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Abstract
Stochastic frontiers are a very popular tool used to compare production units in terms
of efficiency. The parameters of this class of models are usually estimated through the
use of the classic maximum likelihood method even, in the last years, some authors
suggested to conceive and estimate the productive frontier within the quantile regres-
sion framework. The main advantages of the quantile approach lie in the weaker
assumptions about data distribution and in the greater robustness to the presence of
outliers respect to the maximum likelihood approach. However, empirical evidence
and theoretical contributions have highlighted that the quantile regression applied to
the tails of the conditional distribution, namely the frontiers, suffers from instability in
estimates and needs specific tools and approaches. To avoid this limitation, we propose
to model the parameters of the stochastic frontier as a function of the quantile in order
to smooth its trend and, consequently, reduce its instability. The approach has been
illustrated using real data and simulated experiments confirming the good robustness
and efficiency properties of the proposed method.
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1 Introduction

In the last decades, several methods have been proposed in literature to estimate the
production or cost frontiers; this research stream—without claiming to be exhaustive—
concerned the generalization of the baseline parametric stochastic frontiermodel (SFA,
Kumbhakar andLovell 2004;Kumbhakar et al. 2020) to the panel data (see e.g. Battese
and Coelli 1995; Greene 2005), to the heterogeneity and spatial dependence (see
e.g. Bille’ et al. 2018; Fusco and Vidoli 2013; Tsionas and Michaelides 2016; Kutlu
et al. 2020), to more flexible functional forms (semiparametric Fan et al. 1996, semi-
nonparametric Kuosmanen 2012) and to the generalization of error term distributions
(Greene 2003; Papadopoulos 2021).
A multitude of methods, therefore, have provided access to a plurality of explanatory
possibilities concerning the heterogeneous behaviours of the production units in terms
of efficiency.

All these methods, however, focused more on the correct methodological specifica-
tion and properties than on the interpretative capabilities that the method could offer
or rather on the concrete subsequent applicability in private or public policies; in other
terms, the focus has been more on the long-run benchmark estimate—that is coinci-
dent with the estimated frontier—rather than on the partial benchmark references that
can be useful in the short and medium term.

Quantile regression (QR, Koenker and Bassett 1978; Koenker 2005), conversely,
can represent a steady approach to the long-term benchmark given that it can design
gradual paths of return from inefficiency. In other terms,minimizing an asymmetrically
weighted sum of absolute errors, quantile regression models allow to “going beyond
models for the conditional mean” (Koenker and Hallock 2001) making it possible
to derive different partial benchmark references for each quantile of the dependent
variable analysed.

But it is exactly this “plurality of benchmark references” that is paradoxically
the greatest weakness in the concrete use of these methods in the field of estimating
production efficiency; how to identify the feasible production frontier? how to identify
the stochastic part of the random noise?

Jradi et al. (2019) solves this crucial issue suggesting a heuristic algorithm to esti-
mate the specific quantile of the conditional output distribution corresponding to the
true stochastic frontier and paving the way for the use of quantile models in the field
of efficiency estimation. Our proposed approach lives in this novel research stream
combining a more general method such as the Frumento and Bottai (2016) quantile
regression coefficients modelling (QRCM) approach with the Jradi et al. (2019) quan-
tile selection method. This approach produces improvements both from an economic
point of view, since it makes it possible to design gradual and consistent paths to
recovery of inefficiency, and from a statistical point of view: in particular the absence
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of assumptions on the error/inefficiency term and the robustness to outliers (Furno and
Vistocco 2018) represent two crucial aspects in the practical application of frontier
models.

The ultimate aim, therefore, of our paper is essentially methodological and would
like to offer to the scientific and applicative debate an original flexible estimation
method with the aim of bypassing the limitations (i) of the SFA in relation to assump-
tions about error distribution1 and robustness in the presence of outliers and (ii) of
the QR models in relation to the lack of monotonicity in the trend of the estimated
coefficients as the quantile increases, or rather, in economic terms, to identify partial
and feasible benchmark references that can be used to gradually reduce inefficiency.
In other terms, the proposed approach aims to represent a method with clear method-
ological properties, but also rich in terms of application since it provides not only an
estimate of inefficiency, but also and above all references that allow to identify partial
benchmarks to overcome such inefficiency.

The remainder of the paper is organized as follows. In Sect. 2 methods and the-
oretical approaches relating to stochastic frontiers and quantile regressions will be
outlined clarifying the methodological contribution of this paper; the properties of
the proposed method and the application characteristics will be better highlighted on
both some case studies (Sect. 3) and simulated data (Sect. 4). Section 5 is devoted to
concluding remarks.

2 Frontier QRCMmodel

Standard quantile regression (Koenker andBassett 1978;Koenker andHallock 2001) is
a regressive techniquewhich aims to estimate the conditional τth quantile of a response
variable y given covariates x = (x1, . . . , xq), and—assuming a linear relationship
between y and x—it can be formulated as follows:

Qy(τ |x) = xTβ(τ) (1)

where τ ∈ (0, 1) is the quantile and the coefficients vectors β(τ) are non-smooth
functions. Parameter β(τ) plays a key role in QR models, but it can be highly vari-
able in a random form for each quantile especially in the distribution tails (broken
straight line in Fig. 1) leading to non-monotone increasing of the fitted functions (as
shown in the first plot in Fig. 2). It should be noted that the shortcoming linked to the
non-monotonicity represents a crucial flaw in the standard model in economic terms
because it does not allow for the design coherent and consistent efficiency recovery
policies.

Modelling the relationships between variables outside of the mean, QR is particular
useful when outcomes are non-normally distributed and have nonlinear relationships
with predictor variables relaxing the common regression assumptions and making no
assumptions about the distribution of the residuals; given these premises, QR is less

1 Furthermore, please note that there is no a priori economic justification to justify a given distribution
of inefficiency, but that this crucial assumption is left to ex-post approximation against a set of known
distributions in order to achieve the convergence of the SFA procedure.
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Fig. 1 Regression coefficients varying quantiles, τ ∈ [0.8, 1] Note Illustrative graph of QR coefficients
estimation (continuous black line) and smoother QRCM function (dashed red line) varying quantiles τ for
intercept (subgraph 1), variable x (subgraph 2) and variable x2 (subgraph 3) on a generic sample with one
input and one output. (Color figure online)

sensitive to extreme values than standard regression models proving its distributional
robustness in the “insensitivity to small deviations from the assumptions the model
imposes on the data” (Huber 1981).

Moving from the standard QR approach, Frumento and Bottai (2016, 2017) pro-
posed to model the coefficient functions parametrically through a finite-dimensional
parameter vector θ ; their QRCM estimator can be, therefore, defined as:

Qy(τ |x, θ) = xTβ(τ |θ) = xT θb(τ ) (2)

where θ parameters are estimated by minimizing the integral, with respect to τ , of the
loss function of standard quantile regression, i.e.:

Ln(θ) =
∫ 1

0
Ln{β(τ |θ)}dτ (3)

The flexibility of the model lies, therefore, in the choice of function β(τ |θ) which
can be expressed as a k-th degree polynomial function, i.e. β j (τ |θ) = θ j0 + θ j1τ +
· · · + θ jkτ

k, j = 1, . . . , q or as other flexible functions as [log(τ ),
√−log(1 − τ),

−√−log(τ ),…] that better facilitate interpretation, prediction, and inference.2

For the sake of simplicity, in Fig. 1 the distributions of coefficients estimated with a
standardQRestimator of a genericmodel Qy(τ |x, θ) = β0+β1(τ |θ)x+β2(τ |θ)x2+ε

are reported; the continuous black line represents function b(τ ), namely the non-
monotone trend of the coefficients estimated with the QR estimator, while the
monotone dashed line in red β j (τ |θ) is the smoother QRCM function, i.e. a 3rd-
degree shifted Legendre polynomial.

Continuous and monotone β j (τ |θ) functions allow to highlight two issues: (i) the
first one is related to the ability to bypass the problems of instability of the estimates on

2 In the application part (Sects. 3 and 4) several functional forms have been used; see Table 6 for a non-
exhaustive list of application possibilities.
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Fig. 2 QR andQRCMfitted curves varying quantilesNote Illustrative graph of QR (subgraph 1) andQRCM
(subgraph 2) fitted curves on a generic sample with one input x (x-axis) and one output y (y-axis)

the extremal quantile as highlighted bymany researchers (see e.g.Chernozhukov2005)
“due to data sparsity” (Li and Wang 2019) and “heavy-tailed distribution” (Huang
and Nguyen 2017) and (ii) identify monotonous estimated curves that increase as the
quantile rises and avoid quantile crossings between multiple estimated frontiers (as in
Wang et al. (2014) proposal for nonparametric quantile regression) as shown in the
second plot in Fig. 2; it is therefore possible, starting from these partial benchmark
reference curves, define intermediate benchmarks useful in the short andmedium term.

Sottile et al. (2019) suggested a penalized method that can address the selection
of covariates in the QRCM modelling framework “directly on the parameters of the
conditional quantile function [and] using information on all quantiles”.

In recent years, QR has been used to estimate efficiency (Bernini et al. 2004; Liu
et al. 2008; Roth and Rajagopal 2018) pointing out two improvements over models
such as SFA that use maximum likelihood estimation: its robustness to the presence of
outliers/abnormal points and its independence to the distributional choice providing a
useful comparison for applied researchers.

Despite these methodological and empirical advantages, the main critical point
has always been the discretionary choice of the “right” quantile corresponding to the
production frontier: some authors, e.g. Knox et al. (2007), Liu et al. (2008) or Behr
(2010) starting from the well-known finding that if no inefficiency is present in the
sample the SFA frontier corresponds to an OLS estimation and hypothesizing that this
is also true for the quantile regression (Horrace and Parmeter 2018), suggested (in a
very subjective way, in our opinion) to choose the quantile, for production frontiers
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estimation, above τ = 0.5 (the median) and preferably from 0.8 to 0.975, to try to be
as close as possible to a frontier but ignoring, however, distributional assumptions.

Jradi andRuggiero (2019) and Jradi et al. (2019) finally solve this limitation propos-
ing a heuristicmethod to choose the “right” quantile, demonstrating that, if the quantile
is identified by considering the conditional distribution of the output given the regres-
sors under a specific distributional setting of residuals, it is the one consistent with
the location of the stochastic frontier. Tsionas (2020); Tsionas et al. (2020); Zhang
et al. (2021) represent the latest methodological and empirical updates of this growing
literature.

In SFA production setting, residuals are represented as a compound error ε = v−u,
assuming that v is the random term, i.e. v ∼ N (0, σ 2

v ) and u is the inefficiency term
with a positive skewed distribution like the “Half-Normal” (Jradi et al. 2019), i.e.
u ∼ N+(0, σ 2

u ) or the “Exponential” (Jradi et al. 2021), i.e. u ∼ Exp(1/σu); given
these premises, therefore, we refer to “wrong skewness” when the distribution of the
term u presents a negative skewness. Finally, the compound error ε follows a negative
skewed distribution as, respectively, “NormalHalf-Normal” or “Normal Exponential”.

Given these assumptions, and following the Jradi and Ruggiero (2019) proposal,
the optimal quantile corresponding to the true location of the production frontier, in
the case of “Normal Half-Normal” distribution, can be expressed as:

τ ∗ = 0.5 + arcsin(−E[ε]/E[|ε|])
π

(4)

where the term −E[ε]
E[|ε|] = −σu

σ
gives information about the quantity of inefficiency in

the sample; following Fan et al. (1996), Jradi and Ruggiero (2019) also derived the
λ = σu/σv parameter that gives an immediate suggestion of the amount of inefficiency
with respect to the noise; this parameter can be expressed as3:

λ = tan(π(τ ∗ − 0.5)) (5)

Given these premises, the empirical algorithm for estimate the “right” quantile
involves the iteration over different quantiles (e.g. τ = 0.5, 0.51, . . . , 0.99) and the
comparison with the related likelihood choosing the one with the highest likelihood
value in order to minimize τ ∗ − τ .

In this paper, the two methods outlined above are combined in order to gain the
flexibility and independence from functional assumptions of the QRCM method with
the objectivity in the choice of optimal production frontier of the Jradi and Ruggiero
(2019) approach. In mathematical terms:

⎧⎨
⎩

Qy (̃τ
∗|x, θ) = xTβ(̃τ ∗|θ) = xT θb(̃τ ∗) + ε̃

τ̃ ∗ = 0.5 + arcsin(−E [̃ε]/E[|̃ε|])
π

(6)

3 This result is derived from the following—well known in SFA literature—equations σ = σv

√
1 + λ2

and σ 2 = σ 2
v + σ 2

u , by substituting
−E[ε]
E[|ε|] = λ√

1+λ2
.
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where τ̃ ∗ is the “right” QRCM quantile obtained by estimating QRCM, also in this
case, for different quantiles (e.g. τ = 0.5, 0.51, . . . , 0.99) and chosen by minimizing
the difference τ̃ ∗ − τ .

Therefore, from a technical point of view, by imposing a parametrization and some
degree of smoothness on coefficients β, the fitted values—and consequently the resid-
uals ε̃—are estimated by using information on all quantiles simultaneously; following
this approach, it is possible to inherit the other advantages of parametric modelling
like parsimony, the ease of interpretation (Frumento and Bottai 2016) and the possibil-
ity to be applied to cases—latent variables, missing or partially observed data, causal
inference—where “parameters are harder to estimate in closed form” (Waldmann
2018)—where applying standard QR proves to be difficult and computationally inef-
ficient. Please note that a useful criterion for finding the best smoothness function can
be using a goodness-of-fit test; in this paper, following Frumento and Bottai (2016),
a Kolmogorov–Smirnov test has been considered4 (more detailed information can be
found in Sect. 3).

Moreover, the choice of the form, which leads to coefficients highly correlated on
the frontier with SFA’s ones, allows to include in the efficiency estimation not only all
properties of the ML approach, but also to transfer them to lower quantiles.

On the other hand, froman economic point of view, the possibility to have increasing
monotonous functions at the observed covariate values across quantiles lets to estimate
different partial benchmark references in the short, medium and long term.

3 Properties of the proposedmethod: some case studies

In this Section, two empirical applications, based on two datasets well known in the
literature, are proposed: in the first one (Sect. 3.1) the focus is on the comparison
of QR/QRCM methods with respect to SFA; this is the most favourable scenario
for SFA since there are no outliers in the data and the assumptions about the error
distribution are met. In the second one (Sect. 3.2), instead, SFA estimation brings out
wrong skewness on the inefficiency term showing very clearly the advantage of using
QRCM-type estimation methods in this context.

3.1 Philippine rice farming dataset

In this Subsection, as previously stated, QRCM is compared to standard QR approach
in order to bring out two evidences: (i) the QRCM capability to estimate more stable
β parameters at quantile variations and (ii) the greater approximation, in terms of
estimation, with respect to the SFA taken as a reference model given an optimal β’s
smooth function and the estimation of an optimal quantile.

Philippine rice farming dataset is widely used in literature to compare frontiermeth-
ods (see for example Coelli et al. 2005, Rho and Schmidt 2015, Parmeter et al. 2019

4 Other tests e.g. are the Chi-square (Snedecor and Cochran (1989)) or the Anderson–Darling (Stephens
(1974)) test.
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or Jradi et al. 2019). The dataset contains annual data collected from 43 smallholder
rice producers in the Tarlac region of the Philippines between 1990 and 19975.

In this dataset, the output variable (y) is tonnes of freshly threshed rice and the main
input variables are being area (area) of planted rice (hectares), total labour (labour)
used (man-days of family and hired-labour) and fertilizer (npk) used (kilograms); the
relative translog production frontier specification is defined as:

ln(yi ) = β0 + β1ln(areai ) + β2ln(labouri ) + β3ln(npki )

+ β11ln(areai )
2/2 + β12ln(areai ) · ln(labouri )

+ β13ln(areai ) · ln(npki ) + β22ln(labouri )
2/2

+ β23ln(labouri ) · ln(npki ) + β33ln(npki )
2/2

+ θ t + vi − ui

(7)

Frontier specification reported in equation (7) has been estimated by the threemeth-
ods; specifically, the QRCM approach6 needed to identify the best smooth function
for the quantile coefficients: this choice is clearly related to the empirical framework
under consideration either by choosing the smooth function based on its theoretical
properties or by using adjustment criteria.
In this application, following Frumento and Bottai (2016), a Kolmogorov-Smirnov
goodness-of-fit test has been used for this purpose, indeed, they suggest to test the
null hypothesis H0 : τ1, . . . , τn ∼ U (0, 1), since by definition, at the true model
τ1, . . . , τn are independently and identically distributed draws from a standard uniform
distribution. Moreover, with the aim to better approximate the functional form on the
frontier, in this paper, a further criterion to select from the functional forms shown
in Table 6 has been added, that is, a high correlation of the obtained βs with those
of the SFA. The mix of the two approaches has led to the choice of the function
I (qnorm(τ 3)) + I (log(τ ))7.

In Fig. 3, the QR and the QRCM β coefficients smooth functions for each quantile
from 0.6 and 1 are plotted, showing that QR coefficients are too volatile especially for
quantile values greater than 0.8—those that aremost relevant in terms of the production
frontier—while QRCM smooth function is able to well approximate all translog terms.

InTable 1, a comparison of production translog frontierβ coefficients, the efficiency
specific parameters, namely, the λ, the total variance σ 2 and the mean Fan et al. (1996)
efficiency values (standard deviations in brackets), estimated with corrected ordinary
least squares (COLS, Winsten 1957), SFA, QR and QRCM, are reported. Moreover,
the obtained optimal quantile τ ∗ for QR and QRCM are shown.

It can be noted that, QRCMmethod is able to approximate better, in terms of linear
coefficients, the functional form of SFA with respect QR suggesting an economic
interpretation closer to the SFA one. More in particular and similarly to Jradi et al.
(2019), the optimal τ quantiles estimated with QR and QRCM: (i) are very similar

5 In order to make our exercise comparable to Jradi et al. (2019)’s analysis, even if the dataset contains
panel data, also in this paper, a cross-sectional setting is used by ignoring time effects.
6 QRCM estimates have been carried out with the R package Mqrcm (Frumento 2021).
7 Test and correlation results can be found in Table 7.
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Fig. 3 QR and QRCM regression coefficients by quantile—Philippines rice farming
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Table 1 Parameters estimation results by method—Philippines rice farming

COLS SFA QR QRCM

Intercept 0.827 0.274∗ ∗ ∗ 0.228∗ ∗ ∗ 0.143∗ ∗ ∗
β1 0.588∗ ∗ ∗ 0.531∗ ∗ ∗ 0.389∗ ∗ ∗ 0.508∗ ∗ ∗
β2 0.192∗∗ 0.231∗ ∗ ∗ 0.359∗ ∗ ∗ 0.306∗ ∗ ∗
β3 0.198∗ ∗ ∗ 0.203∗ ∗ ∗ 0.200∗ ∗ ∗ 0.179∗ ∗ ∗
β11 − 0.436∗ − 0.476∗∗ − 0.272 − 0.486

β12 0.679∗ ∗ ∗ 0.609∗ ∗ ∗ 0.655∗∗ 0.619∗ ∗ ∗
β13 0.064 0.062 − 0.257 0.029

β22 − 0.742∗∗ − 0.564∗∗ − 0.646 − 0.543

β23 − 0.178 − 0.137 0.022 − 0.074

β33 0.020 − 0.007 0.133 − 0.028

θ 0.013 0.015∗∗ 0.015∗ 0.014

λ 3.361 2.755 2.778 3.111

σ 2 0.098 0.222 0.107 0.114

τ∗ – – 0.890 0.901

Efficiency 0.467 0.729 0.744 0.732

(0.125) (0.146) (0.162) (0.169)

* p<0.1; **p<0.05; ***p<0.01

to the one computed a posteriori, for a merely comparison purpose, for SFA and
COLS frontiers (0.908 and 0.889, respectively); (ii) are close to the upper decile.
The obtained average level of efficiency is about 0.467 for COLS and goes up to
0.729 for SFA, 0.744 for QR and 0.732 for QRCM. Moreover, the sum of the linear
terms of the translog production frontier is close to one for all methods indicating a
slightly decreasing returns of scale for the Philippines rice farms. Finally, the Spearman
correlation index on efficiency values, in Table 8 in “Appendix”, shows how QR
and even further QRCM’s rankings differ more from the COLS than those of SFA
(respectively, 0.954, 0.931 and 0.989). Such a result, in this case, overcomes the
criticism highlighted in Ondrich and Ruggiero (2001) claiming that [...] we show that
rankings for firm-specific inefficiency estimates produced by traditional stochastic
frontier models do not change from the rankings of the composed errors. As a result,
the performance of the deterministic models is qualitatively similar to that of the
stochastic frontier models.[...].

3.2 NBERmanufacturing dataset

In this Subsection, the NBER manufacturing productivity dataset8 (Bartelsman and
Gray 1996) has been considered to highlight the properties of the proposed QRCM

8 https://www.nber.org/research/data/nber-ces-manufacturing-industry-database.
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method with respect to SFA when in the presence of “wrong skewness” problem9

(Green and Mayes 1991).
Wrong skewness, in fact, may can be ascribed to incorrect or outlier data, an incorrect
or incomplete specification of the production model10 or to both making the choice of
the form of the inefficiency term “sometimes a matter of computational convenience”
Bonanno and Domma (2017).

This dataset, already used in literature to study the above mentioned problem, has
been used primarily to propose new skewed densities for the compound error (see,
among others, Li 1996; Carree 2002; Tsionas 2007; Almanidis and Sickles 2012;
Almanidis et al. 2014; Bonanno and Domma 2017; Hafner et al. 2018) or the adjust-
ment of the estimator for finite sample (see, among others, Simar and Wilson 2009;
Cai et al. 2021). In our case, however, no error distribution is to be assumed a priori
to obtain model convergence.

NBER dataset contains information on 473 US manufacturing industries for 54
years (from 1958 to 2011) and, by following Bonanno and Domma (2017) and Hafner
et al. (2018), 54 sub-sectors from the textile industry over the years 1958-2011 are
analysed. Even in this case and following Hafner et al. (2018) approach, with the
aim to compare QRCM model with SFA and QR in terms of “wrong skewness”, a
cross-sectional estimation for each year has been carried out.

In this dataset, the output variable (y) is the total value added and, as input variables,
total employment (labour), cost of materials (materials), energy cost (energy) and
capital stock (capital) are used; the Cobb-Douglas production frontier specification is
defined as:

ln(yi ) = β0 + β1ln(labouri ) + β2ln(materialsi )

+ β3ln(energyi ) + β4ln(capitali ) + vi − ui
(8)

For each year, the production frontier has been estimated by using OLS, SFA
(Normal-Half Normal, Normal-Exponential and Normal-t-Normal specification), QR
and QRCM models.

More specifically, as resulted by the best approximation among functions in Table 6,
the smooth function I (qnorm(τ )) + I (log(τ )) has been chosen for QRCM for the
most numbers of years.

Results are reported in Fig. 4; it can be seen that as long as the skewness is “correct”
(values in the bottom plot below 0—years from 1958 to 1998) all methods work in
a similar way, but in the presence of “wrong” skewness (values in the bottom plot
above 0—for the last few years) the a posteriori τ ∗ parameter collapses to the median
because it fails to estimate the inefficiency (no convergence of themaximum likelihood
optimizer) for SFA, regardless of specifications of the residuals (dark green straight

9 It occurs when the sign of the empirical OLS residuals skewness is positive instead of negative, when
on the contrary as pointed out in Sect. 2 at page 13, in production efficiency ε = v − u and so follows a
negative skewed distribution.
10 Although this is not always true; Hafner et al. (2018) in particular claims that “when observing the
“wrong” skewness, most researchers are tempted to believe that the model is wrong, and we know that even
a correct SFM allowing inefficient firms may produce the wrong sign for the skewness. This happens more
often with small sample sizes or when the ratio Var(V)/Var(U) increases”.
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Fig. 4 Optimal quantile comparison, by method, in the presence of wrong skewness

line for the Half-Normal, dark green dashed line for Exponential and dark green dotted
for the t-Normal).

Finally, in Table 9 in the “Appendix”, the estimated efficiency results, by method,
are reported. In particular, it is noteworthy that in the years where residuals present a
“wrong” skewness the efficiency is close to 1 for SFA as it fails to detect inefficiency,
unlike QR and QRCM which are able to estimate it.

4 Simulations

The aim of this section is to assess, in a more systematic way, the properties of the
QRCMmodel both in terms of estimating the frontier and the inefficiency of individual
units. SFA and Jradi et al. (2019) QR have been chosen as contrasting methods as they
represent the natural comparison both on the side of stochastic efficiency and quantile
approach. The production simulation setting mimics the Banker and Natarajan (2008)
proposal—also followed by Johnson andKuosmanen (2011)—generating sample data
by a cubic polynomial in x :

φ(x) = α0 + α1x + α2x
2 + α3x

3 (9)

choosing α0 = −37, α1 = 48, α2 = −12 and α3 = 1 in order to ensuring the
monotonicity and the concavity in the range x = [1, 4]. Finally, in the efficiency
setting, two key parameters must be defined: the error term v set, as usually, from a
two-side Normal distributionN (μv, σv)with μv = 0 and σv = 1 and the inefficiency
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term u which will be varied, in the following simulations, in absolute terms and
distributional form.
After drawing the random variables x as a uniform[1,4] for 200 units, the logarithm
of the output y = φ(x) has been set as:

ln(y) = ln(−37 + 48x − 12x2 + x3) + v − u (10)

Finally, two measures have been used to evaluate the performance of the proposed
model against both the simulated frontier and the SFA and QR methods:

• the mean squared error (MSE), that is, the average squared difference between the
simulated and the estimated values, in order to verify the accuracy of the frontier
estimate; MSE = 1/n

∑n
i=1(yi − ŷi )2;

• the average of the absolute value of the differences (Mean abs diff.) between esti-
mated and true efficiencies with the aim of evaluating the models on the efficiency
estimation side; Mean_diff = 1/n

∑n
i=1|(eff i − êff i )|.

4.1 First simulation: half-normal inefficiency

Once the general framework of the simulation had been set up, some settings have
been varied in order to assess the stability and flexibility of the models.
In this first simulation, the inefficiency has been generated from a Half-Normal dis-
tribution with parameters μu = 0 and σu ∈ [0.6, 1.2, 1.8, 2.4, 3]; as a result, keeping
in mind that σv is equal to 1, in the following simulations λ = σu/σv is equal, respec-
tively, to [0.6, 1.2, 1.8, 2.4, 3]. Moreover, the choice of β(τ |θ) has been set among all
those proposed in Table 6; this simulation setting is, therefore, the more favourable
for the SFA since inefficiency follows a standard Half-Normal distribution and no
outlier/out-of-scale data are present.

Figure 5 allows to verify how the three models (QRCM, SFA and QR) substantially
allow a good fit to the frontier and how this result is quite stable as the inefficiency
varies.

From a preliminary analysis (Fig. 6), the QR estimator seems to be substantially
less accurate than the corresponding QRCMestimator (as stable as the quantile chosen
by the Jradi et al. (2019) algorithm); these initial impressions will be hereafter verified.

The setting proposed has been the starting point for checking the performance of
the three chosen methods in terms of frontier fitting and efficiency estimation.
Table 2 reports mean and standard deviation for MSE and mean difference in absolute
value of efficiencies over 1000 iterations varying λ.

In terms of MSE, it can be seen that the difference between quantile-based methods
and SFA tends to decrease as the inefficiency in the data increases, while the QRCM
ever outperforms QR.
This result is confirmed—even more clearly—by the average difference in absolute
value between the inefficiency estimates and the true values, confirming a substantial
equivalence of the methods under analysis in the case most favourable to the SFA, i.e.
that in which the form of the inefficiency is Half-Normal and no outliers are included.
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Fig. 5 Frontier estimation by method and level of inefficiency

But what if the form of the inefficiency is no longer standard, an issue that often
occurs in real-world data? Section 4.2 will try to answer this question by varying the
inefficiency distribution and including outliers in the simulated data.

4.2 Second simulation: varying inefficiency distribution

In this second simulation, therefore, always starting from the baseline setting proposed
in Sect. 4, the finite sample performance of the proposed estimator has been examined
by means of Monte Carlo simulation (1000 replications) by varying the distributional
form of inefficiency and for three percentage levels of outliers of the total number
of cases (1%, 3%, 5%); more specifically, outliers have been generated according to
equation (9) in which the term α0 has been set equal to -32.
More specifically, six different distributions (see Table 3 and Fig. 7) for the u term
have been chosen: (1) Half-Normal, with the aim of verifying the impact of outliers;
(2) Skew-Normal (Azzalini and Valle 1996) with high positive marginal skewness;
(3) Skew-Normal with low positive marginal skewness; (4) Skew-Normal with low
negative marginal skewness; (5) Skew-Normal with high negative marginal skewness;
(6) Gamma.
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Table 2 MSE and mean absolute
difference for efficiencies by
method and level of inefficiency

Method λ MSE Mean abs diff.
Mean Sd Mean Sd

QRCM 0.6 0.70 0.31 0.31 0.04

SFA 0.17 0.12 0.25 0.07

QR 1.17 0.57 0.36 0.04

QRCM 1.2 0.38 0.23 0.22 0.02

SFA 0.20 0.30 0.24 0.11

QR 0.80 0.53 0.25 0.03

QRCM 1.8 0.23 0.17 0.17 0.01

SFA 0.14 0.27 0.18 0.06

QR 0.59 0.47 0.19 0.02

QRCM 2.4 0.19 0.18 0.15 0.01

SFA 0.12 0.18 0.15 0.03

QR 0.60 0.71 0.16 0.02

QRCM 3 0.20 0.26 0.13 0.02

SFA 0.12 0.13 0.13 0.01

QR 0.55 0.68 0.13 0.02
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Table 3 Summary statistics—u term

Half Skew Skew Skew Skew Gamma
Normal Normal ++ Normal + Normal − Normal –

Mean 2.374 2.903 2.936 2.938 2.938 1.925

SD 1.786 1.765 1.677 1.48 1.432 1.812

Skewness 0.945 0.768 0.455 − 0.075 − 0.277 1.509

Not all distributions could be expressed in terms of mean and variance like the Half
Normal; therefore, in order to make the simulations comparable, the parameters of
each distribution (for analytical specification of parameters, please see Table 10) have
been set in such a way as to obtain similar mean and variance; Table 3 verifies this
result (results are reported for σu = 3; similar results for σu = 1 are available from
the authors) by also highlighting another key parameter, namely skewness, which—as
highlighted in Sect. 2—in SFA models is necessary to be positive in order to obtain
convergence.

Table 4 and Table 5 show, respectively, the average values of the MSE and the
absolute mean difference for efficiencies by method, distribution of inefficiency and
percentage of outliers included in the simulated data. Some implications arise:

• SFA approach—in the case of Half-Normal distribution—proves to be very sen-
sitive to the presence of outliers; this result is most evident when inefficiency in
the data is strongest.

• In the case of “wrong skewness” (negative Skew-Normal distributions) SFA does
not converge—as already highlighted in Sect. 3.2—in all iterations and, therefore,
performs worse than quantile models; this effect is increasing as the skewness of
the u term decreases reflecting the fact that, as soon as the inefficiency data depart
from the standard assumptions, the SFA model tends to inaccurately estimate the
production frontier.

• QRCM performs better than QR both in terms of MSE and absolute difference for
all inefficiency distributions and all percentage levels of outliers.

5 Final remarks

In this paper, the effects on efficiency estimates of the presence of outliers in the
observed data and the non-occurrence of distributional assumptions have been anal-
ysed. After a brief review of some recent developments in robust estimation of
stochastic boundaries, based on quantile regression approaches, the use of a variant
of these methods based on modelling β parameters as a function of the quantile τ has
been proposed.We have focused on this approach because the introduction of a similar
model, very flexible and smooth, is fast and stable and offers a very practical approach
to a solid estimate of the efficiencies not sensitive to the presence of anomalous data
and to distributions even very far from the classical Half-Normal and Exponential
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Fig. 7 Inefficiency u term distributions, 1000 replications

assumptions. The approach has been then illustrated using real data, already used in
literature, and simulated experiments.
The results confirm that the proposedmethod offers good robustness properties and, in
many cases,maybemore efficient than the twomain alternative estimation approaches,
both robust like quantile regression and not robust like maximum likelihood.
As has already been verified in previous studies (Song et al. 2017; Wheat et al. 2019;
Zulkarnain and Indahwati 2021), the latter are extremely compromised by anomalous
data and often, if the efficiency distribution is different from that specified, the algo-
rithms used for its optimization do not converge and fail in the search of a maximum
(Meesters 2014).
On the contrary, quantile regression does not seem to suffer from similar problems, but
its estimation capabilities are seriously compromised by a known and evident insta-
bility of the parameters relating to the higher quantiles which unfortunately are those
necessary for stochastic frontier models. Our suggested method appears to be success-
ful in simultaneously solving the drawbacks of its competitors. At the acceptable price
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Table 4 MSE by method, distribution of inefficiency and outliers (1%, 3%, 5%)

MSE Distribution σu = 3 (λ = 3) σu = 1 (λ = 1)
1% 3% 5% 1% 3% 5%

QRCM Half Normal 0.50 1.57 2.35 0.87 1.82 2.69

SFA 0.66 2.56 4.54 0.84 1.35 1.76

QR 1.26 4.11 4.78 1.55 4.00 5.11

QRCM Skew Normal ++ 0.52 1.27 2.10 0.53 1.33 2.26

SFA 2.60 7.01 8.54 1.47 1.98 2.36

QR 0.86 3.62 4.47 1.08 3.75 4.90

QRCM Skew Normal + 0.67 1.22 1.99 0.38 1.02 1.88

SFA 5.96 8.83 9.26 2.57 3.06 3.41

QR 0.60 2.81 3.95 0.70 3.30 4.54

QRCM Skew Normal − 1.01 1.22 1.88 0.63 1.06 1.77

SFA 8.83 9.10 9.28 4.41 4.71 5.11

QR 0.66 2.14 3.42 0.58 2.98 4.42

QRCM Skew Normal – 1.17 1.26 1.87 0.75 1.14 1.78

SFA 8.87 9.11 9.32 4.86 5.22 5.46

QR 0.71 1.86 3.19 0.63 2.90 4.47

QRCM Gamma 0.89 2.09 3.04 0.37 1.02 1.90

SFA 0.48 0.87 1.33 2.12 4.25 4.87

QR 2.66 5.80 6.07 0.83 4.35 5.04

of a slight loss of estimation efficiency when the data are not contaminated by outliers
and there is no doubt about the theoretical distribution of efficiencies, it has provided
reliable estimates in any real and simulated case. It should also be emphasized the
advantage of not necessarily requiring any preliminary tests to verify distributional
hypotheses and regression diagnostics, nor the application of complex procedures for
the automatic identification of outliers.
Finally, the recovery of the parametrization within the quantile regression approach
gives greater flexibility to its practical use, allowing with extreme simplicity to impose
constant parameters or frontiers that do not overlap as the quantile adopted increases.
This flexibility could allow new and simpler developments also in the methodological
field by introducing, for example, in these models some dependence parameters in
time, space or network data. But this is left for further research, along with the possible
extension of the proposed model to panel data, being currently only defined for cross-
sectional data.
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Table 5 Mean absolute difference by method, distribution of inefficiency and outliers (1%, 3%, 5%)

Mean abs diff. Distribution σu = 3 (λ = 3) σu = 1 (λ = 1)
1% 3% 5% 1% 3% 5%

QRCM Half Normal 0.13 0.15 0.16 0.26 0.29 0.31

SFA 0.17 0.33 0.50 0.44 0.47 0.48

QR 0.14 0.17 0.18 0.30 0.36 0.37

QRCM Skew Normal ++ 0.11 0.11 0.11 0.19 0.20 0.22

SFA 0.27 0.64 0.76 0.59 0.61 0.61

QR 0.10 0.12 0.12 0.22 0.26 0.27

QRCM Skew Normal + 0.12 0.11 0.12 0.17 0.16 0.16

SFA 0.56 0.80 0.82 0.72 0.73 0.73

QR 0.10 0.11 0.12 0.17 0.19 0.20

QRCM Skew Normal − 0.14 0.11 0.12 0.19 0.16 0.15

SFA 0.84 0.84 0.83 0.82 0.82 0.81

QR 0.11 0.11 0.12 0.16 0.15 0.15

QRCM Skew Normal – 0.15 0.12 0.12 0.20 0.17 0.15

SFA 0.85 0.84 0.84 0.84 0.83 0.82

QR 0.12 0.11 0.11 0.16 0.14 0.15

QRCM Gamma 0.18 0.21 0.22 0.15 0.13 0.13

SFA 0.16 0.18 0.19 0.44 0.74 0.79

QR 0.22 0.25 0.25 0.14 0.15 0.16
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Appendix A. Smooth functions

See Table 6.
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Table 6 M-quantile smooth functions depending on the order of the quantile τ and R code

M-quantile smooth functions R code

τ tau

τ + τ2 tau+I(tau^2)

τ + τ2 + τ3 tau+I(tau^2)+I(tau^3)

τ + τ2 + τ3 + τ4 tau+I(tau^2)+I(tau^3)+I(tau^4)

τ + τ2 + τ3 + τ4 + τ5 tau+I(tau^2)+I(tau^3)+I(tau^4)+I(tau^5)

τ (1/2) + (1 − τ)(1/2) I(tau^(1/2))+I((1-tau)^(1/2))

τ (1/3) + (1 − τ)(1/3) I(tau^(1/3))+I((1-tau)^(1/3))

τ (1/4) + (1 − τ)(1/4) I(tau^(1/4))+I((1-tau)^(1/4))

τ + cos(π ∗ τ) + sin(π ∗ τ) tau+I(cos(pi*tau))+I(sin(pi*tau))

τ + log(τ ) + log(1 − τ) tau+I(log(tau))+I(log(1-tau))

Square root (−log(1 − τ)) I(sqrt(-log(1-tau)))

− Square root (−log(τ )) I(-sqrt(-log(tau)))

Quantile function for the
Normal distribution (τ )

I(qnorm(tau))

Quantile function for the
Normal distribution
(τ ) + log(τ )

I(qnorm(tau))+I(log(tau))

Quantile function for the
Normal distribution
(τ2) + log(τ )

I(qnorm(tau^2))+I(log(tau))

Quantile function for the
Normal distribution
(τ3) + log(τ )

I(qnorm(tau^3))+I(log(tau))

Quantile function for the
Normal distribution
(τ4) + log(τ )

I(qnorm(tau^4))+I(log(tau))

Quantile function for the
Normal distribution
(τ5) + log(τ )

I(qnorm(tau^5))+I(log(tau))

Quantile function for the
Normal distribution
(τ ) + log(1 − τ)

I(qnorm(tau))+I(log(1-tau))

Shifted Legendre
polynomials (τ ), degree 2

slp(tau, k=2)

Shifted Legendre
polynomials (τ ), degree 3

slp(tau, k=3)

Piecewise Linear Function
(τ ), knots [0.1,0.9]

plf(tau, knots=c(0.1,0.9)
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Appendix B. Philippines rice farming

See Tables 7 and 8.

Table 7 Kolmogorov–Smirnov GOF test and correlation results—Philippines rice farming

M-quantile smooth functions KS p value QRCM versus SFA
β correlations

τ 1.000 0.882

τ + τ2 0.977 0.883

τ + τ2 + τ3 1.000 0.803

τ + τ2 + τ3 + τ4 1.000 0.751

τ + τ2 + τ3 + τ4 + τ5 1.000 0.291

τ (1/2) + (1 − τ)(1/2) 0.328 0.692

τ (1/3) + (1 − τ)(1/3) 0.418 0.391

τ (1/4) + (1 − τ)(1/4) 0.873 0.266

τ + cos(π ∗ τ) + sin(π ∗ τ) 1.000 −0.076

τ + log(τ ) + log(1 − τ) 0.977 0.924

Square root (−log(1 − τ)) 0.012 0.880

− Square root (−log(τ )) 0.772 0.955

Quantile function for the Normal distribution (τ ) 0.975 0.963

Quantile function for the Normal distribution
(τ ) + log(τ )

0.994 0.951

Quantile function for the Normal distribution
(τ2) + log(τ )

0.994 0.985

Quantile function for the Normal distribution
(τ3) + log(τ )

0.994 0.989

Quantile function for the Normal distribution
(τ4) + log(τ )

0.991 0.985

Quantile function for the Normal distribution
(τ5) + log(τ )

0.989 0.979

Quantile function for the Normal distribution
(τ ) + log(1 − τ)

0.866 0.966

Shifted Legendre polynomials (τ ), degree 2 0.977 0.883

Shifted Legendre polynomials (τ ), degree 3 1.000 0.803

Piecewise Linear Function (τ ), knots [0.1,0.9] 1.000 0.202

Table 8 Efficiency results,
Philippine rice farming dataset,
Spearman correlation

COLS SFA QR QRCM

COLS 1 0.989 0.954 0.931

SFA 0.989 1 0.980 0.969

QR 0.954 0.980 1 0.989

QRCM 0.931 0.969 0.989 1
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Appendix C. Efficiency results—NBERmanufacturing

See Table 9.

Table 9 Efficiency results, NBER manufacturing dataset, by method

Year SFA Half-Normal SFA Exponential SFA T-Normal QR QRCM

1958 0.810 0.967 0.845 0.823 0.769

1959 0.820 0.971 0.855 0.843 0.808

1960 0.806 0.967 0.840 0.829 0.786

1961 0.812 0.970 0.846 0.821 0.791

1962 0.812 0.971 0.848 0.835 0.790

1963 0.808 0.970 0.847 0.813 0.780

1964 0.807 0.969 0.842 0.816 0.768

1965 0.815 0.974 0.861 0.806 0.837

1966 0.822 0.975 0.861 0.813 0.835

1967 0.814 0.972 0.851 0.816 0.780

1968 0.803 0.973 0.845 0.805 0.832

1969 0.789 0.969 0.803 0.816 0.804

1970 0.806 0.970 0.836 0.845 0.803

1971 0.809 0.972 0.843 0.830 0.814

1972 0.812 0.973 0.849 0.790 0.812

1973 0.808 0.974 0.810 0.796 0.841

1974 0.849 0.989 0.663 0.778 0.848

1975 0.809 0.971 0.836 0.817 0.834

1976 0.816 0.979 0.811 0.828 0.846

1977 0.820 0.977 0.807 0.794 0.839

1978 0.751 0.974 0.735 0.800 0.846

1979 0.825 0.979 0.865 0.809 0.833

1980 0.749 0.973 0.748 0.802 0.811

1981 0.794 0.972 0.824 0.803 0.802

1982 0.786 0.974 0.786 0.824 0.816

1983 0.794 0.973 0.793 0.815 0.834

1984 0.777 0.970 0.765 0.809 0.841

1985 0.796 0.979 0.790 0.797 0.850

1986 0.768 0.977 0.739 0.802 0.850

1987 0.818 0.977 0.834 0.825 0.837

1988 0.780 0.978 0.790 0.806 0.855

1989 0.827 0.981 0.873 0.824 0.830

1990 0.839 0.982 0.719 0.781 0.847

1991 0.771 0.978 0.757 0.810 0.859
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Table 9 continued

Year SFA Half-Normal SFA Exponential SFA T-Normal QR QRCM

1992 0.817 0.978 0.800 0.833 0.825

1993 0.824 0.989 0.723 0.772 0.833

1994 0.806 0.976 0.839 0.783 0.822

1995 0.813 0.976 0.845 0.796 0.788

1996 0.843 0.980 0.865 0.791 0.755

1997 0.859 0.983 0.886 0.855 0.842

1998 0.878 0.984 0.897 0.851 0.819

1999 0.998 0.988 0.994 0.752 0.819

2000 0.999 1 0.994 0.803 0.820

2001 0.846 0.987 0.683 0.789 0.837

2002 0.839 0.979 0.874 0.814 0.750

2003 0.912 0.983 0.902 0.781 0.791

2004 0.889 0.983 0.901 0.803 0.804

2005 0.999 1 0.999 0.797 0.774

2006 0.999 1 0.993 0.748 0.705

2007 0.999 1 0.998 0.798 0.734

2008 0.999 1 0.993 0.728 0.819

2009 0.999 1 0.996 0.738 0.758

2010 0.999 1 0.995 0.802 0.774

2011 0.999 1 0.992 0.768 0.862

Appendix D. Inefficiency distributions used for simulations

See Table 10.
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