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Abstract
In this paper, I extend the standard specification of the empirical similarity (ES) model
of Gilboa et al. (Rev Econ Stat 88:433–444, 2006) to account for changes in param-
eters. I implement this by allowing for a combination of component ES models in
the spirit of Gaussian mixture models. The predictive power of the modified model,
along with that of the standard specification, will be assessed and compared to the
baseline models consisting of autoregressions and Markov-switching autoregressions
within a simulation exercise. Finally, we also compare the predictive ability of models
using data on quarterly US real GDP growth. The results indicate that in situations of
a more complex regime-switching behavior and a moderate to high autocorrelation in
series, modified ES model demonstrates a better empirical fit. In addition, results of
the empirical example show that modified ES models can better predict more extreme
observations.

Keywords Empirical similarity · Regime switching · ML estimation ·
Markov-switching autoregression

1 Introduction

The empirical similarity (ES) model entered the econometric research domain rel-
atively recently. The theoretical framework of the model derives itself from the
case-based decisions theory. The theory of case-based decisions (CBDT) refers to
a set of axioms aimed at justification of analogy-based reasoning by humans in the
face of uncertainty. CBDT is based on the idea that from similar causes one can expect
similar effects. Gilboa and Schmeidler (1995), who formally developed the theory,
argue that expected utility theory as a conventional model of human reasoning under
uncertainty looses ground when the decision problem at hand is complicated in the
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sense that alternative states of the world and outcomes of actions associated with them
cannot be exhaustively defined. In such situations, people choose acts based on their
performance in similar problems they have experienced in the past (i.e., Gilboa and
Schmeidler 1995; Gilboa et al. 2014).

ES is essentially anoperationalization of theCBDT in the formof a statisticalmodel.
Unlike usual regression-based models which focus on defining explicit functional
relations between the dependent and independent variables, the ES model is designed
as a universal tool to generate predictions on the evaluation target. Assumption of a
functional relationship between the dependent Y and an independent variable X is
preceded by extensive theoretical analysis and followed by necessary ex post testing
of hypotheses. In contrast, similarity-based averaging is argued to be a good first-
order approximation of human reasoning in the situation of uncertainty of functional
relationships. However, this does not imply that ES model is only applicable to data
generated by human reasoning. Even though in reality the relation between Y and X is
governed by a functional rule f , the ES technique can still be used to make predictions
for Y as long as f is sufficiently smooth and the sample size is large (Gilboa et al.
2006).

The ES model specifies the value of the target variable to be weighted average
of its previous values. This relates the model to the class of autoregressive models.1

Therefore, this paper endeavors to conduct a comparative study of ES model to the
autoregressive and Markov-switching (MS) autoregressive models. Autoregressive
model is the main candidate in predictive time series analysis to model the autocor-
relation dynamics in a variable. However, these models are unable to address the
possible nonlinearities, in which case their Markov-switching versions are employed.
MS autoregressions attempt to accommodate the nonlinear behavior through changes
in parameters. At each time point, the target variable is assumed to visit one of K
different states where its dynamics are governed by the parameters specific to the
prevalent state. Although MS autoregressions entail some flexibility, their potential
to embrace more complex forms of nonlinearities is rather limited. In contrast, the
ES model, instead of imposing a strict structure, assumes the new values of the target
variable to be distributed around the weighted average of its history of realizations
where more similar observations receive larger weighting. Despite this seemingly triv-
ial specification, the model offers versatility to fit various data situations. In fact, even
though the underlying data-generating process was of regime-switching type like in
MS autoregressive models, similarity-based averaging mechanism of the ES model
should treat observations from the same regime as most relevant to each other. Of
course, one cannot guarantee that the model functions as claimed and rather see this as
a desired property. Nevertheless, by extending the ES model to accommodate regime
change one can improve the ability of the model to account for potential differences
in the conditional expectation of data points.

The paper is structured as follows. Section 2 contains theoretical discussion con-
sisting of three subsections. The first subsection discusses how ESmodel fits into time
series framework. The second subsection presents the base specification of the model.

1 Gilboa et al. (2006) have briefly discussed how to adopt the model to deal with time series in a way that
resembles autoregression.
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The final subsection introduces the regime-switching ESmodel and discusses the esti-
mation. Section 3 is dedicated to the simulation study. The final section provides a
comparison of the ES and baseline models in an empirical context.

2 Theoretical discussion

2.1 Autoregression and ESmodel

I have already noted above similarity of the specifications of autoregressive models
and the ES model. In this section, we revisit this statement and discuss further how
ES model compares to established models in time series analysis and why it could
compete with these models in terms of empirical power under a slight modification.

A workhorse of modeling the dynamics of a random series {yt }Tt=1 has been a linear
autoregression of the form:

yt = μ +
L∑

l=1

αl yt−l + εt , εt ∼ N (0, σ 2) (1)

where μ is a constant term, α—an autoregressive coefficient, σ 2—an error variance,
and L—the lag order. In the next section, it will be clear that ES model can also
be viewed as an autoregression with L = t − 1. One of the major disadvantages of
(1) is that in practice systems of variables are subject to structural changes render-
ing the constant coefficient autoregressions inappropriate to adequately describe the
data. Thus, both univariate models and their multivariate versions have undergone
significant modifications targeted at accommodating parameter instabilities.

To a large extent, subsequent research focused on an introduction of a mecha-
nism into the DGP of (vector-) autoregressive models that would govern the shifts in
parameters. Tong (1999) argued that nonlinearities in observed data can be captured
reasonably well with locally linear models. Subsequently, he introduced the thresh-
old autoregressive models (TAR) which were extended to multivariate series by Tsay
(1994). The general form of TAR models was a slight modification to that of (1):

yt = μ(k) +
L∑

l=1

αl(k)yt−l + εt , εt ∼ N (0, σ 2(k)) if ck−1 < zt ≤ ck,

k = 1, . . . , K . (2)

where zt ∈ R and sets Rk = {zt |ck−1 < zt ≤ ck} are K partitions of the domain
of zt such that

⋃K
k=1 Rk = R. According to (2), model parameters assume values

corresponding to a state k if zt ∈ Rk . If zt = yt−d for some positive integer d, the
model is known to be called self-exciting threshold autoregressive model (SETAR).
This kind of models provides enough flexibility to approximate arbitrarily closely any
given nonlinear dynamics (Lim and Tong 1996).
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The specification of TAR model given in (2) implies an abrupt switch between
regimes. Chan (1986), however, argued that in some cases it may be reasonable to
assume rather a gradual regime change. In their comprehensive survey of major devel-
opments, Dijk et al. (2010) discuss a smooth transition TAR, the basic representation
of which is given as

yt = φ′
1xt (1 − G(zt ; γ, c)) + φ′

2xtG(zt ; γ, c) + εt (3)

where xt = (1, x̃ ′
t )

′ with x̃ ′
t = (yt−1, . . . , yt−L)′ and φ = (φk,0, φk,1, . . . , φk,L)′,

k = 1, 2. The transition function G(zt ; γ, c) is bounded between 0 and 1. Teräsvirta
(1994) assumes the transition variable zt to be a lagged endogenous variable, such
that zt = yt−d for some integer d > 0. However, Dijk et al. (2010) argue that it could
also be an exogenous variable or some function of it.

Transition variable zt in models discussed above can be both observable and unob-
servable. Assumption of an unobservable transition variable led to the development
of a subclass of regime-switching models based onMarkov chains. The methodology
of Markov-switching models (i.e., see Krolzig and Toro 1999) relies on combining
the conditional distributions f (yt |St = k,Ft−1; θ), where S is an unobservable dis-
crete state variable and Ft−1—an available information set, at each t according to a
probability distribution over a finite number of values of S with view to maximize the
sample marginal likelihood

∏T
t=1 f (yt |Ft−1; θ) with respect to the parameter vector

θ . The probability distribution of states is assumed to evolve according to a discrete
Markovian chain, and expectation maximization algorithm is used to produce the best
inference on the state probabilities at given t .

The models discussed above have been developed to account for a nonlinear behav-
ior in a time series. Although regime-switching mechanism of these models captures
some nonlinearity due to shifts in parameters, the models remain linear locally within
each state. This results in a negligence of an intrinsic nonlinearity of a given process.
In such cases, it might be worthwhile to consider models with more flexible struc-
ture with an ability to capture complexities in data as well as demonstrate a decent
external validity. ES model would make a good candidate assuming yt has features
x(k)
t = (x (k)

1,t , x
(k)
2,t . . . x (k)

M,t )
′ specific to each state k ∈ {1, 2, . . . , K } and the data set

is rich enough to contain information about all possible states. In theory, the case-
based nature of the model should make sure that observations from the same state
should be treated as most similar. Like in autoregression, the feature vector x(k)

t can
include lagged values of yt . As will be detailed in the following section, there are two
specifications of the basic model: “ordered” and “unordered.”

The former keeps the natural ordering of observations such as time ordering,
whereas the latter does not consider information about ordering. Namely, in the
“ordered” version, observations t + i with i = −t + 1,−t + 2, . . . , T − t can all par-
ticipate in prediction of the observation t , while only i = 1, 2, . . . , t −1 participate in
predictions in case of the “ordered” model. While one can agree with the connection
between the ordered ES and an autoregression, reconciliation of the unordered ES
with an autoregression might seem implausible. Nevertheless, the set of our baseline
models mostly consists of regime-switching autoregressions which during estimation
procedure use filtering and smoothing algorithm to provide inference on conditional
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state probabilities. This algorithm as well exploits the information from t + 1 to T to
derive the inference about state probability for t .

Gilboa et al. (2006) argue that ESmodels with lagged values of the target variable as
features are akin to defining “patterns” in series through lagged values and searching
for similarity in patterns. However, in order for this to be valid, observations defining
these patterns should not behave erratically. As mentioned earlier, we simulate data
under DGPs with regime switching. Thus, a sequence of observations may be far from
constituting a pattern if they come from different local models of the DGP. In this
sense, the ES model might not be on a level playing field with the baseline regime-
switching models. Therefore, after the introduction of the basic model, I describe the
modified ES model that accounts for changes in the mean of a variable y and the rest
of its dynamics are handled by similarity averaging.

2.2 The base specification of the ESmodel

The ES model derives itself from the concept of case-based reasoning, and its DGP is
specified as

yt =
∑

i<t

ψt,i yi + εt , εt
i .i .d∼ (0, σ 2) (4)

where

ψt,i = s(xt , xi )∑
i<t s(xt , xi )

(5)

s(xt , xi ) is a function s : Rn × R
n → R[0:∞) that turns features x ∈ R

n into the
measure of similarity of values of y between t and i . The relation i < t under the
sum operator in (4) indicates that a value of y at t is a weighted average of preceding
t −1 values. Gayer et al. (2007) later introduced the version of the model where i �= t ,
where a given value is a weighted average of the rest of the sample. The functional
form for s(xt , xi ) is usually chosen to be

s(xt , xi ) = exp(−(xt − xi )′w(xt − xi )) (6)

where w = diag{wm}m≤M . One can collect ψt,i for all t and i into a T × T matrix C,
where T is the length of data, yt and εt into T × 1 vectors for all t and rewrite (4) as

y = C y + ε. (7)

For i < t , C is a lower triangular matrix, whereas for i �= t it is a full matrix. In both
cases, its main diagonal consists of 0’s, so that there is not an identification issue for
elements of C.

Equation (7) does not include a constant term. The modified model in Sect. 2.3,
however, requires a model with a constant term. Therefore, we add a constant term μ

in (7) and write it as
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Sy = 1μ + ε (8)

where S = IT − C with IT being a T × T identity matrix, 1 is a T × 1 vector of 1’s
and μ is a scalar. If we assume ε∼ N (0, σ 2 IT ), the parameters of the model can be
estimated by maximizing the following log-likelihood function:

l(θ) = −T

2
ln(2π) − T

2
ln σ 2 − (Sy − 1μ)′(Sy − 1μ)

2σ 2 (9)

where the parameter vector is θ = (μ,w1, . . . , wM , σ 2)′. Equation (9) is generally
maximized numerically. However, deriving the log-likelihood w.r.t μ we can obtain
for it a conditional solution:

μ̂ = 1′Sy
= 1′ IT y − 1′C y (10)

=
T∑

t=1

yt −
T∑

t=1

ỹt =
T∑

t=1

(yt − ỹt )

where ỹt = ∑
i<t ct,i yi or ỹt = ∑

i �=t ct,i yi depending on the version of the model
being used. The equation above shows that the constant term is a sum of deviations of
yt from a linear combination of its values for all t = 1, . . . , T .2

2.3 Regime-switching empirical similarity

Equation (8) in Sect. 2.2 is the specification of the model with a single constant. In
this section, I present the ES model slightly modified in the spirit of regime-switching
models. Namely, we allow the parameters to vary across K different states. This is akin
to an autoregression with different parameters conditional on the value of a state vari-
able S = {1, 2, . . . , K }. Likewise, our parameter vector θk = (μk, w1,k, . . . , wM,k)

′
will be different for k = 1, . . . , K . Note that for the purpose of this study we assume
error variance to be constant across states. The ES model with regime switching can
then be written as follows:

yt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1 + ∑
i �=t

ψ
(1)
t,i yi + εt for St = 1

μ2 + ∑
i �=t

ψ
(2)
t,i yi + εt for St = 2

...

μK + ∑
i �=t

ψ
(K )
t,i yi + εt for St = K

(11)

2 Note the similarity to theOLS estimator of a constant term in a simple linear regression yt = β0+βxt+εt :
β̂0 = ȳ − β̂1 x̄ = T−1 ∑T

t=1(yt − ŷt )
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whereμk is a state-specific constant term andψ
(k)
t,i is a state-specific similaritymeasure

as described in Sect. 2.2.
To complete the specification of the model, we have to provide a state-generating

process for the discrete variable St . Let γ be a K × 1 vector with a single element
being 1 and the rest equal to 0. The kth element of the vector γ t equal to 1 indicates
St = k, and the similarity model is governed by the parameters specific to the state
k. In reality, γk,t is an unobservable random variable and takes the value of 1 with
probabilityπk or 0 otherwise. In regime-switching time series literature, γ t is assumed
to evolve as a first-order Markov chain across t . However, for simplicity we assume
its elements to be i .i .d random variables with expectations E(γk,t ) = πk which is
also the probability P(St = k). Hence, E(γ t ) = (πk)

′
k≤K represents a probability

distribution over the values of the state variable S at a given t . The assumption of
an i.i.d state variable is also conditioned by the fact that we focus on the unordered
version of the ES model which is by nature incompatible with Markov chains.

Given all the components of the model, one can write the likelihood function for
maximum likelihood estimation. Let fk(yt |θk;Ft ) be a conditional PDF of yt with an
information set Ft = {yi |i �= t; i, t = 1, . . . , T }. One can collect conditional PDF’s
in a vector f t = ( fk)k≤K . A sample likelihood function is then given as

L( y|�) =
T∏

t=1

f ′
tγ t (12)

where y is a T × 1 vector collecting the samples of y and � is the parameter set.
Equation (12) shows that the likelihood is simply the mixture of conditional PDF’s. If
we assume normal errors, then the log-likelihood function is given as


(�| y) =
T∑

t=1

ln

{
K∑

k=1

γk,t (2πσ 2)−
1
2 exp

(
− ν2k,t

2σ 2

)}
(13)

where νk,t = yt − μk − ∑
i �=t ψ

(k)
t,i yi .

2.4 Estimation

Equation (13) cannot be directly maximized to estimate the parameters in the model
(11).

The reason is obviously the presence of the unobserved variable γt . Instead, we
will have to replace it by the estimate γ̂t of the expectation E(γt) = (πk)

′
k≤K which

can be calculated using some filtering algorithm. For each t , we obtain the estimates
γ̂ t by invoking the Bayes’s updating rule:

γ̂ t = f t 	 γ p

1′( f t 	 γ p)
(14)
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where f t is defined as in the previous section, γ p is a K × 1 vector of proportions
representing the prior distribution of states and 	 is an elementwise product. This is
an application of the expectation maximization (EM) algorithm. The EM algorithm is
a general iterative estimation technique designed for parameter estimation in models
with unobservable stochastic variables. The way of implementation of the algorithm
in this study relates the suggested model to the class of finite mixture models (see
Dempster et al. 1977, pp. 15–17). The estimation procedure is summarized through
the following iterative process.

1. Initialization: Initialize the parameter vector as θ̂ = θ0.
2. Filtering: Using (14) and θ̂ compute the matrix �̂ and update the prior as γ p =

T−1�̂1. �̂ is a K × T matrix with columns being γ̂ t for t = 1, . . . , T .
3. Optimization: Maximize the log-likelihood function using �̂ from step 2 and set

the value of θ̂ equal to the optimized value from this step.
4. Repeat steps 2 and 3 until convergence criteria are satisfied.

It is important to start the estimation procedure with a reasonable initial value for the
parameter vector due to possibility of multiple local maxima. I set the initial values
equal to the result of the optimization problem:

θ0 = argmin
θ

(
K∑

k=1

γp,k(Sk y − 1μk)

)′ ( K∑

k=1

γp,k(Sk y − 1μk)

)
(15)

s.t . 1′γ p = 1

γp,k ≥ 0,∀k.

The estimate γ̃ p should then contain the relative proportions of observations with
distinct means and serve as a good starting point for a prior distribution of states. It is
rather obvious that the EM procedure described above should provide improvement
over θ0 because the elements of �̂

′
μ have more degrees of freedom than those of

1γ ′
pμ due to filtering.

3 Comparative simulation study

The aim of the simulation study is to compare the accuracy of point forecasts of the
ES and baseline models. Replications of simulated data will be used to estimate the
following set of models:

i. First-order autoregression
ii. Markov-switching autoregressions. I will use two-state and three-state Markov-

switching autoregressions as baseline models and denote them, respectively, as
MS(2)AR(1) and MS(3)AR(1).

iii. ES model as specified in (4). However, we will only focus on the case i �= t ,
because it uses the whole dataset to predict individual observations.

iv. ES model modified to have mixed constant terms. The focus here will as well be
on the version of the model with i �= t .
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The following sections describe the simulation design, data-generating processes and
simulation results.

3.1 Simulation design

I will generate a fixed data set D∗ = (yt , xt )t≤T and a collection of data sets D =
{Di , i = 1, . . . , N }, where N = 1000. Each dataset Di will be of length 500. The
models will be estimated on all elements of D and the estimated models will be used
to generate a series of prediction errors PED∗ = T−1 ∑

t≤T (ỹ(i)
t, j − ŷt )2, where ỹ(i)

t, j
is a prediction of the model k estimated using data i in D and ŷt is a true prediction
for a datapoint t . With a given series on PED∗ , we will then estimate the expected
prediction error as

Ê(PED∗) = 1

N

N∑

i=1

⎛

⎝T−1
∑

t≤T

(ỹ(i)
t, j − ŷt )

2

⎞

⎠ (16)

for eachmodel j . Here, asmentioned above, ỹt, j and ŷt are, respectively, estimated and
true predictions for the elements in dataD∗. Knowledge of ŷt allows us to calculate the
expected prediction error given by (16) without contaminating it with an irreducible
error due to error variance.

3.1.1 Data-generating process and parameter values

To define the data-generating process (DGP), I use a regime-switching AR(p) model.
According to a regime-switching AR(p) model, the sequence {yt }Tt=1 is generated
according to

yt = μk +
L∑

l=1

αyt−l + εt (17)

where εt ∼ N (0, σ 2), α is the autoregressive parameter and μk is a regime-dependent
constant term. For the purpose of this study, I assume only constant terms to be affected
by a regime change. I set the lag order L equal to 1 for our DGP. Given that there
are K states, such that S = {1, . . . , K }, values of S indicate the state of the system
prevalent at t . I assume that St follows a first-order discrete-state Markov process with
a transition matrix

P =

⎛

⎜⎜⎜⎝

p1,1 p1,2 . . . p1,K
p2,1 p2,2 . . . p2,K
... . . .

. . .
...

pk,1 pk,2 . . . pK ,K

⎞

⎟⎟⎟⎠ (18)
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where
∑K

h=1 pk,h = 1, for k = 1, . . . , K . I will consider the cases K = 2 and
K = 3 as these are empirically most relevant. In the beginning of the main section,
it was mentioned that a baseline set of models includes two- and three-state Markov-
switching autoregressions. Hence, with data generated through (17) with K = {2, 3}
we would estimate correct specifications with MS(2)AR(p) and MS(3)AR(p) as our
baseline models. In order to introduce a specification error to all models in the set,
we allow regime switching between K = 2 and K = 3 versions of our DGP in (17).
Therefore, the final DGP for simulating data ends up being a mixture of two- and
three-state Markov-switching autoregressions. I let these mixture probabilities also
follow a first-order Markov process, though with different levels of state persistence.

If one gives it a consideration, in reality systems with alternating number of states
are possible. For instance, in financial markets prices of tradable products, on the one
hand, tend to move sideways before trending in particular direction and eventually
break in an opposite direction. On the other hand, they can evolve in a certain price
corridor over an extended period with bounds of the corridor serving as points of
reversal into the opposite regime.

For our DGP, I set p = 1 for the sake of simplicity; hence, we deal with Markov-
switching first-order autoregressions. The two components of the DGP with K = 2
and K = 3 have the following transition matrices:

PK=2 =
(

.90 .10

.10 .90

)
, PK=3 =

⎛

⎝
.90 .1 .00
.05 .85 .10
.00 .20 .80

⎞

⎠ (19)

In PK=2, states are highly persistent. Values for PK=3 are chosen as somewhat
representative of business cycle literature where three states of economy are identified
and stagnation and recessions are less persistent than expansions. Also, the probability
of transition from recession directly to expansion is almost zero.

The coefficients assumed to be influenced by a regime change are the constant terms
in (17). For a two-state component of the DGP, they will be set as μK=2 = {2,−1.5}
and for a three-state component as μK=2 = {3, 0,−2}. Thus, respectively, for K = 2
and K = 3, these values could be thought of as qualitatively representing “expansion
and contraction” and “expansion, stagnation and contraction” states of output growth
in the business cycle literature.

I will compare the models in high and low autoregressive dynamics environ-
ment. Accordingly, the autoregressive coefficient will take the values αlow =
{0.10; 0.20; 0.30} and αhigh = {0.70; 0.80; 0.90}. As described above, DGP will
simply be a mixture of two- and three-state Markov-switching autoregressions with
parameters given above. I let the mixture probabilities follow a Markovian process
with a transition matrix

P =
(

z11 1 − z11
1 − z22 z22

)
(20)

and set of persistence probabilities as z11 = z22 = 0.90.
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3.2 Simulation results

To reiterate, our simulation study aims at investigating the predictive performance of
the ES models in comparison with a set of alternatives. For this purpose, the data-
generating process described in the previous section has been used to simulate data in
low and high autocorrelation environments.

Table 1 contains the prediction error given in (16) for all six models alongside the
standard errors in brackets calculated over the replications. All autoregressive models
were estimated with lag order of 1. Similarly, first lag of the dependent variable was
used as a feature in ES models. The column name MMES stands for mixed-mean
empirical similarity.

The panel (a) in Table 1 contains prediction errors of six models in low autocorrela-
tion data. As the highlighted figures show, Markov-switching AR(1) model with three
states demonstrated the least prediction error. Nevertheless, it can be noted thatMMES
models definitely provide improvement over the predictive powers of AR(1) and the
standard ES model. In panel (b), where results with higher autocorrelation coeffi-
cients are provided, the situation is rather different. Among six models, MMES(2)
demonstrates the lowest prediction error followed by MMES(3) across all values of
the autocorrelation coefficient.

The pattern in the results is rather unsurprising. With lower autocorrelation, the
data contain less structure with dynamics being driven mostly through regime change
in constant terms. Consequently, a relatively simpler model like Markov-switching
autoregression would suffice to capture most of the movements in the target variable.
In contrast, with larger autocorrelation coefficients, the data acquire richer dynamics:
higher persistence coupled with sudden changes in the number of states leading to

Table 1 Expected prediction error

α AR(1) ES MMES(2) MMES(3) MS(2)AR(1) MS(3)AR(1)

(a)

.1000 1.6599 1.6335 1.2285 1.3511 0.7679 0.5971

(0.0230) (0.0167) (0.0842) (0.3043) (0.1052) (0.0816)

.2000 1.9356 1.9212 1.2503 1.4054 0.8698 0.6804

(0.0220) (0.0171) (0.0751) (0.3319) (0.1368) (0.1149)

.3000 1.7873 1.7244 1.2490 1.3876 0.8572 0.6785

(0.0277) (0.0287) (0.0898) (0.3039) (0.0933) (0.0854)

(b)

.7000 2.0567 2.1152 1.4888 1.8676 2.1481 1.9299

(0.1493) (0.1263) (0.3100) (0.6009) (0.5294) (0.4183)

.8000 2.6848 2.9077 1.6883 2.5722 3.9544 4.5662

(0.2050) (0.1901) (0.4777) (0.9411) (1.2180) (1.3611)

.9000 3.8962 4.2258 2.7908 3.7787 8.1846 7.8300

(0.7982) (0.6513) (1.1200) (1.6460) (2.7049) (3.1827)

In parentheses, standard deviations over replications are given
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abrupt shifts in the mean of the process. Particularly, in the latter case, performance
of MS autoregressions suffers because their specification assumes some stickiness in
regime generation. However, under uncertainty about the regime generation, MMES
model with an assumption of i.i.d state variable turns out to be more suitable.

4 Empirical application: US GDP growth

In practice, while working with series potentially subject to structural changes, one
usually possesses limited information about the nature of those. As long as this is the
case, results of the simulation study indicate that ES models with regime-switching
provide better predictions. In this section, we compare the empirical fit of models
discussed above using data on economic series with an unknown regime-switching
mechanism with potentially multiple regimes.

4.1 Data and discussion

The seminal paper by Hamilton (1996) had set the start of a huge interest in the
identification of business cycle phases in macroeconomic research. In particular,
using Hamilton’s methodology, a number of subsequent research (i.e., Goodwin 1993;
Filardo 2010; Chauvet et al. 2003; Billio and Casarin 2010; Golosnoy and Hogrefe
2013) focused on dating of turning points in the economic activity.

Although the academic research mainly focused on dating troughs and peaks due
to their practical relevance, theoretically there are intermediate phases to the business
cycle with characteristic behavior of macroeconomic indicators. The first panel of
Fig. 1 plots the time series of growth rates of real gross domestic product of the USA
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through the period from the first quarter of 1947 to the second quarter of 2021. The
growth rates were calculated using seasonally adjusted constant prices GDP series
obtained from the Federal Reserve Bank of St. Louis database.

The points highlightedwith diamondsmark the troughs as identified by theNational
Bureau of Economic Research (NBER). In the post-war period up until late 1980s,
output growthfluctuated in a larger corridorwith clear periods of low,mediumand high
growth. With the onset of the period of lower volatility of growth, also dubbed as the
period of Great Moderation, high-growth periods, as they have been known, became
nonexistent. With the lockdowns following the outbreak of COVID-19 pandemic, the
high volatility of growth seems to have made a return. This pattern of behavior in the
given series is loosely in the spirit of the DGP described in the simulation section.
Therefore, the models from Sect. 3 will be estimated using these data in order to
compare their explanatory power. The autocorrelation of the series decays quite fast
(panel 2, Fig. 1), so we use a lag order of one for all models.

4.2 In-sample comparison

As the aim of the paper is a comparison of the empirical power of models, we first
discuss the in-sample fit. The specifications of themodels described in the introduction
of Sect. 3were estimated using the realGDPgrowth data. Table 6 inAppendix contains
the estimation results for all six models. A column corresponding to each model holds
subcolumns with (i) full sample, (ii) subsample 1 and (iii) subsample 2 estimation
results. Data were divided into subsamples at the fourth quarter of 1984 with a view
to separate periods with vivid volatility differences (Fig. 1). Accordingly, the first
subsample includes the period from the second quarter of 1947 to the fourth quarter of
1984 and the second subsample includes the rest except for the start of the pandemic.

As can be seen, only the constant terms were allowed to change across regimes. The
constant terms of the regime-switching models indicate that there is clearly more than
one state to the growth series. Nevertheless, results also indicate that threemight be the
maximum number of states. Although we have to perceive the standard errors with a
caution due to their approximative nature, the coefficient estimates ofMMES(3)model
for “stagnation” state are not significant. The same result is confirmed by the MS3
model only for the subsample 1. It should be noted that the magnitudes of the constant
terms of MS and MMES models are not directly comparable which is why they were
reported in separate rows. However, one can calculate the unconditional means forMS
models through ĉ j/(1 − α̂) for j = 1, . . . , K to compare them with those of MMES
models. Hence, for instance, “trough” coefficient (in subsample 1) μ̂1 = −1.35 of
MMES(2) is comparable to the unconditional mean −.85/(1 − .45) ≈ −1.54 of the
same state of MS(2) model.

In the case of full sample, an analogous comparison for the “peak” state between
the same models reveals quite a big difference of approximately .95, meaning that
MMES(2) model possibly underestimated the magnitude of the peaks in high growth
period. The same pattern persists in subsamples as well. On the other hand, a similar
comparison between MMES(3) and MS(3) models shows that “trough” coefficients
in the former are much larger than in the latter in subsamples, whereas their “peak”
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Table 2 In-sample prediction for extreme observations

AR(1) ES MMES(2) MMES(3) MS(2)AR(1) MS(3)AR(1)

MSE 12.2301 11.9964 4.9886 4.6822 7.6357 5.6055

Fig. 2 State prediction scores for extreme observations

coefficients are very close. Thus, it seems that the biggest difference in predictions of
MS(3) and MMES(3) models may be attributable to the difference in their prediction
of troughs, whereas the source of biggest difference between MS(2) and MMES(2)
might be predictions of peaks. Nevertheless, as full-sample results show, inclusion of
the COVID period significantly alters the estimation results relative to subsamples.
Namely, explanatory power of all six models drastically reduces as indicated by the
error variance estimates and the model fit criteria.

A usual practice in empirical research with MS models is to report regime persis-
tence parameters. However, due to i.i.d specification of regime probabilities in MMES
models, estimated proportions π̂1, . . . , π̂K for each state were reported. Although,
in general, estimated relative frequencies of states are comparable between MS and
MMESmodels, there are occasionally quite significant numerical differences.Namely,
when compared to MS(2) model, MMES(2) model predicts extreme observations on
the lower end more often, which possibly explains the above-mentioned difference
of .95 in unconditional means for peak state. In contrast, MMES(3) predicts the peak
state less often and weights stagnation state more heavily as compared to MS(3).

Alongside the parameter estimates, overall measures of fit such as MSE, MAE and
AIC were also reported. It turns out for all models it is uniformly the case that the
subsample 2 was an easier sample to fit, perhaps due to a lower variance. Other than
that, MMES models demonstrate a better overall in-sample fit. Probably, the ability
to pick most relevant observations through an exponential similarity function coupled
with a regime-switching constant term allows MMES models to better specialize
in fitting individual observations. Table 2 and Fig. 2 summarize some evidence on
a better propensity of MMES models to predict more extreme observations. In the
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current context, an observation yt is considered extreme if yt > c.95 or yt < c.05,
where c.05 and c.95 are, respectively, 5% and 95% quantiles of the target variable.
Figure 2 plots the state prediction scores (SPS) calculated as in (21) for each model.

SPSk =
∑T

t=1 P̂(St = k|Ft )IAk∑T
t=1 IAk

(21)

where S = {‘peak’,‘trough’}, I is an indicator function with Ak = {yt |yt ≤ c.05} for
k =‘trough’ and Ak = {yt |yt ≥ c.95} for k =‘peak’. BothMMESmodels demonstrate
much lowermean squared error values in comparisonwith the alternatives. In addition,
both models seem to attain scores at least as good as those of baseline models in
assigning extreme observations into peak and trough states (Fig. 2).

4.3 Out-sample comparison: Recessions

In the previous section, we have stressed the ability of MMESmodels to better capture
the extreme observations in sample. This section presents the results on an exercise of
out-sample prediction of selected extreme points.

The selected quarters and corresponding values of percentage changes in US real
GDP are given in Table 3.

Asmentioned in previous sections, all models were estimated with lag order of one.
Dropping only selected points out of the estimation would be inconsistent with first
lag of the target variable serving as explanatory variable. Therefore, we also exclude
observations immediately preceding the selected dates.Moreover, after the estimation,

Table 3 Recession quarters Quarters Real GDP, % change

1949q1 −1.92

1949q2 −1.35

1949q4 −0.83

1953q4 −1.34

1957q4 −0.97

1958q1 −1.55

1960q2 −0.29

1960q4 −0.99

1982q1 −0.20

1990q4 −0.17

2008q4 −1.97

2009q1 −1.22

2009q2 −0.34

2020q1 −0.99

2020q2 −9.79
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Table 4 MSE for predictions of recession quarters in Table 3

AR(1) ES MME(2) MMES(3) MS(2)AR(1) MS(3)AR(1)

25% 4.3851 5.2104 0.4309 0.9291 2.9936 1.2883

50% 12.4707 12.9232 3.1914 5.5687 9.9903 7.1502

75% 13.5275 14.2531 4.6295 6.2701 10.8805 8.0965

100% 18.2872 19.0582 8.1844 9.0480 15.4336 11.9599

excluded data are inserted back into their original positions to preserve time ordering
in data.

Table 4 presentsMSEvalueswith different portions of outliers left out of estimation.
As the outliers leave the data, performance of all models declines as there is progres-
sively less in-sample information about extreme points. Nevertheless, in all scenarios,
MMES models demonstrate less error in predicting the extreme observations.

Although MSEs for point predictions at par value favor the MMESmodels more, it
is worth to test the significance of the difference between model predictions. For this
purpose, we employ the Diebold–Mariano (DM) test3 and compare ES, MMES(2)
andMMES(3) models to baseline models AR(1), MS(2)AR(1) andMS(3)AR(1), thus
conducting nine comparisons in total.

In each test, the null hypothesis reads as “predictions by the baselinemodel aremore
accurate.” The DM test uses the statistic d̄ = P−1 ∑P

τ=1

[
g(eiτ ) − g(e jτ )

]
where eiτ

and e jτ are prediction errors from candidate models i and j , g is a loss function on
the prediction error and P is the number of points being predicted. The results of DM
test are influenced by the choice of the loss function. Common candidates for g are
square or absolute values of prediction errors. The quadratic loss function is much
more sensitive to extreme values in e. Therefore, Table 5 contains the test results for
nine comparisons of predictions of recession quarters given in Table 3 using both
(a) quadratic and (b) absolute value loss functions. In panel (a), where results with
quadratic loss function are presented, the null hypothesis is uniformly rejected for
MMES(2) in all comparisons at 5% significance level. Although MMES(3) delivered
more accurate predictions than AR(1) and MS(2)AR(1), they are not significantly
better than those of MS(3)AR(1). With an absolute value loss function (panel b)
test statistics increase in values raising the significance of MMES models. Notably,
MMES(3) becomes significant vis-a-vis the baseline. A quadratic g shoots up with a
large eiτ , thereby reducing the power of the DM test to reject the null hypothesis. On
the other hand, absolute value g does not allow a single eiτ to dominate the measure of
predictive performance of a model, whichmight have been reflected in the comparison
of MMES(3) against MS(3)AR(1) in panel (b).

3 See Diebold and Mariano (2002) for a full discussion of the test.
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Table 5 Test statistics for
one-sided DM test

AR(1) MS(2)AR(1) MS(3)AR(1)

(a)

ES 0.6331 1.9040 2.1166

(0.7367) (0.9715) (0.9829)

MMES(2) −2.0732∗∗ −1.8939∗∗ −1.675∗∗
(0.0190) (0.0291) (0.0469)

MMES(3) −3.5145∗∗∗ −3.9548∗∗∗ −1.2453

(0.0002) (0.0000) (0.1065)

(b)

ES −0.6580 1.9232 3.6537

(0.2553) (0.9728) (0.9999)

MMES(2) −6.9456∗∗∗ −5.3668∗∗∗ −3.7933∗∗∗
(0.0000) (0.0000) (0.0001)

MMES(3) −16.623∗∗∗ −6.847∗∗∗ −1.9994∗∗
(0.0000) (0.0000) (0.0228)

p values are given in parentheses

5 Conclusions

In the paper, I have revisited the empirical similarity model of Gilboa et al. (2006) and
suggested a modification on the basis of an established methodology. In particular,
regime change mechanism has been introduced into the data-generating process of the
model. In its new form, the model relates to the class of regime-switching regression
models. Namely, it has been argued that the modified model could be considered as an
alternative to Markov-switching autoregressions. The latter, despite being designed to
account for parameter changes, remains linear within a given state. On the contrary,
the modified model unites the intrinsic nonlinearity of the original ES model with
the capability of the regime change mechanism to accommodate changes in model
parameters. This attempt to equip the ES model with a regime-switching mechanism
can be justified at least with two arguments. First, the DGP of the ES model is quite
general and can be applied in many contexts. Second, for processes with regime
switching, generation of values for the state variablemight bemisspecified byMarkov-
switching models. In this case, MMES model with rather simpler assumptions on the
behavior of a state variable might perform better.

The simulation exercise has made an attempt to compare the ES models with base-
line alternatives under a data-generating process that involved a non-trivial regime
change process. Results on the predictive power of the models show that with weak
autocorrelation dynamics in data the modified ES model is superior only to models
which do not involve any regime-switching behavior. As low autocorrelation implies
less structure in data, it is rather obvious that intrinsic nonlinearity of ES impairs its
external validity. Nevertheless, with data generated on the higher end of autocorrela-
tion spectrum, the modified ES model delivers more accurate predictions.
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One can name a few advantages to the suggested model. First, it brings versatility
and can be applied as a universal model to contexts involving predictions. Second, the
modified ES could be the model of preference if the process being modeled is subject
to generating more extreme observations. Finally, even though the model is nonlin-
ear, it can be very easily implemented as it does not involve complicated smoothing
algorithms as in Markov-switching models. One could argue that simplicity comes at
the cost of possibility of making inference on state probabilities and estimating the
state durations. Nevertheless, if the objective is to obtain more accurate predictions
under uncertainty about the true data-generating process, the modified ES could be
the preferred model.
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A Estimation output

See Table 6.
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