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Abstract
Rather than relying on a potentially poor point estimate of a coefficient break datewhen
forecasting, this paper proposes averaging forecasts over sub-samples indicated by a
confidence interval or set for the break date. Further, we examine whether explicit
consideration of a possible variance break and the use of a two-step methodology
improves forecast accuracy compared with using heteroskedasticity robust inference.
Our Monte Carlo results and empirical application to US productivity growth show
that averaging using the likelihood ratio-based confidence set typically performs well
in comparison with other methods, while two-step inference is particularly useful
when a variance break occurs concurrently with or after any coefficient break.

Keywords Forecasting time series · Structural breaks · Confidence intervals ·
Combining forecasts · Productivity growth

JEL Classifications C32 · C53

1 Introduction

The pervasiveness of structural breaks in many macroeconomic time series is widely
acknowledged (Stock and Watson 1996; Paye and Timmermann 2006) and they are
an important source of a forecast failure (Hendry 2000; Hendry and Clements 2003).
This paper considers a scenario in which a discrete and permanent change in model
coefficients may occur during the sample period used for estimation. Various forecast
methods and strategies are proposed in the literature to deal with such a possibility,
and these can be broadly classified into those that employ an estimated break date and
robust methods that treat the break date as unknown.
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When the timing of a break is known or estimated precisely, unbiased estimates
of the coefficients can be obtained using observations after the break, leading to the
post-break window forecast. However, even with the accurate estimate of a break, if
the length of the post-break sample is relatively short, the post-break coefficients and
size of the break may be poorly estimated. Although the use of pre-break observations
introduces estimation bias, it is often optimal to include somepre-break observations in
the estimation sample to reduce the forecast error variance, as shown analytically and
empirically by Pesaran and Timmermann (2004, 2005, 2007). The forecast accuracy
of such methods heavily relies on how well the true break date is estimated and, in
practice, theoretical gains may not be fully exploited as estimates of break dates can
be imprecise (Elliott 2005; Paye and Timmermann 2006). A different approach is
taken by Inoue et al. (2017), who propose using a rolling window with the optimal
estimation window size selected by minimizing the conditional mean square forecast
error.

Rather than producing a forecast based on a single estimation window, recent find-
ings suggest that forecast combination methods that average over a model estimated
with different sizes of windows often produce more accurate forecasts (Pesaran and
Pick 2011; Eklund et al. 2013; Tian and Anderson 2014; Koo and Seo 2015; Boot
and Pick 2020). Such methods typically assume the date of a break is unknown, and
hence distortions from imprecise break date estimates are generally mitigated by aver-
aging. However, other factors play a role, with forecast combination methods working
well when breaks are small, occur frequently, towards the end of the sample or affect
only the variance, and can perform relatively poorly in the presence of large breaks
(Pesaran and Timmermann 2007; Pesaran and Pick 2011; Eklund et al. 2013). On
the other hand, large breaks are easier to detect and hence a carefully selected single
estimation window based on break date information can be preferable for forecasting
(Pesaran and Timmermann 2007; Pesaran et al. 2013).

These results suggest that information on the nature of a possible break is important
in deciding whether to use such information when forecasting or to adopt forecast
methods that are robust to a presence of a possible break. This paper proposes a
simple but intuitive approach based on forecast combinations and explicitly using
break date estimates. To be specific, we propose employing a confidence interval or
confidence set for the estimated break date instead of relying on a point estimate which
may be poorly identified. We treat each date in the confidence interval/set as one of
a sequence of choices for the potential break date and the corresponding post-break
window forecasts are averaged. This incorporates information on the size of a break,
since a break that is large (relative to the sample size) implies a narrow interval. Our
approach is designed to improve on existing robust methods that combine forecasts
from all possible windows (Pesaran and Pick 2011), by excluding windows that use
less relevant data and which can yield large forecast errors. Koo and Seo (2015)
employ a similar approach in the context of a misspecified model, but our interest lies
in the situation where the model is correctly specified.1 We employ the break date
confidence interval originally proposed by Bai (1997), which is widely employed in

1 Koo and Seo (2015) argue against using a confidence set for the break date due to its poor coverage
in their misspecified model. Our analysis also examines empirical coverage, which can be good when the
break model is correctly specified (see Table 2).
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Using structural break inference for forecasting time series 3

the structural break methodology of Bai and Perron (1998), and the confidence set of
Eo andMorley (2015). Furthermore, to shed light on the nature of a detected break and
to gain efficiency in estimation, a stepwise testing approach for changes in individual
coefficients can be incorporated into the method.

A second contribution of this paper lies in the consideration given to the role of
variance breaks. Although these are often overlooked in the forecast literature, it is
known that tests for the presence of coefficient breaks are affectedwhen breaks can also
occur in the disturbance variance (Bai and Perron 2006). To be explicit, we consider the
situationwhere both the coefficients anddisturbancevariancemaybe subject to a single
structural break during the sample period, but these two breaks do not necessarily occur
concurrently. Under such circumstances, the forecaster may apply a heteroskedasticity
consistent (HC) procedure to test for a coefficient break. Another option is to explicitly
examine the possibility of variance change andwe investigatewhether taking this route
by use of a two-step break point testing methodology can improve forecast accuracy
compared with HC testing. The procedure we employ, which allows the possibility
of distinct coefficient and variance breaks occurring during the estimation sample, is
built on Bataa et al. (2013) and also adapted by Altansukh et al. (2017).

Forecast performance is assessed through both Monte Carlo simulations and an
empirical application to US productivity growth series. Our confidence interval/set
approach is compared with widely advocated forecast approaches, including post-
break, trade-off, cross-validation andwindow averagingmethods proposed by Pesaran
and Timmermann (2007) and Pesaran and Pick (2011). The simulation results show
that our method performs well when the confidence set of Eo and Morley (2015) is
employed, regardless of the size and nature of a break, with the empirical application
supporting its usefulness for improving forecast accuracy in the presence of structural
change. Further, the two-step testing approach is also generally beneficial, and this
is especially the case when either no coefficient break applies or when a coefficient
break occurs concurrently with or prior to a variance break.

This paper proceeds as follows. Section2 outlines the confidence interval forecast
method and describes the structural break inferencemethods that we employ. Section3
sets up theMonte Carlo simulations and the simulation results are presented in Sect. 4.
Section5 examines the performance of forecast methods for US productivity growth
and Sect. 6 concludes.

2 Methodology

This section outlines the forecasting methods that we employ, focusing particularly
on variance breaks and exploiting information contained in coefficient break date
confidence intervals/sets.
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4 G. Altansukh, D. R. Osborn

2.1 Forecast methods

For forecasting purposes, consider the dynamic model

yt = β ′
txt−1 + σtεt εt ∼ IID(0, 1) (1)

where xt−1 is a k × 1 vector of regressors whose values are known at time t − 1,
βt is the k × 1 coefficient vector for xt−1,while εt is an error term that is serially
uncorrelated and uncorrelated with xt−1. The regressor vector xt−1 will typically
include at least one lag of yt , but in the absence of structural breaks in (1) xt−1 is
covariance stationary. Using sample period data for t = 1, . . . , T , our interest lies in
forecasting future values of y when βt and the disturbance variance σ 2

t may each be
subject to a single within sample structural break, with the two types of change not
necessarily coinciding. In particular, yT+h (h = 1, 2, ..) is to be forecast using the
observations2 �T = {xt : t = 1, 2, . . . , T }, recognizing that, in practice, neither the
occurrence of breaks nor the date(s) at which they occur are known. Our aim is to
exploit structural break inference information to improve forecast accuracy.3

Ignoring any possible structural break(s), the full sample one-step ahead forecast
is

ŷT+1,Base = β̂ ′
1:T xT (2)

where β̂1:T is obtained by applying OLS estimation to (1) using all T sample obser-
vations. Even when breaks may occur, this full sample forecast provides a benchmark
for assessing the performance of methods which allow the possibility of breaks. Now
suppose that, by some appropriatemethod, a structural break in the coefficient vector is
estimated to have occurred at t = T̂c, where 1 < T̂c < T . With sufficient observations
available to estimate the coefficient vector in the period after the estimated break, the
usual post-break forecast is

ŷT+1,PB = β̂ ′
T̂c+1:T xT (3)

where β̂T̂c+1:T is obtained by OLS using observations t = T̂c + 1, T̂c + 2, . . . , T .
If variance breaks may be present, heteroskedastic consistent (HC) inference can

be employed for coefficient break testing, with OLS then applied to (2) or (3) as
appropriate. Although asymptotically valid, the simulation evidence of Bai and Perron
(2006) and Pitarakis (2004) indicates that HC inference leads to over-sized coefficient
break tests in finite samples. This can be serious for forecasting, because a false
conclusion that a break exists leads to a reduced effective sample size for coefficient
estimation, implying a loss of efficiency and an increase in theoretical mean square
forecast error.

2 We assume pre-sample observations are available such that (1) can be applied for t = 1.
3 Tian and Anderson (2014) use information from the reverse ordered cusum test to provide forecast
combination weights, but we base our analysis on the Bai and Perron (1998) test due to its widespread use
in practice.

123



Using structural break inference for forecasting time series 5

Following Pitarakis (2004), an alternative to HC inference is to use a feasible
generalized least squares (FGLS) procedure for coefficient break inference. To our
knowledge, study to date has not examinedwhether the use of FGLS improves forecast
accuracy over OLS in the presence of possible structural breaks. Sect. 2.2 provides
details of our FGLS structural break testing methodology. Denoting the period of a
variance break as t = Tv (1 < Tv < T ), it should be noted that if T̂c ≥ T̂v , then the
OLS and FGLS estimators will be identical in (3).

Clearly, even if a coefficient break has occurred, the point estimate T̂c does not
capture the uncertainty associated with break date estimation. To reflect this, we also
investigate whether use of a confidence interval (or set) can improve forecast accuracy
compared with a possibly poor single coefficient break date estimate. For convenience
of exposition, assume that the dates within the confidence interval are contiguous and
denote the interval as [T̂cL , T̂cU ], where T̂cL and T̂cU are the lower and upper bounds of
the confidence interval, respectively (see Sect. 2.3). Treating each date in the interval as
one of a sequence of choices for the potential break date, the corresponding post-break
window forecasts can be averaged to yield the confidence interval forecast

ŷT+1,C I = 1

T̂cU − T̂cL + 1

T̂cU+1∑

t=T̂cL+1

β̂ ′
t :T xT . (4)

The expression in (4) is also appropriately amended in the obvious way when the
forecast is obtained by averaging over a (non-contiguous) confidence set for the break
date.

Note that averaging as in (4) effectively gives greatestweight to sample observations
for t > T̂cL , since these contribute to each forecast in the average, with progressively
less weight given to observations earlier in the confidence interval or set. Since the
interval or set will be longer when σt in (1) is larger or the magnitude of the break is
smaller, these circumstances lead to the forecast in (4) giving relatively greater weight
to sample observations for t > T̂cL compared with a low volatility or large break
setting. In other words, in circumstances when the timing of the break is doubtful,
greater weight is placed on observations that can be reliably classified as post-break,
but with some weight also placed on earlier observations that also fall within the
interval or set.

To shed light on the nature of a detected coefficient break and to gain (potential)
efficiency in estimation when the null hypothesis of no break is rejected, we also
examinewhether testing for change in the individual coefficients of themodel improves
forecast accuracy. To allow for possible variance change, a standardHC t test is applied
to each individual coefficient in the model to examine whether the values differ in the
pre- and post-break sub-samples, treating the coefficient break date as known. If all
changes are significant, forecasts are obtained using the post-break sub-sample, as
in (3). Otherwise, the coefficient with the least significant change is restricted to be
constant over time and the model is re-estimated. The remaining coefficients are again
tested individually and the procedure continues until all remaining coefficients are
either specified as constant or exhibit significant change at the estimated break date. If
the model reduces to one in which only one coefficient has a break and the change in
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6 G. Altansukh, D. R. Osborn

this coefficient is not significant, the whole sample forecast is used despite the initial
finding of a coefficient break. This stepwise testing approach is combined with the
confidence interval forecast of (4) by conducting stepwise coefficient equality testing
at each potential break date in the interval.

When variance breaks are explicitly taken into account through FGLS estimation,
the procedure just described is applied using standard (OLS) t tests for breaks in each
individual coefficient of the FGLS-transformed model. It might also be noted that
the application of individual coefficient tests implies the use of some pre-break data
in obtaining β̂T̂c+1:T and in this case the OLS and FGLS estimators are no longer

necessarily identical when T̂c ≥ T̂v .
The methodology employed for structural break testing is discussed in the next

subsection, with the subsequent subsection considering the construction of confidence
intervals for the break date. Throughout the paper, all hypothesis tests are conducted
at the nominal (asymptotic) 5% level of significance4 and the nominal confidence of
all confidence intervals/sets is 95%. To ensure sufficient observations are available
for estimation and structural break inference, the range of possible break dates is
restricted to w < T̂i < T − w for both the coefficients and variance (i = c or v). Our
results use w = 0.1T , so that the minimum estimation window for the post-sample
estimator of (3) is 10% of the full sample data. When a confidence interval forecast is
employed, T̂cU + 1 in the summation of (4) is replaced by min(T̂cU + 1, T − w) and
if T − w < T̂cU + 1 the denominator is correspondingly adjusted.

Through a simulation analysis in Sect. 4, the performance of the methods we pro-
pose are compared with trade-off and cross-validation procedures proposed in an
influential paper by Pesaran and Timmermann (2007) . Our comparison also includes
the forecast combination method that averages over all possible estimation windows,
which is proposed by Pesaran and Timmermann (2007) and analytically developed by
Pesaran and Pick (2011).5 Further information relating to these methods is provided
in “Appendix A”, but note that the cross-validation methods we employ do not use
estimated break date information.6

2.2 Structural break testingmethodology

The most commonly employed methodology for structural break inference in econo-
metrics is that of Bai and Perron (1998), and our approach is based on their
methodology. We investigate both the HC approach of Bai and Perron (1998) and
also a two-step FGLS procedure when testing for a coefficient break in (1). In both
cases, the outcome of the test determines whether the full-sample or post-break fore-
cast is employed.

4 Preliminary investigation indicated that the forecast performance was little affected by the adoption of
a 10% significance level.
5 For the case of multiple breaks, Tian and Anderson (2014) find that weighting forecasts according to the
location of the window within the sample performs well. However, we do not include this as our interest
focuses on single breaks.
6 Our initial investigations also included the form of cross-validation that uses estimated break date
information, with results qualitatively similar to those shown.
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Using structural break inference for forecasting time series 7

Our two-step FGLS method is based on Bataa et al. (2013), who generalize an
approach suggested by Pitarakis (2004) to allow the possibility that coefficient and
variance breaks are not necessarily concurrent.7 In outline, our procedure is:

Step 1 Preliminary coefficient break test The Bai and Perron (1998) structural
break testing procedure is applied to β of (1) employing HC inference. After
allowing for a detected coefficient break, the residuals (ε̂t ) are employed in the
test regression

√
π

2
|ε̂t | = ζ + εt (5)

to which the homoskedastic testing is applied. If a break is detected in ( 5) at
T̂v , the estimates of ζ from the regimes t = 1, . . . , T̂v and T̂v+1, . . . , T yield the
estimated standard deviations for the respective detected variance regimes.
Step 2 Re-assessment of coefficient break If a break is detected for (5), the FGLS
transformation is applied to the data; otherwise the original data are used. The pres-
ence of a coefficient break is then re-assessed employing homoskedastic inference.

The absolute value of the residuals from the initial OLS estimation is used in (5)
rather than the mean of squared residuals because this is more robust to non-normality
(Davidian and Carroll 1987; McConnell and Perez-Quiros 2000) and, further, our
preliminary analysis found it yielded a better variance break date estimate.

When testing for a coefficient break using either HC inference or in the two-step
procedure, the distribution of regressors is allowed to change at the break date,8 but
the disturbances are assumed to be serially uncorrelated. Since our interest focuses on
the possibility of a single structural break in each of the coefficients and variance, a
maximum of one break is considered in each step.

2.3 Confidence interval/set estimation

As already noted in the Introduction, after testing for coefficient breaks as described in
Sect. 2.2, we employ two procedures for computing coefficient break dates confidence
intervals/sets. The first is that of Bai (1997), which is widely available as part of the
inference procedure of Bai and Perron (1998). The confidence interval is constructed
using the asymptotic framework of break date estimation and relates to dates in the
“neighbourhood”of the estimate T̂c (seeBai 1997;Bai andPerron 1998); consequently,
the confidence interval is contiguous around T̂c.

Despite the popularity of the Bai and Perron (1998) procedure, the coverage rates
for the associated confidence intervals are often substantially below the nominal rates,
as shown by Elliott and Müller (2007) and the simulation results of Bai and Perron

7 Although Bataa et al. (2013) iterate between coefficient and variance breaks, we employ a two-step
procedure because their results (Table 1) indicate that iteration has relatively little impact on the detection
of variance breaks.
8 Since lagged yt is included as a regressor, a coefficient break in (1) implies a break in the regressor matrix
one period later. Although the dates do not quite coincide, it is appropriate to allow for the distribution of
regressors to change when testing for a coefficient break.
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8 G. Altansukh, D. R. Osborn

(2006). The approach ofElliott andMüller (2007) andEo andMorley (2015) is to invert
the test statistic for a break, yielding a confidence set (not necessarily an interval) for
the break date.We employ the confidence set of Eo andMorley (2015), which employs
the likelihood ratio test statistic, as they find it provides good coverage with a smaller
set of potential break dates than that of Elliott and Müller (2007).

Whether two-step or HC inference is employed for coefficient break date estima-
tion, the original data are used for computing the confidence interval or set, with some
account taken of a possible variance break (albeit contemporaneous with any coeffi-
cient break) by computing the confidence interval or set allowing variances to change
with coefficient break regimes. In both cases, the distribution of regressors is allowed
to change at the break date.

3 Monte Carlo simulations

Monte Carlo simulations are conducted to evaluate the forecast methodologies pro-
posed in Sect. 2, with these based on the simulation setup of Pesaran and Timmermann
(2007), with similar settings also adopted by Clark and McCracken (2005) and Tian
and Anderson (2014). However, in addition to the simulation settings in these papers,
we also consider data generating processes (DGPs) that exhibit change only in the inter-
cept and DGPs with changes in both coefficients and variances with these changes not
necessarily occurring at the same time.

The basic DGP is the bivariate VAR(1) process

(
yt
xt

)
=

(
αyt

αxt

)
+ At

(
yt−1
xt−1

)
+

(
uyt

uxt

)
(6)

with coefficient matrix

At =
(

β11t β12t
0 β22t

)
(7)

so that x Granger causes y and not vice versa, and disturbances that are normally
distributed with covariance matrix


t = E

[(
uyt

uxt

) (
uyt

uxt

)′]
=

(
σ 2
yt 0
0 1

)
. (8)

If At is time invariant and has eigenvalues strictly less than unity, the unconditional
mean vector corresponding to (6) and (7) is

μt = (I − At )
−1αt = (I − At )

−1( αyt αxt )
′. (9)

However, change in either αt or At leads to change in the corresponding steady-state
means of (9).

Our interest is in situations where the marginal distribution for xt (the driving
variable) is constant over time, but that for yt can exhibit structural breaks in the
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Using structural break inference for forecasting time series 9

coefficients and/or disturbance variance. The cases considered (where the DGPs refer
to Table 1) are:

1. All coefficients constant over time, with α = (0.5 0.5 )′, β11 = 0.9, β12 = 1,
β22 = 0.9, together with time-invariant σy = 1 (DGP1), increasing variance
(DGP2) or decreasing variance (DGP3);

2. Dynamics that exhibit change (through β11t and/or β12t ) butμt constant over time
with values as in #1 (hence αt changes), with either constant or changing variance
(DGP4 to DGP10);

3. Means that exhibit change through a break in the value ofαy but constant dynamics
as in #1, with either constant or changing variance (DGP11 to DGP14).

Details of parameter values are provided in Table 1.
The benchmark case, which uses OLS and all observations, is anticipated to pro-

vide the best forecasting performance for DGP1. DGPs 2 and 3 illustrate the effects of
increasing and decreasing disturbance variances, with the post-break standard devia-
tions increasing by a factor of 4 and declining by a factor of two, respectively. In DGPs
4 and 5, the autoregressive coefficient, β11t , decreases, with these labelled as small
and large changes after the break, respectively. Similarly, the effects of small and large
increases in the coefficient of the lagged exogenous variable, β12t , are considered in
DGPs 6 and 7. DGP8 combines DGP4 and DGP7, with a single break affecting both
β11t and β12t coefficients simultaneously. DGP9 and DGP10 introduce changes in
both coefficients and variances, by combining DGP8 with 2 and 3, respectively. A
break affecting only the mean of the series, namely an intercept shift, is illustrated in
DGPs 11 and 12, considered as small and large, respectively. Finally, DGPs 13 and
14 examine situations in which a large mean increase is combined with increasing or
decreasing variances after the break.

In order to examine the sensitivity of the break point location for forecasting per-
formance, the simulations consider a single coefficient break occurring at 0.25T , 0.5T
or 0.75T of the full sample of T observations. Further, in DGPs with changing vari-
ances, the single variance break occurs in the middle of the sample in combination
with each coefficient break location or at 0.75T in combination with a mid-point
coefficient break. Therefore, we consider scenarios where the coefficient and variance
breaks occur either concurrently or at different times, and also whether a variance
break precedes or follows a coefficient break. It can be noted that breaks occur only
in the equation for yt in (6 ) and inference is applied to this equation only.

We employ the Bai and Perron (1998) procedure to test for breaks in which we
allow the possibility of one break with trimming ε = 0.10 (10% of the full sample).
All hypothesis tests are conducted at a nominal 5% level of significance, using the
asymptotic critical values provided by Bai and Perron (1998), while the confidence
intervals/sets have nominal 95% coverage. In line with Pesaran and Timmermann
(2007), the methods of cross-validation or averaging across all samples to T consider
a minimum sample size of 0.1T , while cross-validation reserves 0.25T observations
for an out-of-sample evaluation.9

9 Although the results presented in the paper make the realistic assumption that neither the presence nor
the date of any break is known, we also obtained results for known break dates. Footnotes below sometimes
refer to these results, which can be obtained from the authors on request.
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Using structural break inference for forecasting time series 11

To assess the impact of the sample size on forecasting performance, T = 100 and
200 are employed in the simulations. The DGP process in Eq. (6) starts from its pre-
break unconditional mean. Specifically, each replication of each DGP is initialized
using ( yt−1 xt−1 )′ = αt = (0.5 0.5 )′, and simulating T0 + T + 3 observations for
the corresponding DGP with T0 = 100. After discarding the first T0 observations, the
observations 1, . . . , T are used for the parameter estimation to generate the forecasts.10

In all cases, 5000 replications are employed.11

Forecast accuracy is assessed using the empirical Mean Squared Forecast Error
(MSFE), namely the average squared difference between forecast and realized values,
computed as

MSFE = 1/S
S∑

i=1

(yT+1 − ŷT+1)
2 (10)

where S denotes the number of simulations. In the results reported, the computed
MSFE for eachmethod is divided by theMSFE of the benchmarkmodel which ignores
the presence of possible breaks by applying the full sampleOLSestimator.Ratios lower
than 1 indicate better performances of the correspondingmethods than the benchmark,
and higher than 1 points to worse performances compared to the benchmark model.

4 Simulation results

Our simulation results are discussed in the first subsection for the special case where
coefficient and disturbance breaks, when they occur, are concurrent at the mid-point of
a sample of T = 100 observations. Subsequent subsections consider non-concurrent
breaks for one-step ahead forecasts and T = 100 and (finally) larger sample results
for T = 200.

4.1 Concurrent mid-sample breaks

Table 2 provides background inference results, while Table 3 and Appendix Table 8
report relative MSFEs (in relation to the benchmark model) for a range of forecast
methods when any (coefficient or variance) break occurs in themiddle of the sample of
T = 100 observations. Table 3 and Appendix Table 8 differ only in that the latter sets
the forecast period disturbance εT+1 = 0 in (1).12 By focusing on the trade-off between
bias in coefficient estimation when pre-break information is included and efficiency
gains from these additional observations (Pesaran and Timmermann 2007), Appendix

10 We also computed forecasts ŷT+h (h = 2, 3) by estimating the true (constant parameter) AR(1) model
for xt and using this in conjunction with the specification of the yt model resulting from the procedures
considered in Sect. 2 to obtain iterated multi-horizon forecasts. The MSFE results show the same patterns
as those for one-step ahead and are available from the authors on request.
11 The initial seed is set for each DGP so that all forecasting methods are evaluated based on exactly the
same sample data.
12 We thank a referee for this suggestion.

123



12 G. Altansukh, D. R. Osborn

Table 8 provides a clearer distinction between methods. However, the apparent gains
it indicates are unattainable in realistic settings and hence our discussion focuses on
Table 3.

From the empirical coefficient structural break test rejection rates (the percentage of
cases in which a break is detected) in Table 2, it is evident that the two-step procedure
improves on HC inference by substantially reducing the number of over-rejections in
the DGPs with constant coefficients (DGP1-DGP3) while increasing the number of
rejections in the DGPs where the HC test has low empirical power in DGPs 9 and 13.
Since individual coefficients are tested only when an overall break is detected, these
rates (expressed as the percentage of total replications for which constancy is rejected)
are always less than the overall rejection rate. The empirical variance test rejection
rate is also shown for the two-step method of Sect. 2.2.

For convenience, we use the abbreviation CI in Table 2 to refer to both confidence
intervals and sets, with those associatedwith Bai and Perron (1998) and Eo andMorley
(2015) referred to as BP and EM, respectively. In line with previous studies (including
Bai and Perron 2006; Elliott and Müller 2007; Chang and Perron 2018; Bai 1997; Eo
and Morley 2015), the EM set almost always has greater coverage of the true break
date than the nominal 95%, whereas the BP interval exhibits under-coverage and this
is often substantial. Although used only when coefficient constancy is rejected, the
average CI length is shown for cases where coefficient breaks are rejected and where
they are not, together with all cases.13 With no coefficient or variance break in DGP1
and allowing for 10% trimming, the vast majority of sample points admissible as
potential breaks fall within the EM set; hence it performs well in indicating the lack
of information in the data about a coefficient break, whereas the BP interval includes
substantially fewer observations; these results are in line with Eo and Morley (2015)
and carry over in the presence of a variance break (DGPs 2, 3). Across all DGPs
and methods, inclusion of only cases where the coefficient test is rejected reduces
(or leaves unchanged) the average CI lengths, because these are cases where stronger
evidence of a break is detected. As anticipated, both methods include more potential
break points in the interval/set when the break is small compared with large breaks.

Due to the over-sizing of the HC break test (Table 2), post-break OLS estimation
leads to poor forecasting results for DGP1 (no break) and DGP2 (variance increase) in
Panel A of Table 3 compared with the full-sample benchmark model. With improved
inference on coefficient breaks, the two-step method leads to improved accuracy in
Panel B for these DGPs. The effect of over-sizing on forecast accuracy is less severe in
DGP3 since the variance decrease implies that the less volatile sub-sample is employed
for estimationwhen a coefficient break is erroneously detected. In linewithPesaran and
Timmermann (2007),14 the trade-offmethod, which also hinges on the estimated break
date, improves accuracy over the simple use of the post-break sample, but averaging
based on either the BP interval or (particularly) the EM set does better, with further
improvementwhen combinedwith stepwise coefficient testing. Indeed, averaging over
the EM set combined with stepwise coefficient testing reduces the MSFE to a little

13 We thank a referee for prompting us to this discussion and additional results.
14 Note, however, that Pesaran and Timmermann (2007) examine only concurrent coefficient and variance
breaks and hence do not consider HC or two-step inference.
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Using structural break inference for forecasting time series 17

over one in both panels, implying a relatively small accuracy loss relative to using
the full-sample OLS estimator. The methods in Panel C (which do not rely on an
estimated break date, namely cross-validation and averaging over all windows) also
perform relatively well for these DGPs: these are more accurate than simple post-
break (OLS or FGLS) estimation, with the method that averages with cross-validation
weights yielding the most accurate forecasts for DGPs 1 and 3 (though the former is
less accurate than the benchmark model). The effects discussed here and elsewhere
in this subsection are emphasized in Appendix Table 8, where the forecast period
disturbance is shut down.

When a break increases the dynamic coefficients with a time-invariant disturbance
variance (DGPs 4–8, Table 3), it is unsurprising that all forecasting methods which
take account of a possible break perform better than the benchmark. However, it is
worth noting that in these DGPs the presence of a coefficient break is relatively easy
to detect even if it is “small” (DGPs 4 and 6, Table 2), since the variance is constant
while the intercept changes in addition to the dynamic coefficients due to the constant
mean assumption; see (9). Therefore, the forecast accuracy results for these DGPs in
Table 3 are very similar across Panels A and B. Although cross-validation performs
well for these DGPs, the EM set average is more accurate.

Almost all methods of Panels A and B are less accurate than the full-sample OLS
estimator for DGP9. The variance breakmakes it more difficult to detect the coefficient
break (compare the overall coefficient test rejections for DGP9 with DGP8 in Table
2) and, in any case, the benefits of detecting the coefficient break can be out-weighed
by using only noisier post-break data.15 Nevertheless, two-step inference reduces the
MSFE in Panel B comparedwithHC inference in PanelA of Table 3, while using either
the EM set average or the methods in Panel C results in forecasts that are very close in
accuracy to (or for averaging over windows and using cross-validation weights, better
than) the benchmark case. On the other hand when the variance decreases in DGP10,
using break information is highly beneficial relative to use of full-sample OLS because
the coefficient break is always detected and the latter part of the sample is less noisy.
All methods that use break information yield very similar results and reduce MSFEs
by about 80% compared with the benchmark, while averaging over windows or using
cross-validation weights does less well.

Finally, when a coefficient break in DGPs 11–14 affects only the intercept, Table 2
shows that stepwise coefficient testing assists in pin-pointing the nature of the break,
with constancy of the intercept rejected more frequently than constancy of either
dynamic coefficient. However, when the variance declines (DGP14) stepwise testing
can result in slightly increasedMSFE values, whether applied alone or in combination
with averaging over a confidence interval or set; this also applies inDGP9where breaks
occur in both lag coefficients and the variance increases. In general, small mean breaks
are hard to identify accurately and ignoring rather than modelling them often leads
to more accurate forecasts (Pesaran and Timmermann 2005; Boot and Pick 2020). In
line with such findings, the smallest MSFE values for DGP11 in Table 3 are achieved

15 Even with known break dates, the relative MSFE values for DGP9 are close to, and sometimes a little
larger than unity; the relative MSFE for the post-break estimator is then 0.980. Similar comments apply for
DGP13, where the post-break estimator with known break dates is 1.016.
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18 G. Altansukh, D. R. Osborn

by methods which average over all windows, followed by the stepwise testing method
combined with averaging over the EM confidence set.

The results for DGPs 9 and 13 emphasize that, with either HC or two-step inference,
use of a post-break estimator can lead to a deterioration in forecast accuracy compared
with full-sample OLS when a coefficient break occurs. However, averaging over the
EM set combined with testing down effectively eliminates this deterioration. In these
cases averaging using cross-validation weights or over all windows (Panel C) also
performs very well, with the latter having the lowest relativeMSFE across all methods
considered. Many of the forecasts which are averaged over all windows include a
substantial number of less volatile pre-break observations and their associated smaller
forecast errors help to reduce overall forecast errors. On the other hand, these two
averagingmethods of Panel C perform substantiallyworse thanmethods that explicitly
use coefficient break date inference in both DGPs 10 and 14, when coefficients change
alongside a decline in the disturbance variance.

The results just discussed shed new light on the importance of break inference for
forecasting. In particular, the better inference properties of the EM confidence set
compared with the BP confidence interval (Table 2) yield more accurate averaged
forecasts in almost all DGPs in Table 3.

4.2 Non-concurrent breaks

The forecast accuracy results in Table 3 represent a special case in which, when
both occur, the coefficient and disturbance variance breaks are concurrent. However,
in practice such breaks may not coincide and the two-step structural break testing
method of Sect. 2.2 is designed to cope with this. To assess the impacts of different
locations of a coefficient break point, Table 4 examines cases where this occurs earlier
(at 0.25T ) in the upper part of the table and later (0.75T ) in the lower part, with any
variance break applying at the sample mid-point; once again T = 100.16 Results for
DGPs 1–3 are excluded since these are unchanged from Table 3. Further, results for
the large coefficient break cases of DGPs 5 and 7 are omitted, since the pattern of
results carries over from Table 3. Although results are unchanged for DGPs 8 and 12,
these are included to facilitate comparison with DGPs 9–10 and 13–14, respectively.
To conserve space, methods that employ the BP interval are also excluded, as these
are almost always inferior to those using the EM set, and stepwise coefficient testing
is included only in combination with the EM set, as (in common with Table 3) this
effectively dominates use of stepwise testing without averaging over possible break
dates.

Despite coefficient and disturbance variance break dates not being concurrent, the
results for the early coefficient break case in Panels A and B of Table 4 show broadly
similar patterns to those in Table 3. In particular, two-step inference is beneficial when
breaks are small or especially when the disturbance variance increases (DGPs 4, 6, 9,
13). However, unlike in Table 3, forecast accuracy also improves when using two-step
over HC inference when the variance declines (DGPs 10 and 14). In circumstances

16 Results corresponding to Table 4 and also Table 5 but setting εT+1 = 0 (as in Appendix Table 8 ) are
available from the authors on request.
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Using structural break inference for forecasting time series 19

when detection and dating of a coefficient break are difficult (DGPs 4, 6, 9, 11, 13),
averaging over the EM confidence set reduces MSFE relative to using a point estimate
of the break date and a post-break estimator. Nevertheless, even for DGPs 11–13, and
in contrast to the corresponding cases in Table 3, there is generally little benefit here
from using stepwise coefficient testing with the EM set, presumably because there is
now a larger number of observations available after the true coefficient break date.
Averaging using cross-validation weights performs well and yields the lowest MSFE
across all methods when the breaks are small in DGPs 6 and 11, and also for the mean
shift and variance increase case of DGP13.

When the true coefficient break date occurs relatively late in the sample (lower part
of Table 4), the use of HC versus two-step inference has little impact on the MSFE
values. As noted in Sect. 2, when T̂c ≥ T̂v and for a given coefficient break date
estimate, the post-break estimator (3) uses OLS whether HC or two-step inference
is employed. Since the true Tc > Tv here, less gain may be anticipated from the
two-step method compared to the upper part where Tc < Tv . Otherwise, the relative
performances of the methods of Panels A and B are broadly similar to those for other
coefficient break locations in Table 3 and the upper part of Table 4. However, the
methods of Panel C are generally quite poor when the coefficient break occurs late
in the sample. For the cross-validation methods, this is explained by the final 25%
of the sample being reserved for a pseudo forecasting exercise, while averaging over
all windows gives relatively less weight to the true post-break observations when the
break occurs in the latter part of the sample.

Finally, Table 5 considers the case of a late (0.75T ) variance break in combination
with a mid-point coefficient break; hence in common with the upper part of Table 4,
the DGPs of Table 5 have Tc < Tv when breaks in both components occur. Results
are shown for the same methods as in Table 4, but for a different set of DGPs. In
particular, DGPs 1, 4–8 and 11–12 have constant variance and hence have unchanged
results from Table 3, and these results are not repeated. The results in Table 5 confirm
the benefits of using two-step structural break over HC inference when the variance
break (especially an increase) occurs after the coefficient break.17 It is also noteworthy
that averaging with cross-validation weights in Panel C also performs well when the
disturbance variance increases, but less well in the presence of a variance decrease.

4.3 Larger sample size

The effects of a larger sample size on forecast performance are explored using T = 200
in Appendix Tables9, 10 and 11, which show corresponding results to those of Tables
3, 4 and 5. Since break sizes are fixed across the sample sizes, it is not surprising
that the larger sample improves estimation of the break date and hence there is rela-
tively less gain from averaging over a confidence interval/set compared with using the
post-break estimator. Nevertheless, gains typically apply when the EM confidence set
is used and either there is no coefficient break (DGPs 1–3) or the variance increases
alongside a coefficient break (DGPs 9 and 13), with very little or no loss of accuracy

17 A similar pattern of results applies when the break dates are known, with the use of all two-step (FGLS)
methods improving on the use of HC inference.
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in other cases. It may also be noted that, for this larger sample size and a relatively
parsimonious model, the performance of stepwise testing (either alone or in combi-
nation with averaging over a confidence interval or set) performs well only for pure
intercept shifts when the variance is constant or increasing (DGPs 11–13).

It is also not surprising that the two-step method achieves less gain in forecast
accuracy over the use of HC coefficient break inference for this larger sample size,
with forecast gains particularly apparent for methods that rely on a point estimate of
the coefficient break date (that is, the post-break, trade-off and stepwise coefficient
testing methods) and when there is no parameter break of either type (DGP1) or the
disturbance variance increases (DGPs 9 and 13). The only exception to this statement
is for DGP9 in Appendix Table 10, where a coefficient break at 0.75T is combined
with a variance break at the sample mid-point; in this case HC inference leads to
better forecast performance. On the other hand, when the timing of the two breaks is
reversed inAppendix Table 11 , two-step inference leads to substantiallymore accurate
forecasts for this DGP.

Finally, considering the methods of Panel C that do not use a break date estimator,
while the cross-validationmethods perform relatively well in relation to other methods
in some cases, use of averaging over the EM confidence provides more accurate
forecasts overall.

4.4 Summary

The main findings from the simulations are as follows:

1. Although our context of possibly distinct coefficient and variance breaks differs
from other studies (Pesaran and Timmermann 2004, 2007; Tian and Anderson
2014) our results underline their finding that forecast accuracy gains can be
achieved over the use of a simple post-break coefficient estimator.

2. Averaging across potential break dates as in (4) typically improves forecast accu-
racy relative to methods based on a point estimate of the break date, including
trade-off and stepwise coefficient testing methods. For this purpose, the EM con-
fidence set performs better overall than the BP confidence interval, due essentially
to the poorer coverage of the true break date (when there is one) and smaller length
of the latter compared with the former.

3. Employing two-step rather thanHC inference for detecting and dating a coefficient
structural break generally reduces forecast errors in moderate or small samples
when the coefficients are, in fact, constant over time or when the disturbance
variance exhibits change (particularly an increase) at the same time as or at a period
subsequent to any coefficient break. Further, evenwhen it does not improve forecast
accuracy, two-step inference leads to little or no accuracy deterioration, because
two-step inference reduces over-rejections when no coefficient break occurs and
also more often detects true breaks when the variance increases during the sample
period.

4. When the disturbance variance is constant or increases over the sample period,
attempting to pinpoint the nature of a coefficient break by testing down typically
leads to improved forecast accuracy over treating all coefficients as changing.
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Fig. 1 US productivity growth series

However, when either HC or two-step inference is used, benefits do not reliably
accrue when the variance decreases, irrespective of whether this is adopted in
conjunction with interval/set averaging.

5. Averaging using cross-validation weights (recommended by Pesaran and Tim-
mermann (2007)) performs well relative to other methods in the presence of a
disturbance variance increase, but relatively poorly when the variance decreases
and is not suited to cases where a coefficient break occurs late in the sample period.

In summary, combining information from structural break tests and confidence
intervals/sets can improve forecast accuracy, particularly in small samples.

5 Application to US productivity growth

In order to investigate how well our proposed methods work with observed data, we
undertake a forecasting exercise for US labour productivity growth. The apparent
slowdown of US productivity growth in the current century and its possibly changing
dynamics are well documented in a number of studies [and more] (Syverson 2017;
Jorgenson et al. 2008; Benati 2007; Hansen 2001), so it is of interest to see how well
the range of methods we consider in Sect. 4 perform in a pseudo forecasting exercise
for such series.

We analyse three measures of labour productivity growth (growth in real output per
hour worked) published by the Bureau of Labor Statistics,18 namely productivity in
the non-farm business sector, manufacturing sector and manufacturing durable goods
sector. Data are quarterly seasonally adjusted values for the percentage change at an
annual rate. The non-farm business sector series covers the period between 1970Q1
and 2018Q4, with the other two series available from 1987Q1 to 2018Q4; see Fig. 1.
The final 20 quarterly observations are used for evaluating out-of-sample forecasting
performance. Although the selection of 20 quarters reflects the total sample sizes
available, especially for the sectoral series, a robustness analysis is discussed below
in relation to this choice.

Forecasts are based on a simple autoregressive model with a maximum lag length
of five. Given this maximum, all possible combinations of lags are considered (allow-

18 Data are retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series.
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ing “gaps”) and a choice among these made using the Hannan–Quinn information
criterion, with the final 20 observations excluded.19 Although no lags are selected
for non-farm business sector productivity,20 an AR(1) forecast model is employed to
allow possible dynamics,

yt = β0 + β1yt−1 + ut . (11)

The forecast model for the other series is selected as

yt = β0 + β1yt−1 + β2yt−4 + ut . (12)

Before turning to the forecasts, Table 6 reports the results of break inference (max-
imum one coefficient and one variance break) obtained by application of the two-step
method of Sect. 2.2 to the full sample of data for the respective model (11) or ( 12),
together with the unconditional mean and residual standard deviations in the implied
regimes (that is, up to and subsequent to an estimated break). No coefficient break is
detected in (total) non-farm business sector productivity growth, but a break is found in
the residual variance at 1983Q2, which implies a substantial reduction. Previous anal-
yses (Hansen 2001; Benati 2007) note that it can be difficult to detect a mean break in
US labour productivity, possibly because any change is gradual, while a variance break
at 1983Q2 is in line with many studies relating to the so-called Great Moderation for
the US (McConnell and Perez-Quiros 2000; Summers 2005). Coefficient breaks are
detected for the other series in Table 6, with large mean reductions; the EM confidence
set in particular indicates substantial uncertainty about the coefficient break dates. A
variance break for durable goods sector productivity growth is also detected, which
may or may not be concurrent with the coefficient break date. Although not shown,
analysis of the full sample data does not point to any break during our post-sample
forecast period.21

To conduct the forecasts, data to 2013Q4 are initially used for estimation and
testing, with a one-step ahead forecast computed for 2014Q1. Structural break tests
(for coefficients and, where appropriate, residual variances) allow a single22 break
with trimming of ε = 10%. Data for 2014Q1 are added and forecasts for 2014Q2
are computed in the same way, and so on through the remaining period. Although
repeated application of structural break tests may raise a multiple testing problem
(Robbins 1970; Chu et al. 1996) , generally the same conclusions are reached as to
the existence or non-existence of breaks with the estimates of break dates remaining
at the same temporal locations.

19 We also considered re-selecting models as each observation is added during the pseudo forecast period.
However, the selected models remain unaltered, except that the last (fourth) lag is dropped for the manu-
facturing durable goods sector for some estimation samples.
20 Akaike, Schwarz and Hannan–Quinn information criteria also selected no lags.
21 This was confirmed by applying the Bai and Perron (1998) multiple coefficient breaks test procedure
with HC inference over the full sample, allowing a maximum of 3 breaks.
22 We also experimented by allowing a maximum of three structural breaks, but found no additional breaks
except for one additional variance break in each of the manufacturing and durable goods productivity series.
Allowing for these was found to make no substantive change in the forecast errors.
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Table 7 shows that no method exhibits a forecast accuracy gain over the full sample
benchmark model for non-farm business sector productivity growth; this is in line
with the simulation results of Sect. 4 when no coefficient break occurs, as indicated
in Table 6 for this series. Although not always the case in the simulations when
a variance decrease applies, the two-step procedure here leads to reduced forecast
errors (measured by MSFE) compared to HC inference. Averaging using either the
BP confidence interval or the EM set improves accuracy over the post-break estimator,
with the EM set leading to more accurate forecasts. Again in line with Sect. 4, for both
types of inference the relative MSFE is reduced to close to one by use of the EM set
and stepwise testing; for HC inference, the reduction is about 15% compared with the
post-break method. The trade-off method also reduces MSFE compared to the post-
break estimator, but is inferior to averaging over the EM set with HC inference (as in
the simulations), while cross-validation loses very little compared with the benchmark
model.

Since large breaks apparently occur in the coefficients of the two manufacturing
sector productivity series (Table 6), it is unsurprising that all methods perform better
in Table 7 in forecasting these series than the full sample benchmark model, with this
especially true for methods which use information about the estimated break date. Our
confidence interval/set methods perform well for both series, with averaging using the
EM set yielding the smallest MSFE value across all methods. HC and two-step pro-
cedures lead to almost identical results for manufacturing productivity growth, where
there is apparently no variance break, except when the stepwise testing procedure is
used in combination with averaging over a confidence interval or set. The situation
where stepwise testing leads to poorer forecasts than averaging alone was also noted in
our simulations and can be associated with the variance decrease. For the manufactur-
ing durable goods series, which apparently experiences both coefficient and variance
reductions, two-step inference leads tomore accurate forecasts than does the use of HC
inference across all methods. Indeed, the improvements here from two-step inference
are more impressive than indicated for DGP14 in Sect. 4. Finally, the relatively poor
performance of the methods in Panel C of Table 7 is unsurprising, since the coefficient
break occurs towards the end of the estimation period.

The Diebold and Mariano (1995) test is used to check whether the differences in
forecast accuracy between a given forecast method and the full sample benchmark
model are statistically significant. Improvements are significant at 10% or less for
most methods when analysing the manufacturing sector productivity series. Two-step
inference generally delivers forecasts that significantly improve on the benchmark
for the manufacturing durable goods sector model, but this is not the case when HC
inference is employed. No statistical evidence is found against equal predictive accu-
racy for all methods against the benchmark for the non-farm business sector; this is
unsurprising since there is apparently no coefficient break for this case (Table 6).

Finally, to check the robustness of the results to the choice of the out-of-sample
window, forecast accuracy measures are re-calculated for forecast samples of 15, 25
and 30 quarters. The results in Appendix Table 12 show that the good performance
of the proposed confidence interval/set methods remains robust, yielding the smallest
MSFE value for most forecast samples. Other results are also generally robust, except
that (compared with Table 7) forecast accuracy relative to the benchmark deteriorates
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in the manufacturing and manufacturing durables series when the forecast window
length is 30 quarters. This relates to the coefficient break detected in each case around
2010, leaving relatively few observations for estimation of the forecast models in some
sub-samples.

6 Conclusion

This paper investigates the usefulness for forecasting of employing a wider range
of information relating to structural break testing than implied by the use of a point
estimate of the break date in the model’s coefficients. In particular, we propose using a
forecast combination approach based on the confidence interval or confidence set for
the estimated break date, thereby avoiding using a single and potentially poor break
date estimate. In this context, we investigate the confidence interval associated with
Bai and Perron (1998) and the confidence set of Eo andMorley (2015). Our simulation
results show that the Eo and Morley (2015) set is particularly useful for this purpose
and performs well relative to other methods, including those based on a point estimate
of the break date (namely post-break and trade-off methods) and others that do not use
any break information (cross-validation and averaging across all possible windows).
Although testing whether breaks apply to individual coefficients can further improve
forecast accuracy, it is not recommended that such a testing down procedure be used
when the disturbance variance declines during the sample period.

A second issue related to inference that we examine concerns the treatment of pos-
sible breaks in the disturbance variance, comparing results based on heteroskedasticity
consistent coefficient break tests with two-step inference and use of FGLS estimation.
Our results show that two-step inference generally reduces forecast errors in moderate
or small samples when the true coefficients are constant over time or when the vari-
ance exhibits change at the same time or subsequent to a coefficient break. Further,
when two-step inference does not lead to improved forecast accuracy, its use does not
involve a substantive deterioration either.

An application to US productivity growth underlines the practical usefulness of the
methods proposed in the paper for forecasting in the presence of structural breaks.
Our analysis considers the situation where at most one structural break applies to
each of the coefficients and the disturbance variance, with the two possible breaks not
necessarily concurrent; in further work, we plan to examine situations where these
characteristics may each be subject to multiple breaks.
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Appendix A: Other forecast methods

Cross-validation

The cross-validation approach proposed by Pesaran and Timmermann (2007) con-
siders all possible estimation windows of different lengths and chooses the single
window which achieves the smallest pseudo out of sample forecast error. Specifically,
for each possible starting point m for the estimation window, the one which generates
the smallest MSFE is selected as

m∗(T , w̃, w) = arg min
m=1,...,T−w̃−w

⎧
⎨

⎩w̃−1
T−1∑

t=T−w̃

(yt+1 − x′
t β̂m:t )2

⎫
⎬

⎭

where β̂m:t is the OLS estimate based on the observation window [m : t] and m ∈
1, . . . , T − w̃− w, having a minimum estimation window w and reserving the last w̃
observations for the pseudo out of sample evaluation. The forecast model uses β̂ ′

m∗:T
estimated over the sample [m∗ : T ]. We use w=0.1T and w̃=0.25T .

Trade-off

This method trades off bias against forecast error variance by selecting v1 to minimize
(Pesaran and Timmermann 2007)

f (v1) = λ2(μ′ ∑
v1

∑−1

v
xT )2 + 1

v
(x′

T

∑−1

v
xT )2 + λψ

v
(x′

T

∑−1

v

∑
v1

∑−1

v
xT )

whereμ = (β̂2−β̂1)/σ̂2, ψ = (σ̂ 2
1 − σ̂ 2

2 )/σ̂ 2
2 , λ = v1/v and v = v1+v2,with v1 and

v2 the number of pre- and post-break observations, respectively, β̂i and σ̂ 2
i (i = 1, 2)
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the respective coefficient and variance estimates, and

∑
v1

= v−1
1

T̂c∑

t=m

x′
t−1xt−1,

∑
v2

= v−1
2

T∑

T̂c+1

x′
t−1xt−1,

∑
v

= λ
∑

v1
+(1 − λ)

∑
v2

.

With v1 selected to minimize this function, the coefficient vector used in forecasting
is β̂T̂c−v1+1:T estimated over the sample of [T̂c − v1 + 1 : T ].

Forecast combination over estimation samples

Forecasts using the samemodel estimated over different sizes ofwindows are averaged
to generate a single forecast for T + 1 (Pesaran and Timmermann 2007; Pesaran and
Pick 2011). Specifically, in our notation and using equal weights,

ŷT+1(T , w) = (T − w)−1
T−w∑

m=1

(x′
T β̂m:T ).

Usingweights proportional to the inverse of the associated pseudo out of sampleMSFE
values (Pesaran and Timmermann 2007), the cross-validation weighted average is

ŷT+1(T , w̃, w) =
∑T−w̃−w

m=1 (x′
T β̂m:T ) [MSFE(m|T , w̃)]−1

∑T−w̃−w

m=1 [MSFE(m|T , w̃)]−1
.

Appendix B: MSFE ratios, no disturbance in the forecast period

See Table8.

Appendix C: Larger sample performance tables

See Table 9.
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