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Abstract
This paper proposes a two-stage approach to parametric nonlinear time series
modelling in discrete time with the objective of incorporating uncertainty or mis-
specification in the conditional mean and volatility. At the first stage, a reference
or approximating time series model is specified and estimated. At the second stage,
Bayesian nonlinear expectations are introduced to incorporate model uncertainty or
misspecification in prediction via specifying a family of alternative models. The
Bayesian nonlinear expectations for prediction are constructed from closed-form
Bayesian credible intervals evaluated using conjugate priors and residuals of the esti-
mated approximating model. Using real Bitcoin data including some periods of Covid
19, applications of the proposed method to forecasting and risk evaluation of Bitcoin
are discussed via three major parametric nonlinear time series models, namely the
self-exciting threshold autoregressive model, the generalized autoregressive condi-
tional heteroscedasticity model and the stochastic volatility model.

Keywords Parametric time series modelling · Nonlinear expectations · Bayesian
statistics · Girsanov’s transform · Drift and volatility uncertainties · Bitcoin

JEL Classification C22 · C11 · C58

1 Introduction

Human activities in taking time series observations, such as sunspot numbers, have
a long history. An early inquiry for “formally” modelling time series may be tracked
back to the seminal works of Yule (1927) and Slutsky (1927), where linear time series
models were introduced to describe cyclical behaviour of time series observations.
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See, for example, Tong (1990, Page 18), and Hansen (2013, Page 400). Owing to the
realizationof limitations of linear time seriesmodels in explainingnonlinear real-world
phenomena in the late 1970s, somemajor parametric nonlinear time seriesmodelswere
introduced in the late 1970s and the 1980s, such as the threshold autoregressive (TAR)
model and its sub-class, namely the self-exciting TAR (SETAR) model, pioneered by
Tong (1977, 1978, 1983), the autoregressive conditional heteroscedasticity (ARCH)
model pioneered byEngle (1982), the stochastic volatility (SV)model of Taylor (1982,
1986), the generalizedARCH (GARCH)model inBollerslev (1986) andTaylor (1986)
and the Markov-switching autoregressive model in Hamilton (1989) (see also Tong
(1983)). See Tong (2002) for further discussions.

Though many significant problems in time series modelling have been studied,
it seems that model uncertainty may not have received as much attention as those
“mainstream” topics in the subject. It is, however, that in certain modern practical
applications of time series modelling, such as artificial intelligence and Bitcoin fore-
casting and risk analysis, model uncertainty may play a significant role. In economics
and econometrics, where time series analysis has been widely applied, the significance
of incorporating model uncertainty and the “worst-case” scenario approach to model
uncertainty were discussed in the Prize Lecture of Nobel Prize in Economic Sciences
by Hansen (2013). The key idea of the “worst-case” scenario approach is to introduce
a family of alternative models from a reference or approximating model and make
decisions in the “worst-case” scenario over the set of alternative models (see Hansen
and Sargent (2007)). Studies on model uncertainty, from the economics perspective,
may be traced back to the distinction between risk and uncertainty in the classic mono-
graph by Knight (1921), (see, for example, Hansen (2013), Section 6), where risk and
uncertainty were referred to the situations where the probability models are known
and where they are unknown, respectively.

Nonlinear expectations provide a plausible way to describe model uncertainty.
The notion of nonlinear expectations and their stochastic calculus were introduced
in the seminal works by Peng (1997, 2004, 2006, 2019), where the g-expectations for
incorporating drift uncertainty and the G-expectations for describing volatility uncer-
tainty were introduced. Themathematics for theG-expectations are more complicated
than the g-expectations in a continuous-time modelling framework since the former
involves singular measure changes, while the latter only involves absolutely continu-
ous measure changes. Discrete-time nonlinear expectations were introduced in Elliott
(2017) and Elliott and Siu (2017) with the objective of providing a convenient way
to incorporating both drift and volatility uncertainties in normally distributed random
shocks using a discrete-time Girsanov’s transformation in, for example, Elliott et al.
(1995) andElliott andMadan (1998). Specifically, both drift andvolatility uncertainties
are incorporated by discrete-time nonlinear expectations with absolutely continuous
measure changes. A key issue for implementing nonlinear expectations is how a set
of probability models defining the nonlinear expectations might be chosen. Specifi-
cally, from the practical perspective, it seems desirable to specify the set of probability
models so that certain probability levels describing credibility of the set of probabil-
ity models may be assigned. However, this issue has yet not been well-addressed in
Elliott (2017), Elliott andSiu (2017), and possibly, in someother literature on nonlinear
expectations.
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The purpose of this paper is to propose a two-stage approach to parametric nonlin-
ear time series modelling in discrete time with the objective of incorporating model
uncertainty or misspecification in the conditional mean and volatility, which are two
key components in nonlinear time series modelling. At the first stage, a reference or
approximating time series model is specified. Then the reference model is estimated
fromgiven data.At the second stage,Bayesian nonlinear expectations are introduced to
incorporatemodel uncertainty ormisspecification in prediction via specifying a family
of alternative models. Specifically, closed-form Bayesian credible intervals character-
izing model uncertainty or misspecification in the conditional mean and volatility
are constructed using conjugate priors and residuals of the estimated approximating
model from the first stage. It may be noted that the residuals contain information that
is left over, which may be attributed to model misspecification in the conditional mean
and volatility of the reference or approximating model estimated from the first stage.
The misspecifications in the conditional mean and volatility are estimated using the
closed-form Bayesian credible intervals, and discrete-time Girsanov’s transforms are
used to introduce the family of alternative models from the reference or approximating
model. Those alternative models have misspecifications in the conditional mean and
volatility lying in the ranges specified by the respective Bayesian credible intervals.
Using the closed-form Bayesian credible intervals, the Bayesian nonlinear expecta-
tions incorporating those alternative models in prediction are then constructed. The
closed-form Bayesian credible intervals have the advantage that they provide a conve-
nient way to construct the Bayesian nonlinear expectations so that probability levels
are assigned to the nonlinear expectations. It may also be noted that the closed-form
Bayesian credible intervals provide a feasible way to incorporate both a model user’s
subjective view (or expert opinion) and the objective data in estimating misspecifi-
cations in the conditional mean and volatility. Indeed, under the Bayesian statistical
framework, the “unknown” misspecifications in the conditional mean and volatility
are considered random variables, and this may provide a natural way to characterize
model uncertainties about the conditional mean and volatility. These uncertainties are
called drift and volatility uncertainties. Using real data in a Bitcoin exchange rates
series including some volatile periods which may be due to Covid 19, applications
of the proposed approach to forecasting and risk evaluation of Bitcoin are discussed.
Three major nonlinear time series models, namely the SETAR model, the GARCH
model and the SV model, are used for illustrating the applications. Two major tail-
based risk metrics, say value at risk (VaR) and expected shortfall (ES), are used for
risk evaluation of Bitcoin. Through the lens of Bayesian nonlinear expectations, the
impacts of model uncertainty or misspecification in the conditional mean and volatil-
ity on forecasting and risk evaluation of Bitcoin are examined. It is hoped that the
approach may throw light on exploring the interplay among time series modelling,
Bayesian theory, nonlinear expectations, model uncertainty and their applications.

The proposed approach may be related to the Bayesian approach to nonlinear
time series and Bayesian econometrics. See, for example, Pole and Smith (1985)
for Bayesian analysis of SETAR models and Koop (2003) for an excellent account on
Bayesian econometrics. However, the key difference between them is that the proposed
approach is a two-stage approach,where the referencemodel is specified and estimated
in the first stage, and the second stage is concerned with prediction in the presence of
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model uncertainty or misspecification using the Bayesian nonlinear expectations over
a set of alternative models. The worst-case scenario approach to model uncertainty in
economic decision-making was introduced in discrete-time economic models in, for
example, Cagetti et al. (2002), Hansen et al. (2002) and Hansen and Sargent (2007).
However, their focuses, modelling structures and methods are different from those
of the current paper. Siu and Yang (1999) and Siu et al. (2001) adopted a Bayesian
approach to generating probability scenarios for evaluating coherent risk measures
whose representations are related to nonlinear expectations, (see Artzner et al. 1999
and Rosazza Gianin 2006). However, Siu and Yang (1999) and Siu et al. (2001) deter-
mined a set of probability models defining the coherent risk measures using a set of
prior distributions. Siu (2001) used Bayesian credible intervals for evaluating interval
estimates for coherent risk measures for derivatives under a discrete-time binomial
tree model. Frazier et al. (2020) considered model misspecification in approximate
Bayesian computation. However, the focuses and modelling structures of Siu (2001)
and Frazier et al. (2020) are different from those of the current paper.

The rest of the paper is structured as follows. A brief introduction to nonlinear
expectations is provided in the next section. Section 3 presents parametric nonlinear
time seriesmodelswith drift and volatility uncertainties using discrete-timeGirsanov’s
transforms, Gaussian uncertain noises and nonlinear expectations. The Bayesian non-
linear expectations are constructed using Bayesian credible intervals in Sect. 4. The
estimation, forecasting and risk evaluation procedures are discussed in Sect. 5. The
applications of the proposed approach to Bitcoin forecasting and risk evaluation using
real data are provided in Sect. 6. The impacts of drift and volatility uncertainties on
Bitcoin forecasting and risk evaluation are also examined. Section 7 gives some con-
cluding remarks. Some tables and figures are presented in Appendices I–II, which
are included after the bibliography. Online Appendices A–G provide some technical
details, derivations, constructions, discussions on potential links to other important
Bayesian techniques and potential generalizations of the proposed two-stage approach.

2 g-Expectations, G-expectations andmodel uncertainty

In this section, a brief review on two types of nonlinear expectations, namely the g-
expectation and theG-expectation, and their linkswithmodel uncertainty or ambiguity
is provided. Some technical details on these are presented in Online Appendix A. The
g-expectation was introduced by Peng (1997), where the g-expectation was defined by
the solution of a backward stochastic differential equation.The g-expectation describes
model uncertainty or ambiguity about the drift of a process, which is also called the
drift uncertainty. TheG-expectationwas also introduced by Peng (2006) and describes
model uncertainty or ambiguity about the volatility of a process, which is called the
volatility uncertainty.

The notion of nonlinear expectations is closely linked with the concept of coherent
risk measures in Artzner et al. (1999). Indeed, as noted by Peng (2004, 2006), the
notion of nonlinear expectations are equivalent to the concept of coherent risk mea-
sures. Rosazza Gianin (2006) established the link between conditional g-expectations
and dynamic risk measures. The concepts of coherent risk measures and nonlinear

123



Bayesian nonlinear expectation for time series modelling… 509

expectations also play a fundamental role in the two-price conic finance in, for exam-
ple, Cherny and Madan (2009) and Madan and Cherny (2010), where market cones
generating two-price systems were defined by sets of acceptable risks. A (conditional)
nonlinear expectation satisfying the sub-additivity property is called a (conditional)
sublinear expectation. A (conditional) expectation satisfying the super-additivity prop-
erty is called a (conditional) superlinear expectation.

In a continuous-time modelling framework, a conditional g-expectation is defined
by the solution of a backward stochastic differential equation. See, for example, Chen
and Epstein (2002), where the conditional g-expectationwas used to discuss a stochas-
tic differential utility with multiple priors in the presence of model uncertainty or
ambiguity in continuous time. The specification of a family of alternative models with
the drift uncertainty described by the conditional g-expectation involves absolutely
continuous probability measures. Specifically, the family of alternative models can
be specified by applying Girsanov’s transforms for changing probability measures in
continuous time.

The G-expectation was motivated by some works on option valuation with volatil-
ity uncertainty. Boyle and Ananthanarayanan (1977) introduced the use of Bayesian
statistics to estimate volatility for option valuation, where Bayesian conjugate prior
was used to capture the estimation risk of volatility and to construct interval estimates
for option prices. Avellaneda et al. (1995) and Lyons (1995) introduced volatility
uncertainty to option valuation and hedging, where the “uncertain” volatility was
supposed to lie in a bounded interval and a convex region, respectively. Fouque and
Ren (2014) considered the use of a conditional G-expectation in continuous time to
study option valuation under volatility uncertainty. In fact, in a continuous-time mod-
elling framework, the specification of alternativemodels with the volatility uncertainty
described by the conditional G-expectation involves singular probability measures.
Consequently, it is more complicated than the specification of a family of alternative
modelswith the drift uncertainty described by the conditional g-expectation. However,
in a discrete-time modelling framework, both the drift and volatility uncertainties can
be specified by a discrete-timeGirsanov’s transform as in Elliott (2017) and Elliott and
Siu (2017). Indeed, in the discrete-time situation, only probability measures that are
absolutely continuous to the reference probability measure are used to define a family
of alternative models in the presence of both the drift and volatility uncertainties.

3 Parametric nonlinear time series models with drift and volatility
uncertainties

Two general parametric nonlinear time series models incorporating uncertainties in
the conditional mean (or drift) and volatility are introduced using discrete-time Gir-
sanov’s transforms, Gaussian uncertain noises and nonlinear expectations. The first
model is a nonlinear autoregressive model with conditional heteroscedasticity which
includes the SETAR model and the GARCH model. The second model is a general
specification which includes the first model and a product process. Since the prod-
uct process includes the SV model, the second model also includes the SV model.
The two models are introduced in accordance with the two-stage approach. At the
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first stage, reference or approximating models1 are specified. At the second stage,
discrete-time Girsanov’s transforms are used to introduce Gaussian uncertain noises
and sets of alternative models from the reference models. Then the (conditional) non-
linear expectations which incorporate the sets of alternative models in prediction are
defined, and somemotivations for introducing the Bayesian nonlinear expectations for
prediction in the second stage are discussed. The idea of using (Gaussian) uncertain
noises and nonlinear expectations in filtering and estimation of hiddenMarkovmodels
appeared in Elliott (2017), where discrete-time Girsanov’s transforms in, for example,
Elliott et al. (1995) and Elliott and Madan (1998), were used to introduce uncertain
noises and the respective family of alternative models. The work of Elliott (2017) was
then extended to the filtering and estimation of hidden Markov-modulated stochastic
volatility models with drift and volatility uncertainties in Elliott and Siu (2017).

A complete probability space (�,F ,P) is considered, whereP is a reference proba-
bilitymeasure corresponding to an approximatingmodel. A time index setT is defined
as {1, 2, . . . , T }, where T is the overall number of observations in time series data
and future time steps in prediction. Let {Xt }t∈T be a real-valued time series process,2

or stochastic process, defined on (�,F ,P). In the sequel, the first and second models
for {Xt }t∈T are described in Sects. 3.1 and 3.2, respectively.

3.1 A nonlinear autoregressive model with heteroscedasticity

Let {εt }t∈T be a sequence of independent and identically distributed (i.i.d.) standard
normal random variables under the reference probability measure P. That is, under
P, εt ∼ N (0, 1), for each t ∈ T. It is supposed that under P, {Xt }t∈T follows the
reference parametric nonlinear time series model:

Xt = f (Xt−1, Xt−2, . . . , Xt−p) + g(Xt−1, Xt−2, . . . , Xt−q)εt , (3.1)

where f : �p → � and g : �q → � are two given measurable functions; p and q are
two positive integers. It is assumed, for simplicity, that g > 0. The reference model
in Eq. (3.1) is a nonlinear autoregressive model with conditional heteroscedasticity,
which incorporates some important parametric nonlinear time series models such as
the SETAR model and the GARCH model. It is assumed that the initial observations
{X−max(p,q), X−max(p,q)+1, . . . , X0} are given. When f is a linear function and g is
a constant function, the model in Eq. (3.1) becomes a linear time series model with
homoscedastic errors.

A discrete-time Girsanov’s transform is now employed to construct a family of
probability measures equivalent to the reference measure P. The family of equivalent
probability measures generates Gaussian uncertain noises with drift and volatility
uncertainties and the respective alternative models.

Let θ := (μ, σ )′ = (μ(θ), σ (θ))′ ∈ � × �+, where μ may be interpreted as
misspecification in the conditional mean (or drift) of the referencemodel and σ may be
interpreted as misspecification in the volatility of the reference model. By definition,

1 The term “a baseline model” was used in Hansen and Sargent (2021).
2 In general one may consider a multiple time series process.
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μ is considered the first coordinate μ(θ) of θ , while σ is regarded as the second
coordinate σ(θ) of θ . Ifμ = 0, there is no misspecification in the drift of the reference
model. Likewise, if σ = 1, there is nomisspecification in the volatility of the reference
model. In practice, the misspecifications in the drift and volatility may not be known.
Consequently, μ and σ may be regarded as “uncertain” parameters. One may describe
these “uncertain” parameters by specifying the ranges in which those parameters lie.
Mathematically, this may be done by considering the following product intervals:

� := [μ−, μ+] × [σ−, σ+], (3.2)

for some μ−, μ+ ∈ � and σ−, σ+ ∈ �+ with μ− < μ+ and σ− < σ+. Then,
the family {(μ(θ), σ (θ))|θ ∈ �} may be used to describe the “uncertain” parameters
(μ, σ ) and to characterize drift and volatility uncertainties.

Let φμ,σ (x) denote the probability density function (pdf) of a normal distribution
N (μ, σ 2) with mean μ and variance σ 2. Write φ(x) for φ0,1(x). Let FX be the P-
augmentation of the natural filtration {F X

t }t∈T generated by the time series process
{Xt }t∈T. That is, for each t ∈ T, F X

t is the P-completed σ -field generated by the
observations {X1, X2, . . . , Xt }. For each θ ∈ �, let {λt (θ)}t∈T be an F

X -adapted
process on (�,F ,P) defined by:

λt (θ) := φμ,σ (εt )

φ(εt )
= φ(

εt−μ
σ

)

σφ(εt )
. (3.3)

Consider, for each θ ∈ �, the following F
X -adapted process {�t (θ)}t∈T:

�t (θ) :=
t∏

k=1

λk(θ). (3.4)

It is known that for each θ ∈ �, {�t (θ)}t∈T is an (FX ,P)-martingale, and so
E[�t (θ)] = 1. Consequently, it can be used as a density process for changing proba-
bility measures on F X

T , and a new probability measure Pθ equivalent to P on F X
T , for

each θ ∈ �, can be defined as:

dPθ

dP

∣∣∣∣F X
T

:= �T (θ). (3.5)

Using a discrete-time Girsanov’s theorem, (see, for example, Elliott et al. (1995) and
Elliott and Siu (2017)), for each θ ∈ �, under a new probability measure Pθ , a family
{εt (θ)}t∈T of random variables defined by putting:

εt (θ) := εt − μ

σ
, (3.6)
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is a sequence of i.i.d. standard normal random variables. That is, under Pθ ,

ε1(θ), ε2(θ), . . . , εT (θ)
i .i .d.∼ N (0, 1).

Recall that the family {(μ(θ), σ (θ))|θ ∈ �} may be used to describe the “uncer-
tain” parameters (μ, σ ) for drift and volatility misspecifications. For each θ ∈ �, let
ε(θ) := {εt (θ)}t∈T, which is a sequence of i.i.d. standard normal random variables
under Pθ . Then the Gaussian uncertain noises are defined by the family {ε(θ)|θ ∈ �}
of sequences of normal random variables indexed by � in Eq. (3.2), say the product
intervals in which the “uncertain” parameters (μ, σ ) lie. It may be noted that the Gaus-
sian uncertain noises {ε(θ)|θ ∈ �} are defined with respect to a family of probability
measures {Pθ |θ ∈ �} indexed by �.

Furthermore, underPθ , {Xt }t∈T follows the parametric nonlinear time seriesmodel:

Xt = f (Xt−1, Xt−2, . . . , Xt−p) + μg(Xt−1, Xt−2, . . . , Xt−q)

+ σ g(Xt−1, Xt−2, . . . , Xt−q)εt (θ). (3.7)

It may be noted that {Xt }t∈T follows the reference model in Eq. (3.1) under the ref-
erence measure P. Under the reference model in Eq. (3.1), the conditional mean and
volatility are given by the functions f and g, respectively. However, {Xt }t∈T follows
an alternative model in Eq. (3.7) under the new probability measure P

θ defined by
Eq. (3.5), for each θ ∈ �. Under the alternative model in Eq. (3.7), the conditional
mean and volatility are given by the functions f + μg and σ g, respectively. That
is, the effects of changing the probability measures from P to P

θ are to (1) perturb
the conditional mean function f by μ in the “direction” of the conditional volatility
function g and (2) scale the conditional volatility function g by σ . When μ = 0 and
σ = 1, (i.e. there are no drift and volatility misspecifications), the alternative model
in Eq. (3.7) coincides with the reference model in Eq. (3.1). Recall that (μ, σ ) are the
“uncertain” parameters for drift and volatility misspecifications since the misspecifi-
cations may not be known in practice. Consequently, it is uncertain which alternative
model may be used. Instead of using a single alternative model, again, a family of
alternative models may be used. Recall that the focus in the second stage is predic-
tion. Consequently, a family of alternative models for prediction is specified. With the
“uncertain” parameters θ := (μ, σ ) varying in � := [μ−, μ+] × [σ−, σ+], a family
of alternative models in the form of Eq. (3.7) for prediction is defined with respect to
the family of probability measures {Pθ |θ ∈ �}. That is, for each θ ∈ �, an alternative
model under the probability measurePθ has the conditional mean function f +μg, the
conditional volatility function σ g and the sequence of i.i.d. standard normal random
shocks ε(θ). It may be noted that for each θ ∈ �, the probability measure Pθ defined
by the discrete-time Girsanov’s transform in Eq. (3.5) is equivalent to the reference
probability measure P.

To incorporate the family of alternative models in prediction, (conditional) nonlin-
ear expectations are considered here. For example, similar to the “worst-case” scenario
approach to model uncertainty in economic decision-making, one may wish to make
a conservative prediction by considering the “worst-case” scenario over the family of
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alternative models, say the “worst-case” scenario prediction. This may be achieved by
considering a pair of conditional nonlinear expectations, namely a conditional sublin-
ear expectation and a conditional superlinear expectation. Specifically, suppose that
one wishes to predict a random variable Y given the information described by a sub-σ -
field H of F . Then a conditional sublinear expectation and a conditional superlinear
expectation for Y given H with respect to {Pθ |θ ∈ �} defining the family of alterna-
tive models may be used. The conditional sublinear expectation and the conditional
superlinear expectation for Y given H with respect to {Pθ |θ ∈ �} are, respectively,
defined by:

E
S
�[Y |H] := ess − sup

θ∈�

Eθ [Y |H], (3.8)

and

E
I
�[Y |H] := ess − inf

θ∈�
Eθ [Y |H], (3.9)

where Eθ [·|H] is the conditional expectation givenH under Pθ . ess−sup and ess− inf
are the essential supremum and the essential infimum, respectively. The essential
supremum and the essential infimum are taken with respect to the “uncertain’ param-
eters θ := (μ, σ ) varying in the product intervals �. Consequently, the family of
alternative models defined by {Pθ |θ ∈ �} is incorporated in the definitions of the con-
ditional sublinear expectation in Eq. (3.8) and the conditional superlinear expectation
in Eq. (3.9). From the technical perspective, the essential supremum and the essential
infimum are used since the conditional expectation Eθ [Y |H] is a random variable, for
each θ ∈ �. Also, to simplify the discussion, it is supposed that the random variable
Y is integrable with respect to P

θ , (i.e. Eθ [|Y |] < ∞, where Eθ [·] is the expectation
under Pθ ), for each θ ∈ �.

Depending on the purposes of applications, either the conditional sublinear expec-
tation or the conditional superlinear expectation may be used as the “worst-case”
scenario prediction. Specifically, if one wishes to predict the future profit (loss)
described by the randomvariableY based on the current and past information described
byH, then the conditional superlinear expectation (the conditional sublinear expecta-
tion) may be used as the “worst-case” scenario prediction. Instead of making a point
prediction, one may also make an interval prediction based on a pair of conditional
superlinear and sublinear expectations, where the former and the latter give the lower
and upper limits of the interval prediction, respectively.

Whether one wishes to use the conditional nonlinear (sublinear and/or superlinear)
expectations for making a point prediction or an interval prediction, a key issue to
be addressed is to determine the upper limits, say μ+, σ+, and the lower limits,
say μ−, σ−, in the product intervals �. In the next section, concepts in Bayesian
statistics will be used to inform the determination of the upper and lower limits in �.
Specifically, Bayesian credible intervals are used to determine the upper and lower
limits in � to which certain probability levels can be assigned to indicate the degree
of credibility that the family of alternative models defined by {Pθ |θ ∈ �} may have.
The Bayesian credible intervals also incorporate both a model user’s subjective view
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(or expert opinion) and the objective data in determining the upper and lower limits
in �. The Bayesian nonlinear expectations for prediction in the second stage are then
defined by using the conditional nonlinear expectations in Eq. (3.8) and Eq. (3.9) with
the upper and lower limits in � determined by the Bayesian credible intervals as well
as with the given information H specified by a σ -field generated by the time series
observations.

3.2 A product process

Though the reference model in Eq. (3.1) (i.e. a nonlinear autoregressive model with
conditional heteroscedasticity) includes the GARCH model, it does not include a SV
model. This is because the SV model involves two random shocks per unit of time
while the reference model in Eq. (3.1) involves one random shock per unit of time. To
include the SV model, a product process is needed. As noted in Sherphard (2005), the
product process was introduced in an unpublished paper of Rosenberg (1972) and was
studied in Taylor (1980, 1982). It was pointed out in Taylor (1982) that the product
process is not included in some nonlinear time seriesmodels such as the bilinearmodel
in Granger and Anderson (1978) and the state-dependent model in Priestley (1980)
for the product process involves two random shocks per unit of time.

A reference model which includes the first model in Sect. 3.1 and a product process
is now specified. Recall from Sect. 3.1 that {εt }t∈T is a sequence of i.i.d. standard
normal random variables under the reference probability measure P. Let {ηt }t∈T be
another sequence of i.i.d. standard normal random variables under P. Assume that the
two sequences {εt }t∈T and {ηt }t∈T are independent under P. It is supposed that under
P, {Xt }t∈T follows the reference parametric nonlinear time series model:

Xt = f (Xt−1, Xt−2, . . . , Xt−p) + h(Xt−1, Xt−2, . . . , Xt−q , Vt )εt ,

Vt = fv(Vt−1, Vt−2, . . . , Vt−pv ) + hv(Vt−1, Vt−2, . . . , Vt−qv )ηt , (3.10)

where f : �p → �, h : �q+1 → �, fv : �pv → � and hv : �qv → � are given
measurable functions; h > 0 and hv > 0; p, q, pv and qv are positive integers. {Vt }t∈T
is a latent process, which is a stochastic process defined on (�,F ,P). Defining the
time series process {Xt }t∈T and the latent process {Vt }t∈T on the same probability
space (�,F ,P)may avoid the complexity of introducing a product probability space.
It is assumed that the initial values {V−max(pv,qv), V−max(pv,qv)+1, . . . , V0} are also
random variables defined on (�,F ,P). It may be noted that there are two random
shocks per unit of time in the reference model in Eq. (3.10). Specifically, at each
time t ∈ T, there are two random shocks εt and ηt , where εt is the random shock
driving the time series process {Xt }t∈T and ηt is the random shock driving the latent
process {Vt }t∈T. Consequently, the reference model in Eq. (3.10) includes a product
process, which in turn includes the SV model. Also, if the volatility function h in the
first equation of Eq. (3.10) becomes the volatility function g in Eq. (3.1), then the
reference model in Eq. (3.10), (i.e. the second model), coincides with the reference
model in Eq. (3.1), (i.e. the first model).
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Suppose that

f (Xt−1, Xt−2, . . . , Xt−p) = 0, h(Xt−1, Xt−2, . . . , Xt−q , Vt ) = exp(Vt/2),

fv(Vt−1, Vt−2, . . . , Vt−pv ) = αv + δvVt−1, hv(Vt−1, Vt−2, . . . , Vt−qv ) = σv.(3.11)

Then the reference model in Eq. (3.10) becomes:

Xt = exp(Vt/2)εt ,

Vt = αv + δvVt−1 + σvηt . (3.12)

This is the discrete-time SV model presented in Jacquier et al. (2002). The discrete-
time SV model, which is also called a lognormal autoregressive model for a latent
volatility process, was first proposed by Taylor (1982). For Bitcoin applications to be
presented in Sect. 6, the discrete-time SV model in Eq. (3.12) will be used.

After specifying the reference model in Eq. (3.10) in the first stage, the second
stage is considered. Again, a discrete-time Girsanov’s transform is used to construct
a family of probability measures equivalent to the reference measure P. The family
of probability measures is used to define Gaussian “uncertain” noises and a family
of alternative models from the reference model in Eq. (3.10). The constructions and
derivations are presented in Online Appendix B.

4 Bayesian nonlinear expectations

The second stage of the proposed two-stage approach is concerned with prediction,
which is an ultimate goal of time series modelling. If an estimated reference model
from the first stage is used for prediction, there are two concerns. Firstly, as discussed in
Sect. 3, there may be model misspecifications or uncertainties in the conditional mean
and volatility of the reference model. Indeed, the “true” underlying data generating
process, if exists, is often unknown tomodel users in practice. Consequently, it appears
that model misspecifications or uncertainties are ubiquitous. Secondly, the future may
not follow from the present and the past. Consequently, there may be a concern that the
future developments of a time series processmaynot followwhat are predicted from the
reference model estimated from the present and past data. To address these concerns,
a family of alternative models is used to predict the future developments of the time
series process in the second stage. Specifically, the discrete-time Bayesian nonlinear
expectations incorporating a family of alternativemodels for prediction are constructed
in this section. To construct the Bayesian nonlinear expectations, the first step is to
evaluate the residuals of an estimated reference model. The residuals may be thought
of as proxies/estimates for the random errors in the reference model which in turns
contain information that is left over due to model misspecifications in the conditional
mean and volatility of the reference model. Then a Bayesian model for the random
errors in the reference model is constructed by treating the “uncertain” parameters
for drift and volatility misspecifications as random variables. Using conjugate priors
for the “uncertain” parameters and the residuals of the estimated reference model as
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proxies/estimates for the random errors, closed-form Bayesian credible intervals for
the “uncertain” parameters are obtained. The closed-form Bayesian credible intervals,
specifically their lower and upper limits, are then used to determine the lower and
upper limits of the product intervals indexing the family of probabilitymeasures which
defines the family of alternative models to be incorporated in prediction. Effectively,
these alternativemodels are introduced by extracting information that is left over due to
model misspecifications in the conditional mean and volatility of the reference model
via Bayesian credible intervals. The Bayesian nonlinear expectations are given by
the conditional nonlinear expectations with the lower and upper limits of the product
intervals determined by the Bayesian credible intervals.

Bayesian statistics, as itmaybequitewell-known, is an important approach tomodel
uncertainty. Indeed, Bayesian statistics has a solid foundation in decision theory under
uncertainty as established in, for example, Bernardo and Smith (2000). As far as pre-
diction is concerned, the Bayesian averaging approach has been adopted to incorporate
model uncertainty in evaluating Bayesian predictive distributions. The basic idea of
the Bayesian averaging approach is to evaluate the predictive distributions by averag-
ing out full posteriors of the unknown parameters. If the model has many unknown
parameters, the evaluation of the predictive distributions using the Bayesian averaging
approach will involve computing high-dimensional integrals. Also, if the parametric
form of the model is complicated, closed-form solutions to the posteriors may be very
difficult, if not impossible, to obtain using conjugate priors. In this case, numerical
simulations based on, for example, Markov Chain Monte Carlo (MCMC) methods
are required for computing the full posteriors. It appears that the Bayesian averaging
approach may be related to the smooth ambiguity approach for decision-making with
model uncertainty proposed in Klibanoff et al. (2005), where Bayesian averaging was
used in constructing the criterion for preferences. TheBayesian nonlinear expectations
to be introduced in this section provide an alternative way to incorporate model uncer-
tainties or misspecifications in prediction. Like the conditional nonlinear expectations
as discussed in Sect. 3.1, the Bayesian nonlinear expectations can be used to provide
a conservative prediction by considering the “worst-case” scenario over the family of
alternative models, say the “worst-case” scenario prediction. It may be thought that
the Bayesian nonlinear expectations combine concepts in Bayesian statistics and the
“worst-case” scenario approach to model uncertainty for making predictions. Using
the closed-form Bayesian credible intervals based on conjugate priors, the Bayesian
nonlinear expectations can be easily computed and provide a convenient way to make
predictions. Furthermore, the use of the Bayesian credible intervals allows probability
levels to be assigned with the objective of indicating credibility of predictions made by
Bayesian nonlinear expectations. As pointed out by Hansen (2013), Page 431 therein,
under the smooth ambiguity approach, ambiguity was identified as a characteristic of
subjective beliefs of a model user and a Bayesian prior was assigned to alternative
models. Thismay also apply to both theBayesian averaging approach and theBayesian
nonlinear expectations approach. Indeed, both the Bayesian averaging approach and
the Bayesian nonlinear expectations approach incorporate a model user’s subjective
view (or expert opinion) and the objective data in making predictions. The model
user’s subjective view (or expert opinion) may be used to adjust predictions based
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solely on the present and the past data in case the future may not follow the present
and the past.

In the sequel, the Bayesian credible intervals and the Bayesian nonlinear expecta-
tions corresponding to the first model in Sect. 3.1 will be constructed. The construction
of theBayesian credible intervals and theBayesian nonlinear expectations correspond-
ing to the second model in Sect. 3.2 follows similarly and is presented in Online
Appendix C. Some formulas and notations in Bernardo and Smith (2000), (see, for
example, Pages 121 and440 therein),will be used. For an excellent account ofBayesian
statistics, one may refer to, for example, Box and Tiao (1992), Bernardo and Smith
(2000) and Lee (2012). In Online Appendix D, a (potential) fusion between Bayesian
nonlinear expectations and the Bayesian shrinkage and regularization techniques for
estimation and variable selection is discussed using the proposed two-stage approach.
The variable selection is an important topic in econometrics, statistics and machine
learning. As far as the sparsity of a high-dimensional regression model is concerned,
the Bayesian shrinkage and regularization techniques in the Bayesian model selection
literature are the key techniques for estimation and variable selection, (see, for exam-
ple, Carvalho et al. 2009; Polson and Scott 2010; Bhadra et al. 2019 and the relevant
references therein). It may be of interest to explore the (potential) link between the
Bayesian shrinkage and regularization techniques and the Bayesian nonlinear expec-
tations.

The Bayesian nonlinear expectations corresponding to the first model in Sect. 3.1
are now constructed. From Eq. (3.6), for each θ ∈ �,

εt = μ + σεt (θ), (4.1)

where (μ, σ ) are the “uncertain” parameters for the drift and volatility misspeci-
fications in the reference model in Eq. (3.1). In Bayesian statistics, μ and σ are
assumed to be random variables, and prior distributions for μ and σ are assigned.
Recall from Sect. 3.1 that {εt (θ)}t∈T is a sequence of i.i.d. standard normal ran-
dom variables under the probability measure P

θ , for each θ ∈ �. Then from
Eq. (4.1), under Pθ , given (μ, σ ), {εt }t∈T is a sequence of conditionally i.i.d. nor-
mal random variables with mean μ and standard deviation σ . That is, under Pθ ,

ε1, ε2, . . . , εT |(μ, σ )
i .i .d.∼ N (μ, σ 2). It may be noted that under the reference prob-

ability measure P, ε1, ε2, . . . , εT
i .i .d.∼ N (0, 1). Here the precision λ, where λ = 1

σ 2 ,
is considered, and a prior distribution is assigned for λ instead of σ . Again, if λ = 1,
then there is no volatility misspecification in a reference model. If λ > 1, (i.e. σ < 1),
then the volatility specification in the reference model in Eq. (3.1) may be too high.
If λ < 1, (i.e. σ > 1), then the volatility specification in the reference model in Eq.
(3.1) may be too low. Consequently, either λ or σ may be used to describe volatility
misspecifications in the reference model in Eq. (3.1).

To assign prior distributions for (μ, λ), a normal-gamma prior distribution is con-
sidered. Specifically,

μ|λ ∼ N

(
μ0,

1

t0λ

)
, λ ∼ Ga(α, β), (4.2)
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where N (μ0,
1
t0λ

) is a normal distributionwithmeanμ0 andvariance 1
t0λ

, andGa(α, β)

is a Gamma distribution with shape parameter α and rate parameter β. Consequently,
the prior mean of μ is μ0 and the prior variance of μ|λ is 1

t0λ
. The prior mean μ0 may

be thought of as a prior estimate for μ, and the prior precision t0λ may indicate the
strength of belief on the prior estimateμ0. Say, for a fixed value of λ, a larger (smaller)
prior parameter t0 may express a stronger (weaker) belief on the prior estimate μ0.
Furthermore, the prior mean and variance of λ are α

β
and α

β2 , respectively. A larger

(smaller) prior variance α
β2 may express aweaker (stronger) belief on the prior estimate

α
β
for λ. Recall that the random variables μ and λ describe misspecifications in the

drift and volatility in the reference model in Eq. (3.1). Consequently, when λ becomes
smaller, (i.e. λ < 1), for a fixed prior parameter t0, the belief on the prior estimate
μ0 becomes weaker, (i.e. t0λ becomes smaller). To explain the intuition behind this,
when λ becomes smaller, the volatility specification in the reference model in Eq.
(3.1) may be too low. In this case, the conditional mean specification in the reference
model may dominate, in a relative sense, its volatility specification in prediction.
Consequently, misspecifications in the conditional meanmay have amore pronounced
impact on the prediction than misspecifications in the volatility. To be cautious, one
may express a weaker belief on the prior estimate μ0 for misspecifications in the
conditional mean. Likewise, when λ becomes larger, (i.e. λ > 1), for a fixed prior
parameter t0, the belief on the prior estimate μ0 becomes stronger, (i.e. t0λ becomes
larger). The intuition behind this can be explained similarly. The prior parameters
μ0, t0, α and β, which are also called the hyperparameters, are chosen by a model
user according to the model user’s prior/subjective belief (or expert opinion) on the
drift and volatility misspecifications. They will then be combined with the data on the
residuals of the reference model to compute the posterior distributions for the drift
and volatility misspecifications rationally by the Bayes’ formula.

Let {X1, X2, . . . , Xn} be a sequence of observations of a time series process, where
n is the number of observations.WriteN for the indices of the observations,whereN :=
{1, 2, . . . , n}. After estimating the reference model in Eq. (3.1) using the observations
{X1, X2, . . . , Xn} in the first stage, which will be done by the maximum likelihood
estimation (MLE) as will be discussed in Sect. 5.1, the residuals of the referencemodel
{et }t∈N can be computed as follows:

et := Xt − f̂ (Xt−1, Xt−2, . . . , Xt−p)

ĝ(Xt−1, Xt−2, . . . , Xt−q)
, (4.3)

where f̂ and ĝ are the estimates for the conditional mean f and the volatility g,
respectively. For each t ∈ N, the residual et is a proxy (or an estimate) for the random

error εt . Recall that under Pθ , ε1, ε2, . . . , εn|(μ, σ )
i .i .d.∼ N (μ, σ 2). It is also assumed

that as an approximation, under Pθ , e1, e2, . . . , en |(μ, σ )
i .i .d.∼ N (μ, σ 2).

Suppose that the observations e(n) := (e1, e2, . . . , en) are now given. Let

βn := β + 1

2
ns2 + t0n(μ0 − ē)2

2(t0 + n)
, (4.4)

123



Bayesian nonlinear expectation for time series modelling… 519

where ē = 1
n

∑n
t=1 et , (i.e. the sample mean of e(n)), and s2 = 1

n

∑n
t=1(et − ē)2, (i.e.

the sample variance of e(n)). Then it is known (see Bernardo and Smith 2000, Page
440) that by the Bayes’ formula, the posterior distribution of λ given e(n) is:

λ|e(n) ∼ Ga

(
α + n

2
, βn

)
, (4.5)

where α + n
2 is the posterior shape parameter of λ given e(n), and βn , which is given

by Eq. (4.4), is the posterior rate parameter of λ given e(n).
Let

μn := t0μ0 + nē

t0 + n
, (4.6)

and

σn :=
√

βn

α + 1
2n

, (4.7)

where βn is given by Eq. (4.4). Then, it is also known (see Bernardo and Smith 2000,
Page 440) that by the Bayes’ formula, the posterior distribution of μ given e(n) is:

μ|e(n) ∼ St

(
μn,

σ 2
n

(t0 + n)
, 2α + n

)
, (4.8)

Here St(a, b, c) is a Student’s-t distribution with a location parameter a, a scale
parameter

√
b, (or the precision b−1), and the degree of freedom c; μn in Eq. (4.6) is

the posterior location parameter forμgiven e(n). σn√
t0+n

is the posterior scale parameter

of μ given e(n), where σn is given by Eq. (4.7).
Then a100(1−γ1)%Bayesian credible interval forμgiven e(n) is (Lμ(γ1),Uμ(γ1))

such that the lower limit Lμ(γ1) and the upper limit Uμ(γ1) are, respectively, given
by:

Lμ(γ1) = μn − t2α+n

(
γ1

2

)
σn√
n + t0

, (4.9)

and

Uμ(γ1) = μn + t2α+n

(
γ1

2

)
σn√
n + t0

. (4.10)

Here t2α+n(
γ1
2 ) is the critical value of a Student’s-t distribution with degree of freedom

2α+n such that a Student’s-t random variable with the same degree of freedom is less
than or equal to t2α+n(

γ1
2 ) with probability 1 − γ1

2 . When the sample size n becomes
large as in the majority of time series data encountered in practice, the Student’s-t
distribution with degree of freedom 2α + n tends to a normal distribution. In this

123



520 T. K. Siu

case, the normal distribution can be used to construct the Bayesian credible interval
for μ given e(n). However, for the sake of generality, the Student’s-t distribution is
considered here since it can also capture the situation of short time series data.

Similarly, a 100(1 − γ2)% Bayesian credible interval for λ given e(n) is
(Lλ(γ2),Uλ(γ2)) such that the lower limit Lλ(γ2) and the upper limit Uλ(γ2) are,
respectively, given by:

Lλ(γ2) = α+ n
2 ,βn

(
1 − γ2

2

)
, (4.11)

and

Uλ(γ2) = α+ n
2 ,βn

(
γ2

2

)
, (4.12)

whereα+ n
2 ,βn (γ ) is the critical value of a Gamma distributionwith a shape parameter

α + n
2 and a rate parameter βn such that a random variable following this distribution

is less than or equal to α+ n
2 ,βn (γ ) with probability 1 − γ .

We now take:

μ− = μ−(γ1) = Lμ(γ1), μ+ = μ+(γ1) = Uμ(γ1), (4.13)

and

σ− = σ−(γ2) =
√

1

Uλ(γ2)
, σ+ = σ+(γ2) =

√
1

Lλ(γ2)
. (4.14)

Consequently, the product intervals � in Eq. (3.2) are taken as the following product
intervals �γ1,γ2(e(n)) with probability levels γ1 and γ2:

�γ1,γ2(e(n)) := [μ−(γ1), μ
+(γ1)] × [σ−(γ2), σ

+(γ2)], (4.15)

and a family of alternative models is defined by the family of probability measures
{P(θ)|θ ∈ �γ1,γ2(e(n))} indexed by �γ1,γ2(e(n)). To emphasize that the product
intervals in Eq. (4.15) depend on the observations e(n) of the residuals, the notation
�γ1,γ2(e(n)) is used.

It may be noted that the Bayesian credible intervals are used in the second stage
which is concerned with prediction, and they are not considered in the first stage
which is concerned with the estimation of a reference model. Intuitively, the Bayesian
credible intervals combine a model user’s prior/subjective belief (or expert opinion)
via choosing the prior parameters (or hyperparameters) and information about the
residuals e(n) to generate the family of alternative models with the objective of incor-
porating drift and volatility misspecifications described by the “uncertain” parameters
(μ, σ ). For example, the 90% Bayesian credible intervals for μ and σ , which can be
constructed based on the 5th and 95th percentiles of the posterior distributions for μ

and σ , may be used to generate the family of alternative models which have the degree
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of credibility for capturing the drift and volatility misspecifications described by the
90% probability level. In line with the Bayesian interpretation, the 90% probability
level may be thought of as a subjective probability level.

A Bayesian (posterior) sublinear expectation for an integrable random variable Y
given the σ -fieldF X

n generated by the time series observations {X1, X2, . . . , Xn}with
respect to {P(θ)|θ ∈ �γ1,γ2(e(n))} is constructed as follows:

CBE�γ1,γ2 (e(n))[Y |F X
n ] := ess − sup

θ∈�γ1,γ2 (e(n))

Eθ [Y |F X
n ]. (4.16)

Similarly, a Bayesian (posterior) superlinear expectation for an integrable random
variable Y given F X

n with respect to {P(θ)|θ ∈ �γ1,γ2(e(n))} is defined as:

CBIE�γ1,γ2 (e(n))[Y |F X
n ] := ess − inf

θ∈�γ1,γ2 (e(n))
Eθ [Y |F X

n ]. (4.17)

5 Estimation, forecasting and risk evaluation

The estimation, forecasting and risk evaluation procedures are described along the line
of the two-stage approach. At the first stage, the estimation of the reference model
in either Eq. (3.1) or Eq. (3.10) is considered. At the second stage, to incorporate
the effects of drift and volatility misspecifications or uncertainties, in prediction, the
Bayesian nonlinear expectations are used for forecasting and risk evaluation. For
illustration, one-step-ahead forecasts for time series observations are adopted, and
one-step-ahead predictions for VaR and ES are considered for risk evaluation.

5.1 Estimation

The focus of this paper is parametric nonlinear time series modelling. It is supposed
that the parametric forms in the reference models in Eq. (3.1) or Eq. (3.10) are given
a priori. Specifically, the parametric forms of the drift function f and the volatility
function g are given in the reference model in Eq. (3.1), and the parametric forms of
the drift functions f , fv and the volatility functions h and hv are given in the reference
model in Eq. (3.10). In these cases, the estimation of the two referencemodels becomes
the estimation of the parameters in the two referencemodels. Since the referencemodel
in Eq. (3.1) does not involve latent processes, once the parametric forms of the drift and
volatility functions are given, the maximum likelihood estimation (MLE) may be used
to estimate its parameters. Since the reference model in Eq. (3.10) involves a latent
process, once the parametric forms of the drift and volatility functions are given, one
may first need to estimate the latent process using filtering techniques (or nonlinear
filtering techniques in the casewhen either the observation process or the latent process
is nonlinear) and then use the quasi-MLE (QMLE) to estimate the parameters. Indeed,
one may also use a fully Bayesian approach coupled with Markov Chain Monte Carlo
(MCMC) to estimate the two reference models. The fully Bayesian approach coupled
withMCMCgives full posterior distributions for unknown parameters, while theMLE
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and the QMLE give point estimates. While the fully Bayesian approach coupled with
MCMC is flexible, the point estimates for the unknown parameters in a reference
model are what we need in the first stage of the two-stage approach. Using these point
estimates, the residuals of a reference model are computed, which are then used to
construct the Bayesian credible intervals in the second stage. Of course, we may also
use the point estimates from the posterior means or modes for the unknown parameters
to compute the residuals of the reference model. However, the uses of the MLE and
the QMLE for the estimation of the reference models may provide a clear illustration
for the difference between the objectives of the first and second stages in the proposed
approach.

Furthermore, the MLE and the QMLE with the Kalman filter are easy to imple-
ment for the SETAR model, the GARCH model and the SV model. The Bayesian
MCMC estimation of these three models involves numerical simulations of full pos-
terior distributions for the unknown parameters/latent variables, which could be more
complicated. The three models will be estimated using real Bitcoin data in Sect. 6.
Specifically, when the reference model is specified as either the SETAR model or the
GARCH model, the MLE is used to estimate the model; when the reference model
is specified as the SV model, the QMLE coupled with the Kalman filter are used to
estimate the model. Indeed, the estimation of the SETAR model and the GARCH
model can be done using the function “tar” in the R package “TSA” and the function
“garch” in the R package “tseries”, respectively. The estimation of the SVmodel using
the QMLE with the Kalman filter can be implemented quite conveniently using R fol-
lowing the filtering and estimation equations in Appendix B of Jacquier et al. (2002).
The estimation of a SV model using the QMLE with the Kalman filter can also be
implemented using Excel spreadsheets, (see Taylor 2005, Chapter 11 therein). Besides
the QMLE with the Kalman filter, there are other methods to estimate the SV model.
See, for example, Taylor (1982, 1986) for moment estimates, Melino and Turnbull
(1990) and Jacquier et al. (2002) for the generalized method of moments, Jacquier
et al. (2002) and Nakajima and Omori (2009) for a fully Bayesian MCMC approach,
Kim et al. (1998) and Omori et al. (2007) for the likelihood-based approaches.

5.2 Forecasting

Anupper point forecast, a lower point forecast and an interval forecast for the daily per-
centage logarithmic return of a financial asset in the next time period given information
about the returns up to and including the current time period are obtained under each
of the reference models in Eq. (3.1) and Eq. (3.10). The upper point forecast and the
lower point forecast are defined using a Bayesian posterior sublinear and superlinear
expectations, respectively. Likewise, the lower and upper limits of the interval forecast
are specified by a Bayesian posterior sublinear and superlinear expectations, respec-
tively. The interval forecast considered here may entail a different interpretation from
the prediction interval used in forecasting. Specifically, the former indicates model
uncertainty while the latter indicates uncertainty due to the variability of a forecast.
The distinction between the interval forecast considered here and a prediction interval
may be illustrated by considering the distinction between uncertainty and risk in the
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classic work by Knight (1921). Specifically, the interval forecast considered here may
be related to the notion of uncertainty while a prediction interval may be related to the
concept of risk in the sense of Knight (1921).

As a comparison, a Bayesian risk-neutral forecast based on the posterior means of
the “uncertain” parameters is also obtained under each of the reference models in Eq.
(3.1) and Eq. (3.10). The derivations of the upper, lower and interval forecasts as well
as the Bayesian risk-neutral forecasts under the two reference models in Eq. (3.1) and
Eq. (3.10) are provided in Online Appendix E.

5.3 Risk measures

Two tail-based riskmetrics, namely value at risk (VaR) and expected shortfall (ES), are
adopted here to evaluate risk. VaR has been a popular risk metric. However, it has been
pointed out thatVaRdoes not, in general, satisfy the sub-additivity property. Intuitively,
this means that diversification of risk may be penalized if VaR is used as a risk metric.
An alternative risk metric, namely ES, has been proposed in, for example, Artzner
et al. (1999), which satisfies the sub-additivity property when the loss distribution
is continuous and takes account of the tail risk beyond the VaR threshold. See, for
example, Artzner et al. (1999) and Boyle et al. (2002) for related discussions.

Again, one-step-ahead forecasts are considered for illustration. This does not seem
to be an unreasonable consideration for, in practice, risk metrics such as VaR are often
evaluated or updated for each period, say one day. Since these estimates of the risk
metrics are evaluated based on the Bayesian posterior distributions, they combine both
expert opinion and objective market data when evaluating risks, and these risk metrics
may be related to Bayesian coherent risk measures in, for example, Siu et al. (2001),
and Bayesian Value at Risk in, for example, Siu et al. (2004).

A short position for one unit of a Bitcoin is considered for the computation of
the estimates of the VaR and ES. This will be used in the real data applications to be
presented in Sect. 6. A short position of Bitcoinwas also considered for evaluatingVaR
and ES in Siu (2021). Firstly, the reference model in Eq. (3.1) is considered. Let Xt

be the loss random variable of the short position of the Bitcoin in the t th period. Since
(percentage) logarithmic returns may be used to approximate percentage changes in
the value of a risky portfolio, the loss random variable Xt is equal to the logarithmic
return in the t th-period, where Xt is expressed as percentage. See, for example, Tsay
(2013), Page 337.

Let VaRθ
1−p[Xn+1|F X

n ] and ESθ
1−p[Xn+1|F X

n ] be the VaR and ES of the short

position of the Bitcoin in the (n + 1)st -period given F X
n with confidence level 1 − p

evaluated under the probabilitymeasurePθ , respectively. For example, p could be0.05.
Then applying Eq. (7.2) on Page 332 and Eq. (7.6) on Page 335 in Tsay (2013) and
using the notation introduced inOnlineAppendix E andEq. (3.7), VaRθ

1−p[Xn+1|F X
n ]

and ESθ
1−p[Xn+1|F X

n ] have the following analytical expressions:

VaRθ
1−p[Xn+1|F X

n ] = f̂ + μĝ + σ ĝz1−p, (5.1)
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and

ESθ
1−p[Xn+1|F X

n ] = f̂ + μĝ + σ ĝ
φ(z1−p)

p
, (5.2)

where z1−p and φ(·) denote the (1 − p)th quantile and the pdf of a standard normal
distribution N (0, 1), respectively.

The upper-point estimates for the VaR in Eq. (5.1) and the ES in Eq. (5.2) with
respect to {Pθ |θ ∈ �2γ1,2γ2(e(n))} are, respectively, given by:

UVaR1−p,�2γ1,2γ2 (e(n))[Xn+1|F X
n ] = ess − sup

θ∈�2γ1,2γ2 (e(n))

VaRθ
1−p[Xn+1|F X

n ],

(5.3)

and

UES1−p,�2γ1,2γ2 (e(n))[Xn+1|F X
n ] = ess − sup

θ∈�2γ1,2γ2 (e(n))

ESθ
1−p[Xn+1|F X

n ].

(5.4)

The lower-point estimates for the VaR in Eq. (5.1) and the ES in Eq. (5.2) with
respect to {Pθ |θ ∈ �2γ1,2γ2(e(n))}, denoted byLVaR1−p,�2γ1,2γ2 (e(n))[Xn+1|F X

n ] and
LES1−p,�2γ1,2γ2 (e(n))[Xn+1|F X

n ], are, respectively, defined by replacing “ess − sup”
in Eq. (5.3) and Eq. (5.4) with the “ess − inf”.

An interval estimate for the VaR in Eq. (5.1) with respect to {Pθ |θ ∈ �γ1,γ2(e(n))}
is given by:

(LVaR1−p,�γ1,γ2 (e(n))[Xn+1|F X
n ],UVaR1−p,�γ1,γ2 (e(n))[Xn+1|F X

n ]). (5.5)

Similarly, an interval estimate for the ES in Eq. (5.2) with respect to {Pθ |θ ∈
�γ1,γ2(e(n))} is evaluated. The Bayesian risk-neutral estimate for the VaR is given
by:

BRNVaR1−p[Xn+1|F X
n ] = f̂ + μn ĝ + σn ĝz1−p, (5.6)

where μn and σn are given by Eq. (4.6) and Eq. (4.7), respectively. Similarly, the
Bayesian risk-neutral estimate for the ES is evaluated.

Now the reference model in Eq. (3.10) is considered. Let VaRθh
1−p[Xn+1|F X

n ]
and ESθh

1−p[Xn+1|F X
n ] be the VaR and ES of the short position of the Bitcoin in the

(n+1)st -period givenF X
n with confidence level 1− p evaluated under the probability

measure Pθh , respectively. Using the notation in Online Appendix E and Eq. (B.7) in
Online Appendix B, VaRθh

1−p[Xn+1|F X
n ] and ESθh

1−p[Xn+1|F X
n ] have the following

analytical expressions:

VaRθh
1−p[Xn+1|F X

n ] = f̂ + μĥ(μh) + σ ĥ(μh)z1−p, (5.7)
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and

ESθh
1−p[Xn+1|F X

n ] = f̂ + μĥ(μh) + σ ĥ(μh)
φ(z1−p)

p
, (5.8)

where ĥ(μh) := ĥ(Xn, Xn−1, . . . , Xn+1−q , V̂n+1(μh)) as defined inOnlineAppendix
E; V̂n+1(μh) is given by Eq. (E.12) in Online Appendix E.

When the reference model is the first-order SV model in Eq. (3.12),
VaRθh

1−p[Xn+1|F X
n ] in Eq. (5.7) and ESθh

1−p[Xn+1|F X
n ] Eq. (5.8) become:

VaRθh
1−p[Xn+1|F X

n ] = μ exp(V̂n+1(μh)/2) + σ exp(V̂n+1(μh)/2)z1−p, (5.9)

and

ESθh
1−p[Xn+1|F X

n ] = μ exp(V̂n+1(μh)/2) + σ exp(V̂n+1(μh)/2)
φ(z1−p)

p
,

(5.10)

where V̂n+1(μh) is given by Eq. (E.12) in Online Appendix E.
The upper-point estimates, the lower-point estimates and the interval estimates for

the VaR and ES under the reference model in Eq. (3.10) are then evaluated in the
same fashion as those under the reference model in Eq. (3.1) as described above,
with θ replaced by θh , �2γ1,2γ2(e(n)) replaced by �2γ1,2γ2,2γh1,2γh2(e(n), ν(n)) and
�γ1,γ2(e(n)) replaced by �γ1,γ2,γh1,γh2(e(n), ν(n)).

The Bayesian risk-neutral estimate for the VaR is given by:

BRNVaRh
1−p[Xn+1|F X

n ] = f̂ + μnĥ(μhn) + σnĥ(μhn)z1−p, (5.11)

where μn , μhn and σn are given by Eq. (4.6), Eq. (C.8) in Online Appendix C and
Eq. (4.7), respectively. Under the first-order SV model in Eq. (3.12), the Bayesian
risk-neutral estimate in Eq. (5.11) becomes:

BRNVaRh
1−p[Xn+1|F X

n ] = μn exp(V̂n+1(μhn)/2)+ σn exp(V̂n+1(μhn)/2)z1−p.

(5.12)

The Bayesian risk-neutral estimates for the ES are evaluated similarly.
Note that the estimates for the VaR and ES described as above represent losses in

percentage. As in Tsay (2013), Page 337, the estimates of the VaR and ES in dollar
amounts can be approximated by first multiplying the estimates for the VaR and ES
described as above with the current dollar amount of one unit of the Bitcoin and then
dividing the multiplication by 100. This method will be used to compute the estimates
for the VaR and ES of the short position of the Bitcoin in dollar amounts in Sect. 6.

Though the focus of the current paper is parametric nonlinear time seriesmodelling,
it may be noted that the proposed two-stage approach may be extended to nonpara-
metric time series modelling. In Online Appendix F, some preliminary discussions on
some potential extensions along this line are provided at an intuitive level.
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6 Applications to forecasting and risk evaluation of Bitcoin

In this section, applications of the proposed two-stage approach for estimation and
prediction to forecasting and risk evaluation of Bitcoin are provided using real Bitcoin
data including some periods of Covid 19. Threemajor parametric nonlinear time series
models, namely the SETARmodel, the GARCHmodel and the SV model, are used as
the reference models in the first stage and are estimated from the Bitcoin data using the
methods described in Sect. 5.1. Then the one-step-ahead point and interval forecasts
for the Bitcoin return based on the Bayesian nonlinear expectations are computed
using the formulas in Online Appendix E. Lastly, one-step-ahead point and interval
predictions ofVaR andES based on theBayesian credible intervals are computed using
the formulas in Sect. 5.3. When nonlinear time series models are considered, one may
use numerical simulations for computing multiple-step-ahead forecasts for the return
as well as multiple-step-ahead predictions of VaR and ES. The formulas presented in
OnlineAppendix E and Sect. 5.3 provide a convenient way to numerically compute the
one-step-ahead forecasts and predictions. To provide an illustration of the intuition and
basic idea of the proposed two-stage approach, one-step-head forecasts and predictions
are considered here for comparing the three models. As noted in Sect. 5.3, risk metrics
such as VaR are often computed for each period, say one day, in practice. To study the
impacts of the prior parameters (hyperparameters) for the “uncertain” parameters for
misspecifications in the drift and volatility of the reference models on forecasting and
risk evaluation of Bitcoin, three sets of prior parameters are used. The computations
were done using the statistical package R.

Bitcoin is a digital currency, or cryptocurrency. Cryptocurrencies, together with a
related technology called Blockchain, seem to be thought of as important innovations
in the FinTech world. The term “cryptocurrency” appears to be related to an important
branch in mathematics for coding, namely cryptography, which may have been used
in mining Bitcoins. Recently, there have been growing in trading activities of Bitcoins
around the world. The growth has accelerated in some periods of Covid 19. Never-
theless, it appears that trading Bitcoins may be risky. Empirical studies reveal that
the volatility level of Bitcoins is high. See, for example, Baur and Dimpfl (2021) and
the relevant literature therein. Consequently, risk measurement and management for
trading Bitcoins could be practically relevant issues. Some recent studies employed
GARCH-type models to describe the daily volatility of a Bitcoin series. See, for exam-
ple, Bouoiyour and Selmi (2016), Dyhrberg (2016), Bouri et al. (2017), Katsiampa
(2017) and Baur andDimpfl (2021). The uses of the GARCH-typemodels and some of
their variants to study riskmetrics, such asVaR andES, for Bitcoins or other cryptocur-
rencies were considered in the literature. See, for example, Chan et al. (2017), Chu
et al. (2017), Osterrieder and Lorenz (2017), Stavroyiannis (2017), Colucci (2018),
Aslanidis et al. (2019), Caporale and Zekokh (2019), Trucíos (2019) and Siu (2021).
Forecasting and risk evaluation of Bitcoin using Bayesian econometrics were also
considered in the literature. See, for example, Hotz-Behofsits et al. (2018), Catania
et al. (2019) and Philip et al. (2020). In a recent paper by Siu and Elliott (2021), the
pricing of Bitcoin options under a SETAR-GARCH model was considered.

Daily adjusted close prices of Bitcoin in USD from 1 January 2018 to 21 January
2022 with 1,482 observations are used in the empirical study of this paper. The Bitcoin
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dataset covers some periods of Covid 19. The data were downloaded from Yahoo
Finance. To visualize some patterns of the Bitcoin data, we can look at Fig. 1, which
gives the time series plots for the daily adjusted close prices, the daily logarithmic
returns in percent, the sample ACF and the sample PACF.

From Fig. 1 (Panel A), it is clear that there were sharp upward trends in the daily
adjusted close prices in some periods of Covid 19, (i.e. some periods after the 1000th
observation. Figure 1 (Panel B) shows that the volatility of the daily logarithmic returns
appears to change over time. FromFig. 1 (PanelsC andD), the daily logarithmic returns
look stationary.

The summary statistics of the daily percentage logarithmic returns from the Bitcoin,
which were computed using “basicStats” in the R package “fBasics” (Wuertz et al.
2020), are displayed in Table 1.

From Table 1, it may be seen that the Bitcoin returns data are negatively skewed,
(i.e. skewness −1.141107) and heavy-tailed, (i.e. kurtosis 14.086406). The range of
fluctuations in the returns data are large, (i.e. minimum −46.473018 and maximum
17.182056).

For illustration, a SETAR(2,1,1) model with d = 1, a GARCH(1,1) model and
a first-order SV model are used as three reference models for the daily percentage
logarithmic returns of the Bitcoin. The SETAR(2,1,1) model with d = 1 is given by:

Xt = (α
(1)
0 + α

(1)
1 Xt−1 + εt )I{Xt−1≤r} + (α

(2)
0 + α

(2)
1 Xt−1 + εt )I{Xt−1>r}, (6.1)

where IE is the indicator function of an event E ; r is the threshold parameter. The
SETAR(2,1,1) model in Eq. (6.1) is the reference model in Eq. (3.1) with the con-
ditional mean function f = (α

(1)
0 + α

(1)
1 Xt−1 + εt )I{Xt−1≤r} + (α

(2)
0 + α

(2)
1 Xt−1 +

εt )I{Xt−1>r} and the volatility function g = 1.
The GARCH(1,1) model is given by:

Xt = √
htεt ,

ht = γ0 + γ1X
2
t−1 + δht−1. (6.2)

The GARCH(1,1) model in Eq. (6.2) is the reference model in Eq. (3.1) with the
conditional mean function f = 0 and the conditional volatility function g = √

ht .
The first-order SVmodel is given by Eq. (3.12), which is included the reference model
in Eq. (3.10), as described in Sect. 3.2.

The estimation results for the SETAR(2,1,1)model, theGARCH(1,1)model and the
first-order SVmodel are presented in Tables 2, 3 and 4, respectively. The estimation of
the SETAR(2,1,1)model was done by the function “tar” in the R package “TSA” (Chan
and Ripley 2020). The testing of the SETAR(2,1,1) model based on the Threshold
nonlinearity test in Tsay (1989) was done using the function “thr.test” in the R package
“NTS” (Tsay et al. 2020). The estimation and testing of the GARCH(1,1) model were
done using the function “garch” in the R package “tseries” (Trapletti et al. 2021),
where the testing of the GARCH(1,1) model is based on the Box–Ljung test for the
squared residuals. The R codes were written to estimate the first-order SVmodel using
the QMLE with the Kalman filter (see Appendix B of Jacquier et al. (2002)). The R
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function “nlminb” was used in the optimization of the QMLE with the initial values
of the parameters: αv = 0.05, δv = 0.9 and σv = 0.2.

From Table 2, the result of the Threshold nonlinearity test provides evidence to
support the SETAR(2,1,1) model with d = 1, (i.e. p-value = 0.01489898), at 5% sig-
nificance level. FromTable 3, the result of the Box–Ljung test for the squared residuals
indicates the presence of the ARCH effect, (i.e. p-value = 0.6965). Comparing the
log-likelihood values of the three models, the first-order SV model provides the best
fit to the Bitcoin data, which gives the largest log-likelihood value of −3443.831.

Now three sets of prior parameters (hyperparameters) are considered. The first
set of prior parameters (Set 1) is: μ0 = 0.05, t0 = 100, μh0 = 0.05, th0 = 100,
α = 2, β = 1, αh = 2 and βh = 1. The second set of prior parameters (Set 2) is:
μ0 = 0, t0 = 10, μh0 = 0.05, th0 = 100, α = 1, β = 1, αh = 2 and βh = 1.
Under Set 2, the prior means for μ and σ are 0 and 1, respectively. This indicates
that according to the prior estimates given by the prior means for μ and σ , there
are no misspecifications in the conditional mean and volatility of a reference model
given by either the SETAR(2,1,1) model in Eq. (6.1) or the GARCH(1,1) model in
Eq.(6.2), and there are no misspecifications in the conditional mean and volatility of
the observation process in a reference model given by the first-order SV model in Eq.
(3.12). According to the prior precisions for μ and σ , there is less (higher) confidence
on the prior mean for μ (σ ) under Set 2 than Set 1. The third set of prior parameters
(Set 3) is: μ0 = 0.5, t0 = 100, μh0 = 0.5, th0 = 100, α = 1, β = 2, αh = 1
and βh = 1. Under Set 3, the prior mean for σh is 1. This indicates that according to
the prior estimate given by the prior mean for σh , there is no misspecification in the
volatility of the latent process in a reference model given by the first-order SV model
in Eq. (3.12). According to the prior estimates given by the prior means for μ and μh ,
there are higher levels of misspecifications in the conditional means μ and μh of the
respective reference models under Set 3 than Set 1. According to the prior precisions
for σ and σh , there is higher confidence on the prior means for σ and σh under Set 3
than Set 1.

Table 5 presents the 95% Bayesian credible intervals (BCIs) and the Bayesian risk-
neutral estimates (BRNEs) for the “uncertain” parameters (μ, σ ) of the SETAR(2,1,1)
model in Eq. (6.1) and the GARCH(1,1) model in Eq.(6.2) under the prior parameters
in Set 1. Table 6 gives the 95% BCIs and the BRNEs for the “uncertain” parameters
(μ, σ, μh, σh) of the SV model in Eq. (3.12) under the prior parameters in Set 1. All
the BCIs and BRNEs are expressed as percentage.

FromTable 5, according to theBRNEs, themisspecification in the volatility σ under
the GARCH(1,1) model is less severe than the SETAR(2,1,1) model. Also, the mis-
specification in the conditional mean μ under the SETAR(2,1,1) model is less severe
than the GARCH(1,1) model. These results are consistent with intuition because the
SETAR(2,1,1) model incorporates nonlinearity such as regime switching in the con-
ditional mean while the GARCH(1,1) model captures changing volatility, say the
conditional heteroscedasticity. According to the BCIs, the interval estimates for the
misspecifications in the volatilities of the GARCH(1,1) model and the SETAR(2,1,1)
model are precise.However, the interval estimate for themisspecifications in the condi-
tional means of the SETAR(2, 1, 1) model and the GARCH(1,1) model are not precise.
In view of the Bitcoin data, there were sharp upward trends in the daily adjusted close
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prices in some periods of Covid 19 as depicted in the time series plot in Fig. 1 (Panel
A). Consequently, modelling and predicting the conditional mean of the Bitcoin return
data become challenging. It is difficult to give a precise estimation for the misspecifi-
cation in the conditional mean, which is reflected in the wider interval estimates for the
misspecifications in the conditional means by the BCIs. This appears to be in line with
Merton (1980), where it was noted that the drift of financial returns was uneasy to be
precisely estimated. From Table 6, according to the BRNEs, the misspecifications in
the conditional mean and volatility of the observation process under the first-order SV
model are slightly more severe than the GARCH(1,1) model. However, the misspec-
ifications on the conditional mean and volatility of the observation process are more
severe than the latent process under the SVmodel. This is consistent with the intuition
because it may be more difficult to specify a latent process, which is unobservable,
correctly than an observable process. Furthermore, according to the BCIs, the interval
estimates for the misspecifications in the conditional means of both the observation
and latent processes are less precise than the interval estimates for the misspecifica-
tions in the volatility of the two processes under the SV model. This is consistent with
the respective results for the SETAR(2,1,1) model and the GARCH(1,1) model.

Table 7 gives the one-step-ahead forecasts, say an upper-point forecast (UPF), a
lower-point forecast (LPF), an interval forecast (IF), a Bayesian risk-neutral forecast
(BRNF) and a classical forecast (CF) based on a reference model only, of the daily
percentage logarithmic returns from theSETAR(2,1,1)model, theGARCH(1,1)model
and the first-order SVmodel estimated from theBitcoin data under the prior parameters
in Set 1. All the forecasts using the Bayesian nonlinear expectations, namelyUPF, LPF
and IF, were evaluated at the 95% probability level for the “uncertain” parameters
(μ, σ, μh, σh). The one-step-head forecasts were expressed as percentage and were
computed based on the Bitcoin data in the whole sampling period from 1 January 2018
to 21 January 2022 with 1,482 observations.

FromTable 7, the one-step-ahead forecasts from theGARCH(1,1)model and theSV
model are generally lower than those from the SETAR(2,1,1) model. This is consistent
with the assumption that the conditional means of the reference models given by the
GARCH(1,1) model and the SV model are zero. From the LPF, UPF and IF from the
GARCH(1,1) model and the SV model, it may be seen that the drift and volatility
misspecifications have a more pronounced impact on the one-step-ahead forecasts
from the SV model than those from the GARCH(1,1) model. This is also evidenced
by comparing the BRNF and CF from each of the GARCH(1,1) model and the SV
model. To explain this, it may be noted that the drift and volatility misspecifications
are incorporated in both the observation and latent processes under the SV model,
while the drift and volatility misspecifications are captured in the observation process
only under the GARCH(1,1) model. Lastly, the difference between the BRNE and the
CF under the SETAR(2,1,1) model is small, while the difference between the UPF
and the LPF under the SETAR(2,1,1) model is large. This is consistent with the results
in Table 5 that the BRNE for μ is small and the 95% BCI for μ is wide under the
SETAR(2,1,1) model.

Table 8 gives the one-step-ahead point and interval predictions for the two risk
metrics, namely VaR and ES, for the short position of one unit of the Bitcoin from
the SETAR(2,1,1) model, the GARCH(1,1) model and the SV model estimated from
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the Bitcoin data under the prior parameters in Set 1. Specifically, an upper-point VaR
prediction (UVaR), an upper-point ES prediction (UES), a lower-point VaR predic-
tion (LVaR), a lower-point ES prediction (LES), an interval VaR prediction (IVaR),
an interval ES prediction (IES), a Bayesian risk-neutral VaR prediction (BRNVaR),
a Bayesian risk-neutral ES prediction (BRNES), a classical VaR prediction (VaR)
and a classical ES prediction (ES) based on the respective reference model only are
presented. All the estimates of the two risk metrics based on the Bayesian nonlinear
expectations, namely theUVaR,UES, LVaR, LES, IVaR and IES, were evaluated at the
95% probability level for the “uncertain” parameters (μ, σ, μh, σh). The confidence
levels for the VaR and ES are both equal to 95%, (i.e. p = 0.05). All the estimates of
the two risk metrics are expressed in USD. The one-step-ahead VaR and ES predic-
tions were computed based on the Bitcoin data in the whole sampling period from 1
January 2018 to 21 January 2022 with 1,482 observations. The adjusted close price
of one unit of Bitcoin in USD on 21 January 2022 was $38889.68. To numerically
compute the UVaR, UES, LVaR, LES, IVaR and IES, a set of 11 grid points is used to
equally partition the 95% BCI for each of the “uncertain” parameters (μ, σ, μh, σh).

From Table 8, with the drift and volatility misspecifications incorporated, the
SETAR(2,1,1) model gives the most conservative one-step-ahead VaR and ES pre-
dictions among the three models, while the GARCH(1,1) model gives the least
conservative one-step-ahead VaR and ES predictions. However, without incorporating
the drift andvolatilitymisspecifications, theSVmodel gives themost conservative one-
step-ahead VaR and ES predictions among the three models, while the SETAR(2,1,1)
model gives the least conservative one-step-ahead VaR and ES predictions. Unlike
the one-step-ahead forecasts for the Bitcoin return, where the conditional mean of
the observation process is the key factor, the volatility of the observation process
is the key factor for the one-step-ahead VaR and ES predictions. From Tables 5-6,
the SETAR(2,1,1) model has the most severe misspecifications in the volatility of
the observation process among the three model, while the GARCH(1,1) model has
the least severe misspecification in the volatility of the observation process. Conse-
quently, the results from Table 8 indicate that the more severe the misspecification in
the volatility of the observation process is, the more conservative the one-step-ahead
risk prediction is.

The results based on different sets of prior parameters (hyperparameters), say Set
2 and Set 3, are presented in Online Appendix G. It may be seen that the results under
the prior parameters in Set 2 and Set 3 are qualitatively similar to those under the
prior parameters in Set 1. This indicates that the observations and conclusions from
the results under the prior parameters in Set 1 may be quite robust.

7 Conclusions

A two-stage approach was proposed to parametric time series modelling with the drift
and volatility misspecifications or uncertainties. A reference model is specified and
estimated in the first stage. At the second stage, the Bayesian nonlinear expectations
were used to incorporate a family of alternative models for prediction, where the
family alternative models were introduced using discrete-time Girsanov’s transforms.
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The idea is to make use of the information that is left over in the residuals of the
estimated reference model to construct Bayesian credible intervals for the “uncertain”
parameters describing the drift and volatility misspecifications. Using conjugate pri-
ors, closed-form Bayesian credible intervals are obtained, which provide a convenient
way to construct the Bayesian nonlinear expectations used for prediction so that prob-
ability levels are assigned to the nonlinear expectations. The closed-form Bayesian
credible intervals combine both a modeller’s prior/subjective belief (or expert opin-
ion) and the objective data in estimating the drift and volatility misspecifications.
The prior/subjective belief may be useful to make adjustments for prediction in case
the future developments may not follow the current and past data. To introduce the
two-stage approach, two general classes of parametric nonlinear time series mod-
els, namely a nonlinear autoregressive model with conditional heteroscedasticity and
a product process, are considered. The former includes the SETAR model and the
GARCHmodel, while the latter includes the SVmodel. The link between the Bayesian
shrinkage and regularization techniques for estimation and variable selection and the
Bayesian nonlinear expectations was discussed in Online Appendix D. Some potential
generalizations based on both classical and Bayesian nonparametric approaches were
outlined in Online Appendix F. Applications of the proposed two-stage approach to
forecasting and risk evaluation of Bitcoin were illustrated empirically using real Bit-
coin data covering some periods of Covid 19 and the three models, namely the SETAR
model, the GARCH model and the SV model. The results highlight the importance of
incorporating misspecifications in the conditional mean and volatility for making one-
step-ahead forecasts for the Bitcoin return and one-step-ahead VaR and ES predictions
for the short position of the Bitcoin, respectively.
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A Appendix

See Tables 1, 2, 3, 4, 5, 6, 7 and 8.

Table 1 Summary statistics of the daily percentage log returns

nobs Mean Stdev Skewness Kurtosis

1481 0.070659 4.005866 −1.141107 14.086406

Minimum 1 Quartile Median 3 Quartile Maximum

−46.473018 −1.572926 0.136811 1.836281 17.182056

Table 2 Estimation and testing
results of the SETAR(2,1,1)
model with (d = 1)

α
(1)
0 α

(1)
1 α

(2)
0 α

(2)
1

−0.2141628 −0.1214365 0.01773623 0

r log-like F-ratio p-value

0.02149885 −4141.243 4.218792 0.01489898

Table 3 Estimation and testing results of the GARCH(1,1) model

γ0 γ1 δ log-like X -squared p-value

0.97348 0.08517 0.85911 −4087.579 0.15217 0.6965

Table 4 Estimation results of
the SV model

αv δv σv log-like

0.05157367 0.97363784 0.23617299 −3443.831

Table 5 95% BCIs and BRNEs for μ and σ (Set 1 priors)

95% BCI (SETAR) BRNE (SETAR) 95% BCI (GARCH) BRNE (GARCH)

μ (−0.1617407, 0.1680658) 0.003162555 (−0.02291122, 0.05989249) 0.01849063

σ (3.867361, 4.108072) 3.983795 (0.9709686, 1.031403) 1.000201
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Table 6 95% BCIs and BRNEs
for μ, σ , μh and σh (Set 1
priors)

95% BCI (SV) BRNE (SV)

μ (−0.04263042, 0.08687772) 0.02212365

σ (1.518632, 1.613154) 1.564353

μh (0.001556987, 0.004768124) 0.003162555

σh (0.03765428, 0.03999794) 0.03878793

Table 7 One-step-ahead forecasts (Set 1 priors)

SETAR GARCH SV

LPF 0.1707797 −0.03527248 −0.09918374

UPF 0.5005863 0.1007441 0.2022059

IF (0.139151, 0.532215) (−0.04831657, 0.1137882) (−0.1280752, 0.2311215)

BRNF 0.335683 0.03273581 0.05148254

CF 0.3325205 0 0

Table 8 Estimates of VaR and ES (Set 1 priors)

SETAR GARCH SV

UVaR 2822.521 1123.269 2480.36

UES 3490.099 1398.671 3090.495

LVaR 2540.282 1006.871 2221.565

LES 3168.744 1266.142 2795.732

IVaR (2514.025, 2850.405) (996.0422, 1134.768) (2197.497, 2505.936)

IES (3138.941, 3521.943) (1253.851, 1411.803) (2768.403, 3119.712)

BRNVaR 2678.893 1064.036 2348.646

BRNES 3326.276 1331.109 2940.211

VaR 768.9944 1049.765 1487.999

ES 931.4985 1316.447 1866.011

B Appendix

See Fig. 1.
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Fig. 1 Panel A plots the time series plot of the daily adj. close prices of Bitcoin against US dollars. Panel
B depicts the time series plot of the daily percentage logarithmic returns of Bitcoin. Panels C and D plot
the sample ACF and sample PACF of the daily percentage logarithmic returns of Bitcoin, respectively
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