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Abstract
The COVID-19 pandemic has increased the need for timely and granular information
to assess the state of the economy in real time. Weekly and daily indices have been
constructed using higher-frequency data to address this need. Yet the seasonal and
calendar adjustment of the underlying time series is challenging. Here, we analyse
the features and idiosyncracies of such time series relevant in the context of seasonal
adjustment. Drawing on a set of time series for Germany—namely hourly electricity
consumption, the daily truck toll mileage, and weekly Google Trends data—used in
many countries to assess economic development during the pandemic, we discuss
obstacles, difficulties, and adjustment options. Furthermore, we develop a taxonomy
of the central features of seasonal higher-frequency time series.
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JEL Classification C14 · C22 · C87 · E66

1 Motivation

During the COVID-19 pandemic, policymakers and economists sought more timely
and granular information on the state of the economy. To this end, higher-frequency
indices that track the economic development of a country have been developed. Most
prominently, Lewis et al. (2020) developed the Weekly Economic Index (WEI) for
the USA that combines several weekly indicators such as US railroad traffic, electric
utility output or unemployment insurance claims. The WEI tracks the output of the
US economy and allows the state of the economy to be monitored on a weekly basis
(Lewis et al. 2020, 2021).
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The WEI has sparked the development of a series of similar weekly indicators,
especially for European countries (e.g. Delle Monache et al. 2020; Eraslan and Götz
2020; Fenz and Stix 2021;Wegmüller et al. 2021). Lourenço and Rua (2021) develop a
daily variant (DEI) for the Portuguese economy. Woloszko (2020) constructs country-
specific economic indicators for 46 countries based on Google Trends data.

During the last decade, the number of seasonal adjustment methods for higher-
frequency time series has seen a considerable increase (for a discussion and further
references see, De Livera et al. 2011; Ladiray et al. 2018; Ollech 2021; Proietti and
Pedregal 2022; Webel 2020). Yet, in the construction of theWEI, DEI and some of the
other indices, these methods are not employed. Instead, ad-hoc measures like year-
on-year rates are used to handle the seasonality of the data. This does not usually take
into account calendar effects or the structure of the periodic and seasonal effects such
as the varying number of weeks per year.

The higher-frequency time series used in the construction of the economic indices
often present methodological challenges that differ substantially from those encoun-
tered in lower-frequency data. In this paper, we therefore contribute to the literature by
analysing and seasonally adjusting a set of higher-frequency time series that is typical
of the kind of data relied upon by economists and business cycle analysts during the
COVID-19 pandemic. As the literature on the adjustment and modelling of higher-
frequency seasonal time series is growing rapidly, the lack of a common understanding
of the features, that need to be taken into account when modelling and adjusting these
data, becomes evident. Therefore, another key contribution of the analysis presented
here is the derivation and systematization of those characteristics that are relevant in
the context of seasonal adjustment.

To this end, Sect. 2 discusses the characteristic features of higher-frequency time
series from a seasonal adjustment perspective. Section 3 presents the seasonal adjust-
ment methods employed in this study, while Sect. 4 analyses and adjusts the daily
truck toll mileage, the hourly electricity consumption and a weekly Google Trends
series. These series are used as inputs to the Weekly Activity Index (WAI) devised by
Eraslan and Götz (2020). Section 5 summarizes.

2 Key notions for the adjustment of higher-frequency data

Seasonal higher-frequency time series show features and idiosyncracies that are of
immediate importance for any seasonal adjustment procedure. The time series exam-
ples discussed in the next sections include someor all of the characteristics summarized
in Table 1. To guide the readers understanding and as a point of reference, this table
is included at the beginning of this paper.

Table 1 organizes the characteristics of seasonal higher-frequency time series into
a taxonomy of relevant features.

The basic characteristics cover the most obvious features that concern the
whole set of observations. The fact that higher-frequency time series contain many
observations—especially in comparison with lower-frequency time series—is in itself
trivial. Yet, it increases the computational burden and may render some methods
inapplicable. Non-isochronicity and non-equidistance will usually either have to be
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Table 1 Key notions for the
adjustment of higher-frequency
data

Notion Description

Basic characteristics

Many observations Higher-frequency data
contain many observations
which can be a challenge
for algorithms and users.

Short series Many series contain few
years of observations.

Temporal aggregation Feasible temporal
aggregation of adjusted
series depend on data type.

Non-isochronicity Number of observations per
periodic cycle is not always
the same for all cycles, e.g.
number of weeks per year.

Non-equidistance For some series, the distance
between observations
varies, e.g. bank-daily, with
0 to 3+ days between
observations.

Date and time conventions Conventions regarding the
start of the week or year
Numbering impact the data
structure.

Periodic and calendar effects

Multiple periodic effects Daily time series usually
contain day-of-the-week
and day-of-the-year effects.

Multilevel periodic effects Seasonal structure may be
hierarchical, e.g. a series
with hour-of-the-day and
day-of-the-week effects.

Uncommon periodic effects Higher-frequency series may
contain other periodic
effects, such as
week-of-the-month effects.

Breaks in periodic effects Periodic effects may change
rapidly, e.g. as a
consequence of
fundamental changes in the
data generating process.

Cross-seasonality The periodic and calendar
effects can be
interdependent.

Autocorrelational Seasonality The seasonal impact of
consecutive observations
may be highly dependent.
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Table 1 continued Notion Description

Series-specific calendar effects Calendar effects can be
observed more directly, so
regressor construction can
more easily be tailored to
the series.

Uncommon calendar effects Higher-frequency series may
contain other calendar
effects, such as daylight
saving time.

Bridge days Bridge days may have a
traceable effect on the
series.

Outliers and missing values

Missing values Due to data availability, some
series contain (temporarily)
missing values, often at the
end of the series.

Unreliable data delivery Data producers do not
necessarily have an
obligation to deliver data or
provide additional
information.

Higher volatility The volatility of the time
series usually decreases
with a higher temporal
aggregation.

Heteroskedasticity The volatility may change
over time and may be
seasonal.

Non-traditional outlier patterns Observed outlier pattern can
be different from lower
frequency series, e.g.
slower rate of decay in a TC
outlire.

addressed by adapting the methods used or by transforming the data, e.g. by interpo-
lation or time-warping.

The periodic and calendar effects encompass concepts that extend the definition
of seasonality and calendar effects in lower-frequency time series. As becomes clear
from the examples of daily data, higher-frequency time series often contain multiple
noticeable periodic effects that may be interdependent and autocorrelational. For cal-
endar effects, we may consider including constellations that are not recommended to
adjust for in lower-frequency time series, such as bridge days. This may be sensible
as the higher number of observations allow us to observe and estimate such effects
more directly. For weekly series, the impact of bridge days may even be inseparable
from the moving holidays, if they always fall in the same week.
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Higher-frequency time series are generally more volatile than traditional business-
cycle indicators. This is mostly a result of the fact that irregular influences tend to
partially offset each other over a longer time span and are therefore less pronounced
in monthly and quarterly data. Additionally, many of the higher-frequency time series
encountered are merely a by-product and are not compiled for economic analysis or
official statistics and therefore do not adhere to the same data standards. Accordingly,
the methods applied to higher-frequency time series usually need to be robust against
outliers and irregular observations.

3 Seasonal adjustment methods

The focus of this paper lies on the qualitative assessment of higher-frequency time
series and to this end, we employ methods for the seasonal adjustment of such series
to guide our understanding. Although we discuss the seasonal adjustment results and
highlight potential challenges, we do not advocate for any particular method. Instead,
the findings shall carve out features of higher-frequency time series that need to be
addressed regardless of the method applied.

Let {Yt } denote a series of length T with cycle length τ . For monthly series, τ

equals the number of observations per year, i.e. 12. For a daily series with only a
weekday pattern, the recurring pattern has a cycle length of 7. The basic time series
decomposition is then given by

Yt = Tt + St + Ct + It (1)

which includes the trend-cycle (Tt ), seasonal (St ), calendar (Ct ) and irregular compo-
nent (It ). It can easily be adapted to capture a multiplicative relationship between the
components by log-transformation of the original time series.1 For multiple periodic
effects with cycle lengths τ1, τ2, ..., the basic time series model can be generalized to

Yt = Tt +
∑

i

S(τi )
t + Ct + It (2)

Remark 1 In Eq. 2, the periodic effects are subsumed as seasonal effects to allow a par-
simonious notation. Here, effects related to calendar constellation are not considered
to be periodic effects, even though the calendar constellation recurs with a cycle length
of 400 years in the Gregorian calendar. However, this recurrence is not exploited in
the modelling of the time series and effects arising from these calendar constellations
will not usually recur in similar intensity every 400 years.

As we will see, for some series, different seasonal effects are interdependent. Like-
wise, calender effects and seasonal effects can be related. If all such interactions are

1 For a thorough discussion of further decomposition models, see U.S. Census Bureau (2016).
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relevant, Eq. 2 needs to be augmented so that

Yt = Tt +
∑

i

Sτi
t + Ct +

∑

i

∑

j>i

S(τi )
t ∗ S

(τ j )

t +
∑

i

Sτi
t ∗ Ct + It . (3)

In line with the methods used for official seasonal adjustment—namely X-13 and
Tramo-Seats—the adjustment of the higher-frequency time series presented here com-
bines a seasonal adjustment routine with a RegARIMA-based pre-adjustment. The
latter is a regression model (Reg) with autoregressive integrated moving average
(ARIMA) errors and is used here for the estimation and elimination of calendar and
some of the interaction effects. The RegARIMA model is given by

φp(B)φP (Bτ )(1 − B)d(1 − Bτ )D

(
Yt −

r∑

i=1

βi Xit

)
= θq(B)θQ(Bτ )εt (4)

where φ(B) and θ(B) are AR and MA polynomials of order p and q, number of
differences d, and capitals indicating seasonal terms while B is the backshift operator,
i.e. B(yt ) = yt−1. The parameter βi captures the impact of the i th regressor Xit on the
time series Yt and εt is the error term. The ARIMA part of Eq. 4 can be abbreviated by
(p d q)(P D Q)τ . Extensions of this model to multiple seasonalities are known and
available (e.g. Svetunkov 2017), but at the time of writing, these are rarely used in
seasonal and calendar adjustment.

3.1 Seasonal adjustment of daily time series

The iterative daily seasonal adjustment (DSA) procedure described by Ollech (2018;
2021) combines the aforementionedRegARIMAmodelwith STL (Seasonal andTrend
decomposition using Loess, Cleveland et al. 1990).

DSA can integrate other seasonal adjustment methods as well, if they are flexible
enough to handle daily data. In this regard, Ollech et al. (2021) discuss the flexibiliza-
tion of X-11 to handle higher-frequency time series.

STL decomposes a time series into Tt , St and It using a series of Loess regres-
sions and moving averages to separate out the trend and a periodic pattern from
the series. Loess regressions are locally weighted linear or polynomial regressions
(Cleveland and Devlin 1988). Each observation is regressed on a pre-defined set con-
taining the γτ closest observations. These observations are weighted, where the weight
depends negatively on the distance between observations as follows: With a reference
observation—i.e. the observation to be regressed on its neighbouring observations—at
time t , the weight of the observation at ti is given by

vi (t) =
[
1 −

( |ti − t |
δγτ (t)

)3
]3

(5)

where δγτ (t) = |ti − tγτ | is the distance between the γ th
τ farthest ti and t .
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In the robust version of STL, after the decomposition of Yt into a trend, seasonal
and irregular component (inner loop) an extreme value downweighing is added (outer
loop). Observations with extreme values get a weight ωt in the local regressions in the
next iterations given by

ωt =

⎧
⎪⎨

⎪⎩

(
1 −

[
|It |

6·median(|{It }Nt=1|)

]2)2

if |It | < 6 · median(|{It }Nt=1|)
0 else

(6)

The inner loop iterates through the following steps:

1. Trend adjustment: Yt − T {k−1}
t = S{k}

t + I {k}
t ≡ TA{k}

t , with T {0}
t = 0.

2. Preliminary periodwise smoothing: Each periodwise subseries of TA{k}
t is

smoothed by Loess to yield a preliminary seasonal factor S{k}
pre,t . The γτ has to

be specified by the user as there are no default values available (see, Cleveland
et al. 1990).

3. Smoothing preliminary seasonal component to capture any low-frequency move-
ments L{k}

t from S{k}
pre,t .

4. Obtaining seasonal component: S{k}
t = S{k}

pre,t − L{k}
t .

5. Seasonally adjusting the original time series: Y {k}
t − S{k}

t ≡ SA{k}
t .

6. Obtaining trend: Apply a Loess filter to SA{k}
t to extract T {k}

t .

STL only extracts one periodic pattern at a time. Therefore, DSA combines multiple
runs of STL with RegARIMA:

• Step I: Adjust intra-weekly seasonality with STL.
• Step II: Calendar- and outlier adjustment with RegARIMA.
• Step III: Adjust intra-monthly seasonality with STL.
• Step IV: Adjust intra-annual seasonality with STL.

In the intermediate steps, the remaining periodic effects are included in the trend-
cycle component, which by default in STL captures low-frequency variation that is
lower than the considered seasonal frequency.2

The resulting final seasonally adjusted series will be adjusted for all seasonal and
moving holiday effects considered. The order of the steps in DSA follows the maxim
to start with the periodic pattern with the shortest cycle length, i.e. the intra-weekly
seasonality. Unlike the methods used for seasonal adjustment of lower-frequency time
series, the RegARIMA part is not the first step, as it would necessitate to estimate a
RegARIMAmodel with multiple seasonal parts. Future versions of DSAmay include
such an extension.

For all computations and analyses,we useR 4.0.2 (RCoreTeam2021). The seasonal
adjustment of daily time series is computed using the {dsa} package in version 1.1.15.

2 The default settings used to capture the trend-cycle have not been changed in the applications presented
here; for a discussion of potential parameter settings, we refer to Cleveland et al. (1990)
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3.2 Seasonal adjustment of hourly time series

Hourly series are challenging due to the large number of observations included. For
computational reasons, it will often not be possible to estimate aRegARIMAmodel for
such series, if many regressors need to be included. Here we adapt the DSA procedure
to the case of hourly data as follows:

• Step I: Adjust hour-of-the-week effects with STL.
• Step II: Calendar- and outlier adjustment with RegARIMA based on daily obser-
vations.

• Step III: Adjust hour-of-the-month effects with STL.
• Step IV: Adjust hour-of-the-year effects with STL.

As with DSA, single steps of the routine used to seasonally adjust hourly data may
be omitted, e.g. only a few series will exhibit an hour-of-the-month effects. Also, the
first step may be changed to model hour-of-the-day effects instead or in addition to
day-of-the-week effects (see Remark 9).

Remark 2 The transformation from hourly to daily observations in step II only serves
to reduce the computational burden. For some series, it may be feasible and preferable
to directly estimate the calendar effects in the hourly series—provided an hourly
RegARIMA model can be computed. If a distinct moving holiday impact for each
hour of a holiday is assumed, the number of regressors may be extremely large. This
is aggravated if cross-seasonal effects need to bemodelled, e.g. if interactions between
fixed holidays, the weekday and potentially the hour are prevalent.

3.3 Seasonal adjustment of weekly time series

On average, a year contains a non-integer number of weeks, namely 52.18. Ladiray
et al. (2018) describe how, in these cases, autoregressive fractionally integratedmoving
average (ARFIMA) processes can be exploited that adapt the seasonal differencing
part of Eq. 4 to incorporate fractionally integrated processes. The authors develop a
fractional variant of the well-known airline model, i.e. the seasonal ARIMA model
of order (0, 1, 1)(0, 1, 1)τ . For a non-integer seasonal period of τ = �τ� + α, with
α ∈ [0, 1], the fractional differencing operator ∇̃τ can be approximated by a first-order
Taylor series expansion so that

∇̃τYt ≈ Yt − (1 − α)B�τ�Yt − αB�τ�+1Yt (7)

The fractional airline model can be used for linearization of a time series analogously
to Tramo.3 We combine this pre-processing with a SEATS-type time series decom-
position of the fractional airline model to seasonally adjust weekly time series with
τ = 52.18.

3 The fractional airline model-based estimation and decomposition are included in the R Package {rjdhf}
available on github: https://github.com/palatej/rjdhighfreq. As of version 0.0.4, the Tramo-type estimation
of the model does not allow forecasting of the time series. For weekly time series, we therefore use seasonal
ARIMA models for pre-processing of the time series with τ = 52.
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Fig. 1 Daily German truck toll mileage index

4 Empirical illustrations

We will present a small set of higher-frequency time series that have been of high
importance for economic analysis during the COVID-19 pandemic. We will discuss
key features of this series and show how thesemight be accounted forwhen conducting
calendar and seasonal adjustment.

4.1 Truck toll mileage index

The Federal Office for Freight Transport in Germany is responsible for a distance-
based toll on trucks, which was implemented in January 2005. The truck toll mileage
index has been developed together with the Federal Statistical Office. It is based on
raw mileage and free of structural breaks resulting from changes in the vehicles that
have to pay the toll. The data are available as a monthly and a daily index (Deutsche
Bundesbank, 2020). The daily time series analysed here is available from 1 January
2005 up to 12 September 2021, and thus contains many observations.

As can be seen from Fig. 1, the series is characterized bymultiple periodic effects,
namely a strong weekday pattern, with a trough on Sundays and an annual pattern.
These effects are interdependent: the cross-seasonality presents itself as a weekday
pattern that changes throughout the year. In part, this is due to governing laws and
regulations: with only a few exceptions, trucks are not permitted to drive onmotorways
onSundays or onpublic holidays.During July andAugust, this is extended toSaturdays
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as well. We further observe different patterns around Christmas related to different
changes in consumption behaviour.

Remark 3 Other series contain less typical or even uncommon periodic effects.
Ollech (2021) finds a monthly recurring pattern in currency in circulation in Germany.

The series is further marked by a weakly positively sloping trend that is halted
temporarily in early 2020, as a consequence of the COVID-19 pandemic. After the
COVID-19-induced slowdown, we observe breaks in periodic effects, in particular
the weekday pattern. At least temporarily, the difference in the truck mileage between
workdays and weekend days is less pronounced. The annual seasonal pattern is non-
isochronous, i.e. the number of observations per cycle is not the same for all cycles
as years contain either 365 or 366 observations.

Remark 4 Non-isochronicity can impact a time series in a number of ways. We may
observe that the seasonal pattern in longer cycles is just a stretched-out version of the
pattern in shorter cycles. This might be the case, if the seasonal pattern is a smooth
pattern in the sense that the seasonal impact of neighbouring values are highly cor-
related. In series with a more fluctuating pattern, the seasonal impact of additional
observations in a given cycle, such as February 29 in a leap year, may be less related
to adjacent observations. This may imply that the estimation of the seasonal impact
of these additional observations in longer cycles cannot be inferred from observations
in the shorter cycle.

For higher-frequency time series, it is often possible to observe the impact of holi-
days more directly, and thus identify series-specific calendar effects. Figure 2 shows
the truck toll mileage index on All Saints’ Day (November 1) as well as the three days
leading up to and the three days after the holiday. All Saints’ Day is a public holiday in
5 out of 16 German federal states. In these states, all of which are located either in the
south or west of the country, trucks are prohibited from driving on motorways on this
day. The impact of All Saints’ Day is cross-seasonal: the magnitude of the decrease
depends on the weekday.4 As restrictions already apply to the driving of trucks on
Sundays, All Saints’ Day does not have an additional impact on the truck toll mileage
index if it falls on a Sunday. By contrast, there is a considerable reduction if it falls on
any given weekday.

IfAll Saints’Day falls on aTuesday (Thursday), the neighbouringMonday (Friday),
i.e. any bridge days, also appear to have a reduced number of trucks on motorways.
In contrast to lower-frequency time series, these bridge day effects can be seen and
modelled more directly.

The COVID-19 pandemic, which hit Germany inMarch 2020, has a twofold impact
on the time series. First, it leads to an abrupt decline in the number of kilometres driven
by trucks. Second, it impacts the observed weekday pattern owing to changes in the
restrictions regarding on which days trucks are allowed to drive on motorways and the
consumption pattern.

4 Note that Reformation Day - the day before All Saints’ Day—is a regional public holiday. Before 2017,
it was only a public holiday in all federal states in eastern Germany. In 2017, Reformation Day it was a
national public holiday. From 2018, Reformation Day is a public holiday in the federal states in eastern as
well as northern Germany.
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Fig. 2 Daily German truck toll mileage index, days around All Saints’ (1 November)

To obtain a calendar and seasonally adjusted series, DSA was used with γ7 := 7
and γ365 := 11 using an additive decomposition. For the seasonal adjustment of the
monthly index, we found a multiplicative decomposition to be more appropriate. Yet
due to the higher volatility of the daily index—which is typical for higher-frequency
time series—the seasonal factors from a multiplicative model would inflate strong
outliers in many cases, leading to extreme spikes in the seasonally adjusted series.
The series does not contain day-of-the-month effects5; accordingly, step III of the
DSA procedure is omitted. The choice of a very short filter to estimate the day-of-the-
week effect, i.e. γ7 := 7, allows the day-of-the-week-effect to change during the year,
thus making it possible to capture this particular cross-seasonal effect. As discussed
above, this is important, because we already know that the weekday pattern is different
in different parts of the year, due to the aforementioned driving restrictions. The day-
of-the-year effect is captured using γ365 := 11. This is appropriate because it allows
the seasonal effect to change slowly over time, but does not overreact to single years.
An important tool to identify an appropriate value for γτ are visualizations of the
seasonal-irregular component (Cleveland and Terpenning 1982), so-called SI-ratios.
These are frequently used to visualize the volatility of the combined seasonal-irregular
series and a plausible trajectory of the seasonal component.

5 The spectrum of the series (not shown here) indicates that the series is not influenced by any monthly
recurring periodic pattern. Alternatively seasonality tests may be used to check whether there are significant
day-of-the-month effects.

123



1386 D. Ollech, D. Bundesbank

Fig. 3 Seasonal adjustment of German truck toll mileage index

To estimate the impact of moving holiday effects and the interaction between week-
days and fixed holidays, a RegARIMAmodel is used. As described by Ollech (2021),
this model combines a non-seasonal ARIMA model with trigonometric terms that
capture deterministic seasonality. For the truck toll mileage index, 30 cosine and sine
terms are used. Ollech (2021) states that multiples of 12 capture intra-monthly pattern,
yet here, the high number of trigonometric terms used instead reflects the complexity
of the seasonal pattern and does not indicate a day-of-the-month effect.

Remark 5 To obtain the unadjusted monthly truck toll mileage index, the daily raw
truck toll mileage is summed up for each month and transformed into an index. If
a temporal aggregation is likewise performed on the seasonally adjusted truck toll
mileage index via summation, the resulting time series will contain a length-of-the-
month effect—i.e. months with more days will have a higher value—and thus be
seasonal. Using the average monthly index instead is a simple remedy, but reduces the
comparability of the directly adjusted monthly and daily time series.

The calendar and seasonally adjusted truck toll mileage index is especially volatile
around holidays (see Fig. 3). This heteroskedasticity is due to estimation uncertainty
and the fact that truck drivers are restricted by laws with regard to the number of hours
that they are allowed to drive per week and per day. The latter determines the optimal
logistics and thus the interaction between holidays, consumer demands and kilometres
driven by trucks on a given day resulting in the observed local volatility increases.
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Table 2 Estimated moving holiday and cross-seasonal effects for the German truck toll mileage index

Estimate S.E. Estimate S.E.

Carnival Monday −8.6 1.6 NH1 (Mon) −92.5 2.3

Mardi Gras −5.0 1.6 NH1 (Tue) −106.3 2.4

Holy Thursday −20.2 1.5 NH1 (Wed, to 2015) −90.4 3.1

Good Friday −99.7 1.9 NH1 (Wed, from 2015) −118.8 2.7

Holy Saturday −17.3 1.9 NH1 (Thu) −106.7 2.1

Easter Sunday −10.4 1.9 NH1 (Fri) −74.6 1.9

Easter Monday −117.6 1.9 NH1 (Sat) −20.6 1.9

Easter Monday (t+1) −21.4 1.5 Christmas Period (Mon) −32.7 1.6

Ascension (t–1) −13.4 1.5 Christmas Period (Tue) −42.5 1.7

Ascension (to 2015) −109.4 2.2 Christmas Period (Wed) −41.7 1.7

Ascension (from 2016) −119.4 2.3 Christmas Period (Thu) −41.4 1.7

Ascension (t+1) −18.4 1.6 Christmas Period (Fri) −28.7 1.7

Corpus Christi (t–1, to 2015) −7.4 2.0 3d before Christmas (Sun) 22.8 2.1

Corpus Christi (to 2015) −73.8 2.2 Christmas Eve (Sat) 11.7 4.3

Corpus Christi (from 2016) −74.5 2.1 Christmas Eve (Sun) 42.0 4.8

Corpus Christi (t+1) −7.7 1.5 Christmas Day (Sat) 24.9 5.9

Pentecost (t-1) 4.1 1.3 Christmas Day (Sun) 58.4 4.3

Pentecost (to 2015) −107.7 1.9 Boxing Day (Sat) 18.7 3.2

Pentecost (from 2016) −117.6 2.1 Boxing Day (Sun) 30.4 5.8

Pentecost (t+1) −14.2 1.5 10d after Dec 26 (Sat) 14.8 1.8

Labour Day (bridge) −17.9 2.6 10d after Dec 26 (Sun) 30.9 1.9

German Unity (bridge) −2.6 2.9

All Saints’ Day (bridge) −20.6 2.4

Based on time series only adjusted for intra-weekly seasonal effects. A RegARIMA(2,1,1) model with
2 × 30 trigonometric terms has been estimated
1 NH includes the following holidays with fixed dates: Epiphany, Labour Day, Assumption Day, German
Unity, Reformation Day and All Saints’ Day. The weights of the regional holidays are given by: Epiphany
0.2, Assumption Day 0.1, Reformation Day (after 2017) 0.2 and All Saints’ Day 0.6
Note: Ascension and Labour Day 2008 both fell on 1 May. Because the effect is not additive,
the effect has been assigned to Labour Day only, i.e. the regressor for Ascension is 0 on that day.

Table 2 shows the estimated impact of moving holidays and cross-seasonal effects.
All moving holidays that are public holidays at the national or federal state level are
included in the regression. This is extended to the surrounding days, as a transition
phase can usually be observed, so that both the day before and after a given public
holiday show a decrease. The only exception is the Sunday just before Pentecost Mon-
day, which is slightly positive compared to a typical Sunday in spring. Additionally,
we include the main event days of the carnival season for which a significant impact
can be detected.

The impact of fixed holidays is usually captured by STL in the last step of DSA. Yet,
as discussed above, the interdependency between that impact and the weekday cannot
be captured by STL. Here, we model it using interaction dummies in the RegARIMA
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model. The impact of each weekday is combined across all national and federal state-
level holidays to increase the parsimony of the estimated model. Days that are public
holidays only regionally are weighted accordingly (for details on the weights see Table
2 and Deutsche Bundesbank 2020). The remaining spikes around Christmas are not
seasonal, as they do not fall on the same day of each year. Yet, with more observations
it may be possible to further improve the estimation of cross-seasonal effects for that
time period.

The changes in the weekday pattern after the start of the COVID-19 pandemic in
Germany discussed above recur weekly and may thus be considered to be part of the
S(7)-component. A different view is that as these changes are only temporary and
a result of the irregular nature of the crisis they should be captured in the irregular
component and thus be visible in the calendar and seasonally adjusted series.6 For the
period from 23 March to 30 August 2020, i.e. from the beginning of the lockdown
until after the summer holidays, we chose the latter approach. To seasonally adjust
this period, forecasted calendar and seasonal factors are used, which are obtained by
restricting the estimation span from the beginning of the time series to 22March 2020.
For the period after 30 August, we again use all available data in a controlled current
adjustment scheme. This means that the seasonal and calendar components are re-
estimated monthly, but we control weekly, whether a re-estimation is necessary. This
is the case when the forecasted seasonal or calendar component no longer adequately
capture the respective effect, e.g. because the seasonal pattern has evolved differently
than predicted.

Remark 6 Generally, at the beginning of a crisis, it may be a good policy not to
re-estimate the seasonal and calendar components immediately, in order to avoid
including transitory and irregular influences into the seasonal or calendar components.
Once the crisis has stabilized, a controlled current adjustment scheme as discussed
above may be implemented.

4.2 Electricity consumption

The German electricity consumption is compiled by the German Federal Network
Agency using data from the network providers starting in January 2015. The series
analysed here ends on 30 April 2021. Energy consumption is related to industrial
production and GDP. Electricity consumption is therefore of particular interest to
business-cycle analysis (Arora andShi 2016;Do et al. 2016). For themost recent obser-
vations, the series is subject to unreliable data delivery as some network providers
do not always provide data immediately.

Remark 7 More broadly, unreliable data delivery stems from the issue that data
providers are often not legally or contractually obligated to provide data and do not
need to adhere to any standards regarding data quality or deadlines. Furthermore, if
the data are merely a by-product, it may be difficult to analyse the quality of the data.

6 At the time of writing the ESS Guidelines on Seasonal Adjustment does not discuss this matter and
therefore does not stipulate any action (Eurostat, 2015). It could be sensible to define a minimum number
of cycles that a new periodic pattern need to pass through before it is regarded as a periodic pattern that
needs to be adjusted for.
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Fig. 4 Hourly electricity consumption in Germany

In the case of electricity consumption, this leads to temporarily missing values
that might require interpolation, either before or as part of the seasonal and calendar
adjustment.

Remark 8 Some higher-frequency time series do have structurally missing values, e.g.
time series that only contain observations on working days. If this is the case, the data
may be non-equidistant, i.e. the distance in time between observations is not the same
for all neighbouring observations. In other words, the distance between a Monday and
a Tuesday is less than between a Friday and a Monday.

Electricity consumption is available on a 15-minute basis. Ollech (2021) discusses
how the daily electricity consumption can be seasonally adjusted.Here,wewill analyse
the hourly electricity consumption. Clearly, for business cycle analysis, it may be
advantageous to focus on a lower-frequency aggregation level, such as a weekly series,
as the volatility of the time series tends to decrease with aggregation level. However,
discussing an hourly series will inform our understanding of typical characteristics of
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higher-frequency time series and thus is relevant for the modelling of daily and weekly
series.

As can be seen from Fig. 4, the electricity consumption is characterized by an hour-
of-the-week pattern and—especially if we disregard Christmas and fixed holidays—an
almost sinusoidal annual seasonality. The latter is termed autocorrelational seasonal-
ity, as the seasonal impact of each day of the year strongly correlates with the seasonal
influences visible in the neighbouring observations. A dependence structure such as
this is usually not exploited fully in the seasonal adjustment of lower-frequency time
series. Yet, for higher-frequency time series it may improve the estimation of the
seasonal effects given the high volatility of the time series and the corresponding
estimation uncertainty.

Remark 9 Some series show multilevel periodic effects. Instead of an hour-of-the-
week effect, an hourly series may contain an hour-of-the-day effect and an influence
of the day of the week, if the pattern of the intraday-movements remains the same
throughout the week and only the level of the series varies from weekday to weekday.
By contrast, the magnitude of the intra-day-movements of the electricity consump-
tion changes throughout the week, particularly when contrasting working days and
weekends.

The difficulty of estimating all relevant effects is aggravated, as the daily electricity
consumption is a relatively short series.7 As a consequence, we cannot observe all
possible calendar and cross-seasonal constellations. To illustrate this point, let us
assume that we want to model the interaction between the weekdays and Labour Day.
With just over five years of observations, not all possible interactions occurred in the
time span considered, and in any case, only very few observations per constellation
are included.

At times, higher-frequency time series show rather uncommon calendar effects.
The daily electricity consumption is impacted by Daylight Saving Time (DST)—even
in the hourly series.

The start of theCOVID-19 pandemic inGermany again evokes a temporarily declin-
ing trend and some slight and gradual changes in the weekly pattern, reflecting the
reduction in output in the production sector and possibly changes in the share of people
working remotely (for a cross-country comparison of the impact of the pandemic on
electricity consumption, see, López Prol and O 2020). For the seasonal adjustment of
lower-frequency time series, the pandemic is treated using series of level shifts (LS),
additive outliers (AO) and, less frequently, temporary change outliers (TC) with a
pre-specified decay rate (Eurostat 2020). The downturn observed for electricity con-
sumption is gradual enough so that one or multiple level shifts are not necessary to
model the crisis based on daily data. In general, we observe non-traditional outlier
pattern more frequently for higher-frequency time series than for monthly or quar-
terly series. This is neatly illustrated by the finding that the decay rate of 0.7 for TC,
the default for monthly series, is often unsuitable for daily or weekly series.

7 For very short series, it may not be advisable to estimate all seasonal and periodic components. An
estimation of the day-of-the-year effect requires at least two years, but for a reliable and sensible estimation
usually three or more years of observations are needed. The day-of-the-week effect may often be estimated
using less than two years of data.
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To estimate the hour-of-the-week effect—which encompasses 24 ·7 = 168 hours a
week—STL is employed with γ168 := 7, i.e. a very short filter that is tailored towards
an effect that changes throughout the year. More precisely, the difference between the
daily minimum and daily maximum consumption is smaller on the weekend than on
working days. This difference is especially small in winter compared to the rest of the
year.8

After the hour-of-the-week effect has been estimated, the adjusted series aggregated
to daily observations serves as input to DSA. We omit the estimation of the day-of-
week and day-of-the-month effect, as these effects are not (or no longer) present in
this partially adjusted series.

Table 3 shows the estimatedmoving holiday and cross-seasonal effects for this time
series. The cross-seasonal effects included are again interactions betweenweekday and
fixed holidays. As mentioned, due to the length of the series, not all possible calendar
interactions can be observed and overall, only very few observations per constellation
are available.

As discussed above, a noteworthy calendar effect is Daylight Saving Time. DST
has an obvious—albeit small—effect on the time series. Here, the moving holiday
and cross-seasonal effects will be estimated in the series aggregated to a daily series
by averaging the hourly observations. Alternatively, the hourly series could be tem-
porally aggregated to a daily series by summing up the hourly values. Generally, if a
multiplicative time series model is used, the difference between the estimated effects
using daily averages comparing to those obtained using daily sums is often negligible
for calendar constellations that impact the whole day. For example, electricity con-
sumption is estimated to be 23.3 percent lower on Pentecost based on daily averages
(see Table 3). If we used daily sums instead, the estimated impact was 23.2 percent.

If we consider matters that affect only single hours of a day, such as DST, the
differences can be considerable. Transforming the hourly to a daily series by taking
the mean will reduce the estimated impact of DST on the series, because DST will
mostly be reduced to capturing the configuration of the hours in a day and the effect
on the electricity consumers. If we used hourly sums instead, the estimated impact of
DST would additionally include a length-of-the-day effect.

After the calendar and cross-seasonal effects have been estimated, they are broken
down into hours, assuming that all hours of the day are influenced in the same way.
The hourly series is then adjusted using these hourly factors.

Finally, the hour-of-the-year effect is estimated using STL in DSA with γ24·365 :=
13. The final adjusted series can be seen in Fig. 5.

4.3 Google Trends: Unemployment

Weekly Google Trends data have to be downloaded in chunks of five years. Each
of these chunks is a random sample of all search queries and therefore subject to

8 In daily series, this translates into a difference between working days and weekends which increases
during the warmer season.
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Fig. 5 Seasonal adjustment of hourly German electricity

noticeable revisions.9 The chunks are chain-linked together and a value of 100 is
added to avoid values too close to 0, which can lead to extreme seasonal and calendar
factors if a multiplicative model is used.

The series analysed here starts from 10 January 2004 and ends on 10 September
2021. The chunks of the series were downloaded on 13 September 2021.

The definition of the week does not adhere to the ISO 8601 standard. Instead it
is defined to start on Sunday and end on Saturday. Such date and time conventions
are of relevance for regressor construction. For example, Easter Sunday and Easter
Monday fall in the sameweek, and their effect cannot be disentangled. In turn, we only
need one regressor that captures the joint effect of Easter Sunday and Easter Monday.

For lower-frequency time series, Christmas and New Year are seasonal effects as
they fall in the same period each year. Depending on the modelling strategy, especially
if the data are modified so that every year has 365 observations, this holds for daily
data too. For weekly time series, as a consequence of their non-isochronicity and date
conventions, Christmas’ Day can fall in the 51st or 52nd week of the year, while
New Year’s Day falls in week 52, 53 or 1 (ISO 8601 standard) or week 0 or 1 (US
convention).

The results of the RegARIMA model estimation are included in Table 4. As dis-
cussed, the construction of the data implies that some holidays always fall in the

9 The average mean revisions are 7.14 points from week to week in the original series and 6.90 points in
the calendar and seasonally adjusted data. The combined seasonal and calendar factor is on average revised
by 0.74 percent in absolute terms.
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Table 4 Estimated ARMA coefficients (in absolute terms) and moving holiday effects (in percent) for
Google Trends, search term: Arbeitslosigkeit [unemployment]

Estimate S.E. Estimate S.E.

MA −0.87 0.02 SMA −0.75 0.04

Good Friday −5.5 1.2 Christmas Eve −6.7 1.7

Easter −5.4 1.2 New Year’s Eve −5.3 1.6

A RegARIMA(0,1,1)(0,1,1) model is estimated
Note: The week is defined as starting on Sunday and ending on Saturday. Thus, Easter covers both Sunday
and Monday.

same week. Their impact is therefore indistinguishable. The inclusion of appropriate
regressors for the Christmas and New Year’s period can be challenging. Christmas
Day always falls in the same week as either Christmas Eve or New Year’s Eve. If both
Christmas Eve and New Year’s Eve are included as regressors, then, particularly for
short series, separating the impact of Christmas Day from the other two days may be
intricate, resulting in an unstable estimation.

As can be seen from Fig. 6, the series is very volatile, especially at the beginning
of the series. It may be difficult to assess the seasonality of the time series visually,
but seasonality tests10 and the coefficients of the ARIMA model indicate seasonality.
To obtain seasonal factors, we rely on the default settings of the fractional airline
decomposition.

As the original data are revised considerably every week, the revision policy of this
weekly series differs from the daily series discussed above. For the Google Trends
series, we follow a partial concurrent adjustment scheme, i.e. the calendar and seasonal
components are re-estimated every week, but the order of the RegARIMA model
is fixed and is only re-identified annually. The Appendix includes a discussion of
graphical tools that can be used forweekly time series if a controlled current adjustment
scheme is used.

5 Summary

The contribution of this paper is twofold. First, we performed an illustrative analysis
of a small set of higher-frequency time series. We discussed how these data differ
from lower-frequency time series and how this is relevant for seasonal adjustment in
general and in light of the COVID-19 pandemic. Second, we developed a taxonomy
of the central features of seasonal higher-frequency time series. This list of features
can contribute to the assessment of the seasonal adjustment of higher-frequency time
series and might serve as a building block in the development of quality diagnostics.

10 We use the seasonality tests recommended by Ollech and Webel (2020) for monthly time series which
are implemented in the {seastests} package in R. Setting the frequency of the time series to 52 ignores the
non-integer-type seasonality of the series. However, in practice this works well as an approximation. Both
the QS and the Friedman test reject the null hypothesis of no seasonality at the 0.1-% level of significance.
This also holds true if we only include the last five years of observations.
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Fig. 6 Weekly Google Trends. Search Term: Arbeitslosigkeit (unemployment)

Fig. 7 Seasonal adjustment of Google Trends. Search Term: Arbeitslosigkeit (unemployment)
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Further research may evaluate different procedures that allow the seasonal adjust-
ment of higher-frequency time series with respect to their ability to handle all of these
features.
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A Appendix

For a controlled current adjustment revision scheme, the results from the calendar
and outlier adjustment are investigated and, perhaps most importantly, the previously
forecasted seasonal components (ŜF ) are compared to the new seasonal factors (ŜN )
obtained after re-estimation. As reference points for the comparison, the raw seasonal
factors (Ŝraw), i.e. the combined seasonal-irregular component, are included in the
analysis. The comparison is either based on tables or graphics, with the latter often
being referred to as the SI ratios. The idea is to gauge whether ŜN better captures
the systematic development of Ŝraw compared to ŜF . If this is the case to a relevant
extent, the previous components are discarded and the re-estimated results are used.
Otherwise ŜF can still be used and the previously published seasonally adjusted values
are not revised.

For integer-type periodic influences the construction of the SI ratios is straight-
forward. Each subplot shows the ŜN , Ŝraw and ŜF for a given period, e.g. a subplot
for each month of the year. For series with a non-integer number of observations
per year, the configuration is more intricate. For weekly series, the estimated sea-
sonal component of a given observation depends both on observations (multiples
of) 52 weeks ago as well as 53 weeks ago and likewise on future observations.
Therefore, Ŝraw should include all weeks that contribute to the estimation of the
seasonal component. For the most recent observations, this is approximately the
sequence of weeks with a step size of 52 and the respective previous week. This
is shown by way of example in Fig. 8. For any period of the seasonal component,
the exact representation of the relevant raw seasonal factors is given by the sequence
(..., Ŝraw

t+	2τ
, Ŝraw
t+�2τ�, Ŝraw

t+	τ
, Ŝraw
t+�τ�, Ŝraw

t , Ŝraw
t−�τ�, Ŝraw

t−	τ
, Ŝraw
t+�2τ�, Ŝraw

t+	2τ
, ...).
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Fig. 8 SI ratio for Google Trends series
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