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Abstract
Energy planning and climate policy require understanding long-run energy demand 
patterns. Electricity demand further is important because energy services derived 
from electricity typically do not have substitution possibilities from other fuels. By 
employing dynamic panel models, we estimate the long-run price and output elas-
ticities of aggregate industrial electricity demand for high-income (mostly OECD) 
and middle-income (mostly non-OECD) countries. The unbalanced data span 1978–
2016 and include 35 high-income countries and 30 middle-income countries. Our 
dynamic panel estimates address nonstationarity, heterogeneity, and cross-sectional 
dependence. We believe these are the first such panel estimates for middle-income/
non-OECD countries and among the few such estimates for high-income/OECD 
countries to appear in the literature. The output elasticity for high-income coun-
tries typically was significantly below unity, around 0.5, and the price elasticity was 
around − 0.25 (and was statistically significant). For middle-income countries, the 
output elasticity was greater than unity and was likely significantly larger than the 
output elasticity for high-income countries, whereas the price elasticity was small 
and insignificant for middle-income countries.
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1 Introduction

The econometric modeling of energy/electricity demand (e.g., determining income/
output and price effects) improves understanding regarding how energy/electricity 
consumption and its economic drivers have evolved historically, and how projec-
tions of income/output and price will shape future energy/electricity demand. Plan-
ning energy strategies and climate policy requires insights about long-run energy/
electricity demand patterns. Specifically, these insights are useful to demand-side 
policymakers for managing electricity consumption using tools such as energy 
prices, tax rates, and tariffs. These same insights are also useful to the policymakers 
dealing with supply and security of energy/electricity to be generated to meet the 
demand adequately.

The literature includes various modeling attempts to gain insights into long-
run energy demand, by examining various factors that influence that demand (e.g., 
energy prices, income/output/value added). While there is a substantial literature 
applying single-equation models to estimate the long-run energy price and eco-
nomic activity elasticities of residential and transport energy demand, for example, 
there have been very few similar studies focused on industry energy demand (and 
even fewer studies on industry electricity demand). Although industry energy con-
sumption has remained fairly steady at one-third to one-quarter of total energy con-
sumption, electricity’s use in industry has increased substantially.1

The share of electricity consumption in industry’s total energy consumption has 
been growing steadily since the 1970s, as Fig. 1 demonstrates. The figure shows the 
traces of electricity’s share of energy consumption for OECD Asia-Oceania, OECD 
Europe, OECD North America (Canada and US), and for the 30 middle-income 
countries in our sample. The share of electricity has been growing in nearly all of 
the individual 30 middle-income countries (that make up our sample) as well, and 
has climbed to over 30% in several of them.2

Electricity also is important because industrial energy services derived from elec-
tricity typically do not have substitution possibilities from other fuels. For exam-
ple, ventilation and air conditioning, lighting, cooling, and machine tool operation 
usually require electricity only. Indeed, Steinbuks (2012), who examined UK dis-
aggregated manufacturing data, concluded that electricity was a poor substitute for 
other fuels as well, a finding that was true even for heating processes in which inter-
fuel substitution is technologically more likely. Furthermore, electrification is key 
to unlocking efficiency improvements in industry, like the electric arc furnace and 
electric heat pumps.

We estimate price and output elasticities of aggregate industry electricity demand 
for panels of 35 high-income (mostly OECD) and 30 middle-income (mostly 
non-OECD) countries employing a heterogeneous dynamic panel estimator that 

1 Electricity also played a prominent role in the so-called Second Industrial Revolution, which occurred 
over the last quarter of the nineteenth century and the beginning of the 20th (Rosenberg 1998).
2 Those countries with a high electricity share are Chile, Ecuador, El Salvador, Guatemala, Jordan, Leb-
anon, Mexico, Morocco, Peru, South Africa, and Turkey.
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addresses nonstationarity and cross-sectional dependence. Some of the earlier indus-
try-focused literature have addressed issues like controlling for underlying forces 
or efficiency improvements (Dilaver and Hunt 2011), asymmetric price responses 
(Adeyemi and Hunt 2014), or dynamic panel bias (Cialani and Mortazavi 2018). 
However, that literature has mostly ignored other important issues—e.g., nonstation-
arity and cointegration, cross-sectional dependence, heterogeneity, and allowing for 
dynamics more complicated than the partial adjustment model. In addition, there 
has been a limited number of panel studies of aggregate industry energy/electric-
ity consumption for OECD countries, and no such coverage for non-OECD country 
panels3—with only a rather limited number of single, non-OECD country studies—
because of a lack of energy/electricity price data for countries outside OECD/IEA.

Hence, we contribute to this literature by: (i) considering a larger high-income/
OECD panel than has been examined before, and one that focuses on industry elec-
tricity demand and estimates an industry output elasticity as opposed to consider-
ing aggregate income/GDP measures, as have previous studies; (ii) applying a more 
flexible dynamic model; and (iii) using methods that address heterogeneity and 
cross-sectional dependence and thereby account for both (a) unobserved factors that 
commonly affect the panel members and (b) country-specific factors that make each 
panel member different from other members. Moreover, for the first time we present 
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Fig. 1  Electricity’s share of industry energy consumption, 1971–2017. Data from IEA’s World Energy 
Balances. OECD Asia-Oceania includes Australia, Israel, Japan, South Korea, and New Zealand; OECD 
Europe excludes Turkey; OECD North America is comprised of Canada and USA; Middle-income coun-
tries are listed in Appendix Table 7 (and include Chile, Mexico, and Turkey)

3 Van Benthem and Romani (2009) do analyze a panel of 17 mostly non-OECD countries and appear 
to consider both industry energy consumption and an index of end-use industry energy price. But they 
include (a polynomial of) GDP per capita, and thus, their estimations are not of an industry demand 
function per se.
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estimates of price and output elasticities of industry electricity based on a panel 
of middle-income, mostly non-OECD countries, roughly three-quarters-to-half of 
which, to our knowledge, have never been analyzed before (even in a single country 
setting). So, for the first time to our knowledge, we are able to answer the question: 
whether industry price and output elasticities differ between high-income/OECD 
and middle-income/non-OECD countries and, if so, by how much?4 In addition, we 
derived policy insights from our findings to inform demand-side management, sup-
ply-side planning, and environmental aspects of industrial electricity consumption.

2  Literature review

We surveyed papers that investigated the effects of both output and price on indus-
trial energy/electricity demand at the aggregate (rather than firm) level. While there 
have been several single country OECD estimates (particularly so for UK and US), 
we concentrate our review on OECD panel analyses. Hence, we first grouped papers 
that considered cross-national (as opposed to inter-state/province) panels, and we 
summarized such studies in Table  1. Next, since there have been relatively few 
papers that focused on analyzing output and price elasticities of industry electricity/
energy demand in non-OECD countries (effectively no panels, only single country 
studies), we summarized these (single-country) papers in Table 2 and discuss them 
briefly below as well. In other words, we have attempted to produce a more or less 
exhaustive list of OECD panel studies and single-country non-OECD studies.

We focus on the long-run estimations of the elasticities. However, many papers 
that employed a dynamic model did not report the statistical significance of their 
long-run estimations; yet, they did report the significance of their short-run estima-
tions, and so, from those reported statistics we can surmise the likely significance of 
the long-run estimations.

Industry energy, cross-national panel estimations of price and output elasticities 
have focused on OECD/European panels as outlined in Table  1. All five of these 
cross-national panel analyses have used the less flexible dynamic partial adjustment 
model, have employed methods that did not address cross-sectional dependence, 
and were homogeneous. They also did not address nonstationarity and cointegration 
properties of the data used.5 (These omissions are despite the fact that four of the 
five papers are rather recent.)

5 The preferred estimator of Csereklyei (2020)—between effects (BE)—essentially estimates a static, 
cross-section. However, there is some evidence that BE is robust to nonstationarity, and possibly, coin-
tegration (e.g., Pesaran and Smith 1995). Adeyemi and Hunt (2007) considered only nonstationarity 
but not cointegration properties of their variables. Moreover, they performed unit root tests only for the 
industrial energy demand but not for price and income variables. Lastly, they used only the first-genera-
tion panel unit root tests, which do not account for cross-sectional dependency that most likely exists in 
the data used.

4 In addition to the absence of previous non-OECD panel analyses, even meta-studies, like Labandeira 
et al. (2017), do not appear to have the resolution/available data to determine whether/how much elastici-
ties vary between OECD and non-OECD countries at the industry sectoral level.
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Adeyemi and Hunt (2007) estimated long-run output and price elasticities of 
0.56 and − 0.22, respectively, for a panel of 15 OECD countries. Given that the 
short-run estimate for price was highly insignificant (t-value below 0.7), the long-
run estimate was likely insignificant as well. (In a separate regression, Adeyemi 
and Hunt allowed for asymmetric responses to price changes, and some of those 
coefficients were statistically significant.)

Chang et al. (2019) considered a panel of 20 OECD countries and 16 industry 
sectors. They reported long-run output and price elasticities of 0.88 and − 0.05, 
respectively, for their full panel and preferred specification. In addition, Chang 
et  al. estimated elasticities for a panel of the five most energy intensive sectors 
and a panel of the remaining less energy intensive sectors. Their long-run results 
suggested that energy-intensive sectors have larger output elasticities of energy 
demand than do less-intensive sectors: 1.23 compared to 0.48, respectively. But 
energy-intensive sectors are less price sensitive than less-energy-intensive sec-
tors, i.e., they calculated long-run price elasticities of − 0.13 and − 0.23 for the 
intensive and less-intensive panels, respectively. All three long-run price elas-
ticities were likely insignificant since the short-run price elasticities were highly 
insignificant.

Table 2  Individual non-OECD country studies of industrial electricity (or energy) demand

A analyzed quarterly data
B dependent variable was industry energy consumption
* and ** indicate 10% significance level and 5% and higher significance levels, respectively
NR statistical significance not reported, NS not statistically significant, OLS ordinary least squares, DOLS 
dynamic OLS, AR autoregressive, STSM  structural time series model, ARDL autoregressive distributed 
lags bounds testing approach, VECM  vector error correction model, SUR seemingly unrelated regres-
sion; TVPKF time varying parameter based of Kalman filter method

Study Period Country Method Long-run elastici-
ties

Output Price

El-Shazly (2013) 1982–2010 Egypt DOLS, AR(2) 1.33** 0.05NS

Bose and Shukla (1999) 1985–1994 India OLS 0.73** − 0.04NS

Shirani-Fakhr et al. (2015)a 2000–2011 Iran STSM 0.85NR − 0.47NR

Campbell (2018) 1970–2014 Jamaica ARDL 1.22** − 0.25*
Khan and Qayyum (2009) 1970–2006 Pakistan ARDL 0.50NS − 0.87*
Jamil and Ahmad (2010) 1960–2008 Pakistan VECM 0.42** 0.17NS

Alter and Syed (2011) 1970–2010 Pakistan VECM 1.04** − 0.56**
Jamil and Ahmad (2011) 1970–2008 Pakistan VECM 1.61** − 1.22**
Javid and Qayyum (2014) 1972–2012 Pakistan STSM 1.29NR 0.21 NR

Al-Arenan et al. (2020) b 1986–2015 Saudi Arabia STSM 0.60NR − 0.34 NR

Hasanov (2019) 1984–2016 Saudi Arabia ARDL 0.21** − 0.09*
Inglesi-Lotz and Blignaut (2011) 1993–2006 South Africa SUR 0.71** − 0.87**
Dilaver and Hunt (2011)b 1960–2008 Turkey STSM 0.15** − 0.16**
Arisoy and Ozturk (2014) 1960–2008 Turkey TVPKF 0.98** − 0.01**
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Sharimakin et  al. (2018) estimated industrial energy demand for 29 European 
countries over 1995–2009. Their long-run panel elasticities for output and price 
of 0.83 and − 0.77, respectively, are relatively large compared to the previous two 
studies (at least their price elasticity is large in absolute terms). The methodology 
they employed, Multilevel Data Structures Modeling, while common in several dis-
ciplines (e.g., political science, education, and health),6 has rarely been applied in 
energy demand modeling. One obvious reason for its lack of use in energy demand 
is that the highly data dependent method requires having sufficient sample size at 
all levels of hierarchy to satisfy size and power conditions (other issues are (i) being 
less robust and (ii) being more specification sensitive; see, e.g., Gelman 2006; Ponce 
2013).

The only panel industry aggregate/country electricity demand studies we know 
of are Cialani and Mortazavi (2018) and Csereklyei (2020), who considered nearly 
identical panels of European countries. Cialani and Mortazavi estimated a statisti-
cally significant long-run price elasticity for industrial electricity of − 0.2; however, 
they did not estimate an industry output elasticity (but rather, included economy-
wide GDP in the regression, making that coefficient difficult to interpret in terms of 
industry electricity demand). Csereklyei estimated considerably higher price elas-
ticities of between − 0.75 and − 1.0, depending on method,7 and similarly, did not 
estimate an industry output elasticity (but rather, considered economy-wide GDP 
per capita).

While not a panel analysis, per se, Adeyemi and Hunt (2014) estimated industry 
energy consumption elasticities for 15 OECD countries individually. Their output 
elasticity estimates ranged from 0.3 to 0.96 with an average of 0.6. Rather than esti-
mate a single price elasticity, Adeyemi and Hunt (2014) were interested in asym-
metric price responses and uncovered substantial heterogeneity among the OECD 
countries in that regard.

Table 2 displays the results for the non-OECD industry studies we found (all sin-
gle-country, and all but two focused on electricity). The countries analyzed skewed 
towards West and South Asia, with several countries examined more than once 
(and they considered only eight different countries in total). The estimated elastici-
ties for both output and price varied considerably—from insignificant to small and 
significant to relatively large and significant (in absolute value)—and that variation 
occurred among the studies that examined the same country (and, sometimes, by the 
same authors), as well as for the table as a whole.

Thus, it appears we have very little understanding of the price and output elastici-
ties for aggregate industry electricity/energy consumption for non-OECD countries 
and a limited appreciation for those elasticities for OECD countries; such under-
standing is particularly limited at an electricity panel level, with only two highly 

6 Some examples of multilevel modeling in those disciplines are Steenbergen and Jones (2002), Ronfeldt 
et al. (2013) and Islam et al. (2006).
7 Csereklyei estimated a lower price elasticity of − 0.4 when employing System Generalized Method 
of Moments (SGMM) with a time trend, but this does not appear to be Csereklyei’s preferred SGMM 
estimation.
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divergent panel industry price estimates for electricity demand and no panel indus-
try output estimates for electricity demand.

3  Data

Both electricity price for industry (in 2015 US cents per kilowatt hour) and electric-
ity final consumption for industry (in Mtoe) are from Enerdata’s Global Energy and 
 CO2 database.8 The price data begin in 1978. Energy price data—particularly for 
non-OECD countries—can be challenging to assemble (almost certainly a reason for 
the dearth of non-OECD analyses). The price series have been expanded/enhanced 
by using a real electricity price index from Pesaran et al. (1998) for Indonesia, India, 
and Taiwan, and by using a real electricity price index for industry from IEA for 
several IEA countries.

Real industry value added (in constant 2010 USD) was compiled from sev-
eral sources (i.e., IEA, OECD, World Bank, and national statistical agencies). 
Observations for both electricity prices and value added are unbalanced. The 
unbalanced data span 1978–2016 and include 35 high-income (mostly OECD) 
countries and 30 middle-income (mostly non-OECD) countries; those countries 
and their data coverage are summarized in Appendix Table 7.

Table 3 reports summary statistics—displayed separately for the high-income 
and middle-income panels. The mean electricity price is actually slightly higher 
for the middle-income panel, but the spread of prices is much larger for that 
group than for the high-income countries. Calculating the average electricity 
intensity of each group—by dividing the mean of electricity consumption by 
the mean of value added—suggests that industry is about 13% more electricity 
intensive on average in the middle-income countries than in the high-income 
countries.

Table 3  Summary statistics for regression data, high-income and middle-income panels

Variable Mean SD Min Max

High-income (35 countries)
VA (2010 USD) 2.59 ×  1011 4.95 ×  1011 8.51 ×  108 3.25 ×  1012

Electricity (Mtoe) 7.24 14.24 0.018 98.22
Price (2015 US cents/kWh) 10.67 3.93 2.80 30.44

Middle-income (30 countries)
VA (2010 USD) 9.22 ×  1010 1.22 ×  1011 1.16 ×  109 7.13 ×  1011

Electricity (Mtoe) 2.92 4.89 0.018 41.08
Price (2015 US cents/kWh) 12.05 10.90 0.96 187.58

8 Enerdata Global Energy &  CO2 database. https:// www. enerd ata. net/ resea rch/ energy- market- data- co2- 
emiss ions- datab ase. html

https://www.enerdata.net/research/energy-market-data-co2-emissions-database.html
https://www.enerdata.net/research/energy-market-data-co2-emissions-database.html


1301

1 3

Industry electricity price and output elasticities for…

Figures 2 and 3 display balanced (aggregate) data for high-income and mid-
dle-income countries covering the periods 1980–2016 and 1994–2014, respec-
tively. Both figures illustrate that industrial electricity consumption has closely 
followed industrial value added for most of those periods—this is particularly so 
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Fig. 2  Industry value added (VA) and electricity consumption (E) are shown (on the left and right y-axes, 
respectively) for a balanced panel of 27 high-income (mostly OECD) countries over 1980–2016
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Fig. 3  Industry value added (VA) and electricity consumption (E) are shown (on the left and right y-axes, 
respectively) for a balanced panel of 30 middle-income (mostly Non-OECD) countries over 1994–2014
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for middle-income countries (Fig.  3). However, for the high-income countries 
(Fig. 2), consumption and value added have moved in opposite directions since 
2011.

High-income industrial electricity consumption grew from 178.4 Mtoe 
in 1980 to 234.9 Mtoe in 2016—a compounded annual growth rate of 0.8%, 
whereas industrial value added increased from 5.8 trillion 2010 USD in 1980 
to 10.3 trillion 2010 USD in 2016—a compounded annual growth rate of 1.6%. 
These compounded annual growth rates were several times higher for middle-
income countries—i.e., 4.4% for industrial electricity consumption and 3.2% for 
industrial value added over 1994–2014. Despite the large differences in com-
pounded annual growth rates between the two sets of countries, total industrial 
electricity consumption and value added for middle-income countries was half 
or less than that compared to high-income countries in 2014.

While several manufacturing sectors are known to be energy intensive—
pulp and paper, chemicals, non-metallic minerals (e.g., glass, cement), iron 
and steel, and non-ferrous metals (e.g., aluminum smelting)—only non-ferrous 
metals are also electricity intensive, i.e., electricity comprises over half of the 
sector’s energy consumption. For those other four sectors, electricity’s share 
of energy consumption is similar to industry’s overall share (at least for OECD 
countries). The share of industry electricity consumption for sectors that are 
non-energy intensive (e.g., transport equipment, machinery, wood products) 
ranges from 30–40% for OECD countries, but is considerably higher for mid-
dle-income countries at closer to 60%. However, in OECD countries, these non-
energy-intensive sectors have become more electricity intensive since electric-
ity’s share of energy consumption in these sectors has increased to over 40% for 
OECD North America and Europe and to 60% for OECD Asia-Oceana. So, the 
importance of electricity in industry is a combination of industry structure (i.e., 
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energy-intensive sectors vs. non-energy-intensive sectors) and the extent of elec-
trification in industry (i.e., electricity’s share of the energy mix in any particular 
sector).

Figure  4 shows the industry electricity prices for the 65 countries over 
1978–2016 (in 2015 US cents/kWh). The figure illustrates the substantial dis-
parity in yearly electricity prices for the individual countries (i.e., the empty cir-
cles). Indeed, any given year, countries can experience very different prices from 
the global average (the filled in circle). This yearly cross-country range is very 
large relative to the variation over time of the average price for all countries.

For the variables we consider, cross-sectional correlation/dependence is 
expected because of, for example, regional and macroeconomic linkages that 
manifest themselves through (i) global shocks (income/prices); (ii) institutional 
memberships like OECD and World Trade Organization; and (iii) technology 
transfer. The results of the Pesaran (2015) cross-sectional dependence (CD) 
test,9 which employs the correlation coefficients between the time-series for each 
panel member, are shown in Table  4. For all three variables, the test rejected 
the null hypothesis of weak cross-sectional dependence at the highest level of 
significance. For each variable considered, the absolute value mean correlation 
coefficients ranged from 0.4 to 0.75 (see Table 4). The difference between the 
absolute value mean correlation coefficient and the mean correlation coefficient 
suggests that for prices, some of the correlations are negative (as well as posi-
tive), but output and electricity consumption tend to move in concert among the 
countries.

Recently, Pesaran (2015) argued that when the number of cross-sections is 
large, the null hypothesis of independence is extreme, and a null of weak cross-
sectional dependence is more appropriate. Furthermore, Pesaran argued that 
cross-sectional dependence is a concern when it is pervasive (across the panel 
members) and of the strong form (i.e., caused by common shocks or trends), but 
weak cross-sectional dependence does not pose serious issues. When the errors 
of panel regressions are strongly cross-sectionally correlated, standard estima-
tion methods can produce both inconsistent parameter estimates and incorrect 
inferences (Baltagi and Pesaran 2007; Kapetanios et  al. 2011; Pesaran 2015). 
Thus, because cross-sectional dependence can impart bias problems as well as 

Table 4  Pesaran (2015) CD test 
and Correlation Coefficients, 65 
Countries, unbalanced

*p-value < 0.001. Corr. coeff. = mean correlation coefficient; Abs. 
corr. coeff. = mean absolute vale correlation coefficient. Null hypoth-
esis is weak cross-sectional dependence

Variables CD-test Corr. coeff Abs. corr. coeff

lnVA 163* 0.67 0.75
lnE 113* 0.46 0.64
ln Price 32* 0.13 0.41

9 This test is implemented via the Stata command xtcd, which was developed by Markus Eberhardt.
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inefficiency, only making adjustments to the standard errors (e.g., via Driscoll 
and Kraay 1998) may not be sufficient.

The variables analyzed are also trending and may be nonstationary—in other 
words, their mean and/or variance might change over time. The Pesaran (2007) 
panel unit root test for heterogeneous panels (CIPS), which allows for cross-
sectional dependence to be caused by a single (unobserved) common factor,10 
suggests that the variables are likely nonstationary in levels, but stationary in 
first differences—see Table  5. When ordinary least squares (OLS) regressions 
are performed on time-series (or on time-series cross-sectional) variables that 
are not stationary, then measures like R-squared and t-statistics are unreliable, 
and there is a serious risk of the estimated relationships being spurious if the 
regression residuals are not stationary (Kao 1999; Beck 2008; Enders 2015).

Lags are added to unit root tests to correct for potential serial correlation. 
The version of the CIPS test that we run does not allow for heterogenous lag 
structure. So to frame the optimal numbers of lags, we first run a procedure that 
determines the number of lags for each panel member that minimizes either 
the AIC or BIC in a panel ADF regression. The panel average number of lags 
chosen ranged from 0.26 to 1.12; hence, for robustness we report results for 
(homogenous) panel lags of 0–2.

Table 5  Pesaran (2007) CIPS 
Panel Unit Root Test Results, 65 
Countries, unbalanced

p-values shown. Null hypothesis is the series is I(1). Version of CIPS 
test used does not allow country-specific lag structure. A version of 
IPS test that does so suggested that panel average optimal number of 
lags was between 0.26 and 1.12 (depending on variable and AIC vs. 
BIC)

Variables Constant without trend Constant with trend

Number of lags

0 1 2 0 1 2

ln VA 1.000 1.000 1.000 0.995 0.009 0.829
lnE 0.998 0.984 0.994 1.000 1.000 1.000
ln Price 0.066 0.139 0.387 0.943 0.896 0.995
Δ lnVA 0.000 0.000 0.000 0.000 0.000 0.000
Δ lnE 0.000 0.000 0.000 0.000 0.000 0.000
Δ ln Price 0.000 0.000 0.000 0.000 0.000 0.000

10 This test is implemented via the Stata command pescadf, which was developed by Piotr Lewandowski.
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4  Model and methods

Following previous industry panel analyses (e.g., Adeyemi and Hunt 2007; 
Chang et  al. 2019), we model industry electricity consumption as a function 
of energy price and industry output.11 Adeyemi and Hunt (2007) noted that 
the single equation, log-linear functional form has become standard in energy 
demand modeling. Further, Pesaran et al. (1998) claimed that this approach typi-
cally outperforms more complex specifications. Further still, to incorporate the 
gradual adjustments imposed by new capital/technology gradually replacing 
older vintages, we consider a dynamic, adjustment model whereby the lag of the 
dependent variable (electricity consumption) is included on the right-hand-side 
along with industrial output/value added, energy price, and their one period lags 
(short-hand notation, ARDL (1, 1, 1)):

where subscripts it denote the ith cross section and tth time period, E is total final 
electricity consumption for industry, VA is real value added for industry, and price 
is the real electricity price for industry, α is a cross-sectional specific constant, � are 
common time effects, the βs are (potentially) cross-sectional specific coefficients to 
be estimated, and ε is the error term. So, the long-run value added and price elastici-
ties, respectively, are:

Another popular model in the literature is the partial adjustment model—
ARDL (1,0,0)—where only the dependent variable (electricity consumption) is 
lagged. In this case, the long-run elasticities would differ from Eq.  (2) in that 
there would be no �3 and �4 terms.

We believe it is likely that the elasticities will not be the same for each coun-
try—i.e., there should be a substantial degree of heterogeneity. And if one mis-
takenly assumes that parameters are homogeneous (when the true coefficients 
of a dynamic panel in fact are heterogeneous), then all parameter estimates of 
the panel will be inconsistent (Pesaran and Smith 1995). Hence, we use a mean 
group estimator (MG) that first estimates cross-sectional specific regressions and 
then averages those estimated individual-country coefficients to arrive at panel 
coefficients (standard errors are constructed nonparametrically as described in 
Pesaran and Smith 1995).

(1)
lnE

it
= �

i
+ �

t
+ �1

i
ln VA

it
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ln price

it
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i
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it−1 + �4
i
ln price

it−1 + �5
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lnE

it−1 + �
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(2)
�1 + �3
(

1 − �5
) and

�2 + �4
(

1 − �5
)

11 If we were employing a pure time series approach, rather than an (unbalanced) panel approach, we 
would consider a more comprehensive model, as in Hasanov and Mikayilov (2020), rather than a reduced 
form model.
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When using MG methods, there are two ways to calculate panel long-run 
parameters from a dynamic model.12 First, one applies to Eq.  (2) the panel 
short-run estimates (which themselves are the average of the individual country 
short-run coefficients). Such an approach is referred to as the long-run average 
(LRA) and is the most common approach in the literature (standard errors are 
then computed via the Delta method). The second approach first computes the 
long-run coefficient for each country (again applying Eq. 2) and then computes 
the average (of country-long-run coefficients) to arrive at the panel coefficient. 
This average long-run (ALR) method is closer to the spirit of MG estimations 
since the panel long-run coefficient is directly based on the average of the indi-
vidual country long-run coefficients.

In addition to the individual country elasticities being different, there are 
several reasons why the panel average elasticities for high- and middle-income 
countries may differ (although given data constraints, e.g., a lack of information 
on capital stock vintages, it is beyond the scope of the present paper to defini-
tively assess which reason may govern). For example, price elasticities might 
differ because middle-income countries are more likely to subsidize electric-
ity. Output elasticities could differ because technology differs. And the technol-
ogy argument could work in either direction: high-income countries could have 
access to better/more efficient technology, or middle-income countries could 
have newer capital stocks that are embodied with more technological advances. 
Additionally, output elasticities could differ if industry structure differs—for 
example, if industry in middle-income countries is skewed more toward the 
electricity intensive sectors (like smelting and iron and steel). This last argument 
follows from the Chang et  al. (2019) finding that energy-intensive sectors had 
higher output elasticities than non-energy-intensive sectors in OECD countries.

The Pesaran (2006) Common Correlated Effects mean group (CCE) estima-
tor accounts for the presence of unobserved common factors by including in 
the regression cross-sectional averages of the dependent and independent vari-
ables, and it is robust to nonstationarity, cointegration, breaks, and serial cor-
relation. The CCE estimator is not consistent in dynamic panels, however, since 
the lagged dependent variable is no longer strictly exogenous. Chudik and Pesa-
ran (2015) demonstrated that the estimator becomes consistent again when addi-
tional ∛T lags (in our case, 2, for series with at least 19 years) of the cross-sec-
tional means are included. Hence, we employ the Dynamic Common Correlated 
Effects (DCCE) estimator of Chudik and Pesaran (2015).13 The combination of 
independent variables, their lags, cross-sectional average terms, and two addi-
tional lags of those cross-sectional average terms, means each cross section must 

13 The Dynamic Common Correlated Effects estimator of Chudik and Pesaran (2015) is implemented by 
using Stata command xtmg, which was developed by Markus Eberhardt.

12 In both cases, we follow the standard practice of robust regressions (see Hamilton 1992), in which 
outliers are weighted down in the calculation of averages.
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have at least 18 observations for the ARDL(1, 1, 1) model; fewer observations 
are required for the partial adjustment or ARDL(1,0,0) model.14

The DCCE estimator applied to the ARDL (1, 1, 1) model, looks like:

where Z represents the cross-sectional average terms. The cross-sectional average 
terms from Eq. (3) are displayed in Eq. (4) below:

where the bar represents an average over the cross-sections (countries), and l stands 
for the number of lags.

Dynamic models estimated with panel data are subject to a downward bias, 
called the dynamic panel or Nickell bias. In the literature this bias is often 
addressed using the general methods of moments (GMM) estimator (e.g., Cial-
ani and Mortazavi 2018), but GMM was designed for short T panels, and thus, 
does not necessarily handle nonstationarity. Moreover, since the instrument 
count increases rapidly with time observations, Roodman (2009) warns that the 
risk of over-parameterization for GMM is great when T exceeds 10. In addition, 
GMM was not intended to manage heterogeneity and cross-sectional depend-
ence. Since downward bias is on the order of 1/T (Nickell 1981), having sev-
eral time observations can mitigate such bias. Bruno (2005) determined that in 
unbalanced panels (like ours), the bias declines with average group (cross-sec-
tion) size (i.e., the bias is not determined entirely by the shortest series). While 
the shortest cross section has 19  years of data, 59 countries have at least 22 
observations, and our average cross-section size is over 30.15 (Again, panel cov-
erage is displayed in Appendix Table 7.)

Energy efficiency improvements do affect energy demand. Indeed, there 
is a separate literature that aims to model the price-induced and autonomous 
improvements of the energy efficiency of capital stock (e.g., Sue Wing 2008; 
Steinbuks and Neuhoff 2014). However, this literature employs substantially dif-
ferent models, methods, and data than the present paper. Some reduced-form 
demand analyses have included time trends (deterministic or stochastic) to 
account for this autonomous increase in energy efficiency (e.g., Adeyemi and 
Hunt 2007; Dilaver and Hunt 2011). The cross-sectional average terms (included 
in CEE-type estimations) of variables like electricity consumption and out-
put might provide some accounting for energy efficiency improvements (likely 
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15 Beck and Katz (2009) claimed that with at least 20 time observations, applying bias correction (e.g., 
Kiviet 1995) is counter-productive, whereas Judson and Owen (1999) were more conservative, recom-
mending bias correction unless there are 30 time observations. However, Pesaran et al. (1999) cautioned 
that bias correction to the short-run coefficients can exacerbate the bias of the long-run coefficients.

14 Both an ARDL(1,2,2) and error correction model were rejected. (Considering even a larger number of 
lags would mean losing several additional countries from our dataset.)
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Table 6  Industry electricity output and price elasticities. High-income vs Middle-income panels

LRA long-run average, calculated directly from mean group panel results (standard errors computed via 
the Delta method), ALR average long-run, individual country long-run coefficients are computed from 
mean group results; panel mean and standard errors are drawn from robust regression (on that series of 
country results), Obs (N) observations (cross-sections)
Diagnostics: RMSE root mean squared error, CIPS Pesaran (2007) CIPS test on residuals, I(0) stationary, 
CD Pesaran (2015) CD test statistic on residuals. The null hypothesis is weak cross-sectional dependence
****, ***, **, * indicate statistical significance at the 0.001, 0.01, 0.05, and 0.1 levels, respectively. 
Standard errors in parentheses. 95% confidence intervals shown in brackets for the long-run coefficients

Panel High-income Middle-income

Model ARDL (1, 1, 1) ARDL (1, 1, 1) ARDL (1, 0, 0)

Estima-
tor

MG DCCE MG DCCE MG DCCE

Regres-
sion

I II III IV V VI

ln Et−1 0.76**** 
(0.038)

0.64**** 
(0.041)

0.64**** 
(0.056)

0.30*** 
(0.094)

0.65**** 
(0.044)

0.37**** (0.071)

lnVA 0.58**** 
(0.051)

0.33**** 
(0.063)

0.66**** 
(0.084)

0.64**** 
(0.13)

0.34**** 
(0.060)

0.64**** (0.089)

ln Price − 0.059** 
(0.026)

− 0.044 
(0.027)

− 0.028 
(0.021)

− 0.024 
(0.050)

− 0.00092 
(0.019)

− 0.013 (0.024)

lnVAt−1 − 0.46**** 
(0.059)

− 0.15** 
(0.061)

− 0.26*** 
(0.096)

− 0.21 
(0.16)

ln Price

t−1

− 0.0044 
(0.025)

− 0.053* 
(0.031)

0.016 (0.022) 0.076* 
(0.041)

Long-run
lnVA

 LRA 0.50
[− 0.16 1.15]

0.52**
[0.020 1.01]

1.12***
[0.34 1.89]

0.61**
[0.040 

1.22]

0.95****
[0.54 1.35]

1.01****
[0.65 1.37]

 ALR 0.31***
[0.10 0.53]

0.46****
[0.26 0.65]

1.13****
[0.83 1.43]

1.19****
[0.79 1.59]

1.20****
[0.92 1.47]

1.25****
[0.97 1.54]

ln Price

 LRA − 0.26*
[− 0.57 

0.039]

− 0.27**
[− 0.50 

− 0.039]

− 0.033
[− 0.20 0.14]

0.074
[− 0.11 

0.26]

− 0.0026
[− 0.11 0.10]

− 0.021
[− 0.097 0.055]

 ALR − 0.26***
[− 0.43 

− 0.093]

− 0.25***
[− 0.39 

− 0.11]

− 0.025
[− 0.26 0.21]

0.0037
[− 0.21 

0.22]

0.039
[− 0.079 

0.16]

0.0024
[− 0.15 0.15]

Obs (N) 1199 (35) 1164 (35) 786 (30) 752 (30) 814 (30) 752 (30)
RMSE 0.040 0.028 0.092 0.044 0.10 0.057
CIPS I(0) I(0) I(0) I(0) I(0) I(0)
CD 8.0**** 1.7* 1.4 − 1.9* − 4.0**** − 0.2
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better than deterministic time trends do); such terms also might address several 
of the concerns raised in (i) Adeyemi and Hunt (e.g., modeling heterogeneous 
responses to socioeconomic and structural conditions) and (ii) Dilaver and Hunt 
(e.g., avoiding biased income/output elasticity estimations by not accounting for 
downward sloping efficiency improvements).

Lastly, in addition to being aggregated over time, the price variable we use 
only approximates the (sometimes highly) nonlinear electricity tariff schedules 
that consumers actually face. Ideally, one would want to estimate price elas-
ticities at the marginal tariff, but such data is rarely available. Furthermore, 
although electricity tariffs are often set exogenously by regulators, some ana-
lysts are concerned that price in many aggregate studies is endogenous because 
price is constructed as average revenue equal to total revenues divided by con-
sumption, which is the dependent variable. Yet, recent evidence suggests that for 
macro-models, demand elasticity estimates vary little depending on whether an 
instrument for price was used (Burke and Abayasekara 2018; Csereklyei 2020). 
However, a related endogeneity issue could occur at the individual sector/firm 
level since some large industries/firms negotiate prices directly with regulators. 
Steinbuks and Neuhoff (2014) argued that this potential endogeneity is mitigated 
when one uses prices that are aggregated at the entire industry/manufacturing 
sector level (as we do).

5  Results and discussion

Table  6 displays the elasticity estimation results. For all the regressions, the 
residuals are stationary. While those unit root test results for the residuals sug-
gest cointegration, the critical values for panel cointegration tests are stricter 
than those for panel unit root tests. However, the corresponding statistics from 
the CIPS tests reported in Table  6 easily exceed the critical values calculated 
by Banerjee and Carrion-I-Silvestre (2017), who designed a second-generation 
panel cointegration test that is based on CCE. 

In addition, we considered two heterogenous, residual-based first-generation 
cointegration tests (Pedroni 2004; Westerlund 2005) in which we first subtract 
the cross-sectional averages from each series (a procedure Levin et  al. 2002 
recommended to mitigate cross-sectional dependence). The main difference 
between the Pedroni (2004) and the Westerlund (2005) cointegration tests is that 
the alternative hypothesis of Pedroni is that all cross-sections are cointegrated, 
whereas the alternative for the Westerlund test is that some of the cross-sec-
tions are cointegrated (the null hypothesis for both tests is no cointegration). 
The results of both tests (shown in Appendix Table 8) strongly reject the null of 
no cointegration.

Considering the CD tests, weak cross-sectional dependence cannot be rejected 
(at least at standard levels) for the high-income panel (Regression II). Adding 
the cross-sectional average terms does substantially reduce the CD test static 
(comparing Regressions I and II). Hence, Regression II would be preferred for 
the high-income panel, while the test statistic is still marginally significant in 



1310 B. Liddle, F. Hasanov 

1 3

Regression II, it can be difficult to completely remove evidence of strong cross-
sectional dependence in OECD panels (see, e.g., Eberhardt and Presbitero 2015; 
Liddle and Huntington 2020). For the middle-income panel and the ARDL (1, 
1, 1) model, the CD test statistic is similar (in magnitude) for both the MG and 
DCCE regressions (albeit, marginally significant for Regression IV). For the 
middle-income panel, a partial adjustment or ARDL (1,0,0) model was run16 
since contemporaneous price was highly insignificant in the ARDL (1, 1, 1) 
model. For the ARDL (1,0,0) model, DCCE (Regression VI) is clearly superior 
to MG since the CD test implies that strong cross-sectional dependence has been 
completely removed, whereas for the CD test on Regression V, weak dependence 
is rejected at the highest level of significance. Yet, for each of the regressions 
(I–VI) the long-run coefficients for output and price (both the average long-run 
and long-run average versions) are mostly similar.

The long-run output elasticity for high-income countries is around 0.5, and 
is statistically significant (Regression II). In case of the average long-run, the 
estimate is substantially significantly less than unity. Both long-run output elas-
ticity estimates (long-run average and average long-run) are quite similar to the 

y = 8.8269x - 0.8843
R² = 0.2036
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Energy intensive sectors' share of Manufacturing VA

Fig. 5  Individual country long-run value added (VA) elasticity estimates (y-axis) are plotted against the 
average share of manufacturing value added from the four most energy intensive sectors (x-axis) for the 
full, 65-country panel (and ARDL (1, 1, 1) model). Value added data is from UNIDO. Trend line, equa-
tion, and R-squared also displayed

16 The ARDL (1,0,0) model was rejected for the high-income/OECD panel.
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earliest OECD panel estimate in which industry energy consumption was the 
dependent variable—Adeyemi and Hunt (2007). The long-run price elasticities 
(long-run average and average long-run) for the high-income panel are around 
− 0.25. These elasticities, both statistically significant, are similar to those of 
Adeyemi and Hunt and to the European panel estimate of Cialani and Mortazavi 
(2018), who also focused on electricity demand (and did report their long-run 
price estimate as being statistically significant).

For the middle-income panel, most of the long-run output estimates are 
greater than one, and for all cases, unity is well within the 95% confidence inter-
vals. All of the long-run price elasticity estimates for the middle-income panel 
are small and insignificant. Considering individual country long-run price elas-
ticities, only about one-half of the middle-income countries had negative elas-
ticities, and only about one-third of those were likely statistically significant. 
Several middle-income countries subsidize electricity, which would be expected 
to mute price responses. Indeed, according to the IEA fossil fuel subsidies data-
base (which has data from 2010–2018), 12 countries in our middle-income panel 
have subsidized/do subsidize electricity.17 So, the insignificant middle-income 
panel long-run price elasticity probably results from a combination of the tem-
poral and sectorial data aggregation and subsidized energy prices. Liddle and 
Huntington (2020), who focused on economy-wide energy consumption and 
prices, similarly calculated insignificant price elasticities for non-OECD/mid-
dle-income panels (and long-run price elasticities between − 0.2 and − 0.3 for an 
OECD/high-income panel).

Comparing the average long-run (ALR) output elasticities for the high-
income and middle-income panels, it appears that the middle-income elasticity 
is statistically significantly larger than the high-income elasticity since none of 
their confidence intervals overlap. If the middle-income countries have indus-
try structures skewed more towards electricity-intensive sectors than the high-
income countries, this finding of a larger output elasticity for middle-income 
countries would be in line with the recent evidence from Chang et  al. (2019), 
who found a similar difference in energy output elasticities between energy-
intensive sectors and non- energy-intensive industry sectors based on OECD 
panels. Again, on average, it appears that industry is somewhat more electricity 
intensive in middle-income countries. Also, Figs. 2 and 3 suggest that industry 
output and electricity consumption were much more aligned in middle-income 
countries.

To further investigate industry structure’s role in explaining the significantly 
larger output elasticity for middle-income as compared to high-income coun-
tries, we create Fig. 5. Figure 5 shows a plot of the individual country (for all 
65 countries) long-run value added elasticity estimates (from Regressions II and 
IV) by the average (1978–2014) share of manufacturing value added contrib-
uted by the four most energy-intensive sectors. Those sectors, listed with their 

17 Those countries are: Algeria, Azerbaijan, Bolivia, Ecuador, El Salvador, India, Indonesia, Iran, Mex-
ico, South Africa, Thailand, and Venezuela.
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ISIC Revision 3.1 codes in parentheses, are: chemicals and chemical products 
(24); non-metallic mineral products (26); and basic metals (27), which includes 
both iron and steel and non-ferrous metals.18 The figure does indicate a positive 
relationship between the output/value added elasticity and an energy-intensive 
manufacturing structure (the R-squared for a linear trend line is 0.2).

Figure 5 provides some visual evidence that suggests parameter/slope hetero-
geneity for the output elasticity. Yet, that figure does not indicate whether those 
elasticities are statistically significantly different from one another. So, to con-
clude the analysis, we consider several statistical tests of heterogeneity.

First, we determine the number of countries (from each income-based panel) 
whose long-run (output and price) elasticities are statistically different from 
the corresponding panel average long-run coefficient (reported in Table  6) at 
the 10% level. (For simplicity/consistency we use the ARDL (1, 1, 1) model 
for both the high-income and middle-income country panels, i.e., Regressions II 
and IV.) For the 35 high-income countries, 17 had output elasticities that were 
statistically significantly different (at 10%) from the panel average long-run out-
put coefficient, and seven had statistically significantly different price elastici-
ties. For the 30 middle-income countries, those two counts were 11 and six for 
output and price elasticities, respectively. If the true individual coefficients were 
the same as the panel average, one would expect statistically different results 
because of random error for 3.5 and three countries (from the high-income and 
middle-income panels, respectively). According to the binomial distribution, 
producing twice as many statistically different coefficients as expected (as is the 
case for the price elasticity) has only a 5% chance of occurring randomly (find-
ing 10 out of 35 or nine out of 30 would have a 0.1% chance).

Next, we calculate Wald statistics, as suggested by Canning and Pedroni 
(2008):

where �′i is the country-specific parameter estimate, Var
(

�
i

)

 is the variance of the 
country-specific parameter estimates, and 

−

� is the (unweighted) average of the coun-
try-specific estimates. (Again, we use the ARDL (1, 1, 1) model, i.e., Regressions 
II and IV.) This statistic is distributed as Chi-squared under the null that all coun-
tries have the same parameter value with degrees of freedom of N (in our case 65). 
For both output and price elasticities, these statistics (1035 and 178, respectively) 
strongly reject homogenous parameter values.
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18 Data on the value added in these sectors is from the United Nations Industrial Development Organiza-
tion’s INDSTAT2 2016 CD-ROM: Industrial Statistics Database. There are missing observations for both 
countries and particular years.
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Finally, we consider a test based on Pesaran and Yamagata (2008) that com-
pares the difference between coefficients obtained by a pooled, fixed effects 
regression and by a mean-group regression (while adjusting each ARDL (1, 1, 
1) regression by adding cross-sectional average terms).19 That test (based on the 
entire 65-country sample) rejects model slope homogeneity at the 0.001 level 
(delta statistic was 30.5). Separate tests for the high-income and middle-income 
panels (i.e., Regressions II and VI) also rejected slope homogeneity at the high-
est level (corresponding adjusted delta statistics were 13.9 and 8.6, respectively).

Hence, it appears that we were correct in assuming/allowing for heterogene-
ity. Yet, we note that if the true elasticities were the same for all countries, both 
the mean-group and pooled/fixed effects estimators would be unbiased and con-
sistent, but fixed effects would be more efficient. However, given the presence of 
nonstationary and cross-sectionally correlated regressors, one might still prefer a 
mean-group estimator since CCE-MG has been shown to outperform the pooled/
fixed effects version (CCEP) in applications in those areas (see, e.g., Eberhardt 
and Presbitero 2015; Eberhardt and Teal 2020; Liddle and Huntington 2020).

5.1  Some policy implications and further discussion

The output elasticity of around 0.5 for high-income countries suggests that 
industry has partially decoupled from electricity consumption—i.e., value added 
can grow at twice the rate of electricity consumption. However, for industry in 
middle-income countries, value added/output and electricity consumption grow 
in concert. This finding—particularly with respect to the industrializing, mid-
dle-income countries—coupled with the relatively low price elasticities (for 
both high- and middle-income countries) emphasize the importance of policies 
that aim to decarbonize electricity (e.g., feed-in tariffs, minimum standards for 
generation share from renewables) as opposed to policies that are more focused 
on lowering consumption (e.g., taxes). In other words, a carbon tax, if passed on 
to end-use customers, may have a limited impact on reducing electricity demand 
(and thus, lowering emissions).

The relatively large output elasticity for middle-income countries suggests 
that supply-side authorities/planners need to consider an expansion of the power 
generation sector. One possible explanation for the different sizes of the output 
elasticities is that electricity use is more efficient in high-income countries. This 
explanation opens the possibility for planners in middle-income countries to 
lower electricity industry demand (and thus avoid electricity generation expan-
sion) via technology transfer (from high-income countries). However, efficiency 
is an unlikely explanation for two reasons. First, the middle-income countries 
have electrified more recently, and thus, on average, may have better/more recent 
vintage technology (of course, subsidizing electricity could lead to inefficient 
use despite state-of-the-art technology). There is evidence that the current 

19 That test is run by the Stata command xthst, which was written by Tore Bersvendsen and Jan Ditzen.
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economy-wide, energy elasticities of GDP are similar for high- and middle-
income countries (e.g., Liddle and Huntington 2020), and that the current such 
elasticity for middle-income countries is indeed lower than such elasticity for 
high-income countries was in the 1960s–1970s (Liddle and Huntington 2021a). 
Second, as we imply in Fig.  5, the higher output elasticity in middle-income 
countries could be the result of having more energy/electricity-intensive indus-
try structure. Again, Chang et al. (2019) came to a similar conclusion regarding 
OECD countries and differences between the output elasticity for energy-inten-
sive sectors vs. non-energy-intensive sectors. So, middle-income countries could 
restructure their industry sectors to be less energy intensive, and thus reduce 
industry electricity demand (or reduce the need to expand their generation sec-
tors). Of course, unless global demand for electricity intensive products (e.g., 
aluminum, copper) is reduced, energy/electricity intensive industry would have 
to locate somewhere.

Two previous electricity demand studies that focused on Europe also consid-
ered residential electricity demand. Cialani and Mortazavi (2018) found that res-
idential customers were slightly (but probably not significantly) more sensitive 
to prices than industry customers (long-run price elasticities of − 0.3 compared 
to − 0.2, respectively). Whereas, Csereklyei (2020) determined the opposite—
industry customers were more sensitive to prices than residential customers 
(with the long-run residential price elasticity being around − 0.5 or half to a 
third less than industry). If we compare our industry results to the residential 
electricity demand results of Liddle and Huntington (2021b), for high income 
countries the price elasticity is nearly the same for industry customers (− 0.25) 
and residential customers (Liddle and Huntington estimated a price elasticity of 
− 0.22 for residential). However, for middle-income countries, residential cus-
tomers may be more price sensitive than industry customers—Liddle and Hun-
tington (2021b) estimated a significant but small (less than − 0.1 in absolute 
terms) long-run residential price elasticity.

6  Summary and final conclusions

There have been relatively few panel estimations of aggregate OECD industry 
energy demand (although there have been several single OECD country stud-
ies). We believe ours is the first such study to (i) employ methods that address 
heterogeneity and cross-sectional dependence; and (ii) focus on industry elec-
tricity demand and estimate both price and output elasticities (i.e., we consider 
industry output rather than a function of economy-wide output, which can intro-
duce miss-aggregation/alignment bias). Our output and price elasticity estimates 
of around 0.5 and − 0.25, respectively, are most similar to the earliest OECD 
panel study Adeyemi and Hunt (2007). However, given that Adeyemi and Hunt 
focused on energy rather than electricity demand, considered a substantially 
smaller sample (15 OECD vs 35 high-income countries), and a much different 
time span (adding years 1962–1977 but not including years 2004–2016), there 
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was no a priori reason to expect our estimates would be similar. Our results also 
are similar to the Chang et al. (2019) estimates for less energy-intensive sectors, 
but are quite different from their full/all sectors results (Chang et al. considered 
energy rather than electricity, too).

Much less is known regarding aggregate non-OECD industry energy/electric-
ity demand. We believe ours is the first study to perform panel elasticity esti-
mations of such demand and among the first to consider/analyze non-OECD 
countries from outside South and West Asia. Indeed, an important advancement 
in our estimates is the incorporation of time-series data on industry electricity 
prices for 28 countries outside the IEA/OECD.20 When combined with the more 
widely available OECD prices, this information allows a more reliable estimate 
of demand by providing an important control variable that separates high-price 
from low-price periods/countries. For middle-income/non-OECD countries our 
output elasticity estimations were near unity and likely statistically significantly 
larger than the output elasticity estimations for high-income/OECD countries.

Our price elasticity for middle-income countries was highly insignificant. 
Rather than suggesting that industries in middle-income countries are totally 
unresponsive to price, we believe this finding probably reflects the several high 
levels of aggregation in our analysis. Electricity price data has been aggregated 
over time and across both industry sectors and geographic regions; such aggre-
gation likely dampened the estimated price response for both middle-income 
and high-income panels. Moreover, several middle-income countries in our 
panel subsidized electricity, which would likewise dampen the price response of 
electricity consumption. Since this level of aggregation was necessary for data 
compilation, we reserve a more disaggregated analysis of industry electricity 
demand across countries for future work.

Finally, we performed several pre- and post-estimation tests (e.g., for unit 
roots, cross-sectional dependence, cointegration, and heterogeneity). Analysts 
considering similar variables and models might save time by not replicating all 
of those tests and instead assuming that nonstationarity, cross-sectional depend-
ence, and heterogeneity are issues worth addressing. Also, our preferred esti-
mation method for addressing those issues—DCCE—is OLS-based; thus, it is 
no (or not much) more computationally complex than fixed effects, and is sub-
stantially simpler/more transparent than other previously employed approaches, 
such as System-GMM, Structural Time Series Modeling, or Dynamic Multilevel 
Modeling (which, additionally, may not fully address those three issues).

20 OECD-middle-income countries Mexico and Turkey have price data available from IEA.
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Appendix

See Tables 7 and 8.

Table 7  Data set

a Missing observation for 2007
b Missing observation for 1993
c Missing observation for 2013
d Missing observation for 2008

High-income/OECD Middle-income/non-OECD

Australia 1978–2016 Algeria 1990–2016
Austria 1978–2016 Azerbaijan 1997–2016
Belgium 1978–2016 Bolivia 1991–2016a

Canada 1978–2016 Brazil 1988–2016
Cyprus 1978–2016 Chile 1994–2016
Czech Rep 1978–2016 Colombia 1991–2016b

Denmark 1978–2016 Costa Rica 1994–2015
Estonia 1995–2016 Dominican Republic 1994–2014c

Finland 1978–2016 Ecuador 1994–2016
France 1978–2016 El Salvador 1994–2015
Germany 1978–2016 Guatemala 1994–2015a,d

Greece 1978–2016 Honduras 1994–2015
Hungary 1980–2016 India 1978–2016
Ireland 1978–2016 Indonesia 1978–2016
Israel 1995–2016 Iran 1978–2015
Italy 1978–2016 Jamaica 1994–2014
Japan 1978–2016 Jordan 1990–2016
Latvia 1998–2016 Lebanon 1994–2016
Lithuania 1995–2016 Mexico 1978–2016
Luxembourg 1978–2016 Morocco 1990–2016
Malta 1995–2016 Nicaragua 1994–2015
Netherlands 1978–2016 Panama 1994–2016
New Zealand 1978–2015 Paraguay 1994–2016
Norway 1978–2016 Peru 1991–2016
Poland 1985–2016 Romania 1995–2016
Portugal 1978–2016 South Africa 1978–2016
Slovakia 1990–2016 Thailand 1978–2016
Slovenia 1995–2016 Tunisia 1990–2015
South Korea 1978–2016 Turkey 1978–2016
Spain 1978–2016 Venezuela 1981–2014
Sweden 1978–2016
Switzerland 1978–2016
Taiwan 1981–2016
United Kingdom 1978–2016
United States 1978–2015
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