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Abstract
This paper examines the performance of US municipal governments over 1997–2012,
and hence prior to, during and following the financial crisis of 2007–2008. Fully non-
parametric methods are employed to estimate technical efficiencies of cities utilizing
recently developed statistical results. The results strongly suggest non-convexity of
the local governments’ production set, calling into question the results of previous
studies examining municipal efficiency that do not allow for non-convexity. We find
strong evidence that production sets for municipal governments are different across
time and across regions of the USA. Overall, we find that municipalities in the Mid-
west and South on average out-performed those in the Northeast and West in terms of
both efficiency and productivity, and both before and after the financial crisis.

Keywords Cities · Efficiency · Productivity · Nonparametric

1 Introduction

Municipal governments provide varying bundles of local public goods in terms of
services and amenities for residents. In addition to police and fire protection, munici-
pal governments may provide roads and streets, traffic management, trash collection,
street cleaning, water services, libraries and other services. However, while differ-
ent municipal governments provide different levels of services, some are more adept
at providing amenities while others are relatively inept. These differences are often
reflected in lists of “best places to live” that appear in the popular press.
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The idea that municipal governments should—but sometimes do not—provide ser-
vices efficiently is an old one. Bruère et al. (1912) argue that “the efficiency movement
in cities grew out of recognition of the dependence of communitywelfare upon govern-
ment activity” beginning in 1906, and that the efficiency movement “aims to remove
city government from its isolation, and to make it the customary and accepted com-
mon agency for ‘getting things done’.” Tiebout (1956) suggests that households sort
into different jurisdictions based on their preferences for bundles of public goods and
services offered by different local governments, and argues that competition among
municipalities to attract residents increases overall efficiency, and these efficiency
gains are often capitalized in local property values.

Empirical support for the link between competition among municipalities and effi-
ciency in local public good provision is provided by Hayes et al. (1998), Grossman
et al. (1999) and others who find evidence that competition among local governments
tends to enhance efficiency. Davis and Hayes (1993) argue that citizens are more
likely to closely monitor local governments where taxes are high, and that housing
owners are more likely to watch closely than renters because they have a larger stake
in outcomes. Davis and Hayes (1993), Grossman and West (1994), Hayes and Wood
(1995) and Hayes et al. (1998) find evidence that increased monitoring (proxied by tax
rates or the degree of centralization by local governments) is associated with smaller
or more efficient local governments. Grosskopf et al. (2001) note that competition
among municipalities may create incentives to provide services efficiently by influ-
encing citizens’ willingness to pay for public services or their inclination to remain
in the jurisdiction, and suggest that monitoring by voters may encourage efficiency
among municipalities. Government officials may increase their probability of remain-
ing in office by running local governments efficiently, particularly where residents are
personally affected by local policy.

On the other hand, a number of factors may work against efficient provision of
local public goods. Friction caused by real estate transaction fees, costs of commuting
and job search and other factors may reduce competition among municipalities, per-
haps contributing to inefficient provision of services. Fiscal pressure due to pension
obligations and other factors in some cities were exacerbated by the financial crisis
of 2007–2008, and many municipalities struggled to meet expenses in the face of
falling tax revenues during the crisis. In the aftermath of the financial crisis, several
US cities filed for Chapter 9 bankruptcy, including Vallejo, CA in 2008; Harrisburg,
PA in 2011; Central Falls, RI in 2011; Stockton, CA in 2012; San Bernardino, CA in
2012; Detroit, MI in 2013; and Hillview, KY in 2015.1 In addition, municipal govern-
ments provide a classic example of the principal–agent problem. Residents pay taxes
and consume services, but must delegate management of municipal governments to
politicians, bureaucrats and functionaries. The potential for rent-seeking behavior is
ever-present since these functionariesmay have their own agendas and interests.More-
over, claimants on local government tax revenues are typically ill-specified, creating
further potential for waste (i.e., inefficiency) due to rent-seeking behavior which may

1 The Harrisburg case was subsequently dismissed.
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in turn affect cities’ ability to provide local public goods efficiently.2 To the extent
that local public goods are capitalized into housing prices, cities that are worse (or,
conversely, better) in providing services and amenities have a negative (or positive)
impact on the wealth of their residents.

While there are a number of factors that might lead to inefficiency in provision of
local public goods, the question of how large this inefficiency might be, how it might
vary across regions and how it might have been affected by the financial crisis of
2007–2008, remains. At present, local governments are facing similar pressures due
to disruptions of business activity (and tax revenue) caused by the on-going COVID-
19 pandemic. We use new, recently developed statistical methods to examine the
efficiency of local-public good provision byUSmunicipal governments in 1997, 2002,
2007 and 2012, i.e., before, during and after the 2007–2008 financial crisis. As such,
our results may provide some insight into how well municipalities may be likely to
weather the ongoing pandemic and its effects.

Necessarily, not all questions can be answered in a single paper, and this paper is not
different from others in this regard. But, our paper contributes to the existing literature
by employing a rigorous statistical framework that distinguishes our paper frommany
that examine municipal efficiency. Specifically, we use nonparametric estimators and
inference to examine not only the level of inefficiency in each year of our data, but
how this varies over time and over regions. In addition, we investigate the productivity
of municipal governments, and how their productivity has changed over time. Our
use of rigorous statistical methods combined with nonparametric estimation stands in
contrast to virtually all of the previous literature on efficiency of local-public good
provision. While many papers (e.g., Charnes et al. 1989; Chalos and Cherian 1995;
De Sousa and Stos̆ić 2005; Fang et al. 2013) use nonparametric estimators in such
studies, the choice of the particular nonparametric estimator is often ad hoc, and few
if any provide statistical inference, presenting instead only point estimates or perhaps
sample means of point estimates. The results of some of our hypothesis tests provide
useful guidelines for future research on municipal government efficiency.

The existing literature on efficiency of local public good provision is extensive.
In addition to the papers cited above, see Tang (1997), De Borger and Kerstens
(2000), Afonso (2008), Da Cruz and Marques (2014), de Oliveira Junqueira (2015)
andNarbón-Perpiñá andDeWitte (2018) for reviews of this literature. Previous empir-
ical analyses of municipal efficiency can be broadly divided into two categories, i.e.,
those that employ fully parametric methods along the lines of Aigner et al. (1977) and
Meeusen and van den Broeck (1977) versus those that use fully nonparametric envel-
opment estimators such as the free disposal hull (FDH) estimators proposed byDeprins
et al. (1984) or data envelopment analysis (DEA) estimators proposed byFarrell (1957)
and made popular by Charnes et al. (1978) and Banker et al. (1984). Among studies of
municipal efficiency, nonparametric methods are used more frequently than paramet-
ric methods. Among those that use nonparametric methods, DEA estimators (which
require convexity of the production set) are used far more frequently than FDH estima-
tors (which do not require convexity). For example, the review by Narbón-Perpiñá and

2 See Lee and Wilson (1990, 1991) for theoretical analysis of the economic loss created by this type of
rent-seeking behavior.
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De Witte (2018, Table A2) lists 97 empirical studies of local government efficiency.
Among these, 66 use nonparametric estimators, while only 31 use parametricmethods.
Among the 66 papers employing nonparametric estimators, 50 use DEA estimators,
14 use FDH estimators, and 2 use both. As discussed below, the choice between FDH
and DEA estimators is not innocuous—DEA estimators are not statistically consistent
if the production set is not convex, while FDH estimators are consistent regardless of
whether the production set is convex.3 As discussed below, our results, specifically
our results from several hypothesis tests, provide useful suggestions for how empirical
researchers should use nonparametric methods in the future.

The remainder of our paper unfolds as follows. Section 2 presents the nonparametric
methods we use for estimation and inference. We discuss the underlying statistical
model and the various nonparametric efficiency estimators and their properties in
Sect. 2.1, and in Sect. 2.2 we discuss methods for hypothesis testing in the context of
our nonparametric model. The data used for estimation and inference are discussed in
Sect. 3, and empirical results are presented in Sect. 4. Summary and conclusions are
given in Sect. 5.

2 Methods for estimation and inference

2.1 Nonparametric estimators and their properties

To establish notation, let X ∈ R
p
+ and Y ∈ R

q
+ denote random vectors of input and

output quantities, and similarly let x ∈ R
p
+ and y ∈ R

q
+ denote corresponding fixed,

nonstochastic vectors of input and output quantities. The (unconditional) production
set is the set of feasible combinations of input and output quantities, i.e.,

� := {(x, y) | x can produce y}, (1)

which gives the set of possible inputs and outputs. We adopt standard assumptions
from microeconomic theory of the firm (e.g., see Shephard 1970 or Färe 1988). We
assume (i) � is closed; (ii) any nonzero production requires the use of some inputs
(i.e., (x, y) /∈ � if x = 0, y ≥ 0, y �= 0); and (iii) both inputs and outputs are
freely disposable so that (i) x̃ ≥ x ⇒ (̃x, y) ∈ � and (ii) ỹ ≤ y ⇒ (x, ỹ) ∈ �.
∀ (x, y) ∈ �.

3 The studies that employ parametric methods typically specify translog response functions. Among the 31
papers listed by Narbón-Perpiñá and De Witte (2018, Table A2) that employ parametric methods to assess
local government performance, 25 use a translog specification, and one (Nikolov and Hrovatin 2013) uses a
Cobb–Douglas specification (which of course is nested by the translog specification). However, municipal
governments vary widely in terms of size, and several studies have noted that the parameters of a translog
function are unlikely to be stable when the function is fit globally across units of widely varying size. See, for
example, Guilkey et al. (1983) and Chalfant and Gallant (1985) for Monte Carlo evidence, and Cooper and
McLaren (1996) and Banks et al. (1997) for empirical evidence involving consumer demand, Wilson and
Carey (2004) for empirical evidence involving hospitals, and McAllister and McManus (1993), Mitchell
and Onvural (1996), andWheelock andWilson (2001, 2012, 2018) for empirical evidence involving banks.
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The assumption that � is closed ensures that the efficient frontier or technology

�∂ :=
{

(x, y) | (x, y) ∈ �, (γ −1x, γ y) /∈ � for any γ ∈ (1,∞)
}

(2)

consisting of the set of extreme points of � is contained in �.4 The requirement that
some strictly positive amount of input must be used to produce any output greater than
zero rules out the existence of free lunches. Free disposability of inputs and outputs
implies weak monotonicity of the frontier.

The frontier�∂ provides a benchmark against which production units’ performance
can be measured. Units operating on the frontier are said to be technically efficiency,
while those operating under the frontier, in the interior of �, are said to be technically
inefficient. Several measures of technical efficiency are employed in the literature. The
Farrell (1957) input efficiency measure

θ(x, y | �) := inf {θ | (θx, y) ∈ �} (3)

gives the proportion by which input levels can be feasibly reduced without reducing
output levels. Alternatively, the Farrell (1957) output efficiency measure

λ(x, y | �) := sup {λ | (x, λy) ∈ �} (4)

gives the feasible proportion by which output levels can be increased without increas-
ing input quantities. The hyperbolic measure

γ (x, y | �) := inf
{

γ > 0 | (γ x, γ −1y) ∈ �
}

(5)

proposed by Färe et al. (1985) gives the proportion by which output quantities can
be increased while simultaneously reducing input quantities by the same proportion.
Clearly, θ(x, y | �) ≤ 1, λ(x, y | �) ≥ 1, and γ (x, y | �) ≤ 1 for all (x, y) ∈ �,
with strict equality holding for any (x, y) ∈ �∂ .5

It is important to note that �, and hence �∂ as well as the measures θ(x, y | �),
λ(x, y | �) and γ (x, y | �) are unobserved. Consequently, they must be estimated
from a sample Sn = {(Xi ,Yi )}ni=1 of observed input–output pairs. There are several
possibilities. First, Deprins et al. (1984) estimate � by the free disposal hull of the
sample observations in Sn , i.e.,

̂�FDH,n :=
⋃

(Xi ,Yi )∈Sn

{

(x, y) ∈ R
p+q
+ | x ≥ Xi , y ≤ Yi

}

. (6)

4 Inequalities involving vectors are defined on an element-by-element basis.
5 In principle, for some (x, y) ∈ �∂ one might have θ(x, y | �) < 1 or λ(x, y | �) > 1 if the frontier is
parallel to either all of the input axes or all of the output axes in some regions. However, this is ruled out
by additional assumptions required to define a statistical model in which the efficiency measure defined in
(3)–(5) are statistically efficiency; see Kneip et al. (1998) and Kneip et al. (2008) for details.
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This estimator does not impose convexity on �. Substituting ̂�FDH,n for � in (3)–(5)
provides FDH estimators of the input, output and hyperbolic efficiency measures.

The resulting FDH efficiency estimators can be computed easily by letting
let Dx,y denote the set indices of points in Sn dominating (x, y), i.e., Dx,y =
{i | (Xi ,Yi ) ∈ Sn, Xi ≤ x, Yi ≥ y}. Then, the input-oriented FDH efficiency esti-
mator is computed by solving

̂θFDH(x, y | Sn) = min
i∈Dx,y

max
j=1,...,p

(

X j
i

x j

)

, (7)

where for a vector a, a j denotes its j-th component, and the output-oriented FDH
estimator can be computed by solving

λFDH(x, y | Sn) = max
i∈D(x,y)

min
j=1,...,q

(

Y j
i

y j

)

. (8)

The hyperbolic FDH estimator can be computed by solving

γ̂FDH(x, y | Sn) = min
i=1, ..., n

⎛

⎝ max
j=1, ..., p
k=1, ..., q

(

X j
i

x j
,

yk

Y k
i

)

⎞

⎠ (9)

as shown by Wilson (2011).
Second, the variable returns to scale (VRS) version of the DEA estimator ̂�VRS,n

of � is given by the convex hull of ̂�FDH,n . Substituting this for � in (3)–(4) gives
the familiar VRS-DEA estimators ̂θ(x, y | Sn) and ̂λ(x, y | Sn) of θ(x, y | Sn)

and λ(x, y | Sn), respectively, and these estimators can be computed by solving the
resulting linear programs. Substituting the convex hull of ̂�FDH,n for� in (5) gives the
hyperbolic VRS-DEA estimator γ̂ (x, y | Sn) of γ (x, y | Sn), which can be computed
using numericalmethods described byWilson (2011). Finally, constant returns to scale
(CRS) versions of DEA estimators of θ(x, y | Sn), λ(x, y | Sn) and γ (x, y | Sn) are
obtained by substituting the conical hull of ̂�VRS,n , denoted by ̂�CRS,n , for � in (3)–
(5), and these CRS-DEA estimators can be computed by solving the resulting linear
programs. See Simar and Wilson (2013, 2015) for discussion and details.

Thus, there are three categories of nonparametric efficiency estimators: FDH, VRS-
DEA and CRS-DEA. For each of these categories, there are estimators for efficiency
measures in input, output and hyperbolic directions. Of course, estimation reveals
nothing; learning from data can occur only when statistical inference is made, and
inference requires a statistical model as made clear by the results of Bahadur and
Savage (1956). The appropriate statistical model consists of the assumptions on �

described above as well as a number of assumptions on the statistical process (i.e.,
the data-generating process) that yields observed data. Among these assumptions, we
require that observed data on inputs and outputs consist of identically, independently
distributed (iid) realizations of randomvariables (X ,Y ) ∈ R

p+q
+ with bounded support

on�.We require also that the joint density of (X ,Y )must be strictly positive along the

123



Benchmarking the performance of US Municipalities 2671

frontier �∂ and continuously differentiable in a neighborhood of �∂ . We also require
that the frontier �∂ be sufficiently smooth, depending on the class of estimators—
FDH, VRS-DEA or CRS-DEA—being used. Technical details are given by Kneip
et al. (2008, 2015).

The statistical properties of the nonparametric efficiency estimators are developed in
a number of papers. In all cases, the estimators converge at rate nκ and have limiting
distributions. For the case of FDH estimators, Park et al. (2000) and Daouia et al.
(2017) establish that κ = 1/(p + q), and the limiting distributions are Weibull, but
with parameters that depend on features of the model being estimated (e.g., curvature
of �∂ ) and which are difficult to estimate. These results hold regardless of whether
� is convex. For the case of VRS-DEA estimators, under VRS and convexity of �,
Kneip et al. (1998) prove that κ = 2/(p + q + 1) and Kneip et al. (2008) establish
existence of and characterize limiting distributions. However, the limiting distributions
do not have explicit, analytical expressions. Park et al. (2010) establish corresponding
results for CRS-DEA estimators under CRS and convexity of�, where κ = 2/(p+q).
Kneip et al. (2016) prove that under CRS and convexity of�, theVRS-DEAestimators
converge at the faster rate achievedbyCRS-DEAestimators under the sameconditions.
The existence of limiting distributions is needed to ensure validity of bootstrapmethods
developed by Kneip et al. (2008, 2011) and Simar and Wilson (2011a) for estimating
confidence intervals for the efficiency of individual producers.

2.2 Testing hypotheses about model structure

By construction, the FDH, VRS-DEA and CRS-DEA efficiency estimators are biased.
This is due to the fact that ̂�FDH,n ⊆ � and ̂�FDH,n ⊆ ̂�VRS,n ⊆ � when �

is convex. If � is convex and CRS prevail, then ̂�FDH,n ⊆ ̂�VRS,n ⊆ ̂�CRS,n ⊆
�. Kneip et al. (2015) provide results on moments of the input-oriented efficiency
estimators, and the results extend trivially to the output-oriented estimators. Kneip
et al. (2020) extend these results to the hyperbolic VRS efficiency estimator, and
Wilson (2021) extends the results to the hyperbolic FDH estimator. In all cases, the
bias of the estimators disappears at the same rate at which the estimators converge.
Consequently, for a convergence rate of nκ—where κ = 1/(p + q) for the FDH
estimators, κ = 2/(p+ q + 1) for the VRS estimators, or κ = 2/(p+ q) for the CRS
estimators—standard central limit theorem (CLT) results (e.g., the Lindeberg–Feller
CLT) do not hold for mean efficiency unless κ > 1/2. In the CRS case, this means that
the usual CLTs hold only if (p+q) < 4. In the VRS case, the usual CLTs hold only if
(p+ q) < 3. In the FDH case, standard CLTs hold only if p+ q < 2.6 Consequently,
standard CLT results can be used with sample means of estimated efficiencies to make
inference about expected efficiency only if the number of inputs is smaller than 3 or
4 when VRS-DEA or CRS-DEA estimators are used, and can never be used in any
realistic setting when FDH estimators are used. When κ = 1/2, sample means of
estimated efficiencies have constant, nonzero bias, and when κ < 1/2, this bias is no
longer constant, but explodes toward infinity as sample size increases. Kneip et al.

6 In other words, standard CLT results hold in the FDH case if and only if p = 1 and output is fixed and
constant, or q = 1 and input is fixed and constant.
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(2015) develop a set of new CLTs that incorporate generalized jackknife estimates
of bias, and which involve subsampling when κ is too small. See Kneip et al. (2015,
2020) and Wilson (2021) for additional discussion and technical details.

Kneip et al. (2016) use the results of Kneip et al. (2015) to develop (i) tests of
differences in mean efficiency across groups of producers, where the two groups face
either the same or different frontiers, (ii) a test of convexity versus non-convexity of�
and (iii) a test of CRS versus VRS (provided � is convex). Tests (ii) and (iii) involve
comparing differences in sample means of different classes of efficiency estimators.
For example, to test convexity of �, a test statistic based on the difference between a
samplemean of FDHestimates and a samplemean ofVRS-DEAestimates is used. The
test of CRS versus VRS involves a similar difference of sample means of VRS-DEA
and CRS-DEA estimates. In both cases, the underlying theory requires independence
of the two sample means used to build the test statistics, and this in turn requires
randomly splitting the original sample into two independent subsamples. Details are
given in Kneip et al. (2016).

The test statistics developed by Kneip et al. (2016) are asymptotically normally
distributed. The tests are valid for any random split of the original sample into two
subsamples, but repeated splitting of a given sample can yield different results, i.e.,
some splits may result in a value of the test statistic that leads to rejection of the null
hypothesis, while another split may yield a value that fails to reject the null. This is
not surprising when one considers that in any statistical test, the p value is a random
variable with a non-degenerate distribution in any interesting case. Unfortunately, one
cannot simply average test statistics across several splits of the same sample, as the
resulting statistics cannot be independent which precludes any inference since the
dependence is of a complicated form.

Simar and Wilson (2020a) solve this problem by developing a bootstrap method to
remove (most of) the randomness due to the sample splitting. The idea is to split the
sample m times, and then compute the sample average of a given test statistic over
the m splits. The bootstrap proposed by Simar and Wilson (2020a) can be used to
obtain an appropriate critical value, or to estimate a p value, for this average of the
m individual test statistics. One can also save the p values corresponding obtained
for the particular test statistic on each sample split, resulting in m p values, and then
compute the corresponding Kolmogorov–Smirnov (KS) one-sample test statistic to
compare the distribution of the p values against the uniform distribution on [0, 1]
(which is necessarily the distribution of the p values under the null hypothesis due
to the probability integral transform as discussed by Simar and Wilson 2020a). Since
them p values used to construct the KS statistic are not independent, the resulting KS
statistic does not have its usual distribution, but its distribution can be estimated by
the bootstrap developed by Simar and Wilson (2020a). Either approach can be used
to eliminate much of the randomness introduced by random sample splits required by
the tests developed by Kneip et al. (2016), and extensive simulation results in Simar
and Wilson (2020a) indicate that the method yields good size and power properties.
Additional simulation experiments indicate that m = 100 splits typically eliminates
most of the uncertainty surrounding the random splitting. Below, in all of the tests
where we rely on random sample splits, we use m = 1, 000 splits, and none of our
qualitative results are changed from when we use only m = 100 splits.
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Fig. 1 Census regions of the USA

In our data on municipalities, we have in addition to input and output variables
two additional variables to consider, i.e., time (or year) and US census region. These
are both discrete, categorical variables, and in both cases, there are four categories
(i.e., we have data for 4 years, and there are four census regions).7 Denote these

7 We includemunicipalities in the 48 states excludingAlaska andHawaii. The census regions are illustrated
in Fig. 1. We denote the Northeast, Midwest, South and West regions as regions 1, 2, 3 and 4, respectively.
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“environmental” variables by Z , a bivariate, discrete random variable with support on
the Cartesian product of {1, 2, 3, 4} with itself, which we denote by Z . Hence, we
have 42 = 16 categories. Let

�z = {(x, y) | x can produce y when Z = z} (10)

denote the conditional (on Z ) production set. This is related to the unconditional
production set defined in (1) in the sense that

⋃

z∈Z
�z = �. (11)

Two mutually exclusive, collectively exhaustive possibilities exist. Necessarily, either

�z = � for all z ∈ Z, (12)

or
�z ⊂ � for some z ∈ Z, (13)

but obviously one and only one of these two conditions can hold. Possibility (12)
is the well-known “separability” condition described by Simar and Wilson (2007,
2011b). In this case, the environmental variables in Z can be ignored when estimating
efficiency, and the efficiency estimators described above can be used. But, (12) is a
strong condition, and as noted by Simar andWilson (2007), one should test this rather
than merely assuming that the separability condition holds. If (12) does not hold,
then (13) must hold. In this case, conditional (on Z ) efficiency estimators must be
used to estimate efficiency, as the unconditional efficiency estimators described above
estimate distance to a frontier that is unattainable in some cases whenever (13) holds.

Conditional efficiency estimators were first described by Cazals et al. (2002) and
extended by Daraio and Simar (2007a, b). The idea involves localizing the FDH, VRS-
DEA or CRS-DEA estimator in terms of Z . When Z is continuous, this involves
bandwidth parameters, but when Z is discrete, no bandwidths are needed; one simply
divides the sample into categories defined by observed values of Z , and estimates
efficiency independently for observations in each category. For example, if there are
only two categories, one would estimate efficiency for each observation in the first
category using only the data for that category, and then similarly estimate efficiency
for each observation in the second category, using only the data in the second category.

Daraio et al. (2018) develop CLTs for conditional efficiency estimators, and use the
new CLTs to develop tests of the null hypothesis of separability given by (12) versus
the alternative hypothesis of non-separability given by (13). Similar to the tests of
convexity of � versus non-convexity and CRS versus VRS developed by Kneip et al.
(2016), the tests of separability developed by Daraio et al. (2018) involve comparing
sample means of unconditional and conditional efficiency estimators, and depend on
independence between the two sample means. This in turn requires randomly splitting
the original sample into two independent subsamples, but the bootstrap method of
Simar andWilson (2020a) can be used to remove the ambiguity or uncertainty resulting
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from a single split of the original sample. In our tests below, we again use m = 1, 000
sample splits. See Daraio et al. (2018) and the accompanying appendices for specific
details.

3 Data and variable specification

Our data are taken from the Annual Survey of State and Local Government Finances,
the Annual U.S. Building and Permit Survey, the U.S. Census of Governments, the
U.S. Bureau of Labor Statistics (BLS) and the Federal Bureau of Investigation (FBI)
to define input and output variables. Our variable specifications are broadly similar to
those use in other studies of local governments’ efficiency levels.All dollar amounts are
measured in terms of thousands of constant, 2010US dollars.We use the US consumer
price index (CPI) for all urban consumers and all items to adjust for price differences
across municipalities.8

Empirical assessments of municipal efficiency in the literature typically take one of
two approaches, either (i) examining overall efficiency or (ii) focusing on the efficiency
with which municipalities provide a specific good or service. We take the first route in
order to learn about the overall efficiency of municipal governments in providing an
array of services. The majority of local government efficiency studies employ a single
input variable to account for resources used to produce goods and services. Total
current operating expenditures is the most widely specified input; examples include
Štastná and Gregor (2015) and Radulović and Dragutinović (2015). Alternatively, a
few studies have specified input as total expenditures (e.g., Hayes and Chang 1990) or
financial expenditures (e.g., De Borger andKerstens 1996).We adopt the former, more
typical approach and specify a single input (denoted by X , and hence p = 1) consisting
of total current operating expenditures reported in theAnnual Survey of State andLocal
Government Finances. This survey, conducted by the U.S. Census Bureau, is the only
comprehensive source of data on local government finances collected on a nationwide
scale using uniform definitions, concepts and procedures. (U.S. Census Bureau 2020).
Data are collected annually from a sample of state and local governments, but every
5 years, in years ending in “2” or “7,” a census of all state and local governments is
conducted. Alternatively, onemight use administrative data whichmight providemore
detail on expenditures for various items, but such data are difficult to collect, and in
the end would reflect different definitions and accounting systems used by municipal
governments; in addition, this would likely result in a smaller sample size.

In recent years, local governments have seen rising costs, exceeding the rate of
increasing costs in the private sector, which is likely reflected in our input measure.
Berry and Lowery (1984) speculate that Baumol’s “cost disease” may be driving
this difference, since many local public goods are labor-intensive or hand-produced.
Moreover, there has been an increasing level of concentration of government provision
of goods and services at the federal level. Baicker et al. (2012) suggest this may be due
to the growing importance of certain budget components including education, health

8 Problems with the CPI are well known, e.g., the CPI covers a small number of items compared to the
gross domestic product deflator, but this is not available at local levels. Where a city-specific CPI is not
available, we use the CPI for the region in which a given city is located.

123



2676 C. T. O’Loughlin, P. W. Wilson

and welfare programs. By contrast, total and financial expenditures (as opposed to
operating expenditures, which we use) include expenditures on total capital outlays,
which is susceptible to volatility due to the nature of government spending. In this
sense, our variable captures short-run operating costs.

We specify q = 6 output variables, including total population (Y1), total charges
for sewerage and waste management (Y2), the reciprocal of the total crime rate (Y3),
total land area (in square miles) (Y4), total building permits (Y5) and the employment
rate (Y6). Our specification of outputs reflects the wide variety of goods and services
provided by municipal governments. Total population is one of the most frequently
specified outputs in the literature on local government efficiency (e.g., see De Borger
et al. 1994; Kalseth and Rattsø 1995; Athanassopoulos and Triantis 1998; Grossman
et al. 1999; Geys andMoesen 2009; lo Storto 2013) and serves as a proxy for the scope
of demand for publicly provided goods and services. We use total charges for sewer-
age and waste removal or treatment to account for communal service administration.
Worthington (2000) utilizes a similar output measure related to the municipal sewer-
age system and waste collection, while Balaguer-Coll et al. (2007) use the number of
street lights.9 Data for Y1 and Y2 are obtained from the Annual Survey of State and
Local Government Finance.

We use the reciprocal of the total municipal crime rate, Y3, to capture the degree of
public safety provided through law enforcement services. These data are obtained from
the FBI’s UniformCrime Reporting Statistics which are voluntarily reported by police
departments at the local level. The FBI defines total violent crimes to include murders
and non-negligent manslaughter, legacy rape, revised rape, robbery and aggravated
assault. Total property (i.e., “non-violent”) crimes include offenses such as burglary,
larceny and motor-vehicle theft. The total crime rate includes both total violent as well
as total property crimes. We employ the reciprocal of the total crime rate so that our
measure of safety, Y3, increases as crime decreases.10

We use total land area (in square miles), Y4, obtained from the U.S. Census of
Governments. Land area is often included in studies of local public good provision;
examples include Grossman et al. (1999), Ibrahim and Karim (2004), Moore et al.
(2005), Sung (2007), Nakazawa (2013) and Da Cruz andMarques (2014). Larger land
areas require more infrastructure and public good servicing, such as highway repair
and sewerage connections. In addition, while we include population (Y1), providing
services to a highly concentrated population is likely very different from providing ser-
vices to a dispersed population, and including land area controls for this. Moreover,
our model is fully nonparametric, and so no restrictions are imposed on how these
two variables (i.e., Y1 and Y4) might interact. The total number of unit-level building
permits issued in a given year, Y5, provides a measure of the amount of adminis-

9 Alternative measures of communal service administrative include number of highway miles and square
footage of green space. Unfortunately, these data are not readily available for US municipalities.
10 One might also consider two separate measures of crime, one for violent crime and another for property
crimes such as theft. We expect that there would be a high degree of collinearity between these measures,
and as discussed below, there is a high degree of collinearity among our six output measures. Consequently,
splitting Y3 into two measures may not add much information.
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trative services provided.11 Data on building permits are obtained from the Annual
U.S. Building and Permit Survey and are summed over months to obtain annual fig-
ures. Finally, data on the annual employment rate, Y6, are obtained from the BLS
Local Area Unemployment Statistics. All of our data are at the level of municipal
governments in a given year.12 After eliminating observations with missing values for
one or more of our variables, we have 648, 730, 746 and 800 observations for 1997,
2002, 2007 and 2012, respectively, for a total of 2924 observations.13

Summary statistics for our variables are presented in Table 1. For each variable,
Table 1 shows the minimum value, first quartile (Q1), median, mean, third quartile
(Q3) and themaximumvalue. Thewide range of city sizes and our use of data spanning
15 years results in substantial variation in each of the variables as reflected in the table.
Comparing differences between the median and Q1 and between Q3 and the median
for the input and output variables reveals that the marginal distributions are skewed
to the right, reflecting the distribution of city sizes in the USA. In addition, Table 2
gives the number of observations in our sample for each region, year and region–year.
Table 2 reveals a good bit of variation in the number of observations across regions
and across time. This is addressed in Sect. 4.2.

4 Empirical results

4.1 Preliminary results

4.1.1 Making our estimates more accurate

We begin with some preliminary investigation using our data in order to determine
how to proceed toward our main results discussed in Sect. 4.2. Although our non-
parametric model is highly flexible, there is a price to pay in terms of the well-known
“curse of dimensionality.”Wilson (2018) discusses dimension reduction in the context
of nonparametric efficiency estimation, and presents diagnostics to indicate whether
reducing dimensionality might be advantageous. As discussed in Sect. 2, the FDH,
VRS and CRS estimators converge at rate nκ , where κ = 1/(p + q) for FDH estima-
tors, κ = 2/(p + q + 1) for VRS estimators and κ = 2/(p + q) for CRS estimators.

11 We use the number of permits issued for individual units, rather than number of buildings for which
permits have been issued. In dense urban environments, onemight observemultiple units (e.g., condominium
units) in a single building for which building permits have been issued.
12 We use the U.S. Census Bureau’s definition of local government, corresponding to type code 2 in the
U.S. Census of Governments’ 14-digit government ID code.
13 Starting with data from the Annual Survey of State and Local Government Finance, we merge data from
other sources listed above. Necessarily, there are mismatches across the various sources, and in particular
some of the municipal governments observed in the Annual Survey of State and Local Government Finance
in a given year are not observed in one ormore of the other sources. Due to this, wemust discard observations
for 165–363 cities in each year. As one might expect, these are predominantly smaller cities, but due to the
skewed distribution of city-sizes in theUSA, the discarded observations are a small proportion of the number
of smaller cities for which observations remain in our sample. In the end, our sample size is larger than
many that have been used in the literature, e.g., Moore et al. (2005) use a sample of 46 US cities observed
over 6 years, giving a total sample size of 276 observations, whereas we have 648–800 observations in each
of the 4 years covered in our sample.
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Table 2 Sample sizes by year
and US census region

Year n Region 1 Region 2 Region 3 Region 4

1997 648 90 122 200 236

2002 730 75 158 289 208

2007 746 74 160 288 224

2012 800 72 200 299 229

Total 2924 311 640 1076 897

With the (p + q) = 7-dimensional specification described above, the convergence
rates are n1/7, n1/4 and n2/7 for FDH, VRS and CRS estimators, respectively.

Moreover, as noted above, the number of observations in each period range from
649 to 800. The effective parametric sample size defined by Wilson (2018) is then,
in the worst case, 6491/7 ≈ 6 for FDH estimators, 6491/4 ≈ 25 for VRS estimators
and 6492/7 ≈ 40 for VRS estimators. In other words, with a sample size of 649, FDH
estimators should be expected to result in estimation error of the same order one would
achieve with a typical parametric estimator (converging at the root-n rate) and only 6
observations. With VRS (or CRS) estimators, one should expect estimation error of
the same order that 25 (or 40) observations would provide in a parametric model. Of
course, consistency of the VRS estimators requires convexity of�, and consistency of
the CRS estimators requires in addition CRS. It remains to be seen whether� satisfies
such restrictions. Of course, the notion of effective parametric sample size defined by
Wilson (2018) presupposes that one has a correctly specified parametric model. As
Robinson (1988) notes, the root-n parametric convergence rate means that estimators
converge quickly to the wrong thing in a mis-specified model; Robinson refers to this
as root-n inconsistency.

Wilson (2018) also suggests examining the ratio Ry of the largest eigenvalue of the
momentmatrixY ′Y to the sum of eigenvalues forY ′Y , whereY is the (n×6)matrix of
output observations. Our data yield values 0.9961, 0.9965, 0.9934 and 0.9916 for Ry

in 1997, 2002, 2007 and 2012, and when we pool data over all years we obtain 0.9935
for Ry . To understand the meaning of these results, consider the set of rays from the
origin passing through each observation in the six-dimensional output space R6+ for
each year. The values of Ry indicate that these rays lie in a very tight bundle and are
very similar in terms of their angles with respect to each axis; there is little difference
among the rays, even when the data are pooled over all 4 years. Consequently, the
results indicate a high degree of collinearity among our six output variables, and as
such the data contain almost no information about marginal rates of transformation
between outputs. The smallest of the values for Ry , 0.9916, is well above the level
needed for dimension reduction to likely reduce mean square error of either DEA
or FDH estimates as indicated by the simulation results reported by Wilson (2018).
Hence, rather than using all six of output variables, we use only the first principle
component corresponding to the largest eigenvalue of the moment matrix Y ′Y (for the
pooled data, over all years), denoted by Y∗, as a measure of municipalities’ outputs.14

14 Specifically, Y∗ = Y Ey where Ey is the (q × 1) eigenvector corresponding to the largest eigenvalues
of the moment matrix Y ′Y .
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Table 3 Numbers of observations with estimated hyperbolic technical efficiency equal to 1 in each year

Year n Without dimension reduction With dimension reduction

FDH VRS CRS FDH VRS CRS

1997 648 339 38 9 25 7 1

2002 730 364 35 6 24 5 1

2007 746 359 39 9 26 6 1

2012 800 381 35 7 28 6 1

The value 0.9935 for Ry obtained with the pooled data ensures that we retain 99.35%
of the independent information in our six output variables, but we gain substantially
in terms of the speed of convergence (and hence, reduction in estimation error) of our
efficiency estimators. Using only X and Y∗ for our estimation, we have p = q = 1
and convergence rates n1/2, n2/3 and n1 for the FDH, VRS-DEA and CRS-DEA
estimators. Hence, after dimension reduction, the FDH estimator has the parametric
root-n rate, while the DEA estimators converge even faster! The simulation results of
Wilson (2018) provide clear evidence that in our study, relying only on X and Y∗ for
estimation likely results in less estimation error than would be the case with seven
dimensions.15

In order to see some of the effect of our use of dimension reduction, we compute
estimates of hyperbolic efficiency defined in (5) for municipalities in each year using
the full-dimensional data with our single input variable (X ) and the six output variables
Y1, . . . , Y6. We then repeat this exercise using only X and the reduced-dimensional
output variable Y∗. In both cases, we obtain estimates from the FDH, VRS-DEA and
CRS-DEA estimators described in Sect. 2.1. Table 3 shows the number of observations
in each year as well as counts of the number of estimates equal to one in each of the six
scenarios. As discussed by Wilson (2018), large proportions of efficiency estimates
equal to one, especially among FDH estimates, may indicate the need for dimension
reduction, and this is exactly what we see in Table 3.

Each of the FDH, VRS-DEA and CRS-DEA estimators are biased toward one
(thereby overstating efficiency), but the bias is largest for the FDH estimator, and
smallest for the CRS estimator. The counts in Table 3 where the full data are used
reveal that about half of the FDH estimates are equal to one in each year. By contrast,
a much smaller proportion of the VRS-DEA estimates equal one, and less than 1.5%
of the CRS-DEA estimates are equal to one in each year. Taken together, the results
in columns 3–5 of Table 3 indicate that most of the inefficiency that one would find
using either the VRS-DEA or CRS-DEA estimators is merely an artifact of the con-
vexity imposed by both estimators, and in addition the assumption of CRS imposed
by the CRS-DEA estimator. As such, the estimates in Table 3 obtained with the full-
dimensional data make clear the need for dimension reduction, i.e., the evidence is

15 Färe and Lovell (1988) and Olesen and Petersen (2016) suggest that dimension reduction is only appro-
priate when the technology is homothetic. However, the technologies simulated by Wilson (2018) are not
homothetic, and yet the simulations in Wilson (2018) show that substantial reductions in estimation error
can be achieved with dimension reduction as implemented here.
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clear that there are too many dimensions for the sample size (see Wilson 2018 for
discussion). Furthermore, the differences in proportions of estimates equal to one
obtained with the FDH estimator and those obtained with the VRS-DEA estimator
suggest that � may not be convex. This is investigated further in Sect. 4.1.3.

In the last three columns of Table 3, where X and Y∗ are used for estimation, the
counts for the FDH estimator are larger than the counts for the VRS-DEA estimator,
which in turn are larger than the counts for the CRS-DEA estimator. This is to be
expected since the bias decreases as one moves from the FDH to the VRS-DEA
and then the CRS-DEA estimators. However, the counts of FDH estimates equal to
one with the reduced-dimensional data amount to only about 10% of the counts of
FDH estimates equal to one with the full data. This provides clear indication of the
reduction in bias obtained with dimension reduction. Overall, the results in Table 3
provide evidence (in addition to the values of Ry and the effective parametric sample
sizes discussed earlier in Sect. 3) that dimension reduction likely reduces estimation
error relative to what would be obtained working in the full, seven-dimensional space.
Consequently, we employ dimension reduction andwork in the two-dimensional space
of the variables X and Y∗ for the remainder of the paper. Given that we have chosen
our output variables to reflect variable specifications typically used in the literature
on municipal efficiency, it seems likely that other studies might similarly benefit from
use of dimension-reduction methods along the lines used here.

4.1.2 One frontier or many?

Before deciding on whether to use FDH, VRS-DEA or CRS-DEA estimators, it is
important to consider which might be appropriate. FDH estimators require neither
convexity nor CRS, and hence are more flexible than the other two estimators. VRS-
DEA estimators require convexity of the production set, while CRS-DEA estimators
require both convexity as well as CRS. But before testing whether the production set
is convex or whether the technology is CRS, we must first consider whether the pro-
duction set is the same across time and across regions. If it is not, then the separability
condition in (12) does not hold, and we must estimate conditionally as described in
Sect. 2.2. With our reduced-dimensional data, the FDH estimator attains the paramet-
ric rate of convergence, and is the most flexible among the three classes of estimators,
so we use FDH estimators for testing separability.

We have 4 years and four regions. Rather than dividing our data into 16 categories,
which would result in small sample sizes for some categories, we first test separability
with respect to time for each of the four regions using the test of Daraio et al. (2018)
withmultiple sample splits and the bootstrap of Simar andWilson (2020a) as described
in Sect. 2.2. Results are given in Table 4, where “Test #1” indicates the test based on
averaging the Daraio et al. (2018) test statistic over the sample splits, and “Test #2”
refers to tests based on the distribution of p values obtained on each sample split.
We test in each of three directions—input, output and hyperbolic—since tests on one
direction may not find evidence of non-separability, while another direction does; this
can result when data are not uniformly distributed over the production set.

The results in Table 4 provide clear evidence that separability does not hold across
time for regions 2–4. For region 1, the evidence is mixed, but separability is clearly
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Table 4 Tests of separability with respect to time by US census regions (1000 splits, 1000 bootstrap
replications)

Region Input Output Hyperbolic

Statistic p value Statistic p value Statistic p value

Test #1

1 1.323 0.239 4.281 0.000 2.424 0.222

2 5.190 0.000 5.512 0.000 5.958 0.000

3 4.671 0.000 5.528 0.000 4.036 0.000

4 4.162 0.000 5.474 0.000 4.970 0.000

Test #2

1 0.414 0.262 0.722 0.026 0.589 0.375

2 0.817 0.000 0.904 0.000 0.939 0.000

3 0.811 0.001 0.786 0.000 0.789 0.002

4 0.677 0.000 0.810 0.000 0.745 0.000

Table 5 Tests of separability with respect to US census regions, by time (1000 splits, 1000 bootstrap
replications)

Year Input Output Hyperbolic

Statistic p value Statistic p value Statistic p value

Test #1

1997 8.387 0.000 8.325 0.000 9.056 0.000

2002 9.694 0.000 7.707 0.000 9.158 0.000

2007 9.495 0.000 9.136 0.000 11.024 0.000

2012 10.604 0.000 9.048 0.000 11.713 0.000

Test #2

1997 0.850 0.000 0.929 0.000 0.900 0.000

2002 0.913 0.000 0.939 0.000 0.923 0.000

2007 0.939 0.000 0.934 0.000 0.907 0.000

2012 0.974 0.000 0.952 0.000 0.963 0.000

rejected when testing in the output direction, and failure to reject in the input or
hyperbolic directions does not imply the null hypothesis of separability is true (all
statistical tests can either reject or fail to reject the null, but cannot “accept” the null).
Table 5 presents analogous results for tests of separability with respect to census region
for each year. Here, the results are conclusive, i.e., separability is rejected in all cases
with p values smaller than 0.000. Overall, the results in Tables 4 and 5 indicate that
separability does not hold, and that the frontiers are different for each region–year. It is
perhaps not surprising that the technology shifts over time. When one considers how
different the regions of the USA shown in Fig. 1 are in terms of the age of their cities,
their cultures, their demographics and other features, it is perhaps also not surprising
that municipalities’ frontiers vary across regions.
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These results are important for our subsequent investigation. Since separability does
not hold, neither with respect to time nor region, we must estimate conditionally on
both time and region. This means that we must treat each region–year independently,
as each region–year involves a different production set and a different frontier. This
raises some interesting questions, e.g., why are the frontiers different? And among the
factors listed above, which cause differences among the frontiers for different regions?
We leave these for future research as they are beyond the scope of this paper, but they
are important questions.

4.1.3 Which estimator should be used?

As noted above, we must decide which class of estimators (i.e., FDH, VRS-DEA or
CRS-DEA) to use for estimating efficiency. In many applied studies in the literature,
the choice between FDH, VRS-DEA and CRS-DEA estimators often appears to be
made arbitrarily, or worse, perhaps to avoid excessive numbers of estimates equal to
one. The choice, however, is not innocent, as both classes of DEA estimators require
convexity of the production set for statistical consistency, while FDH estimators do
not. Therefore, we test the convexity of the production set, for each region–year since
our data reject separability, using the test of Kneip et al. (2016) described in Sect. 2.2.
Results are reported in Table 6, where again “Test #1” indicates the test based on
averaging the test statistic from Kneip et al. (2016) over the sample splits, and “Test
#2” refers to tests based on the distribution of p values obtained on each sample split.
We again test in each of three directions for completeness; a test in one direction may
reject the null while a test in another direction does not depend on the distribution of
the data and other factors.

The evidence shown in Table 6 is mixed. Among the 96 tests, convexity is rejected
with a p value less than .1 in 30 cases, or in just over 30% of the tests. Of course, as
noted above, failure to reject the null does not provide evidence that the null is true,
and if the null were true here (and if the tests were independent, which they are not),
one would expect to reject in only 10% of the tests for tests of size .1. An additional
consideration is provided by Wilson (2018), where simulation results indicate than
in many cases after dimension reduction, FDH estimators yield smaller mean square
error than VRS-DEA estimators, even if the production set is convex. Therefore we
use FDH estimators for the remainder of our analysis.

The evidence against convexity in Table 6 may be surprising to some, but it is not
unheard of. In microeconomic theory, convexity is often assumed for mathematical
convenience as opposed to any other reason. In addition, evidence of convexity of
production sets has been found in a number of studies of banks (e.g., Wheelock
and Wilson 2012, 2018). But why might municipal governments face non-convex
frontiers, and what is the nature of the non-convexity? We speculate that the finding
of non-convexity may be related to the fact that municipal boundaries often expand
incrementally rather than continuously. This occurs when a municipality annexes a
new development and then must provide roads, sewers and other services, not just to
one or two new residents but to many. This may result in “lumpy” output in the sense
discussed by Shephard (1970). Further research is needed to resolve these questions.
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Table 6 Tests of convexity by year and census region (1000 splits, 1000 bootstrap replications)

Year Region Input Output Hyperbolic

Statistic p value Statistic p value Statistic p value

Test #1

1997 1 0.083 0.713 0.978 0.880 0.580 0.940

2 1.249 0.853 1.047 0.199 1.454 0.909

3 0.178 0.742 0.616 0.960 0.403 0.794

4 2.731 0.000 1.639 0.996 1.358 0.015

2002 1 0.322 0.683 0.902 0.970 0.029 0.374

2 0.351 0.490 0.824 0.189 1.354 0.953

3 0.340 0.279 0.168 0.807 0.093 0.345

4 1.572 0.099 0.270 0.475 1.389 0.039

2007 1 0.457 0.580 1.501 0.999 0.363 0.507

2 1.164 0.907 0.805 0.164 1.666 0.978

3 0.111 0.673 0.030 0.418 0.701 0.958

4 1.138 0.125 0.948 0.807 2.305 0.002

2012 1 1.295 0.994 0.229 0.516 1.805 0.999

2 0.950 0.039 0.544 0.148 0.266 0.646

3 0.446 0.108 0.295 0.395 0.455 0.621

4 1.306 0.038 1.416 0.991 1.421 0.031

Test #2

1997 1 0.218 0.592 0.603 0.005 0.280 0.464

2 0.403 0.166 0.372 0.254 0.460 0.115

3 0.228 0.642 0.411 0.010 0.245 0.500

4 0.522 0.003 0.458 0.001 0.457 0.003

2002 1 0.222 0.274 0.444 0.049 0.291 0.110

2 0.270 0.336 0.322 0.247 0.397 0.076

3 0.216 0.326 0.193 0.327 0.183 0.425

4 0.512 0.048 0.330 0.208 0.455 0.019

2007 1 0.219 0.470 0.503 0.026 0.279 0.248

2 0.370 0.118 0.334 0.195 0.464 0.037

3 0.259 0.427 0.238 0.221 0.303 0.112

4 0.511 0.014 0.437 0.028 0.605 0.001

2012 1 0.394 0.003 0.354 0.206 0.475 0.003

2 0.503 0.002 0.356 0.069 0.310 0.161

3 0.390 0.024 0.243 0.268 0.237 0.452

4 0.553 0.000 0.527 0.001 0.620 0.000
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For present purposes, the finding of evidence against convexity points to use of FDH
estimators instead of VRS-DEA or possibly CRS-DEA estimators.

It is important to note that we assume that all municipalities in the same region–year
operate in the same (conditional) production set�z defined by (10), and consequently
face the same frontier. Municipalities in a given region–year may have very different
scales and budget plans, and hence may operate in different regions of the production
set or under different parts of the frontier. The view here contrasts with studies that
assume different frontiers for different producers. Those that do so invariably rely
on fully parametric estimation methods, and allowing different frontiers buys some
flexibility. But, themodel described in Sect. 2.1 is fully nonparametric, and hence quite
flexible. The assumptions underlying ourmodel and described in Sect. 2.1 impose only
minimal restrictions involving free disposability, continuity and some smoothness of
the frontier. Moreover, as noted above, our use of FDH estimators for the remainder
of our analysis means that we avoid assuming convexity of the production sets.

4.2 Main results

Our findings in Sect. 4.1 have implications for how previous studies of municipal
efficiency should be regarded, as well as implications how future research should pro-
ceed. Having determined (i) that dimension reduction can reasonably be employed
with expectation of reduced estimation error, (ii) that our data reject separability with
respect to time and regions and hence require independent estimation within each
region–year, and (iii) that FDH estimators are appropriate since the data provide evi-
dence against convexity of production sets in individual region–years, we now turn
to our main results. We first estimate efficiency for each municipality in a given
region–year, using only the observations in that region–year. We use input, output
and hyperbolic FDH estimators, and report summary statistics for these estimates in
Tables 7 and 8. In Table 8 where we report summary statistics for the output-oriented
estimates, we first take reciprocals of the estimates in order to facilitate comparison
with the results in Tables 7 and 9.16

Since our input measure X measures cost, the input-oriented efficiency estimates
summarized in Table 7 can be interpreted as estimates of cost efficiency or input
overall efficiency as discussed by Simar and Wilson (2020b). As such, our input-
oriented estimates give an idea of how much municipalities might feasibly reduce
costs while holding output constant. Nonetheless, for a municipality operating in the
interior of the set of feasible costs and outputs, we can also consider other directions to
the boundary of this set, e.g., output and hyperbolic oriented measures. In the output
direction, we estimate how far municipalities might expand outputs while holding cost
fixed, and in the hyperbolic direction, we estimate by how much municipalities might
reduce cost while increasing output by the same proportion.

Readerswhowish to focus on the cost-efficiency interpretation of the input-oriented
efficiency estimates may do so, but we believe the output and hyperbolic efficiency
estimates give some additional insight. In particular, note that the minimum values

16 Recall from the discussion in Sect. 2.1 that by construction, θ(x, y | �) ≤ 1 and γ (x, y | �) ≤ 1, while
λ(x, y | �) ≥ 1.
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Table 7 Summary statistics for input-oriented FDH technical efficiency estimates by time and US census
region

Year Min Q1 Median Mean Q3 Max Var

Region 1: Northeast

1997 0.116 0.279 0.365 0.468 0.580 1.000 0.071

2002 0.190 0.309 0.448 0.534 0.758 1.000 0.074

2007 0.197 0.348 0.474 0.568 0.759 1.000 0.073

2012 0.195 0.360 0.555 0.590 0.807 1.000 0.068

Region 2: Midwest

1997 0.172 0.500 0.655 0.688 0.972 1.000 0.063

2002 0.166 0.453 0.608 0.637 0.816 1.000 0.051

2007 0.119 0.492 0.669 0.658 0.855 1.000 0.053

2012 0.104 0.423 0.549 0.581 0.725 1.000 0.051

Region 3: South

1997 0.068 0.330 0.530 0.544 0.716 1.000 0.068

2002 0.046 0.288 0.471 0.505 0.699 1.000 0.072

2007 0.056 0.295 0.480 0.515 0.732 1.000 0.073

2012 0.049 0.283 0.494 0.511 0.703 1.000 0.073

Region 4: West

1997 0.059 0.203 0.330 0.419 0.587 1.000 0.074

2002 0.028 0.173 0.297 0.415 0.621 1.000 0.085

2007 0.039 0.218 0.341 0.436 0.594 1.000 0.077

2012 0.039 0.223 0.332 0.451 0.688 1.000 0.087

for the input-oriented estimates in Table 7 are quite small, in some cases less than
0.1. This is also true for the output-oriented estimates shown in Table 8. But looking
at the hyperbolic estimates in Table 9, the minimum values for each region–year (as
well as the quartiles and means) are larger than for either the input or output-oriented
estimates. As discussed by Wilson (2011), the hyperbolic estimates are less sensitive
to the curvature and slope of the frontier in different locations, and hence yield less-
extreme values.17 Our (reciprocal) output-oriented estimates in Table 8 are slightly
larger than the input-oriented estimates in Table 7, but either set of estimates signal
more inefficiency than do the hyperbolic estimates in Table 9. One might reasonably
doubt that any municipalities could have efficiency on the order of 0.1 as indicated
for some region–years in Tables 7 and 8, but comparison of these estimates with the
corresponding hyperbolic estimates in Table 9 suggests that the very small values
obtained with the input and output-oriented estimators are likely consequences of the
phenomenon discussed above and in footnote 17.

17 To illustrate, consider a municipality operating near the frontier where both X and Y∗ are small. Here,
the frontier is very steep, and the municipality may be close to the frontier in the input direction, but far
from the frontier in the output direction. For a municipality operating near the frontier but where both X
and Y∗ are large, the reverse is true since the frontier is relatively flat in this region. But the hyperbolic
measure will be similar in both cases. See Wilson (2011) for additional discussion, and in particular see
Wilson (2011, Fig. 6.1).
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Table 8 Summary Statistics for Output-Oriented FDHTechnical Efficiency Estimates by Time andUSCen-
sus Region

Year Min Q1 Median Mean Q3 Max Var

Region 1: Northeast

1997 0.105 0.380 0.493 0.531 0.650 1.000 0.058

2002 0.204 0.356 0.488 0.565 0.802 1.000 0.068

2007 0.210 0.361 0.519 0.587 0.810 1.000 0.069

2012 0.136 0.321 0.524 0.585 0.865 1.000 0.083

Region 2: Midwest

1997 0.151 0.577 0.762 0.742 0.977 1.000 0.047

2002 0.254 0.553 0.711 0.705 0.881 1.000 0.043

2007 0.189 0.551 0.704 0.705 0.867 1.000 0.045

2012 0.153 0.538 0.662 0.665 0.784 1.000 0.038

Region 3: South

1997 0.089 0.426 0.622 0.612 0.792 1.000 0.060

2002 0.106 0.370 0.571 0.579 0.765 1.000 0.060

2007 0.097 0.376 0.585 0.588 0.771 1.000 0.060

2012 0.121 0.402 0.589 0.597 0.794 1.000 0.058

Region 4: West

1997 0.180 0.377 0.508 0.550 0.669 1.000 0.047

2002 0.093 0.414 0.531 0.569 0.714 1.000 0.052

2007 0.093 0.381 0.496 0.556 0.718 1.000 0.053

2012 0.099 0.373 0.531 0.577 0.763 1.000 0.057

Reported values reflect inverse efficiency estimates in order to facilitate comparison with hyperbolic and
input-oriented efficiency estimates

Overall, our results so far suggest that there is some inefficiency among municipal-
ities, as well as some differences over time and regions, but aside from the remarks
made above, we caution readers not to make too much of the results in Tables 7, 8
and 9. The results in these tables are of the same type reported in previous analyses of
municipal efficiency in the sense that they reflect only point estimates, with no infer-
ence. Moreover, recall from Table 2 that there is substantial variation in the number
of observations available for each region–year, and this in turn causes variation in the
bias of our efficiency estimates across region–years. Direct comparison of the results
in Tables 7, 8 and 9 across time or regions is thus problematic without inference and
without accounting for bias.

Fortunately, the test of differences inmeanefficiencydescribedbyKneip et al. (2016,
Sect. 3.1.1) includes explicit, generalized jackknife estimates of bias as discussed in
Sect. 2.2, and can be used to compare mean efficiencies across pairs of region–years
with unequal numbers of observations. Moreover, the test does not restrict the frontier
to be the same across a pair of region–years. Table 10 reports results from tests of dif-
ferences inmean efficiency across pairs of census regions for each year, while Table 11
reports results from tests of differences in mean efficiency across pairs of years for
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Table 9 Summary statistics for hyperbolic FDH technical efficiency estimates by time and US census
region

Year Min Q1 Median Mean Q3 Max Var

Region 1: Northeast

1997 0.368 0.582 0.676 0.695 0.798 1.000 0.028

2002 0.453 0.558 0.658 0.711 0.893 1.000 0.034

2007 0.452 0.597 0.692 0.739 0.896 1.000 0.030

2012 0.370 0.642 0.726 0.752 0.899 1.000 0.030

Region 2: Midwest

1997 0.434 0.723 0.835 0.834 0.986 1.000 0.021

2002 0.488 0.725 0.827 0.819 0.943 1.000 0.019

2007 0.426 0.734 0.828 0.821 0.910 1.000 0.017

2012 0.350 0.712 0.783 0.781 0.860 1.000 0.018

Region 3: South

1997 0.333 0.611 0.752 0.745 0.883 1.000 0.029

2002 0.267 0.584 0.724 0.713 0.846 1.000 0.033

2007 0.225 0.591 0.742 0.725 0.876 1.000 0.034

2012 0.275 0.603 0.732 0.728 0.873 1.000 0.031

Region 4: West

1997 0.318 0.550 0.673 0.688 0.802 1.000 0.029

2002 0.278 0.543 0.640 0.673 0.825 1.000 0.033

2007 0.291 0.496 0.661 0.661 0.807 1.000 0.039

2012 0.269 0.514 0.659 0.682 0.845 1.000 0.041

each census region. In both cases, we consider tests based on efficiency estimated in
the input, output and hyperbolic directions.18

Values of test statistics and corresponding p values are shown in Table 10 for 72
cases, and the p values are less than .1 in 62 (more than 87%) of these cases. Each line
in Table 10 involves a test for different mean efficiencies in region j versus region k.
In the input and hyperbolic directions, positive (negative) test statistics indicate than
region j is more (less) efficient than region k on average. For the output direction,
positive (negative) test statistics indicate region j is less (more) efficient than region
k on average. In each of the 4 years covered by our data, the tests comparing region
2 versus region 3, region 2 versus region 4 and region 3 versus region 4 provide

18 Note that the test for differences in mean efficiency developed by Kneip et al. (2016) requires indepen-
dence between the two means to avoid complications arising from covariance. Our tests of different mean
efficiencies across regions involve different municipalities in different regions, so there is little reason to
suspect independence does not hold. However, our tests of differences in mean efficiency across time in a
particular region involve many of the same municipalities observed at two points in time, and consequently
covariance is an issue. On the other hand, inertia likely plays a role here, i.e., a municipality that performs
poorly (or well) in one period is likely to also perform poorly (or well) in the next period. Consequently,
any covariance is likely to be positive, and since we are testing for differences, ignoring positive covariance
makes our tests conservative by biasing toward failure to reject the null hypothesis of no difference in mean
efficiencies.
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clear evidence that municipalities region 2 are more efficient on average than those in
regions 3 or 4, and those in region 3 are more efficient on average than those in region
4; the results agree regardless of whether the input, output or hyperbolic direction is
used.19 Tests for region 1 versus regions 2 or 3 are also in agreement in each of the
three directions and in each year where tests are statistically significant, and indicate
that municipalities in region 1 are less efficient than those in regions 2 or 3. For test
involving region 1 versus region 4, only the input direction yields significant results
in 1997 and 2002, and the positive values obtained in the input direction indicate
that region 1’s municipalities are more efficient on average than those in region 4. In
2007 and 2012, tests involving region 1 versus region 4 are statistically significant
in all three directions, but produce conflicting results, with the input and hyperbolic
directions indicating that average efficiency is larger in region 1 than region 4, and the
output direction indicating the opposite.

To summarize, we find overall that in each year, municipalities in region 2 are more
efficient on average thanmunicipalities in region 3,which aremore efficient on average
than those in region 4. The evidence for 1997 and 2002 suggests that municipalities
in region 1 are more efficient on average than those in region 4, but less efficient on
average than those in either region 2 or 3. The evidence for 2007 similarly suggests
that municipalities in region 1 are less efficient on average than those in region 2 or
3, but the comparison between regions 1 and 4 is not clear. The evidence for 2012
suggests clearly that municipalities in region 1 are less efficient on average than those
in region 2, but the comparison between region 1 and regions 3 and 4 is less clear.

There are perhaps numerous reasons why municipal efficiencies vary across census
regions, and further work is needed to examine the sources of this variation. Nonethe-
less, cities in region 1 (Northwest) tend to be older, with higher population density
than those in the Midwest (region 2) or West (region 4). In the South (region 3), cities
are typically older and have higher densities in many cases near the Atlantic coast
than further west (e.g., in Texas). These differences reflect the history of urbanization
in the USA, westward migration and coinciding decreases in transportation costs, and
likely contribute to lower efficiency on average in the Northeast (region 1) than in
the Midwest (region 2). Cities in the South (region 3) are more heterogeneous than
those in the Northeast or Midwest in terms of their ages, but many of those in the
South are younger and less dense than those in the Northeast, perhaps contributing to
the larger average efficiency we find in the South than in the Northeast. The largest
cities in the West (region 4) are concentrated along the Pacific coast. Moreover, in
recent decades, residents of states along the Pacific coast and in the Northeast have
tended to vote Democratic, while those in the Midwest and South have tended to vote
Republican. Conceivably, the resulting differences in local government policy might
have some effect on our finding that municipalities in regions 2 and 3 are on average
more efficient than those in regions 1 and 4. More research is needed, as it is beyond
the scope of this paper to answer all of these questions here.

Turning to results from the tests for differences in mean efficiency over time (by
regions) in Table 11, signs on the test statistics should be interpreted similarly to those
in Table 10. In other words, for a test of different mean efficiencies between time t1

19 Among these tests, only one—for region 2 versus region 3 in 2012—is not statistically significant.
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and t2, positive (negative) test statistics indicate greater (smaller) mean efficiency in t1
than in t2 for the input and hyperbolic directions, while the reverse is true for the output
direction. Among the tests for region 3, none are significant. Although the technology
changed over time for municipalities in region 3 as indicated by the separability tests
in Table 4, we find no evidence of changes in mean efficiency over time within region
3. Apparently, to the extent that the technology moved up or down, municipalities in
region 3 moved in similar directions, following the frontier as it shifted up or down.
For region 1, the results in Table 11 suggest that mean efficiency worsened from 1997
to 2002 as well as 1997 to 2012. The results for 2002–2007 are insignificant, and the
evidence for 2007–2012 is unclear (the results are significant in all three directions, but
indicate worsening efficiency in the input and hyperbolic directions, and improving
efficiency on average in the output direction). For theMidwest (region 2), there is some
evidence of improving average efficiency from 1997 to 2002, and strong evidence for
improvement from 2007 to 2012 as well as over the entire period 1997 to 2012. The
results for 2002 to 2007 are insignificant in all three directions. For region 4, to the
extent that results are significant, we find evidence of worsening efficiency on average
for 2002–2007, 2007–1012 and 1997–2012, with no significant changes from 1997
to 2002. The finding that average efficiency declined over the years following the
financial crisis of 2007–2008 in the Northeast and West is in accordance with the
discussion in Sect. 1 regarding bankruptcy filings by municipal governments; among
those listed in Sect. 1, all except Detroit, MI and Hillview, KY are in either region
1 or 4. Moreover, as noted above, in the regions where average efficiency declined
(Northeast and West) voters tend toward the Democratic Party, while in the regions
where average efficiency either improvise or did not decline, voters tend toward the
Republican Party. More research is needed to examine this further, but the results are
suggestive.

Sinceweuse reduced-dimensional datawith p = q = 1,we canmeasure productiv-
ity simply by dividing Y∗ by X for each observation. Table 12 gives summary statistics
on productivity by year and by census region. In terms of mean productivity, there
are some differences across years and across regions, but inference is needed to know
whether these differences are significant. Since we measure productivity by a simple
ratio, without using the nonparametric efficiency estimators, we can use the standard
Lindeberg–Feller CLT to make inference about differences in mean efficiency across
regions and years. In Table 13, we examine differences between regions, by year. For
a test of region j versus region k, a positive (negative) test statistic indicates larger
(smaller) productivity in region k than in region j . Among the 24 tests in Table 13, all
but four yield p values smaller than .1. The results in Table 13 indicate that for 1997,
regions 2, 3 and 4 are more productive on average than region 1, but we find no sig-
nificant evidence to rank regions 2–4. For 2002, 2007 and 2012, however, the results
are clear and crisp: in each of these years, we find evidence that municipalities in the
Midwest (region 2) are more productive on average than those in the South (region
3), which in turn are more productive on average than those in the West (region 4),
which dominate those in the Northeast (region 1) in terms of average productivity.
The patterns here are similar to our findings regarding differences in mean efficiency,
and may be related to the same factors discussed above.
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Table 12 Summary statistics for
productivity estimates by year
and US census region

Year Min Q1 Median Mean Q3 Max

Region 1: Northeast

1997 0.408 0.729 0.970 1.316 1.573 5.221

2002 0.508 0.738 0.908 1.326 1.839 3.875

2007 0.421 0.693 0.925 1.317 1.580 11.286

2012 0.401 0.661 0.867 1.136 1.483 3.827

Region 2: Midwest

1997 0.291 0.711 0.993 1.056 1.289 2.075

2002 0.224 0.728 0.868 0.950 1.184 2.460

2007 0.259 0.897 1.126 1.143 1.332 2.621

2012 0.267 0.895 1.103 1.127 1.308 3.376

Region 3: South

1997 0.201 0.755 1.190 1.229 1.565 4.135

2002 0.163 0.711 1.151 1.197 1.500 3.803

2007 0.147 0.704 1.219 1.270 1.663 4.126

2012 0.141 0.669 1.153 1.173 1.537 6.992

Region 4: West

1997 0.236 0.833 1.063 1.232 1.421 6.714

2002 0.106 0.707 0.999 1.146 1.338 7.239

2007 0.162 0.722 0.966 1.130 1.357 6.659

2012 0.132 0.768 1.024 1.160 1.361 6.405

We also examine differences in mean productivity across time, by region, in
Table 14, again using standard CLT results.20 For a test of difference in mean pro-
ductivity between years t1 and t2 (where t2 > t1), a statistic with a positive (negative)
value indicates improving (worsening) productivity. For the Northeast, we find no
change from 1997 to 2002, a decrease in productivity from 2002 to 2007, and an
offsetting improvement from 2007 to 2012, with no net change from 1997 to 2012. It
is perhaps surprising that productivity declined before the 2007–2008 financial crisis,
then improved afterward. Perhaps tighter budgets forced administrators to waste less.
In the West, we also see offsetting changes, but earlier than in the Northeast with a
decrease in productivity from 1997 to 2002 followed by an increase from 2002 to
2007, and no apparent net change from 1997 to 2012. By contrast, we find signifi-
cant increases in average productivity in regions 2 and 3, with improvement during
1997–2002 and 2007–2012 in the Midwest, and in 1997–2002 in the South. Both the
Midwest and South show evidence in net improvements in average productivity over
the entire period 1997–2012. The patterns seen in Table 14 are similar to those seen in
Tables 10, 11 and 12, and are likely due to some of the same factors driving patterns
in those tables.

20 Similar reasoning regarding covariance across time discussed in footnote 18 applies here. To the extent
that there is positive covariance between municipalities’ productivity over time, our tests are conservative.
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Table 13 Tests of differences in
mean productivity across
US census region by years

Year Regions Productivity

Statistic p value

1997 1 v. 2 9.353 8.560 × 10−21

1 v. 3 9.060 1.301 × 10−19

1 v. 4 8.034 9.436 × 10−16

2 v. 3 − 0.292 7.701 × 10−1

2 v. 4 − 1.319 1.873 × 10−1

3 v. 4 − 1.026 3.048 × 10−1

2002 1 v. 2 13.577 5.486 × 10−42

1 v. 3 12.230 2.161 × 10−34

1 v. 4 4.908 9.221 × 10−7

2 v. 3 − 1.347 1.779 × 10−1

2 v. 4 − 8.669 4.345 × 10−18

3 v. 4 − 7.322 2.444 × 10−13

2007 1 v. 2 18.195 5.611 × 10−74

1 v. 3 16.403 1.829 × 10−60

1 v. 4 10.864 1.704 × 10−27

2 v. 3 − 1.793 7.302 × 10−2

2 v. 4 − 7.331 2.284 × 10−13

3 v. 4 − 5.538 3.054 × 10−8

2012 1 v. 2 16.789 2.922 × 10−63

1 v. 3 11.104 1.197 × 10−28

1 v. 4 7.140 9.362 × 10−13

2 v. 3 − 5.685 1.307 × 10−8

2 v. 4 − 9.650 4.928 × 10−22

3 v. 4 − 3.965 7.352 × 10−5

5 Summary and conclusions

Taken together, our findings in Sect. 4.2 suggest that on average, municipalities in the
Midwest and the South out-performed those in the Northeast and West in terms of
both efficiency and productivity. There are many differences between these regions,
including cultural, demographic and political differences. It is well known that in
recent presidential and congressional elections, Democratic votes have been somewhat
concentrated in the Northeast and in states along the Pacific coast, while Republican
votes have prevailed in much of the South andMidwest. Local elections have followed
similar patterns, and the resulting differences in municipal management may explain
some of the differences we have found. But, there are other differences, and these
should be explored in future research.
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Table 14 Tests of differences in
mean productivity across time
by US census region

Period Productivity

Statistic p value

Region 1: Northeast

1997–2002 0.294 7.690 × 10−1

2002–2007 − 4.145 3.393 × 10−5

2007–2012 4.254 2.098 × 10−5

1997–2012 0.403 6.873 × 10−1

Region 2: Midwest

1997–2002 4.518 6.238 × 10−6

2002–2007 0.473 6.361 × 10−1

2007–2012 2.848 4.398 × 10−3

1997–2012 7.839 4.529 × 10−15

Region 3: South

1997–2002 3.463 5.342 × 10−4

2002–2007 0.028 9.778 × 10−1

2007–2012 − 1.044 2.963 × 10−1

1997–2012 2.446 1.443 × 10−2

Region 4: West

1997–2002 − 2.833 4.616 × 10−3

2002–2007 1.811 7.007 × 10−2

2007–2012 0.529 5.965 × 10−1

1997–2012 − 0.492 6.228 × 10−1

Wefind somedifferences in efficiency and productivity before and after the financial
crisis of 2007–2008, but the evidence ismixed and unclear. The financial crisis affected
the entire country, but we find no significant evidence of decreased productivity by
municipalities (in any of the four census regions) in the years following the crisis.
While we find some evidence of changes in efficiency after the financial crisis, we do
not see clear patterns across all regions. To the extent that the financial crisis had an
effect onmunicipalities, itmay be been outweighed by other,more local considerations
suggested above.

A large number of previous papers examining municipal efficiency have used
nonparametric efficiency estimators, but the majority have used either VRS-DEA
or CRS-DEA estimators, and the choice seems to be ad hoc in most cases. By con-
trast, we carefully test model features such as separability and convexity of production
sets, and the results of these tests inform us regarding the choice among the classes
of FDH, VRS-DEA and CRS-DEA estimators. In addition, we exploit collinearity in
the data to reduce estimation error. Future research should examine the efficacy of
dimension reduction using the diagnostics provided by Wilson (2018); we expect that
in many cases, dimension reduction will be advantageous due to the common, inher-
ent collinearity in economic data. Finally, we have used a well-defined nonparametric
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model to allow rigorous statistical testing of various hypotheses using the results of
Kneip et al. (2015, 2016), Daraio et al. (2018) and Simar and Wilson (2020a). Statis-
tical tools for hypothesis testing analogous to those long-used by parametric modelers
are now available for the nonparametric efficiency and productivity framework, and
should be used.

As we have noted at several points in Sect. 4, we have left some questions for future
research. This is unavoidable in a journal-length paper, but we believe there is some
value in suggesting directions for future research. In particular, the differences we
have found across census regions strike us as interesting. Our prior was that our most
important findings would revolve around the 2007–2008 financial crisis, but as noted
above, to the extent the crisis had an effect on municipal governments, the effects
were mixed. We have suggested several differences among the four census regions
that might be related to differences we see across the regions, but more detailed data
seem likely to reveal more insight. More research is needed.
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