derivation of this result is given in Appendix A. This leads to Result 1.

Result 1 The FE estimator is the weighted matrix average of differences estimators,
i.e.,

̂βFE =
T−1
∑

j=1

W j ̂β j , (6)

withW j as in (4).

Now let β j ≡ plimn→∞̂β j and assume that standard regularity conditions for
large-n and fixed-T panel data hold. We note that

plim
n→∞

W j =
(

T−1
∑

t=1

IE
(

X′
i�tXi

)

)−1

IE
(

X′
i� jXi

)

, (7)

and observe that also these weight matrices sum to the identity matrix. Consequently,
from (6) it follows that plimn→∞̂βFE = β0 under H0 : β1 = . . . = βT−1 = β0.
Stated differently, a sufficient condition for the consistency of the FE estimator is that
all of the differences estimators are consistent. This leads to Corollary 1.

Corollary 1 Assume that the large-n and fixed-T panel data regularity conditions for
GMM estimators as listed in Su et al. (2016) hold. Then the FE estimator is consistent
if each of the differences estimators is consistent; i.e., if plimn→∞̂β j = β0 ( j =
1, . . . , T − 1), then plimn→∞̂βFE = β0.
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Assessing the consistency of the fixed-effects estimator… 1603

We note that H0 is not a necessary condition for the consistency of the FE estimator.
Under H1 : β j �= β j+1 (at least one j = 1, . . . , T − 2), the FE estimator can still be
consistent. This result follows directly from Result 1, but we will come back to it in
Sect. 3.4.4.

2.2 Motivating examples

To illustrate the link between the (in-)consistency of the FE- and differences estimators,
Table 1 provides four motivating examples. We consider the linear panel regression
model with (i) classical measurement error, (ii) non-classical measurement error, (iii)
omitted variables and (iv) simultaneity. The precise model specifications are described
in the first column of Table 1 and given in more detail in Section B of the appendix
with supplementary material. To ensure stationarity, we assume that all autoregressive
parameters fall in the interval (−1, 1). In each of the four cases, the FE estimator and
differences estimators are inconsistent for non-trivial parameter values. The second
and third column in Table 1 report the inconsistencies.2

2.3 Stacked regression

In order to use Corollary 1 for the construction of a statistical test for a sufficient
condition for the FE estimator’s consistency, it turns out useful to estimate the β j s
jointly. Let

yi1 = D1yi = (yi2 − yi1, yi3 − yi2, . . . . . . , yiT − yi,T−1)
′

yi2 = D2yi = (yi3 − yi1, yi4 − yi2, . . . , yiT − yi,T−2)
′

...

yi,T−1 = DT−1yi = yiT − yi1,

and define Xi1, . . . ,Xi,T−1 and εi1, . . . , εi,T−1 analogously. Next, let

ỹi =

⎛

⎜

⎜

⎜

⎝

yi1
yi2
...

yi,T−1

⎞

⎟

⎟

⎟

⎠

, ˜Xi =

⎛

⎜

⎜

⎜

⎝

Xi1 0 . . . 0
0 Xi2 . . . 0
...

...
. . .

...

0 0 . . . Xi,T−1

⎞

⎟

⎟

⎟

⎠

, ε̃i =

⎛

⎜

⎜

⎜

⎝

εi1
εi2
...

εi,T−1

⎞

⎟

⎟

⎟

⎠

.

2 The inconsistencies of the FE estimator are denoted in matrix notation to save space. According to
Corollary 1, they equal the weighted average of the inconsistencies of the differences estimators. This result
gives some intuition to the matrix expressions.
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Table 1 Motivating examples: inconsistency of difference and FE estimators

Model Inconsistency ̂β j Inconsistency ̂βFE

Classical ME

yit = αi + βξi t + εi t
xi t = ξi t + vi t
ξi t = ρξi,t−1 + θi t
vi t = δvi,t−1 + ηi t
σθη = 0

−β

σ 2
η

1 − δ j

1 − δ2

σ 2
θ

1 − ρ j

1 − ρ2
+ σ 2

η

1 − δ j

1 − δ2

−tr[A�v]
tr[A(�ξ + �v)]β

Non- classical ME

as classical, butσθη �= 0

Wj ≡ 1 − (δ j + ρ j )/2

1 − δρ

−β

σ 2
η

1 − δ j

1 − δ2
+ σθηWj

σ 2
θ

1 − ρ j

1 − ρ2
+ σ 2

η

1 − δ j

1 − δ2
+ 2σθηWj

tr[A(�ξv − �v)]
tr[A(�ξ + �v)] β

Omitted variables

yit = αi + βxit + γ zit + εi t
xi t = ρxi,t−1 + θi t
zi t = δzi,t−1 + ηi t

γ

σθη
1 − (δ j + ρ j )/2

1 − δρ

σ 2
θ

1 − ρ j

1 − ρ2

tr(A�zx )

tr(A�x )
γ

Simultaneity

yit = βi + βxit + εi t
xi t = αi + αyit + uit
uit = ρui,t−1 + θi t

(1 − αβ)ασ 2
ε

α2σ 2
ε + σ 2

θ

1 − ρ j

1 − ρ2

tr(A�ε)α(1 − αβ)

tr(A�u) + tr(A�ε)α2

Notation: σ 2
w denotes the variance ofwi t , withw ∈ {η, θ, ε}; σθη stands for the covariance between θi t and

ηi t ; A denotes the T × T centering matrix; �w is the matrix containing the covariances Cov (wns , wnt )

for w ∈ {ξ, v, x, ε, u}; the matrix �ξv contains the covariancesCov (ξns , vnt ); �zx is defined analogously

We then write

ỹi = ˜Xi

⎛

⎜

⎜

⎜

⎝

β1
β2
...

βT−1

⎞

⎟

⎟

⎟

⎠

+ ε̃i . (8)

The stacked regression model in (8) allows us to estimate the β j s jointly by means
of OLS. We observe that the FE estimator arises as the constrained OLS estimator of
βD = (β ′

1,β
′
2, . . . ,β

′
T−1)

′ in (8), under the parameter restriction β1 = . . . = βT−1.

3 Test procedure

Corollary 1 states that, if each differences estimator is consistent, also the FE estimator
must be consistent. This observation is the starting point of our Wald test. In brief, we
first estimate ̂βD in (8) using (unconstrained) OLS. Subsequently, we use a Wald test
to test H0 against H1.
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3.1 Wald test

To calculate theWald test statistic, we need a cluster-robust estimator of the asymptotic
covariance matrix in addition tôβD. This estimator is given by

̂�D =
(

n
∑

i=1

˜X
′
i
˜Xi

)−1 n
∑

i=1

˜X
′
i ûi û

′
i
˜Xi

(

n
∑

i=1

˜X
′
i
˜Xi

)−1

, (9)

where ûi = ỹi−˜Xi ̂βD. TheWald test statistic for the parameter restrictionsβ j = β j+1
( j = 1, . . . , T − 2) is given by

qW = ̂β
′
D R

′
(

n
∑

i=1

R̂�D R′
)−1

R̂βD, (10)

where R = B ⊗ Ik and B is the k(T − 2) × (T − 1) matrix taking first differences,
given by

B =

⎛

⎜

⎜

⎜

⎝

−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1

⎞

⎟

⎟

⎟

⎠

. (11)

Under H0, the asymptotic distribution of the Wald test statistic is Chi-square with
k(T −2) degrees of freedom, while under fixed alternatives the test statistic converges
in probability to infinity (Cameron and Trivedi 2005, Section 7.6.2). We therefore
reject H0 if qW exceeds the (1 − α)% critical value of the Chi-square distribution
with k(T − 2) degrees of freedom, with α the chosen significance level. The usual
asymptotic properties of the Wald test hold under standard large-n and fixed-T panel
data regularity conditions, as summarized in the following result.

Result 2 Under the regularity assumptions as listed in Su et al. (2016), the asymptotic
distribution of the Wald test statistic under H0 is Chi-square with k(T − 2) degrees
of freedom. The Wald test statistic converges in probability to infinity under H1. The
Wald test has nominal asymptotic size under H0 and unit asymptotic power under H1.

If H0 is rejected, the pattern in the ̂β j s can help to assess the economic relevance
of the rejection. This becomes particularly relevant if n is large, since large samples
incur the risk of detecting economically minor violations of the null (Griliches and
Hausman 1986, p. 110). If all̂β j s are close in value to the FE estimator, the economic
importance of the rejection is considered limited. An informal visualization of the
Wald test is obtained by plotting each element of̂β j as a function of j , with the value
of the FE estimator of each covariate’s coefficient added as a horizontal line. We will
refer to these plots as the ‘differences curves.’ These curves will be illustrated in the
section with empirical applications.
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3.2 Relation to GMM tests

To analyze the properties of ourWald test in more detail, it turns out useful to draw the
parallelwith overidentifying tests in aGMMframework. FromNewey andWest (1987)
and Newey andMcFadden (1994) and the linearity of the moment conditions, we infer
that qW is numerically identical to aGMM test statistic for a stacked regressionmodel.
This is formalized in Result 3.

Result 3 Under the regularity assumptions as listed in Su et al. (2016), the Wald test
statistic qW is numerically identical to the overidentifying test statistic based on the
two-step GMM estimator̂βGMM of β0 in the stacked regression model

ỹi =

⎛

⎜

⎜

⎜

⎝

Xi1
Xi2
...

Xi,T−1

⎞

⎟

⎟

⎟

⎠

β0 + ε̃i , (12)

using the instrumentmatrix˜Zi = ˜Xi provided that both test statistics use the same esti-
mator for the covariance matrix, with the requirement that this estimator is consistent
under H0.

Result 3 requires both test statistics to use the same consistent estimator for the
covariance matrix. In practice, the GMM test statistic uses ̂βGMM to obtain a panel-
robust estimator of the covariance matrix, while the Wald test statistic uses ̂βD to do
so. Because both estimators of the covariance matrix are consistent under the null,
this difference in covariance matrices does not matter for the asymptotic properties
of the test statistics (Cameron and Trivedi 2005, ). We thus conclude that our Wald
test statistic (with the panel-robust estimator of the covariance matrix based on̂βD) is
asymptotically equivalent to the GMM test statistic (with the panel-robust estimator of
the covariance matrix based on̂βGMM). The two tests have the same asymptotic power
and size, under both the null and any (fixed or local) alternative hypothesis (Newey
and West 1987; Newey and McFadden 1994).3

Corollary 2 Under the regularity assumptions as listed in Su et al. (2016), the Wald
test statistic qtinyW is asymptotically equivalent to the overidentifying J -statistic cor-

responding to the two-step estimator of β0 in (12) with instruments ˜Zi . The two tests
have the same asymptotic power and size, under both the null and any (fixed or local)
alternative hypothesis.

With ˜Zi as the instrument matrix in the equivalent GMM test, we thus see that
the overidentifying moment conditions are the k(T − 1) moment conditions imposed

3 Based onNewey andWest (1987) and Newey andMcFadden (1994), we infer that theWald test statistic is
also identical to three other well-known test statistics to test H0: the LM test statistic, the distance-difference
test statistic (where the distance-difference test is the GMM equivalent of the likelihood-ratio test) and the
minimum Chi-square test statistic. Again the equality only holds if the same consistent estimator for the
covariance matrix is used for these test statistics.
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Assessing the consistency of the fixed-effects estimator… 1607

by the differences estimators. Hence, our test boils down to a GMM test for the
overidentifying moment conditions

IE(X′
i� jεi ) = 0 [ j = 1, . . . , T − 1]. (13)

These moment conditions arise by ‘unfolding’ the moment condition imposed by the
FE estimator

T−1
∑

j=1

IE(X′
i� jεi ) = 0. (14)

Corollary 1 already established the link between (the probability limits of) ̂βFE and
thêβ j s. Bymeans of (13) and (14), we have now also shown how ‘unfolding’ connects
the moment conditions of the FE and differences estimators.

3.3 Trivial power

Result 2 makes clear that the power of the Wald test arises from the differences in
the β j s for different values of j under H1. In certain cases where the FE estimator
is inconsistent, such differences may not exist though. Despite the FE estimator’s
inconsistency, we will then find β1 = β2 = . . . = βT−1 �= β0. Consequently, the
asymptotic rejection rate of the Wald test will be equal to the chosen significance
level, yielding ‘trivial’ asymptotic power. As shown by Newey (1985) and (Hall 2005,
Ch. 5), the issue of trivial power is inherent with overidentifying tests. These authors
also provide a more technical discussion of the region where GMM tests have trivial
power.

The practical implication of the existence of a parameter region with trivial asymp-
totic power is that our Wald test may have low empirical power in certain situations.
In the motivating examples of omitted variables and measurement error shown in
Table 1, trivial power arises for ρ = δ. This can be inferred from the expressions for
the β j s in the table, which do not vary with j for ρ = δ. A test to assess whether two
panel variables have the same degree of persistence could therefore prove useful in
this scenario. In practice, however, misspecification is likely to be much more com-
plex than for the motivating examples of Table 1. Consequently, we typically do not
know when trivial power will arise and to what extent it is related to the persistence
in the observed variables. It is therefore hard to think of a statistical test that could be
used to recognize a case of trivial power. In fact, to our best knowledge, no remedy
against trivial power exists other than cautiously interpreting the outcomes of GMM
tests (Parente and Santos Silva 2012). It therefore remains important to look for other
evidence against the FE estimator if the test does not reject the null hypothesis, such as
coefficient signs and magnitudes that are implausible from an economic perspective.
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3.4 Comparison with existing tests

As mentioned in Introduction, tests for the consistency of the FE estimator that do
not require IVs are rare. The two tests that come closest are the ones of (Wooldridge
2010, p. 324-325) and Su et al. (2016). These approaches also take the linear panel
regression model in (1) as the starting point.

3.4.1 Wald test of Wooldridge (2010)

The test of Wooldridge (2010) is based on the auxiliary OLS regression

L1yi = γi ιT−1 + L1Xi β0 + F1Xi ζ 1 + L1εi , (15)

after taking the within transformation. With IT−1 the identity matrix of order T − 1,
the matrices L1 and F1 are defined as the (T − 1) × T block matrices

L1 = (

IT−1 0T−1
)

and F1 = (

0T−1 IT−1
)

, (16)

with 0T−1 a (T − 1)-dimensional column vector of zeros.
The term F1Xi ζ 1 in (15) ensures that the regression model contains the one-period

ahead lead values of the covariates as regressors. Because this leads to the loss of
the last time period, we need the matrix L1 to ensure that the other vectors also
contain the right time observations. In more familiar notation, we would write (15)
as yit = γi + x′

i t β0 + x′
i,t+1ζ 1 + εi t . The reason that we use the above alternative

notation is to facilitate the comparison with our own ‘differences’ approach, as will
become clear below.

The test takes the form of a standard panel-robust Wald test for the null hypothesis
H̄0 : ζ 1 = 0 against the alternative hypothesis H̄1 : ζ 1 �= 0. It is motivated by the
fact that, under strict exogeneity, the FE estimator of ζ 1 will have a zero probability
limit, while the FE estimator of β0 will converge in probability to β0. Under the usual
regularity conditions for panel data, the resulting test has nominal asymptotic size
under H̄0 and unit asymptotic power under H̄1.

3.4.2 Sup-Wald test of Wooldridge (2010)

The extension proposed by Su et al. (2016) is based on the idea that Wooldridge’s
approach of adding one-period ahead lead values to the regression model is rather
arbitrary. They overcome this by allowing for a wider range of leads and lags. More
specifically, Su et al. (2016) consider auxiliary regressions of the form

L�yi = γi ιT−1 + L�Xi β0 + F�Xi ζ � + L�εi

� ∈ ST = {−T2,−T3, . . . ,−1, 1, . . . , T3, T2}
Ta = T − a for a ≤ T − 1 integer, (17)

where L� and F� are defined in analogy with (16).
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Assessing the consistency of the fixed-effects estimator… 1609

Su et al. (2016) estimate the regression equation in (17) for all � ∈ ST by means
of OLS after applying the within transformation.4 Subsequently, they test the null
hypothesis H̃0 : ζ � = 0 for all � ∈ ST against the alternative hypothesis H̃1 : ζ � �=
0 for some � ∈ ST using a sup-Wald test. The sup-Wald test statistic is obtained
as follows. For each individual null hypothesis H̃ �

0 : ζ � = 0, they calculate the
corresponding individualWald test statistic. Subsequently, the supremum is taken over
the individual Wald test statistics, yielding the sup-Wald test statistic. The underlying
idea is that the supremum of a range of test statistics will behave more like the most
powerful among them. The critical values of the sup-Wald test statistic are determined
by means of a panel bootstrap. Under standard panel data regularity conditions, the
resulting sup-Wald test has nominal asymptotic size under H̃0 and unit asymptotic
power under H̃1.

3.4.3 GMM framework

To facilitate the comparison with our own approach, it is convenient to draw the
parallel with GMM overidentying tests one more time. From Newey and West (1987)
and Newey and McFadden (1994), we infer that the Wald test of Wooldridge (2010)
is asymptotically equivalent to a GMM test based on the two-step GMM estimator of
β0 in

L1yi = γi ιT−1 + L1Xi β0 + L1εi , (18)

with instruments L1Xi and F1Xi , after applying the within transformation to both
the regression equation and the instruments; i.e., after pre-multiplying both with the
centering matrix of order T − 1. Hence, Wooldridge’s approach tests 2k moment
conditions, namely

IE(X′
iA

∗
T−1εi ) = 0 and IE(X′

iA
†
T−1εi ) = 0, (19)

where

A∗
T−1 = L1

′AT−1L1 =
(

AT−1 0T−1

0′
T−1 0

)

and

A†
T−1 = F1

′AT−1L1 =
(

0′
T−1 0

AT−1 0T−1

)

. (20)

We apply Newey andWest (1987) and Newey andMcFadden (1994) one more time
to infer that each individual Wald test of H̃ �

0 is equivalent to a GMM test of the 2k
overidentifying moment conditions

IE(X′
iA

∗
T−| � | εi ) = 0 and IE(X′

iA
†
T−| � | εi ) = 0, (21)

4 Su et al. (2016) also discuss two varieties of their main test: one in which (17) is estimated using the
first differences estimator and one in which a subset of ST is considered in H̃0. For the sake of brevity, our
discussion here is confined to the more efficient FE estimator that exploits the full set ST .
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whereA∗
T−| � | andA

†
T−| � | are defined in analogywith (20). Forfixed �, thefirstmoment

condition in (21) comes close to the moment condition of the within estimator—being
IE(X′

iAT εi ) = 0— but applies to the subsample that excludes � years from the full
sample. The second moment condition is similar to the first, but is formulated in terms
of lead or lags of the regressors. The moment conditions in (21) are necessary—but
not sufficient—for strict exogeneity.

We thus see that the Wald test of Wooldridge (2010) and the individual Wald tests
constituting the sup-Wald test of Su et al. (2016) reduce to overidentifying tests, like
our own Wald test. They both tests conditions that are necessary for strict exogeneity.
Because strict exogeneity is a sufficient condition for the consistency of the FE estima-
tor, the conditions validated by the sup-Wald test are neither necessary nor sufficient
for the consistency of the FE estimator.

3.4.4 Comparison Wald and sup-Wald tests

Similarities Because theWald test of Wooldridge (2010) and the individual Wald tests
constituting the sup-Wald test of Su et al. (2016) also reduce to overidentifying tests,
like our own Wald test, they will also have a parameter region with trivial power
(Newey 1985; Hall 2005). This property will be illustrated in detail in Sect. 4.

Differences The main difference among the three tests is that each of them tests
a different null hypothesis, which we have labeled as H0, H̄0 and H̃0, respectively.
Because the three tests involve different parameter restrictions in different auxiliary
regressions, it is not straightforward how to compare them. The translation of each
test to a GMM framework has turned out to facilitate the comparison of the three null
hypotheses and has made clear that each of the three tests focuses on different moment
conditions.

According to Result 3, our Wald test looks at the moment conditions of the differ-
ences estimators, which arise as the ‘unfolded’ moment condition of the FE estimator.
The underlying relation between the (probability limits of the) FE and differences
estimators is specified in Corollary 1 and holds under both H0 and H1.

The test of Wooldridge (2010) considers the moment conditions in (19), while the
sup-Wald test focuses on those in (21). Both tests focus on generic strict exogeneity
conditions instead of being specifically related to the FE estimator’s orthogonality
conditions. For fixed �, the FE estimator of ζ � in (17) has a zero probability limit
under strict exogeneity, while the FE estimator of β0 then converges in probability to
β0 (Su et al. 2016). In other cases, however, it is not known how the inconsistency of
the FE estimator of β0 (our parameter of interest) relates to the probability limit of
the FE estimator of ζ � (the auxiliary parameter to run the test).

To formalize the above considerations, let βFE = plimn→∞̂βFE and define H FE
0 :

βFE = β0 and H FE
1 : βFE �= β0. We will now view the Wald and sup-Wald tests as tests

of H FE
0 instead of H0 and H̃0, which means that we will derive expressions for the

rejection probabilities under H FE
0 and H FE

1 . This will allow us to compare both tests’
type I and type II errors if viewed as tests of H FE

0 .
We start with theWald test and assume that H FE

0 is true. In this scenario, there are two
cases: (i) H0 is true or (ii) H1 holds true. In case (i), the rejection probability under H FE

0
is also a rejection probability under H0. The asymptotic value of this probability equals
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the nominal size of the Wald test according to Result 2. Case (ii) can occur because
consistency of the differences estimators is a sufficient but not a necessary assumption
for the consistency of the FE estimator. In case (ii), the rejection probability has a unit
asymptotic value, unless there is trivial power. In the latter case, the asymptotic value
of the rejection probability is equal to the nominal size of the Wald test. In sum, the
asymptotic size of the Wald test is at least nominal if we view the test as a test of H FE

0 .
At this point, we would ideally provide a specific example of case (ii), where some

of the differences estimators are inconsistent while the FE estimator is still consistent.
However, it is not straightforward to illustrate the Wald test’s oversizedness in this
way, because the process of constructing such an example quickly goes beyond what
is still analytically tractable.5 Fortunately, we can characterize the conditions under
which case (ii) will occur in general terms using the GMM analogy. If (14) holds true
but (13) does not, then the FE estimator is consistent while some of the differences
estimators are inconsistent.

Next we assume that H FE
1 is true. Because H0 is a sufficient condition for the con-

sistency of the FE estimator, H1 must also hold true. Hence, the rejection probability
under H FE

1 is also a rejection probability under H1, with a unit asymptotic value accord-
ing to Result 2. In sum, theWald test viewed as a test of H FE

0 has unit asymptotic power
under H FE

1 , unless we encounter a scenario of trivial power.
For the sup-Wald test, the derivation of the rejection probability under H FE

0 is similar
as above and leads to the insight that the asymptotic value of this probability is larger
than or equal to the nominal size of the sup-Wald test. Under H FE

1 , the situation is
more complex than above, since either H̃0 or H̃1 may hold true. The reason for this
is that the sup-Wald test validates conditions that are neither necessary nor sufficient
for the consistency of the FE estimator. As a result, there are two possibilities for the
asymptotic power of the sup-Wald test if seen as a test of H FE

0 . In case (i), it has a unit
value under H FE

1 , which occurs if H̃1 holds true and no trivial power arises. In case (ii),
it has a value equal to the nominal size of the sup-Wald test. This occurs if H̃0 holds
true, or if H̃1 holds true in combination with trivial power. Also at this point it is hard
to construct analytically tractable examples that illustrate both cases.

In sum, if we view the Wald and sup-Wald tests as tests of the consistency of the
FE estimator, we conclude that both of them are asymptotically oversized. Further-
more, the Wald test will have unit asymptotic power, unless we encounter a case of
trivial power that is inherent with GMM testing. The sup-Wald test has one additional
possibility for trivial asymptotic power, which arises because the specificmoment con-
ditions validated by this test are neither sufficient nor necessary for the consistency of
the FE estimator.

4 Simulation study

Our simulation study focus on the motivating examples listed in Table 1, for which the
three tests’ finite-sample performance is an empirical matter. Because the sup-Wald
test of Su et al. (2016) generally turns out superior to the test of Wooldridge (2010),

5 We note that the differences and FE estimators are all inconsistent in the motivating examples of Table 1.
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we confine the comparison to our Wald test and the sup-Wald test. For a detailed
simulation study into the finite-sample differences between the tests of Wooldridge
(2010) and Su et al. (2016), we refer to the latter study.

4.1 Simulation setup

We start with some explanation about the design of our simulation study. As said, our
simulations focus on the motivating examples in Table 1. With exception of two cases
of trivial power, both our Wald test and the sup-Wald test turn out consistent in each
of these examples. The consistency of our Wald test follows directly from the results
in Table 1.

To determine whether the sup-Wald test is consistent in the motivating examples,
we have to assess whether H̃1 holds true.6 However, for fixed �, it already turns out
infeasible to obtain an analytical expression for the probability limit of the FE estimator
of ζ � under H̃

�
1 : ζ � = 0. Calculations quickly grow complex because the constituent

regressions of the sup-Wald test already contain two covariates in the simplest possible
case. We therefore take a more practical view to determine whether the sup-Wald test
is consistent in each of our motivating examples. Whenever our simulations yield unit
empirical power for sufficiently large values of n, we view this as a reliable indicator
that the sup-Wald test is consistent.

We set ρ = δ in two of our simulation experiments. Both our Wald test and the
sup-Wald test turn out to have trivial power in these cases. For ourWald test, the trivial
power follows immediately from the results in Table 1, which show that the β j s do not
vary with j . For the sup-Wald test, the inconsistency follows from the low empirical
power that persists across large values of n in our simulations.

The more technical details of our simulation design are as follows. We run simula-
tions for three of themotivating examples considered inTable 1: classicalmeasurement
error (‘ME’), omitted variables (‘OV’) and simultaneity (‘S’). Throughout, we run
10,000 simulation runs for each simulation experiment to obtain the empirical rejec-
tion rates for ourWald test. We consider values n = 100, n = 500 and n = 1000, each
with T = 5 and T = 10. We set the significance level for each test equal to 5%. For
classical measurement error and omitted variables, we simulate two scenarios in terms
of the persistence parameters: δ = 0.3 and ρ = 0.9 and δ = 0.3 and ρ = 0.6. For
simultaneity, we consider the cases ρ = 0.6 and ρ = 0.9. For each simulation exper-
iment, we report the empirical size and power for both tests. The reported empirical
power has not been size adjusted.

4.2 Empirical power and size

The right-hand side of Table 3 reports the empirical power for our Wald test, with
the full set of parameters for each of the three models as specified in the table notes.
These notes also report the probability limits of the underlying models’ R2, as well
as the reliability and noise-to-signal ratios for the models with classical measurement

6 This follows from the result proved in Su et al. (2016), showing that the sup-Wald test has unit asymptotic
power under H̃1.
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Table 2 Simulation results: empirical size

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
sup-Wald Wald

T = 5

ρ = 0.9

ME 0.052 0.051 0.057 0.057 0.052 0.056

OV 0.062 0.055 0.052 0.070 0.054 0.050

S 0.048 0.044 0.061 0.068 0.048 0.056

ρ = 0.6

ME 0.061 0.040 0.053 0.059 0.056 0.050

OV 0.047 0.049 0.055 0.063 0.049 0.049

S 0.047 0.054 0.058 0.066 0.054 0.050

T = 10

ρ = 0.9

ME 0.058 0.056 0.048 0.099 (0.050) 0.058 0.059

OV 0.052 0.061 0.051 0.102 (0.052) 0.059 0.060

S 0.064 0.053 0.045 0.117 (0.049) 0.051 0.052

ρ = 0.6

ME 0.052 0.058 0.053 0.099 (0.049) 0.059 0.058

OV 0.058 0.060 0.048 0.110 (0.063) 0.064 0.059

S 0.050 0.055 0.044 0.099 (0.046) 0.050 0.047

Notes: All simulation results are based on 10,000 simulation runs. The empirical power is obtained as the
fraction of the number of simulation runs in which the test rejects the null hypothesis, while the empirical
size is obtained as the fraction of the number of simulation runs in which the test rejects the null hypothesis,
while the null hypothesis is true. For the Wald test, the rejection rates for the bootstrap-based version of
the test are in parentheses (1,000 bootstrap runs). Throughout, the significance level is 5%. The simulated
models correspond to three of the illustrative cases listed in Table 1 of the main text. Parameters for classical
measurement error (‘ME’): β = 1, σ 2

ε = 1, σ 2
θ = 1.44, σ 2

η = 0.64, δ = 0.3. This yields reliabilities of 0.92
(ρ = 0.9) and 0.76 (ρ = 0.6), noise-to-signal ratios of 0.09 (ρ = 0.9) and 0.312 (ρ = 0.6) and probability
limits for the model’s R2 of 0.88 (ρ = 0.9) and 0.69 (ρ = 0.6). Parameters for omitted variables (‘OV’):
β = 1, γ = 1, σ 2

ε = 0.25, σ 2
θ = 0.36, σ 2

η = 0.36, ρθη = −0.6, δ = 0.3. This yields probability limits for

the model’s R2 of 0.89 (ρ = 0.9) and 0.74 and (ρ = 0.6). Parameters for simultaneity (‘S’): β = 1, α = 2,
σ 2
ε = 4, σ 2

θ = 1. This yields probability limits for the model’s R2 of 0.84 (ρ = 0.9) and 0.81 (ρ = 0.6)

error. The simulation results show that theWald test’s finite-sample power can turn out
relatively low for smaller values of n and T . This is especially the case if the distance
between ρ and δ is relatively small.

We also run simulations for these three models in the absence of any measurement
error, omitted variables or simultaneity, yielding the empirical size of the Wald test.
The results in the right-hand side of Table 2 point out that the size of the Wald test is
substantially above nominal for n = 100 and T = 10. In the other cases, the rejection
rates are fairly close to nominal. For the large-n and fixed-T asymptotics to apply, we
must have n >> T . For n = 100 and T = 10, the ratio n/T might be too small.
We therefore try to improve the finite-sample results by resorting to a bootstrap-based
test statistic. Indeed the above nominal rejection rates for n = 100 and T = 10 can
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Table 3 Simulation results: empirical power

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
sup-Wald Wald

T = 5

ρ = 0.9

ME 0.358 0.990 1.000 0.602 1.000 1.000

OV 0.995 1.000 1.000 0.866 1.000 1.000

S 0.502 1.000 1.000 0.769 1.000 1.000

ρ = 0.6

ME 0.110 0.453 0.752 0.216 0.704 0.960

OV 0.514 0.999 1.000 0.289 0.850 0.991

S 0.239 0.952 1.000 0.526 0.998 1.000

T = 10

ρ = 0.9

ME 0.964 1.000 1.000 0.998 (0.990) 1.000 1.000

OV 1.000 1.000 1.000 1.000 (1.000) 1.000 1.000

S 0.999 1.000 1.000 1.000 (1.000) 1.000 1.000

ρ = 0.6

ME 0.336 0.996 1.000 0.610 (0.435) 0.999 1.000

OV 0.971 1.000 1.000 0.726 (0.562) 1.000 1.000

S 0.880 1.000 1.000 0.961 (0.910) 1.000 1.000

Notes: All simulation results are based on 10,000 simulation runs. The empirical power is obtained as the
fraction of the number of simulation runs in which the test rejects the null hypothesis, while the empirical
size is obtained as the fraction of the number of simulation runs in which the test rejects the null hypothesis,
while the null hypothesis is true. For the Wald test, the rejection rates for the bootstrap-based version of
the test are in parentheses (1,000 bootstrap runs). Throughout, the significance level is 5%. The simulated
models correspond to three of the illustrative cases listed in Table 1 of the main text. Parameters for classical
measurement error (‘ME’): β = 1, σ 2

ε = 1, σ 2
θ = 1.44, σ 2

η = 0.64, δ = 0.3. This yields reliabilities of 0.92
(ρ = 0.9) and 0.76 (ρ = 0.6), noise-to-signal ratios of 0.09 (ρ = 0.9) and 0.312 (ρ = 0.6) and probability
limits for the model’s R2 of 0.88 (ρ = 0.9) and 0.69 (ρ = 0.6). Parameters for omitted variables (‘OV’):
β = 1, γ = 1, σ 2

ε = 0.25, σ 2
θ = 0.36, σ 2

η = 0.36, ρθη = −0.6, δ = 0.3. This yields probability limits for

the model’s R2 of 0.89 (ρ = 0.9) and 0.74 and (ρ = 0.6). Parameters for simultaneity (‘S’): β = 1, α = 2,
σ 2
ε = 4, σ 2

θ = 1. This yields probability limits for the model’s R2 of 0.84 (ρ = 0.9) and 0.81 (ρ = 0.6)

be circumvented by using a panel wild bootstrap to estimate the covariance matrix.
The bootstrap-based covariance matrix then replaces the formula-based covariance
matrix in the Wald test statistic.7 Table 2 reports the bootstrap-based rejection rates
in parentheses, which are close to nominal. The use of the bootstrap only turned out
necessary for n = 100 and T = 10, but from a robustness perspective one may
consider using the bootstrap regardless of the panel dimensions.

We consider the same simulation experiments for the sup-Wald strict exogeneity
test of Su et al. (2016) and report the outcomes in the left-hand sides of Tables 2 and

7 Another possibility is to use the panel wild bootstrap to obtain bootstrap-based critical values for the
Wald test statistic. Because this approach turned out to yield poorer empirical power and size, we do not
consider it in our analysis.
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3. Also this test’s empirical size is close to nominal. In terms of empirical power, the
simulation results make clear that there are two situations: one in which the sup-Wald
test’s empirical power is relatively low in comparison to our Wald test and one in
which both tests perform similarly. Especially for n = 100, our Wald test tends to
have relatively high empirical power. For theMEmodel with ρ = 0.6, this pattern also
persists for larger values of n. However, there is one exception and that is the model
with an omitted variable. Also here we identify the above two situations, but with the
roles of the two tests reversed: one in which the sup-Wald test’s empirical power is
relatively high in comparison to our Wald test and one in which both tests perform
similarly. We explain the good performance of the sup-Wald test in the presence of an
omitted variable from the fact that the sup-Wald test’s auxiliary regressions are close
to the true panel regression model, because the observed covariate’s lags and leads are
correlated with the omitted variable. Hence, the sup-Wald test performs very well in
this specific case of misspecification. As we will see below, however, this result does
not hold true for all parameter values.

4.3 Additional simulations

We consider five additional sets of simulations. First, we simulate the three motivating
examples (measurement error, omitted variable and simultaneity) with n and T equal
to the values that we will later encounter in our empirical applications. This gives rise
to simulations (i) and (ii). In (i), we take n = 51 and T = 20, leading to a relatively
small value of n/T instead of n >> T . In (ii), we set n = 737 and T = 4. In (iii),
we extend the basic ME model with n = 51 and n = 100 as to include an additional
error-free regressor. In (iv) and (v), we reconsider the basic ME and omitted variable
model, respectively, with a parameter setting that results in trivial power for our Wald
test according to Table 1 (δ = ρ = 0.6). Table 4 reports the empirical power and size
for both tests in each of the five cases. For (i) and (iii), the table reports bootstrap-based
rejection rates for our Wald test.

In (i), we observe that the sup-Wald test has higher empirical power in the omitted
variables case, while the two tests perform comparably in terms of empirical power
in the presence of simultaneity. In case of ME, our Wald test’s empirical power is
slightly better. In (ii), the sup-Wald only outperforms in terms of empirical power
in the omitted variable case. In the other two cases, our test outperforms. In (iii), the
sup-Wald test outperforms in terms of empirical power. In (iv) and (v), we observe that
both tests have trivial power. For our test, this outcome was expected on the basis of
Table 1. Apparently, also the sup-Wald test needs a difference in persistence between
the unobserved regressor and the measurement error in (iv) and between the observed
and omitted regressor in (v) in order to have non-trivial power.8

8 We note that the power comparison between the two tests may not always be entirely fair, due to small
differences in the tests’ empirical sizes. Because the simulations for the sup-Wald test are computationally
very intensive, it was not feasible to size adjust the test as discussed by, e.g., Lloyd (2005).

123



1616 L. Spierdijk

Table 4 Additional simulation results: empirical size and power

Size Power
sup-Wald Wald sup-Wald Wald

(i) Alternative panel dimensions

n = 51, T = 20, ME 0.072 0.052 0.501 0.555

n = 51, T = 20, OV 0.071 0.049 0.978 0.682

n = 51, T = 20, S 0.073 0.047 0.979 0.964

(ii) Alternative panel dimensions

n = 737, T = 4, ME 0.047 0.053 0.346 0.636

n = 737, T = 4, OV 0.059 0.051 0.997 0.795

n = 737, T = 4, S 0.047 0.055 0.905 0.985

(iii) Additional error-free covariate (ME model)

n = 51, T = 20 0.059 0.055 0.979 0.900

n = 100, T = 10 0.057 0.044 0.947 0.818

(iv) Trivial power (ME model)

n = 100, T = 5 0.061 0.059 0.062 0.077

n = 500, T = 5 0.040 0.056 0.049 0.045

n = 1000, T = 5 0.053 0.050 0.043 0.045

(v) Trivial power (OV model)

n = 100, T = 5 0.047 0.063 0.060 0.072

n = 500, T = 5 0.049 0.049 0.045 0.053

n = 1000, T = 5 0.055 0.049 0.056 0.049

Notes: All simulation results are based on 10,000 simulation runs. The empirical power is obtained as the
fraction of the number of simulation runs in which the test rejects the null hypothesis, while the empirical
size is obtained as the fraction of the number of simulation runs in which the test rejects the null hypothesis,
while the null hypothesis is true. Throughout, the significance level is 5%. The simulated models are the
same as for Tables 2 and 3, with ρ = 0.6 and δ = 0.3 in (i), (ii) and (iii) and with ρ = δ = 0.6 in (iv)
and (v). Furthermore, in (iii) there is an additional i.i.d. normally distributed error-free covariate included
in the ME model, with coefficient 1, mean 0 and variance 4. Its correlation with θ is 0.75. The additional
covariate is uncorrelated with the remaining model variables

4.4 Cautionary remark

Because it is infeasible to do analytical calculations for the sup-Wald test and the
constituent individual Wald tests, we do not provide an example that illustrates that
the sup-Wald test indeed test a different null hypothesis than our Wald test. For the
same reason, our simulation study considers misspecification that renders the two tests
both consistent or both inconsistent. Although these simulations prove insightful, we
emphasize that inmore general cases ofmisspecification the two testswill typically test
different null hypotheses. The null hypothesis of ourWald test is a sufficient condition
for the FE estimator’s consistency, while the null hypothesis of the sup-Wald test is
neither sufficient nor necessary for the consistency of the FE estimator. The finding
our simulation study that our Wald test does not always have higher empirical power
than the sup-Wald test must be viewed in this context.
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5 Empirical applications

This section considers two existing panel data sets from the literature, which each
contain an explanatory variable that was suspected to be subject to measurement error
in the studies that introduced these data. In the context of our theoretical results, these
data sets provide a particularly relevant empirical case for our test. Our goal is to
investigate the consistency of the FE estimator using our Wald test. For the sake of
comparison, we will also report results for the sup-Wald test.

5.1 Birth rates and welfare

Economic theory suggests that a government transfer program that reduces the cost
of supporting a child should lead to a rise in birth rates. As pointed out by McK-
innish (2008), childbearing is a commitment to current and future consumption. We
may therefore expect fertility decisions to be relatively unresponsive to transitory
fluctuations in welfare benefits. This would imply that welfare benefits are erroneous
relative to the conceptual variable of interest, even though these benefits are gener-
ally reported without error in administrative records. As explained by Griliches and
Hausman (1986), this kind of ‘conceptual’ measurement error is isomorphic to the
errors-in-variables model with measurement error that is less persistent than the unob-
served regressor and would render the FE estimator inconsistent due to endogeneity
of the observed regressor.

McKinnish (2008) aims to provide an empirical investigation of the presence of
such conceptual measurement error in welfare benefits. She uses a panel data set
consisting of US state-level birth rates by white women in the age group 20–24.5
years and AFDC benefit levels for a family of four with no additional income. The
panel data set with n = 51 and T = 20 covers the 1973–1992 period. The data set
also contains a measure of the earnings per capita in each state. Both welfare benefits
and earnings per capita are deflated and expressed in prices of the base year 1982–84.

We consider the linear panel regression model specified as

log(yit ) = αi + δt + βw log(wi t ) + βe log(eit ) + εi t , (22)

where yit denotes the birth rate in state i in year t , αi a state fixed effect, δt a year
fixed effect, wi t the welfare benefit (i.e., the allegedly error-ridden regressor), and eit
the earnings per capita.

McKinnish (2008) estimates the linear panel regression model in (22) using data
that is differenced over a time span of j = 1, 3, 5, 7 years. We denote the resulting
coefficient estimates of the welfare benefit by ̂βw, j . McKinnish (2008) compares the
̂βw, j s for different values of j . In thisway, she proceeds in a similar fashion asGoolsbee
(2000). McKinnish (2008) establishes a monotonically increasing pattern in the ̂βw, j s,
which she contributes to the presence of conceptual measurement error.

We estimate the linear panel regression model in (22) using data that is differenced
over a time span of j = 1, . . . , 10 years. The estimation results are summarized in the
upper panel of Table 5. This table also reports the results based on the FE estimator.
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Table 6 Test outcomes

Data set Test statistic df c.v. p value

McKinnish (2008) (Wald) 139.6 18 28.87 0.00

McKinnish (2008) (Wald, bootstrap) 29.9 18 28.87 0.04

McKinnish (2008) (sup-Wald) 23.1 17.6 0.009

Erickson and Whited (2000) (Wald) 4.8 6 12.59 0.57

Erickson and Whited (2000) (Wald, bootstrap) 5.1 6 12.59 0.53

Erickson and Whited (2000) (sup-Wald) 19.0 10.8 0.002

Notes: This table shows the results of the Wald and sup-Wald tests for the model in (22) applied to the data
of McKinnish (2008) (upper panel) and the model in (23) applied to the data of Erickson andWhited (2000)
(lower panel). For each test, we report the critical value (‘c.v.’) and p-value. For the Wald test, we also
report the degrees of freedom of the Chi-square distribution (d.f.), while the results for the bootstrap-based
version of the test are provided in a separate row. The bootstrap-based Wald test statistic is based on 1,000
bootstrap runs and uses an estimator of the covariance matrix based on a panel wild bootstrap
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Fig. 1 Difference curves (McKinnish (2008) data). Notes: This figure shows the difference curves for the
estimated coefficients of the natural log of (a) the welfare benefit and (b) the earnings per capita. They
correspond to the model in (22), applied to the data of McKinnish (2008). The intervals in red show the
95% asymptotic confidence interval for each point estimate. The two dashed lines indicate the zero line and
the value of the FE estimator

At the 5% significance level, our bootstrap-based Wald test rejects the null hypothesis
H0 : βe, j = βe, j+1;βw, j = βw, j+1 for j = 1, . . . , 9 at the 5% level; see Table 6.
Although we do not have a case of large n here, we show the differences curves in
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Fig. 1a and b for the welfare benefit and the earnings variables anyhow, for the sake of
illustration. The differences curves confirm the economic relevance of the rejection.9

In sum, our test outcome substantiates the doubts of McKinnish (2008) about the
consistency of the FE estimator of (22). As explained in Sect. 3.4.4, if the Wald test
rejects it is still possible that the FE is consistent. Because of the additional evidence
against theFEestimator’s consistencyprovidedbyMcKinnish (2008),we consider that
possibility unlikely here. Although our test results are consistent with the presence
of conceptual measurement error in the welfare benefit variable, the source of the
inconsistency—measurement error or something else—remains an open question. For
example, the data used by McKinnish (2008) are aggregated across different cohorts
and states that may respond differently to changes in welfare over time, which may
also render the FE estimator inconsistent.

We note that the sup-Wald test rejects H̃0 at the 5% level; see Table 6. As explained
in Sect. 3.4.4, this test focuses on generic strict exogeneity conditions instead of being
specifically related to the FE estimator’s orthogonality conditions. We therefore view
the rejection as a sign that other moment conditions related to strict exogeneity do not
hold either. We refer to McKinnish (2008) for additional estimations that exploit less
stringent moment conditions.

5.2 Investments and Tobin’s q

Erickson and Whited (2000) analyze the impact of Tobin’s q on the investment rate,
with Tobin’s q the ratio of the market valuation of a firm’s capital stock to its replace-
ment value. The theoretical motivation for studying this relation is the standard model
of a perfectly competitive firm. This model is based on the maximization of net share-
holder wealth, in the presence of convex adjustment costs following changes in the
capital stock (e.g., Blundell et al. 1992). According to this model, Tobin’s q has a
positive effect on the investment rate. An empirical complication is the measurement
error problem associated with Tobin’s q. This problem arises due to the difference
between marginal q, the conceptual variable of interest, and measured q as defined
above. Erickson andWhited (2000) discuss the possible sources of measurement error
in measured q and propose an estimator that controls for such error by exploring
higher-order moments. Their empirical analysis is based on a Compustat firm-level
panel data set for the 1992–1995 period, with n = 737 and T = 4.

We consider the linear panel regression model given by

yit = αi + δt + βqqit + βccit + β f ccit fi + εi t , (23)

where yit denotes the ratio of investments to the replacement value of the capital stock
for firm i in year t , αi a firm fixed effect, δt a year fixed effect, qit the proxy of marginal
Tobin’s q, cit cash flow divided by the replacement value of the capital stock, and fi a
0–1 variable indicating whether a firm is financially constrained or not. The indicator

9 The difference curve for the earnings variable is highly non-monotonic.Unreported examples in the setting
of Table 1 confirm that non-monotonic patterns are indeed possible for certain model configurations, such
as non-classical ME model with a nonzero correlation between the measurement and regression errors.
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variable fi is constructed on the basis of a firm’s lack of bond rating and does not vary
over time; its own marginal effect is therefore contained in the fixed effect αi .

In the presence of measurement error in q, the FE estimator of (23) will typically
be inconsistent due to a lack of strict exogeneity of the proxy of marginal q. We
estimate the linear panel regression model in (23) after differencing over a time span
of j = 1, 2, 3 years.10 Detailed estimation results are given in the lower panel of
Table 5. This table also reports the estimation results based on the FE estimator. At
the 5% significance level, our Wald test fails to reject the null hypothesis H0 : βq, j =
βq, j+1, βc, j = βc, j+1;β f c, j = β f c, j+1 for j = 1, 2; see again Table 6.

We note that the sup-Wald test rejects H̃0 at the 5% level, as shown in Table 6.
As noted in Sect. 3.4.4, it remains unclear what the rejection of H̃0 means for the
inconsistency of the FE estimator.

We conclude that our Wald test finds no evidence against the consistency of the
FE estimator. As mentioned in Sect. 3.3, we should remain aware of the possibility
that the test may have low power in certain cases. Low power could also arise from
limited data variability due to taking differences, yielding coefficient estimates with
relatively large standard errors. In such a scenario, our test could fail to reject in the
presence of misspecification. This explanation does not seem very likely in the present
case, though. The strong significance of the estimated coefficients in the lower panel
of Table 5 suggests that the time-differenced data still contain a sufficient amount of
variation. Another possibility is that the inconsistencies in the differences estimators
do not depend on j .

Given these considerations and the rejection by the sup-Wald test, it remains impor-
tant to look for other evidence against the FE estimator’ consistency, such as coefficient
signs that are unlikely from an economic perspective. Here, we find the coefficient
signs that we would expect on the basis of economic theory: Tobin’s q and the cash
flow variable both have a positive effect on the expected investment rate, which is
smaller if firms are financially constraint. In sum, also these additional investigations
do not find evidence against the consistency of the FE estimator.

6 Conclusion

The FE estimator is widely used to estimate the linear panel regression model. Under
large-n and fixed-T panel data asymptotics, we have developed a test to validate
a sufficient condition for the FE estimator’s consistency using a stacked regression
framework. Our test takes the familiar form of a panel-robust Wald test. Because our
test is asymptotically equivalent to a specificGMMtest for overidentifying restrictions,
our approach also fits in the familiar setting of GMM estimation and specification
testing.

We have shown that our Wald test will generally test a different null hypothesis
than the strict exogeneity test of Wooldridge (2010) and the extension proposed by
Su et al. (2016). Our Wald test is specifically tailored for testing a sufficient condition
for the FE estimator’s consistency. The other two tests, by contrast, consider more

10 This data set of Erickson andWhited (2000) is available at http://toni.marginalq.com/publications.html.
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generic strict exogeneity conditions that are neither sufficient nor necessary for the FE
estimator’s consistency.

The Wald test’s finite-sample properties have been investigated in a simulation
study, where we continued the comparison with the strict exogeneity test of Su et al.
(2016). Our Wald test has been shown to possess good finite-sample properties, espe-
cially if the estimator of the covariance matrix is based on a panel bootstrap. We have
also illustrated the test in two applications to existing studies from the literature.

If our tests rejects, it is still possible that the FE estimator is consistent. Further
testing, as discussed below, would be needed to exclude this possibility. If our test
does not reject, there is no evidence against the FE estimator’s consistency. Although
this is the most favorable outcome, researchers should still be aware of the possibility
that the test may have low power in certain cases. It therefore remains important
to look for other evidence against the FE estimator, such as coefficient signs and
magnitudes that are unlikely from an economic perspective. Researchers should also
recognize the possibility that low pow could arise from limited data variability due to
taking differences, yielding coefficient estimates with relatively large standard errors.
Hence, although our test does not require IVs, it should be used in combination with
additional analysis.

As usual, finding a well-specified model remains to a large extent a case-by-case
puzzle without guaranteed success, depending on, e.g., prior information and the avail-
ability of valid and strong instruments. As a general guideline, it is nevertheless useful
to consider the existing literature on the selection of moment conditions. Here a dis-
tinction is made between (i) separating valid moment conditions from invalid ones and
(ii) the elimination of redundant conditions; i.e., conditions that do not contribute to a
reduction in the GMM estimator’s variance (Okui 2009). Various consistent selection
procedures have been proposed, includingmethods that add a penalty term to the usual
J -statistic for overidentification (Andrews 1999). Ideally, a fully integrated selection
procedure for moment conditions should include our Wald test’s moment conditions,
as well as the more generic exogeneity conditions underlying the sup-Wald test of Su
et al. (2016). We leave the development of such an integrated approach as a topic for
future research.

A final topic for further research relates to the panel dimensions. The asymptotic
distribution of our test statistic has been derived under large-n andfixed-T asymptotics,
making the test suitable when n � T . This was the format in the classical panel data
literature, but there has been increasing attention to panel data where n and T are
of a different relative size, requiring different asymptotics. A first step would be to
investigate the asymptotic behavior of our Wald test statistic for n fixed and T → ∞,
or for n → ∞ and T → ∞ jointly in some way.
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Appendix

A. FE estimator is weighted average of difference estimators

The full derivation of (3) writes as

̂βFE =
⎛

⎝

n
∑

i=1

X′
iATXi

⎞

⎠

−1 n
∑

i=1

X′
iAT yi =

⎛

⎝

n
∑

i=1

T−1
∑

t=1

X′
i�tXi

⎞

⎠

−1 n
∑

i=1

T−1
∑

j=1

X′
i� jyi

=
T−1
∑

j=1

⎛

⎝

n
∑

i=1

T−1
∑

t=1

X′
i�tXi

⎞

⎠

−1 n
∑

i=1

X′
i� jyi =

T−1
∑

j=1

W j

⎛

⎝

n
∑

i=1

X′
i� jXi

⎞

⎠

−1 n
∑

i=1

X′
i� jyi

=
T−1
∑

j=1

W j ̂β j , (A.1)

where

W j =
(

n
∑

i=1

T−1
∑

t=1

X′
i�tXi

)−1 n
∑

i=1

X′
i� jXi (A.2)

T−1
∑

j=1

W j = Ik, W j symmetric and positive definite. (A.3)

B. Motivating examples: calculations

This appendixmakes use of a few elementary properties of stationaryAR(1) processes,
which we summarize here for completeness. Assume that xit and zit are generated by
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stationary AR(1) processes, such that

xit = ρxi,t−1 + θi t [0 < ρ < 1] (B.1)

zit = δzi,t−1 + ηi t [0 < δ < 1]. (B.2)

We assume that IE(θi t ) = IE(ηi t ) = 0, IE(θ2i t ) = σ 2
θ and IE(η2i t ) = σ 2

η for all i and t .
We also assume that Cov (θmt , ηis) = 0 for m �= n, Cov (θis, ηi t ) = 0 for s �= t , and
Cov (θi t , ηi t ) = σθη. Lastly, we assume that Cov (θmt , εis) = Cov (ηmt , εis) = 0 for
all m, i, s, t .

For k ≥ 1, we can write

xit = ρk xi,t−k +
k−1
∑

�=0

ρ�θi,t−�, zit = δk zi,t−k +
k−1
∑

�=0

δ�ηi,t−�. (B.3)

By letting k → ∞, we find

xit =
∞
∑

�=0

ρ�θi,t−�, zit =
∞
∑

�=0

δ�ηi,t−�. (B.4)

Using these alternative formulations for xit and zit , we find for j ≥ 0,

Var (xit ) = σ 2
θ /(1 − ρ2) ≡ σ 2

x , Var (zit ) = σ 2
η /(1 − δ2) ≡ σ 2

z , (B.5)

Cov (xit , xi,t− j ) = ρ jσ 2
x , Cov (zit , zi,t− j ) = δ jσ 2

z . (B.6)

We also have

Cov (xit , zi,t− j ) = δ− j
∞
∑

�= j

(δρ)�Cov (θi,t−�, ηi,t−�) = δ− jσθη

×
∞
∑

�= j

(δρ)� = ρ jσθη/(1 − δρ). (B.7)

Similarly, we find

Cov (xi,t− j , zit ) = δ jσθη/(1 − δρ). (B.8)

B.1. (Non-)Classical measurement error

We start with the errors-in-variables model and allow for non-classical measurement
error, with classical measurement as a special case. We will derive the inconsistency
in both cases.
Model Consider the linear panel regression model with measurement error, given by

yit = αi + βξi t + εi t (B.9)

123



Assessing the consistency of the fixed-effects estimator… 1625

xit = ξi t + vi t , (B.10)

where n = 1, . . . , n and t = 1, . . . , T . We assume that (εi t ) is i.i.d. with IE(εi t ) = 0
and IE(ε2i t ) = σ 2

ε for all i and t . Regarding (ξi t ) and (vi t ), we assume that they are
generated by stationary AR(1) processes, such that

ξi t = ρξi,t−1 + θi t [0 < ρ < 1] (B.11)

vi t = δvi,t−1 + ηi t [0 < δ < 1]. (B.12)

We assume that IE(θi t ) = IE(ηi t ) = 0, IE(θ2i t ) = σ 2
θ and IE(η2i t ) = σ 2

η for all i and t .
Furthermore, we assume that Cov (θmt , ηis) = 0 for m �= n, Cov (θis, ηi t ) = 0 for
s �= t ,Cov (θi t , ηi t ) = σθη andCov (θmt , εis) = 0 for allm, i, s, t . Lastly, we assume
that Cov (εmt , ηis) = 0 for m �= i , Cov (εis, ηi t ) = 0 for all s, t . If σθη �= 0, we have
a form of non-classical measurement error.
Inconsistency We first show that the FE estimator will usually be inconsistent. Let
Xi = (xi1, . . . , xiT )′ and yi = (yi1, . . . , yiT )′. With A the T × T centering matrix
we obtain

plim
n→∞

̂βFE = plim
n→∞

∑n
i=1 x

′
iAyi

∑n
i=1 x

′
iAXi

= tr[A(�ξ + �ξv)]
tr[A(�ξ + �v)] β, (B.13)

where �v contains the covariances Cov (vns, vnt ) and �ξv the covariances Cov (ξns,

vnt ). This yields the inconsistency

plim
n→∞

̂βFE − β = tr[A(�ξv − �v)]
tr[A(�ξ + �v)] β, (B.14)

The inconsistency will typically be nonzero if at least �v �= 0.
We now turn to the estimators ̂β j that are obtained after taking differences over

time span j . It holds that

plim
n→∞

̂β j = Cov (yit − yi,t− j , xit − xi,t− j )

Var (xit − xi,t− j )

= Cov (β(xit − xi,t− j ) − β(vi t − vi,t− j ) + εi t − εi,t− j , xit − xi,t− j )

Var (xit − xi,t− j )

= β + Cov (εi t − εi,t− j , xit − xi,t− j ) − βCov (vi t − vi,t− j , xit − xi,t− j )

Var (xit − xi,t− j )
.

(B.15)

Under the given assumptions, the numerator in (B.15) reduces to

Cov (εi t − εi,t− j , vi t − vi,t− j ) − β
[

Var (vi t − vi,t− j )

+Cov (vi t − vi,t− j , ξi t − ξi,t− j )
] =

−2β[σ 2
η (1 − δ j )/(1 − δ2) + σθη(1 − (δ j + ρ j )/2)/(1 − δρ)]. (B.16)
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Furthermore, the denominator can be written as

Var (ξi t − ξi,t− j + vi t − vi,t− j ) =
Var (ξi t − ξi,t− j ) + Var (vi t − vi,t− j ) + 2Cov (ξi t − ξi,t− j , vi t − vi,t− j ) =
2[σ 2

θ (1 − ρ j )/(1 − ρ2) + σ 2
η (1 − δ j )/(1 − δ2)

+2σθη(1 − (δ j + ρ j )/2)/(1 − δρ)].
(B.17)

The inconsistency thus boils down to

plim
n→∞

̂β j − β = −β[σ 2
η (1 − δ j )/(1 − δ2) + σθη(1 − (δ j + ρ j )/2)/(1 − δρ)]

σ 2
θ (1 − ρ j )/(1 − ρ2) + σ 2

η (1 − δ j )/(1 − δ2) + 2σθη(1 − (δ j + ρ j )/2)/(1 − δρ)

= −β[σ 2
v (1 − δ j ) + σξv(1 − (δ j + ρ j )/2)]

σ 2
ξ (1 − ρ j ) + σ 2

v (1 − δ j ) + 2σξv(1 − (δ j + ρ j )/2)
. (B.18)

Because

(1 − δ j )(1 − ρ j+1) > (1 − δ j+1)(1 − ρ j ) (B.19)

if and only if δ < ρ, it is readily seen that the inconsistency’smagnitude decreaseswith
j if and only if δ < ρ. For δ > ρ, the magnitude of the inconsistency is increasing and
for δ = ρ the inconsistency does not depend on j . For both classical and non-classical
measurement error, the inconsistency does not vanish for larger values of j .

B.2. Omitted variables

The second source of endogeneity that we consider is an omitted variable.
Model Consider the linear panel regression model with two regressors, given by

yit = αi + βxit + γ zit + εi t , (B.20)

where i = 1, . . . , n and t = 1, . . . , T . We assume that (εi t ) is i.i.d. with IE(εi t ) = 0
and IE(ε2i t ) = σ 2

ε for all i and t . Regarding the explanatory variables, we assume that
xit and zit are generated by stationary AR(1) processes, such that

xit = ρxi,t−1 + θi t [0 < ρ < 1] (B.21)

zit = δzi,t−1 + ηi t [0 < δ < 1]. (B.22)

We assume that IE(θi t ) = IE(ηi t ) = 0, IE(θ2i t ) = σ 2
θ and IE(η2i t ) = σ 2

η for all i and t .
Furthermore, we assume thatCov (θmt , ηis) = 0 form �= n,Cov (θis, ηi t ) = 0 for s �=
t , and Cov (θi t , ηi t ) = σθη. Lastly, we assume that Cov (θmt , εis) = Cov (ηmt , εis) =
0 for all m, n, s, t .
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We estimate the omitted variable regression

yit = αi + βxit + εi t , (B.23)

and are interested in the probability limit of ̂β j , the estimator of β based on the model
after taking differences over time span j .
Inconsistency We first show that the FE estimator for β will usually be inconsistent.
Using similar matrix notation as before, we obtain

plim
n→∞

̂βFE = plim
n→∞

∑n
i=1 x

′
iAyi

∑n
i=1 x

′
iAXi

= β + tr(A�zx )

tr(A�x )
γ, (B.24)

yielding the inconsistency

plim
n→∞

̂βFE − β = tr(A�zx )

tr(A�x )
γ. (B.25)

The inconsistency will be nonzero for γ �= 0 and �zx �= 0.
We now turn to the estimators ̂β j that are obtained after taking differences over

time span j . It holds that

plim
n→∞

̂β j = Cov (yit − yi,t− j , xit − xi,t− j )

Var (xit − xi,t− j )
. (B.26)

Under the given assumptions, the numerator reduces to

Cov (yit − yi,t− j , xit − xi,t− j ) = βVar (xit − xi,t− j )

+γCov (xit − xi,t− j , zit − zi,t− j ) =
βVar (xit − xi,t− j ) + γ [2Cov (xit , zit ) − Cov (xi,t− j , zit ) − Cov (xit , zi,t− j )] =
2[βσ 2

θ (1 − ρ j )/(1 − ρ2) + γ σθη(1 − (δ j + ρ j )/2)/(1 − δρ)]. (B.27)

For the denominator, we find

Var (xit − xi,t− j ) = 2[Var (xit ) − Cov (xit , xi,t− j )]
= 2σ 2

x (1 − ρ j ) = 2σ 2
θ (1 − ρ j )/(1 − ρ2). (B.28)

The probability limit then becomes

plim
n→∞

̂β j = βσ 2
θ (1 − ρ j )/(1 − ρ2) + γ σθη(1 − (δ j + ρ j )/2)/(1 − δρ)

σ 2
θ (1 − ρ j )/(1 − ρ2)

= β + γ σθη[1 − (δ j + ρ j )/2]/(1 − δρ)

σ 2
θ (1 − ρ j )/(1 − ρ2)

. (B.29)
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The inconsistency thus boils down to

plim
n→∞

̂β j − β = γ σθη[1 − (δ j + ρ j )/2]/(1 − δρ)

σ 2
θ (1 − ρ j )/(1 − ρ2)

= γ σxz[1 − (δ j + ρ j )/2]
σ 2
x (1 − ρ j )

.

(B.30)

As a sanity check on the above expression, we notice that the inconsistency is zero
for σθη = 0. The inconsistency should be zero in this particular case, because σθη = 0
implies that xit and zit are uncorrelated.

Because

(1 − ρ j+1)(1 − (δ j + ρ j )/2) > (1 − ρ j )(1 − (δ j+1 + ρ j+1)/2) (B.31)

if and only if δ < ρ, is readily seen that plimn→∞|̂β j − β| > plimn→∞|̂β j+1 − β|
if and only if δ < ρ. The inconsistency’s magnitude is increasing for δ > ρ and for
δ = ρ the inconsistency does not depend on j . We note that the inconsistency does
not vanish for larger values of j .

B.3. Simultaneity

The third source of endogeneity that we consider is simultaneity.
ModelWeconsider the simultaneous equationsmodel givenby the structural equations

yit = βi + βxit + εi t (B.32)

xit = αi + αyit + uit . (B.33)

We assume that (εi t ) is i.i.d. with IE(εi t ) = 0 and Var (εi t ) = σ 2
ε , independent of

(uit ). Here (uit ) is a stationary AR(1) process defined by

uit = ρui,t−1 + θi t [0 < ρ < 1], (B.34)

with IE(θi t ) = 0, IE(θ2i t ) = σ 2
θ and Cov (θmt , εis) = 0 for all m, i, t, s.

Solving the two equations yields the reduced forms

yit = βi + βαi

1 − αβ
+ βuit + εi t

1 − αβ
(B.35)

xit = αi + αβi

1 − αβ
+ uit + αεi t

1 − αβ
. (B.36)

We estimate (B.32) in j th differences, thereby ignoring (B.33). We are interested in
the probability limit of ̂β j , the estimator of β based on the model in j th differences.
We want to know how the inconsistency depends on j .
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Inconsistency We first show that the FE estimator for β will usually be inconsistent.
Using similar matrix notation as before, we obtain

plim
n→∞

̂βFE = plim
n→∞

∑n
i=1 x

′
iAyi

∑n
i=1 x

′
iAXi

= tr(A�u)β + tr(A�ε)α

tr(A�u) + tr(A�ε)α2 , (B.37)

yielding the inconsistency

plim
n→∞

̂βFE − β = tr(A�ε)α(1 − αβ)

tr(A�u) + tr(A�ε)α2 . (B.38)

The inconsistency will be nonzero if α �= 0 and α �= 1/β.
We now turn to the estimators ̂β j that are obtained after taking differences over

time span j . The probability limit of the resulting estimator for β equals

plim
n→∞

̂β j = Cov (yit − yi,t− j , xit − xi,t− j )

Var (xit − xi,t− j )

= [αVar (εi t − εi,t− j ) + βVar (uit − ui,t− j ]/(1 − αβ)2

Var (xit − xi,t− j )

= αVar (εi t − εi,t− j ) + βVar (uit − ui,t− j )

α2Var (εi t − εi,t− j ) + Var (uit − ui,t− j )
. (B.39)

Under the given assumption, this reduces to

plim
n→∞

̂β j = 2[ασ 2
ε + βσ 2

θ (1 − ρ j )/(1 − ρ2)]
2[α2σ 2

ε + σ 2
θ (1 − ρ j )/(1 − ρ2)] = ασ 2

ε + βσ 2
θ (1 − ρ j )/(1 − ρ2)

α2σ 2
ε + σ 2

θ (1 − ρ j )/(1 − ρ2)

= ασ 2
ε + βσ 2

u (1 − ρ j )

α2σ 2
ε + σ 2

u (1 − ρ j )
.

This gives the inconsistency

plim
n→∞

̂β j − β = ασ 2
ε (1 − αβ)

α2σ 2
ε + σ 2

u (1 − ρ j )
. (B.40)

The inconsistency is positive for α(1 − αβ) > 0 and negative for α(1 − αβ) < 0.
Its magnitude decreases with j for 0 < ρ < 1. We note that the inconsistency does
not vanish for larger values of j .
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