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Abstract

Using a unique cross-country sample from 10 impact evaluations of development
projects, we test the out-of-sample performance of machine learning algorithms in
predicting non-resilient households, where resilience is a subjective metrics defined
as the perceived ability to recover from shocks. We report preliminary evidence of the
potential of these data-driven techniques to identify the main predictors of household
resilience and inform the targeting of resilience-oriented policy interventions.

Keywords Resilience - Machine learning - Classification - Targeting - Predictive
analytics
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1 Introduction

Following a surge in the interest for the so-called “prediction policy problems”
(Kleinberg et al. 2015), the literature on the use of machine learning (ML) in eco-
nomics and public policy studies is rapidly expanding (Athey 2018; Athey & Imbens
2018; Kleinberg et al. 2018; Mullainathan & Spiess 2017). In parallel, the notion of
resilience, defined as the capacity over time of individuals, households, or communi-
ties to withstand a myriad of shocks and stressors, is becoming a central paradigm in
the development agenda. Its theoretical underpinnings, as well as different empirical
methodologies for its measurement, have lately been validated in several scientific
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articles belonging to the so-called ‘development resilience’ literature (see, among
many, Barrett & Constas 2014; Briick et al. 2019; Cissé & Barrett 2018; d’Errico et al.
2019; d’Errico et al. 2020; Smith & Frankenberger 2018). This paper is placed at the
intersection between these two strands of research.

A separate and nascent body of empirical work has started testing the potential
of ML in predicting well-being measures. In development economics, ML has been
lately applied to predict and map poverty (Blumenstock et al. 2015; Jean et al. 2016;
Kshirsagar et al. 2017; McBride & Nichols 2018; Perez et al. 2019; Steele et al. 2017)
as well as food security (Ganguli et al. 2019; Hossain et al. 2019; Lentz et al. 2019)
outcomes, highlighting the great potential of these predictive tools to improve the old
problematic issue of the (in)effective targeting of development programmes.

A recent and comprehensive review of the flourishing literature devoted to the con-
ceptualization and measurement of development resilience is carried out by Barrett
et al. (2021). The authors first highlight the three main conceptualizations of devel-
opment resilience: (i) resilience defined as a capacity, e.g. the “capacity that ensures
stressors and shocks do not have long-lasting development consequences” (Constas
et al. 2014) and is captured as a latent and multidimensional variable combining
observable and unobservable features (Alinovi et al. 2008, 2010; Briick et al. 2019;
d’Errico et al. 2020; d’Errico & Di Giuseppe 2018; Smith & Frankenberger 2018);
(i) resilience as a normative condition, i.e. the probability of achieving some minimal
standard living conditional of many observable characteristics and exposure to shocks
(Barrett & Constas 2014), which implies that resilience is treated as an outcome in
impact evaluation studies (Knippenberg et al. 2019; Upton et al. 2016); (iii) resilience
as return to equilibrium in the aftermath of a shock, where the focus is on the ex-post
effects of the shocks experienced on some well-being outcomes (Constas et al. 2014;
Hoddinott 2014; Knippenberg et al. 2019).

Then, they provide an overview of the empirical quantitative literature on resilience,
emphasizing several limitations of current approaches involving theoretical, empirical,
and data-related constraints. Importantly, among these, Barrett et al. (2021) stress that
concerns have been raised about the current ability of the most popular methodologies
for resilience measurement described above (that do not make use of ML techniques)
in accurately predicting outcomes out-of-sample. This is a task that ML models, which
are built to excel at predicting outcomes (Varian 2014), can, in principle, accomplish.
Indeed, scholars have recently raised a call to harness the opportunities provided by
machine learning algorithmic procedures to identify better predictors of resilience,
predict and highlight the presence of vulnerability hotspots (Jones et al. 2021) and, in
turn, improve the design of effective early warning mechanisms (McBride et al. 2021).
To the best of our knowledge, however, only one paper to date has investigated how
ML methods can predict household resilience, e.g. the contribution by Knippenberg
et al. (2019). As part of a broader empirical exercise involving a comparison among
different methodologies, the authors of this study apply two ML techniques, namely
the Least Absolute Shrinkage and Selection Operator (LASSO) and random forests,
to identify the best predictors of a resilience measure based on the Coping Strategy
Index of Malawian households.

We build on their pioneering work by providing preliminary cross-country evidence
on the potential of ML to improve the study of household resilience as well as the
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targeting of policy interventions. Importantly, we are interested in accurately predicting
resilience status in addition to identifying its best predictors. For this reason, unlike
Knippenberg et al. (2019), we tackle resilience prediction as a classification problem
rather than a regression one. In addition, we focus on a cross-country context and use a
different proxy for household resilience and a broader set of ML algorithmic routines.

Leveraging a large dataset spanning 10 countries and data-driven resilience pre-
diction via ML, we show that: (i) ML algorithms perform well even when studying
households from very different contexts and with a limited amount of widely available
information; (ii) simpler algorithms perform almost as well as ‘black-box’ methods
(i.e. complex predictive techniques that do not produce an understandable model and
are thus characterized by scarce or null explainability) and may be preferable because
of their transparency and interpretability.

The results shed light on the predictive potential of ML to both improve the allo-
cation of projects’ funding and better target resilience-oriented policy interventions
to those most in need, which would, in turn, maximize the beneficial effects of these
development policies.

The rest of this paper is structured as follows. Section 2 presents the data and the
machine learning approach. Section 3 reports the results of the empirical analysis.
Section 4 discusses the main policy implications and concludes.

2 Data and methods
2.1 Data

Our dataset is composed of cross-sectional household-level surveys from micro-level
impact evaluations fielded by the International Fund for Agricultural Development
(IFAD).! These impact assessments evaluated a selection of the Fund’s development
projects, closing between 2016 and 2018. Among these studies, we only selected those
with available comparable resilience metrics and socio-economic characteristics. This
led us to a final sample of 10 countries for more than 14,000 households observations.
All the data come from cross-sectional surveys, with the partial exception of the
PASIDP-I project in Ethiopia.” The list of projects included in our dataset is listed in
Table 3 in the Annex.

Concerning the outcome variable, we employ a subjective metric of resilience, i.e.
the ability to recover from shocks (ATR). This metric is constructed based on answers
to the following question: “To what extent were you and your household able to
recover from shock x?”. ATR thus represents a self-assessment from the interviewed
households and takes the form of a categorical variable which ranges from 1 to 5
according to the following scale:

a. Did not recover (= 1).
b. Recovered to some extent, but worse off than before (= 2).

! For more information, see https://www.ifad.org/en/web/knowledge/publication/asset/41489584.

2 PASIDP-I has a longitudinal component since four rounds of data in a 1-year rotating panel have been
collected under this project. However, for the purpose of this paper and since all the other data in our pooled
cross-country dataset are cross-sectional, we ignore this longitudinal component in our analysis.
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c. Recovered to the same level as before (= 3).
d. Recovered, and better off than before (= 4).
e. Experienced the shock but was not significantly affected (= 5).

This question is asked repeatedly for a roster of several different x shocks (droughts,
floods, crop diseases, etc.) that the households might have experienced in the last year
prior to the survey. We first take an average of the ATR for all shocks experienced
by the household and obtain an average ATR for each household. In the following
step, we create a binary outcome variable to discriminate between resilient vs non-
resilient households. This dummy variable takes value 1 if the average household ATR
is below the sample mean and O otherwise. A value of one thus indicates non-resilient
households and a value of O resilient ones.

The use of a binary outcome is dictated by our preference to tackle the resilience
prediction problem as a classification one. Our assumption is that discriminations
above or below clear cut-offs are more intuitive for practitioners, policymakers and
humanitarian agencies that aim at efficiently targeting their policy interventions, and
therefore predicting cut-offs rather than continuous values is more useful for practical
purposes (Lentz et al. 2019). The choice of a subjective resilience metric is driven by:
(i) data availability; (ii) the assumption that households are in the best position to assess
the extent of shock impacts on their welfare and their post-shock recovery, as well
as existing evidence that self-reported measures of well-being go hand in hand with
objective indicators (Knippenberg et al. 2019); (iii) the increasing use in recent studies
of subjective approaches and self-evaluations as resilience metrics which represent
valid alternatives to objective indicators (Jones & Tanner 2017; Jones & d’Errico
2019).

As far as the features that may predict resilience are concerned, we employ a
set of 14 predictors whose list, summary statistics, and details are reported in Table
4 in the Appendix. These are the most relevant variables that were common and
comparable across all the surveys in our pooled dataset and include demographic
characteristics, income measures, asset-based indices, food security proxies, and shock
exposure metrics, represented by the number of shocks experienced and their perceived
severity.

Importantly, we do not provide the algorithms with information about the country,
region, district, or village of origin of our households, for three reasons: (i) our samples
are not nationally representative from a geographic point of view; (ii) these geographic
dummies would not provide any useful information for targeting as we aim to scale up
these projects in other contexts; (iii) we are interested in providing useful insights based
on generalizable socio-economic and demographic characteristics, not in identifying
resilience clusters derived from geographically non-representative samples.

Finally, as some variables had a small number of missing observations, and since
some machine learning algorithms handle missing variables differently, we imputed
missing values via proximity through a random forest algorithm to make the results
comparable across different methods.’

3 We use the rflmpute package in R. In any case, our findings are insensitive to the imputation method we
employ. The results for the non-imputed data are available upon request.
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2.2 Methods

We focus on a purely predictive problem, the prediction of non-resilient households.
We are thus interested in minimizing the predictive error on previously unseen data
(the so-called ‘test error’), not in the causal impact of any of the features.

To this aim, we employ supervised ML techniques. Machine learning is a subfield
of artificial intelligence. ML algorithms have been developed in computer science
and statistical literature to deal with predictive tasks (Varian 2014). The aim of ML
techniques is to minimize the out-of-sample prediction error and generalize well on
future data (Athey and Imbens 2019; Mullainathan and Spiess 2017). Supervised ML
involves building a statistical model for predicting an output based on one or more
inputs (Lantz 2019).

The standard ML routine is to randomly split the original sample into two disjoint
sets: the training set, on which ML algorithms are trained, and the testing set, which is
used to evaluate the predictive ability of ML models on previously unseen data. This
introduces the so-called ‘firewall’ principle: none of the data involved in generating
the prediction function is used to evaluate it (Mullainathan and Spiess 2017). The
out-of-sample performance of the model on the unseen held-out data then constitutes
areliable and generalizable measure of the ‘true’ performance of the models on future
data. Following this scheme, we randomly split our dataset in a training set, consisting
of 2/3 of the whole sample, and a testing set, composed of the remaining 1/3.

We test the performance of five supervised ML algorithms: classification trees; two
ensemble methods based on decision trees, namely bootstrap aggregating (bagging)
and random forests; k-nearest neighbour (k-NN); and support vector machine (SVM).
These techniques are characterized by different degrees of flexibility and complex-
ity, ranging from the simpler classification tree to black-box models such as SVM
and random forest. Higher flexibility comes at the cost of a loss of interpretability.
With the exception of classification trees, none of the other methods produces readily
interpretable, easy-to-explain outputs to understand how the features are related to the
class.

Classification trees are based on recursive partitioning, also known as the ‘divide
and conquer’ approach (Lantz 2019). Via recursive binary splitting, the tree is grown
by repeatedly splitting the data into smaller and smaller subsets until sufficient within-
subset homogeneity or a stopping criterion is reached. As trees can suffer from high
variance, i.e. they are quite sensitive to small changes in the training sample and prone
to overfitting, we also apply bagging and random forest to our classification problem.
These ensemble methods build x trees from x bootstrapped training sets and take a
majority vote among the x predictions (Hastie et al. 2009). The difference is that for
each split in the trees, bagging considers all the features as split candidates, whereas
each time a split is considered, random forest randomly subsamples m out of all the p
features as candidates each time, thus introducing additional layers of randomness that
further decorrelate the trees. k-NN is similar to non-parametric analysis and uses infor-
mation about an example’s k-nearest neighbours to classify unlabelled examples. For
each observation in the testing set, the algorithm identifies the k closest observations
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from the training sample and assigns a prediction on the basis of a majority rule, tak-
ing as prediction the most frequent outcome among those of the nearest neighbours.
Finally, SVM creates a boundary called hyperplane to divide the multidimensional
feature space into homogeneous partitions and is able to model highly complex rela-
tionships. For all our algorithms, we use tenfold cross-validation on the training data
to tune key hyperparameters and solve the bias-variance trade-off.*

The number of observations is 9420 households in the training sample, of which
47.3% are resilient and 52.7% non-resilient; and 4854 in the testing sample, of which
47% resilient and 53% non-resilient. After training and tuning the algorithms on
the training sample, we evaluate out-of-sample performances in the testing set via
confusion matrices in which we compare the predicted and actual values of our binary
outcome, resilience status.

3 Results

The results are reported in Table 1. All the algorithms have an accuracy rate above
72% and an even higher sensitivity. Sensitivity is the proportion of actual positives cor-
rectly identified and is the metrics we are mostly interested in. For all the algorithms,
sensitivity is close to or around 80%. Classification trees perform comparatively well,
especially in terms of sensitivity. More complex methods based on decision trees, bag-
ging, and random forest perform better than the tree for all the metrics, i.e. specificity
(the proportion of actual negative cases, y = 0, correctly identified), sensitivity, and
overall accuracy, but not significantly so. As for the other two ‘black-box’ methods,
k-NN performs slightly worse than the tree in terms of the accuracy rate but leads to
a higher sensitivity, while SVM performs better than the tree but worse than bagging
and random forest. Overall, the random forest is the best-performing algorithm.

The classification tree is illustrated in Fig. 1. Five features appear: the (perceived)
mean severity of shocks,’ total gross income, the Household Dietary Diversity Score
(HDDS), the agricultural asset index, and household size. Combinations of these five
variables produce the tree represented in Fig. 1. For example, if the severity of shocks
is higher than 3.4 and household size is lower than 13, the algorithm predicts the
household as non-resilient.® Conversely, if the perceived severity of shocks is less than
3.4, the resilience status depends on interactions between additional variables other

4 For the classification tree, we use cross-validation to implement cost complexity pruning, i.e. prune the
tree and select the best complexity parameter c¢p. For k-NN, cross-validation is run to derive the optimal
neighbour number k. For random forest, we employ cross-validation to select the best value for the parameter
m, that is, the number of variables randomly sampled as candidates at each split. For support vector machine,
we use the Gaussian Radial Basis Function (RBF) kernel and the best cross-validated sigma (the inverse
kernel width) and cost of constraints violation C. For bagging and random forest, we grow a total of 1000
trees. Finally, since the k-NN and SVM are sensitive to the scale of the data, we normalize all the features
and run the two algorithms on the standardized data.

S5 As reported in Table 4, the mean severity of shocks is the average of a self-reported categorical variable
indicating the impact level of each shock experienced by the household.

6 Above the severity threshold of 3.4, households with a size larger than 13 have a significantly higher
income and experience fewer shocks and less severe shocks, compared to households with fewer than 13
members. The algorithm is thus likely identifying these underlying differences.
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Table 1 Out-of-sample performance

Real status

Classification tree Resilient Non-resilient Total
Predicted status Resilient 1535 567 2102
Non-resilient 746 2006 2752
Total 2281 2573 4854
Correctly predicted 67.3% 77.8% 73%
Bagging Resilient Non-resilient Total
Predicted status Resilient 1557 525 2075
Non-resilient 724 2048 2779
Total 2281 2573 4854
Correctly predicted 68.3% 79.6 % 74.3%
Random forest Resilient Non-resilient Total
Predicted status Resilient 1597 502 2109
Non-resilient 684 2071 2745
Total 2281 2573 4854
Correctly predicted 70% 80.5% 75.6%
k-NN Resilient Non-resilient Total
Predicted status Resilient 1483 529 2012
Non-resilient 798 2044 2842
Total 2281 2573 4854
Correctly predicted 65% 79.4% 72.7%
Support vector machine Resilient Non-resilient Total
Predicted status Resilient 1540 532 2068
Non-resilient 741 2041 2786
Total 2281 2573 4854
Correctly predicted 67.5% 79.3% 73.8%

Bold is arguably the most important part of the table

than shock severity, such as income, food security, and agricultural asset index. For
instance, if shock severity is less than 3.4, but total gross income is equal to or higher
than 1585 dollars per year, the household is predicted as resilient. If income, instead, is
lower than this threshold, and the HDDS is lower than 4.5, the household is predicted
as non-resilient. This assignment mechanism goes on until all the observations are
placed within one of the nodes.

While no interpretable output is available for k-NN and SVM, bagging and random
forest provide a ranking of the predictors. We report the five most important variables
according to these algorithms in Table 2.

The score assigned to each variable represents the mean decrease in the Gini Index
if that specific variable is excluded from the model. Both bagging and random forest
are in agreement with the tree about the predominant importance of the severity of
shocks and household income. The agricultural asset index also appears in the top
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Legend

shock_severity Mean severity of the shocks

tot_gross_income Total gross household income (constant 2018 USD)

HDDS
ag_asset_index

hh_size

Household Dietary Diversity Scale
Agricultural asset index

Household size

Fig. 1 Classification tree for non-resilient household

Table 2 Top 5 most important

variables—Ensemble methods Bagging Random Forest
Variable Mean Variable Mean
decrease in decrease in
Gini Index Gini Index
Mean severity 901.26781 Mean severity 831.12757
of shocks of shocks
Total gross 745.54083 Total gross 614.47379
income income
Total cultivated  411.78624 Total cultivated ~ 419.93563
land land
Asset Index 392.71532 Asset Index 413.41640
Agricultural 392.51322 Agricultural 394.58717

Asset Index

Asset Index
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five. Differently from the tree, bagging and random forest assign a high score to total
cultivated land and the household asset index, whereas the HDDS and household size
rank lower and are not amongst the most important variables.

In sum, households experiencing more severe shocks and endowed with low levels
of income and assets tend to be predicted as non-resilient. The fact that the inability to
withstand shocks is associated with such features is of course not unexpected, but it
is remarkable that based on such a limited amount of information, the algorithms cor-
rectly identify up to four-fifths of previously unseen non-resilient households without
even knowing the country, region, district, or village of origin of each household. In
turn, this makes data-driven resilience prediction via machine learning an appealing
tool for targeting and policy purposes, especially in data-scarce environments that are
a frequent and recurrent feature of many developing contexts.

4 Implications and conclusions

Can machine learning be leveraged to predict household resilience? As there is empiri-
cal evidence demonstrating that the most common resilience measures have limitations
in predicting well-being out-of-sample (Barrett et al. 2021), we deem this a particularly
important question.

In this paper, we perform simple and preliminary tests to show that supervised
machine learning algorithms can be successfully employed to predict household
resilience status as well as identify the main features that drive such predictions. ML
techniques were able to identify over three-quarters of the observations and four-fifths
of the non-resilient households. We reckon that this is a noteworthy performance,
considering that we did not provide the algorithm with the country of origin or other
non-generalizable geo-information. The variables we use as features, in fact, are widely
available in most of the micro-surveys from developing contexts. The cross-country
nature of our dataset provides more external validity to our findings than predictive
studies based on a single-country sample.

The implications for policy targeting are evident: policy interventions in the after-
math of covariate shocks such as conflicts, natural disasters, or economic crises could
exploit the potential of these techniques to more accurately target non-resilient house-
holds based on the features identified and the thresholds indicated as part of the
classification algorithm. Specifically, by providing a specific assignment rule deter-
mined by the analyses in question, policy implementers can improve the allocation
of financial resources by better targeting resilience-enhancement interventions. This
would eventually maximize the potential of these development policies to generate
beneficial impacts (the so-called ‘treatment effects’) for the most affected portions of
rural populations.

Central to the debate on resilience-enhancing development projects is how to effec-
tively target the less resilient with policies that can boost adaptive capacity. The
implications of a simple ML predictive exercise such as the one we have conducted
in this study suggest that policy implementers could exploit the potential of ML to
improve the allocation of projects resources and better target resilience-enhancement
interventions to those most in need. This, in turn, would eventually maximize the
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potential of these development policies to generate beneficial effects for the most
affected portions of rural populations. In addition to their potential to ‘fine-tune’ tar-
geting mechanisms, this type of ML-based predictions can also be employed to refine
early warning system development (McBride et al. 2021).

For these policy purposes, ML methods that indeed provide a clear, intuitive, and
straightforward assignment mechanism or targeting rule, such as classification trees,
may be preferred because of their intrinsic simplicity and resemblance to human
decision-making, especially when more complex, black-box methods do not perform
significantly better, as was the case in our study.

Our work provides new insights on a key notion in development economics by
proposing an empirical approach to tackle the identification of household resilience as
a “prediction policy problem” (Kleinberg et al. 2015). While our preliminary evidence
provides empirical support to recent calls to leverage ML tools to shortlist variables
for targeting purposes and highlight hotspots of vulnerability (Jones et al. 2021; Knip-
penberg et al. 2019), it is far from being conclusive on the matter.

Further work should compare the performance of ML on subjective resilience with
the one on objective metrics. More generally, many different resilience approaches and
several cut-offs could and should be tested under the ML lens. A comparison of clas-
sification approaches with numeric prediction methods, such as regression trees, can
also provide valuable insights, especially on the consistency of the best resilience pre-
dictors across different models and methodologies. Another crucial test is to check for
the stability of ML-based prediction accuracy, which can be a weakness of ML models
(in tracking resilience outcomes over time, especially by using high-frequency longi-
tudinal data, along the lines of Knippenberg et al. (2019). Finally, it is key to shed light
on the effectiveness and accuracy of actual targeting rules of closed resilience-oriented
projects through a comparison with ML predictions in rigorous ex-post targeting eval-
uation exercises. All these key issues are deferred to future research.
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Appendix

See Tables 3 and 4.

Table 3 IFAD Impact Assessment sources

Project name Country Year of data
collection

Coastal Climate Resilient Infrastructure Project (CCRIP) Bangladesh 2018

Gente de Valor: Rural Communities Development Project in Brazil 2018
the Poorest Areas of the State of Bahia

Rural Development Support Programme in Guéra (PADER-G)  Chad 2017

Guangxi Integrated Agricultural Development Project China 2017
(GIADP)

Participatory Small-Scale Irrigation Development Programme  Ethiopia 20162017
I (PASIDP I)

Coastal Community Development Project (CCDP) Indonesia 2018

Community-based Forestry Development Project in Southern Mexico 2017
States (DECOFOS)

High Value Agriculture Project in Hill in Mountain Areas Nepal 2018
(HVAP)

Participatory Smallholder Agriculture and Artisanal Fisheries Sao Tomé & Principe 2018
Development Programme and Smallholder Commercial
Agriculture Project (PAPAFPA/PAPAC)

Agriculture Value Chain Support Project (PAFA) Senegal 2017
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Table 4 Summary statistics — Whole sample

Variables Mean Var sd Obs
QOutcome

Resilience status (0 = resilient; 1 = 0.528 0.249 0.499 14,274

non-resilient)

Features

Treatment 0.489 0.250 0.500 14,274
Age of the household head 48.30 198.9 14.10 14,274
Gender of the household head 0.157 0.132 0.363 14,274
Education level of the household head 0.971 0.796 0.892 14,257
Household size 5.740 13.07 3.616 14,274
Dependency ratio 0.982 0.942 0.971 14,099
Total gross income 2501.3 36,344,330.6 6028.6 14,272
Gross crop income 458.1 2,944,285.9 1715.9 14,274
Total cultivated land 10.72 23,512.5 1533 13,866
Asset index 0.146 0.0222 0.149 14,268
Agricultural asset index 0.134 0.0274 0.165 14,268
Household Dietary Diversity Score 7.016 6.843 2.616 14,255
Number of shocks 2.412 5.516 2.349 14,253
Mean severity of shocks 3.111 0.958 0.979 14,261

‘Resilience status’ is a binary variable taking value 1 if household average ability to recover is below the
sample mean and 0 otherwise. ‘Treatment’ is a dummy taking value 1 if the household was in the treatment
group and 0 otherwise. ‘Gender of the household head’ is a dummy taking value 1 if the household head is
female and O otherwise. ‘Education level of the household head’ is a categorical variable which can take the
following values: 0 = no education; 1 = primary education; 2 = secondary education; 3 = higher education.
“Total gross income’ and ‘Gross crop income’ are annual measures expressed in constant 2018 US dollars.
“Total cultivated land’ is measured in hectares. The ‘Household Dietary Diversity Score’ ranges from O to 12
and has a reference period of 7 days for all the country samples except China, for which a reference period
of 1 day is used. ‘Asset Index’” and ‘Agricultural Asset Index’ are standardized measures of assets which
range from O to 1 and have been generated for each country sample via factor analysis, using exclusively
the assets that were common across all the datasets. ‘Mean severity of shocks’ is the household average,
for all shocks, of a self-reported categorical variable indicating the impact of each shock experienced as
assessed by the household. The variable ranges from a score of 1 to 5 as follows: No impact = 1; Slight
impact = 2; Moderate impact = 3; Strong impact = 4; Worst ever happened = 5
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