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Abstract
Measurement error biases OLS results. When the measurement error variance in abso-
lute or relative (reliability) form is known, adjustment is simple. We link the (known)
estimators for these cases to GMM theory and provide simple derivations of their stan-
dard errors. Our focus is on the test statistics. We show monotonic relations between
the t-statistics and R2s of the (infeasible) estimator if there was no measurement error,
the inconsistent OLS estimator, and the consistent estimator that corrects for measure-
ment error and show the relation between the t-value and themagnitude of the assumed
measurement error variance or reliability. We also discuss how standard errors can be
computed when the measurement error variance or reliability is estimated, rather than
known, and we indicate how the estimators generalize to the panel data context, where
we have to deal with dependency among observations. By way of illustration, we esti-
mate a hedonic wine price function for different values of the reliability of the proxy
used for the wine quality variable.
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1 Introduction

As is well known from econometric textbooks (e.g., Baltagi 2011, sec. 5.3), mea-
surement error in one or more regressors makes OLS estimators of linear regression
models inconsistent. Often, the inconsistency will cause a bias toward zero, although
this does not need not be the case and the bias can be away from zero (Wansbeek
and Meijer 2000, sec. 2.3). But whatever the direction of the bias, the desire “to do
something” about it has spawned a huge literature since the 1930s.

One strand in this literature is to limit the problem by deriving (asymptotic) bounds
on the estimators, thus limiting the extent of the problem. In case themeasurement error
is confined to a single regressor, OLS is biased toward zero while reverse regression
is biased away from zero, thus offering estimated bounds on the coefficient. This
classical result (Frisch 1934) does not extend to the case of multiple mismeasured
regressors, and then, outside information in the form of a bound on the measurement
error covariance matrix is required to obtain estimators of bounds on the coefficients
(Wansbeek and Meijer 2000, secs. 3.4 and 3.5).

But, not surprisingly, the focus in the literature is on coming up with a consistent
estimator. One way to achieve this is through an instrumental variable. It may come
fromoutside themodel, but can also be foundwithin themodel as long as it is identified.
This requires nonnormality of the regressors. Then, higher moments of the variables
can be used as instruments (Geary 1942; Erickson and Whited 2002).

Another road to consistency lies open when the measurement error variance is
known. Then, a consistent estimator is readily obtained by subtracting the measure-
ment error covariance matrix from the covariance matrix of the observed regressors.
Unlike in fields like physics and the medical sciences, in economics the measure-
ment error variance is seldom known. Yet, researchers may have an idea about it or
just want to understand how their results vary with its magnitude. In practice, it will
often not so much be about the absolute magnitude but the magnitude relative to the
observed variance, the reliability. For example, published psychological tests are rou-
tinely accompanied by a statement of its reliability (Fuller 1987, p. 5) and in their
overview of measurement error in economics; Bound et al. (2001) present many of the
results as reliabilities or correlation between the observed value and the true value (the
square roots of the reliabilities), although they present results on measurement error
variances as well. As this illustrates, ideas about reliabilitymay involve fixed numbers,
but in practice it will often be about numbers imported from previous research and
are hence subject to sampling error, which depending on the relative sample sizes of
the prior studies and current study may or may not be negligible. Buonaccorsi (2010,
pp. 168–169) provides a critical assessment of the usefulness of externally estimated
reliabilities.

In this paper, we consider inference for the linear regression model with measure-
ment error in the context of these three increasingly realistic kinds of prior knowledge:
known absolute variances, known reliabilities, and estimated reliabilities (or estimated
measurement error variances). We will consider these three consecutively. For each
case, we derive a consistent estimator of the regression coefficient and its asymp-
totic variance, both without and with assuming normality of the measurement error
variance.
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Howmeasurement error affects inference in linear… 133

An interesting issue concerns t-values. We can distinguish three: the t-value when
there were no measurement error; the t-value when there is measurement error but it is
neglected; and the t-value when the measurement error is accounted for. For the first
two cases, known absolute variances and known reliabilities, we show that the t-values
decrease while we move along this list. (The generality of the third case, estimated
reliability or measurement error variance, defies analysis.) This greatly expands the
findings in Meijer and Wansbeek (2000). The issue is relevant for applied researchers
for two reasons. First, a regression coefficient can become insignificant due to mea-
surement error and, second, correcting for the measurement error will not make an
insignificant coefficient significant.

The paper is organized as follows. In Sect. 2, we consider the case of known
measurement error variance. We describe the model, present the adapted estimator
when the measurement error variance is known and show that it is a method-of-
moments (MM) estimator. We discuss estimating its variance in general and elaborate
this under independence and normality. Section 3 discusses the F and t tests and
shows that there is an ordering from high to low between the cases mentioned above
(no measurement error, neglected measurement error, measurement error accounted
for).

In Sect. 4, we turn to the case where the reliability rather than the measurement
error variance is known.Wederive the asymptotic variance,without andwith assuming
normality of the measurement errors. Analogous to Sect. 3, the issue of the ordering
of the corresponding test statistics is addressed in Sect. 5.

Section 6 discusses how to handle the situation where the measurement error vari-
ance or reliability is not known but is consistently estimable, with a consistently
estimated asymptotic variance.

In previous papers (Meijer et al. 2015, 2017), we have shown that panel data offer
many additional possibilities for identification and estimation of measurement error
models, compared to (independent) cross-sectional data. Therefore, in Sect. 7, we
investigate whether the analysis up until then can be extended from a cross-sectional
to a panel data context, and whether for the case of known or estimated measurement
error variances or reliabilities, this makes identification and estimation easier or more
difficult.

We then turn, in Sect. 8, to an empirical example. It concerns the Australian wine
market. The price of wine is regressed on a number of variables including quality.
Results are shown for different values of the reliability of the proxy variable that is
used to quantify quality. Some concluding remarks are made in Sect. 9.

Throughout, we consider the linear regression model, which has also received most
attention in the measurement error literature. A recent overview of measurement error
focusing on nonlinear models is provided by Schennach (2016). Extending our results
to nonlinear models is left for future research. It turns out that our estimators of the
coefficients and our expressions for their asymptotic variances and the estimators
of them are essentially the same as the ones presented in Fuller (1987, sec. 3.1.1),
although this relation is far from obvious and our presentation is simpler and more
in line with the economic literature. Some of our special cases and extensions are
new, and in particular, our main contribution to the literature is given by the results
comparing the magnitudes of test statistics.
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134 E. Meijer et al.

2 Measurement error variance known

In this section, we introduce the model that we will study throughout and consider
the case where the measurement error variance is known. Most of the results here
have been described before in the literature (e.g., Fuller 1987; Wansbeek and Meijer
2000), but we present them here concisely as a reference for the rest of the paper, and
we put this in a (Generalized) Method of Moments framework, which simplifies the
theoretical analyses.

Consider the following linear regression model with k regressors ξi , measured with
error vi :

yi = ξ ′
iβ + εi

xi = ξi + vi ,

for i = 1, . . . , n. The yi and xi are observed. The reduced form, after eliminating the
unobserved ξi , is

yi = x ′
iβ + ui

ui = εi − v′
iβ.

Initially, assume that the observations are i.i.d. and that εi , ξi , and vi are mutually
independent with means 0, μ, and 0, respectively. We let

σ 2 = E(ε2i ) (1)

and � = E(viv
′
i ). So

σ 2
u = E(u2i ) = σ 2 + β ′�β. (2)

We collect the yi in the n-vector y and the xi in the n × k-matrix X . Let Â = X ′X/n
and A = plim

n→∞
Â = E( Â) = E(xi x ′

i ).

As is well known, major implication of this model is that the OLS estimator β̂0 =
(X ′X)−1X ′y of β converges to β0 = A−1(A− �)β and is hence inconsistent, except
for the trivial case that �β = 0, or, equivalently, �β0 = 0. In the following, we
assume that �β �= 0, that is, the model includes at least one mismeasured variable. If
� is known, the inconsistency is easily removed by using the adapted OLS estimator

β̂ = (X ′X − n�)−1X ′y. (3)

Let

hi = xi yi − (xi x
′
i − �)β. (4)
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Howmeasurement error affects inference in linear… 135

Then the model assumptions imply E(hi ) = 0, so (4) is a set of k valid moment
equations. Solving h̄ = 0, with

h̄ = 1

n

∑

i

hi = 1

n
[X ′y − (X ′X − n�)β],

shows that the estimator β̂ in (3) is a method of moments (MM) estimator.

2.1 Residual variance

The OLS-based estimator of the residual variance σ 2,

σ̂ 2
0 = (y − X β̂0)

′(y − X β̂0)/n = y′y/n − β̂ ′
0 Âβ̂0, (5)

is also inconsistent when there is measurement error. SinceE(y2i ) = σ 2+β ′(A−�)β,
we have

plim
n→∞

y′y/n = σ 2 + β ′(A − �)β, (6)

so

σ 2
0 = plim

n→∞
σ̂ 2
0 = σ 2 + β ′(A − �)β − β ′(A − �)A−1(A − �)β > σ 2.

The strictness of the inequality is an implication of the assumption �β �= 0. Through
(6) we obtain

σ̂ 2 = y′y/n − β̂ ′( Â − �)β̂. (7)

as a consistent estimator of σ 2.

2.2 Explained variation

We now consider the effect on R2 and the way to correct it. Let σ 2
y be the population

variance of the yi . This is consistently estimated by the sample variance s2y . Further-
more, let R2

0 be the R2 from the OLS regression and let ρ2∗ = (σ 2
y − σ 2)/σ 2

y =
[β ′(A − �)β − μ2

y]/σ 2
y be the population R2 of the regression of yi on ξi , where

μy = E(yi ). Then

R2
0 = s2y − σ̂ 2

0

s2y
= β̂ ′

0 Âβ̂0 − ȳ2

s2y

p−→ β ′(A − �)A−1(A − �)β − μ2
y

σ 2
y

<
β ′(A − �)β − μ2

y

σ 2
y

= ρ2∗ .
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136 E. Meijer et al.

So R2 is underestimated when there is measurement error, but

ρ̂2∗ = β̂ ′( Â − �)β̂ − ȳ2

s2y
(8)

is a consistent estimator of ρ2∗ .

2.3 Generalization

The assumptions we have stated above can be weakened without losing consistency
of the estimator. Under weak regularity conditions, the MM estimator is consistent if
E(hi ) = 0 (or, even weaker, plim

n→∞
h̄ = 0). A set of sufficient conditions for this is (a)

E(ξiεi ) = 0, (b) E(ξiv
′
i ) = 0, (c) E(viεi ) = 0, and (d) E(viv

′
i ) = �. This weaker set

allows for dependence across observations (time series, panel data, clustered data) and
heteroskedasticity in εi . It also allows for heteroskedasticity in vi but the assumption
that E(viv

′
i ) = Eξ

[
Ev|ξ (viv′

i | ξi )
]
is known but Ev|ξ (viv′

i | ξi ) varies with ξi does not
seem to offer much additional practical value. However, we will discuss extensions
to the case where � is consistently estimated later, and in that situation, robustness to
heteroskedasticity in vi may be a desirable property.

2.4 The asymptotic variance

Since plim
n→∞

∂ h̄/∂β ′ = −(A − �), MM theory implies that the asymptotic variance of

β̂ is

avar(β̂) = (A − �)−1[
E(hi h

′
i )

]
(A − �)−1.

A consistent estimator of this is

âvar(β̂) = ( Â − �)−1[
Ê(hi h

′
i )

]
( Â − �)−1, (9)

with

Ê(hi h
′
i ) = 1

n

∑

i

ĥi ĥ
′
i , (10)

with ĥi = xi yi − (xi x ′
i − �)β̂. This expression was previously given in section 5.4.2

of Buonaccorsi (2010). Note that (9) is valid under heteroskedasticity of εi and vi .
With clustered data or other types of dependent data, the appropriate clustered or
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix replaces
the covariance matrix (10).

We can elaborate (9) when the measurement errors are normally distributed. Then

	 = E[(v′
iβ)2viv

′
i ] = (β ′�β)� + 2�ββ ′� .
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Howmeasurement error affects inference in linear… 137

With

hi = xi (yi − x ′
iβ) + �β = (ξi + vi )(εi − v′

iβ) + �β = ξiεi − ξiv
′
iβ + viεi

−viv
′
iβ + �β,

we obtain, using (2),

E(hi h
′
i ) = σ 2(A − �) + β ′�β(A − �) + σ 2� + 	 − �ββ ′�

= (σ 2 + β ′�β)A + �ββ ′� + [
	 − (β ′�β)� − 2�ββ ′�

]

= σ 2
u A + �ββ ′�, (11)

leading to

avar(β̂) = (A − �)−1(σ 2
u A + �ββ ′�)(A − �)−1. (12)

To make this operational, we need to replace parameters by consistent estimators. In
particular, a consistent estimator of σ 2

u is

σ̂ 2
u = σ̂ 2 + β̂ ′�β̂; (13)

it can be straightforwardly verified that this is equal to
∑

i û
2
i /n. So

âvar(β̂) = ( Â − �)−1(σ̂ 2
u Â + �β̂β̂ ′�)( Â − �)−1 (14)

is a simple-structured consistent estimator when the measurement errors are normal
and ξi , εi , and vi are mutually independent.

3 Ordering of test statistics

We now turn to hypothesis testing. To obtain tractable results, wemaintain the hypoth-
esis that the measurement errors are normally distributed. Let U be a k × p matrix of
full column rank, with p < k. Let β̃ be an estimator of β and Ṽ be an estimator of its
asymptotic variance matrix. Then a Wald test statistic for H0 : U ′β = 0 is

T̃ = nβ̃ ′U (U ′ṼU )−1U ′β̃.

This is compared to a Chi-square distribution with p degrees of freedom. For com-
paring the test statistics based on different estimators, we compare their probability
limits (scaled by n), τ̃ = plim

n→∞
n−1T̃ . In this comparison, we include the infeasible

OLS estimator based on observing the ξi . For this infeasible estimator, the inconsistent
OLS estimator, and the consistent MM estimator, we obtain in this order
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138 E. Meijer et al.

τ† = β ′U
[
U ′(A − �)−1U

]−1
U ′β

σ 2 = β ′Q†β

σ 2 , (15)

τ0 = β ′
0U

[
U ′(σ 2

0 A
−1)U

]−1
U ′β0

= β ′(A − �)A−1U (U ′A−1U )−1U ′A−1(A − �)β

σ 2
0

= β ′Q0β

σ 2
0

, (16)

τ∗ = β ′U
[
U ′ {(A − �)−1(σ 2

u A + �ββ ′�)(A − �)−1
}
U

]−1
U ′β

= β ′U
[
U ′ {(A − �)−1A(A − �)−1

}
U

]−1
U ′β

σ 2
u

− c = β ′Q∗β
σ 2
u

− c, (17)

with σ 2, σ 2
0 , and σ 2

u defined in (1), (7), and (2), respectively, and Q†, Q0, Q∗, and
c > 0 implicitly defined; the latter reflects the matrix �ββ ′� in the expression of τ∗
and its precise form is immaterial.

3.1 Relation between the test statistics

To handle the Qs, we use the result for matrices F and H such that (F, H) is nonsin-
gular and F ′H = 0, and nonsingular S,

F(F ′S−1F)−1F ′ = S − SH(H ′SH)−1H ′S. (18)

To prove the result, notice that both sides equal (F, 0) after postmultiplication by
the nonsingular matrix (S−1F, H). Let G be an orthogonal complement of U and
consider the case where G is such that �G = 0 or, equivalently, WG = AG, where
W = A − �; we will meet two instances of this below. Now,

Q† = U (U ′W−1U )−1U ′

= W − WG(G ′WG)−1G ′W
= W − AG(G ′AG)−1G ′A

Q0 = W A−1U (U ′A−1U )−1U ′A−1W

= W A−1[A − AG(G ′AG)−1G ′A]A−1W

= W A−1W − AG(G ′AG)−1G ′A
Q∗ = U (U ′W−1AW−1U )−1U ′

= W A−1W − W A−1WG(G ′W A−1WG)−1G ′W A−1W

= W A−1W − AG(G ′AG)−1G ′A.

So when �G = 0, Q† ≥ Q0 since W ≥ W A−1W .1 Also, Q0 = Q∗. Since σ 2 < σ 2
0 ,

cf. (7), and σ 2
0 < σ 2

u , cf. (7) and (2), we conclude τ† > τ0 > τ∗.

1 The inequality sign means that the difference is positive semidefinite.
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3.2 F and t test

The first instance of �G = 0 occurs when testing the null hypothesis that all coeffi-
cients except the intercept are zero. TheWald test is then the asymptotic version of the
standard F test. Let the kth element of xi be 1 and let ek be the k-th unit vector (the
k-th column of Ik). The relevant statistic is obtained by lettingU be Ik without its last
column, with orthocomplement G = ek ; clearly, �G = 0. Thus, the null hypothesis
is rejected less often when using the OLS estimator based on the observed xi than
when using (if we could) the OLS estimator based on the true ξi . More interestingly
and somewhat paradoxically (because the estimated coefficients are typically larger
and the estimated residual variance is smaller), the null hypothesis is rejected less
often when using the consistent MM estimator than when using the inconsistent OLS
estimator based on the xi . Hence, the finding of a significant relation may not survive
when measurement error is accounted for.

Another interesting aspect of the ordering of the statistics is that it clearly distin-
guishes between the case where there is no measurement error and the case where
there is measurement error but its variance is known. From a first-order perspective,
there is no difference as β can be (simply) estimated consistently in both cases, but in
the latter case it is harder to detect a significant relationship between the variables.

The other instance of �G = 0 arises when there is measurement error in a single
regressor only, the first one, say, and the null hypothesis is β1 = 0. Then � is propor-
tional to e1e′

1 and U = e1 so G is Ik without its first column. The Wald test statistic
is then the square of the t test statistic. The same ordering as above applies, with the
same comments. This generalizes a result from Meijer and Wansbeek (2000). For the
case of regression with a single regressor, the result τ† > τ0 was already given by
Bloch (1978).2

4 Known reliability

Information about measurement error variances, if available, is more likely to be of
the relative than the absolute form. For example, Fuller (1987, Table 1.1.1), lists
the reliability of a number of socioeconomic variables, as computed from repeated
measurements by the U.S. Census Bureau. Income, for instance, has a reliability of
85%. Bound et al. (2001, sec. 6) list a large amount of empirical evidence about
measurement error in surveys, and most (though not all) of this is presented in terms
of correlations or variance ratios, which directly translate into reliabilities. By way
of another example, after performing a factor analysis of the independence of central
banks, De Haan et al. (2003) produced an indicator of the latent variable “central bank
independence” and listed its (estimated) reliability.

2 With a minor error; in our notation, the denominator in (16) in Bloch (1978) is not σ 2
0 but σ 2

u . This does
not affect the inequality.
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In this case, it is natural to assume that the measurement errors of the different
variables are independent. So � is now a diagonal matrix, and we know

ρ j = var(ξi j )

var(xi j )
= 1 − var(vi j )

var(xi j )
= 1 − � j j

A j j − μ2
j

,

for j = 1, . . . , k. So now � depends on the (unknown) diagonal elements of A, as

� j j = (1 − ρ j )(A j j − μ2
j ).

The means μ j now enter the picture as unknown parameters, requiring their own
moment conditions. Let, for i = 1, . . . , n,

Wi = diag[(1 − ρ j )(xi j − μ j )
2], (19)

so E(Wi ) = �. Consider the moment conditions E(hi ) = 0, with

hi =
(
h1i
h2i

)
=

(
xi yi − (xi x ′

i − Wi )β

xi − μ

)
so h̄ = 1

n

(
X ′y − (X ′X − nW̄ )β

n(x̄ − μ)

)
,

(20)

with x̄ , W̄ , and h̄ the sample averages. Setting h̄ = 0 and solving for β and μ readily
gives μ̂ = x̄ and

β̂ = (X ′X − n�̂)−1X ′y, (21)

with

�̂ = diag
[
(1 − ρ j )

∑
i (xi j − x̄ j )2/n

]
. (22)

Analogously, the consistent estimator of the error variance σ 2 is now

σ̂ 2 = y′y/n − β̂ ′( Â − �̂)β̂. (23)

instead of (7). Since

plim
n→∞

∂ h̄

∂(β ′, μ′)
= E

[
∂hi

∂(β ′, μ′)

]
= −

(
A − � 0

0 Ik

)
,

we have instead of (9)

âvar(β̂) = ( Â − �̂)−1

(
1

n

∑

i

ĥ1i ĥ
′
1i

)
( Â − �̂)−1, (24)
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Howmeasurement error affects inference in linear… 141

with

ĥ1i = xi yi − (xi x
′
i − Ŵi )β̂

Ŵi = diag[(1 − ρ j )(xi j − x̄ j )
2].

Expressions (21), (23), and (24) can be found in the Stata manual’s description of its
eivreg command as of version 16 (StataCorp 2019a).3

4.1 Estimation in a structural equationmodeling program

The linear regression model with measurement error is a special case of the general
class of structural equation models (SEMs); see, e.g., Wansbeek and Meijer (2000,
ch. 8). Most general-purpose statistical software packages have a SEM module, and
there are also standalone programs for estimating them. They generally allow simple
restrictions on the parameters, so estimating the model with known measurement
error variance in such a program is straightforward. Estimating the model with known
reliability is slightly less straightforward, however. For example, the sem command in
Stata allows for specifying the known reliability, but it then computes (in our notation)
�̂ and treats this as known, insteadof the reliability itself (StataCorp2019b, p. 577), and
Lockwood and McCaffrey (2020) report that this leads to noticeably biased standard
errors and propose using the bootstrap or using the theory of M-estimation to obtain
correct standard errors for this procedure. However, the proper way to specify known
reliability in a SEM is to impose a linear relation between the variance of ξ and the
variance of the relevant element(s) of v: var(vi j ) = [(1 − ρ j )/ρ j ] var(ξi j ), which in
Stata’s sem procedure can be done through a specification like

variance(xi1@c1 e.x1@(0.2*c1/0.8))

where xi1 is ξ , e.x1 is the measurement error of the error-ridden variable x1 (i.e.,
v1), 0.8 is ρ j (and 0.2 = 1 − ρ j ), and c1 indicates a free parameter. In many other
structural equation programs, such linear constraints can be imposed analogously.

4.2 Asymptotic variance

Analogous to what we did in Sect. 2.4 for the case of known �, we derive an explicit
expression for the asymptotic variance of β̂ for the case of known reliabilities. We
assume homoskedasticity and normality of the vi as we can obtain a manageable
expression only then. Let G = diag[(1 − ρ j )β j ] and let

ẋi = xi − μ

Ȧ = E(ẋi ẋ
′
i ) = A − μμ′

3 In earlier versions of Stata, the expression for the asymptotic variance of β̂ was incorrect. This had an
important qualitative effect on the result as the t statistic increased when correcting the estimator of β with
� while it should decrease. See Lockwood and McCaffrey (2020) for a discussion of the problem with the
earlier version of eivreg.
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ȧ = vec( Ȧ) = E(ẋi ⊗ ẋi )

Hk =
∑

j

e j ⊗ e j e
′
j ,

with e j the j th unit vector of dimension k. We can now write h1i as

h1i = xiui + GH ′
k(ẋi ⊗ ẋi )

and want to find an expression for E(h1i h′
1i ).

To do so, let Pk,k be the symmetric commutation matrix4 of order k2 × k2. Thus,
Pk,k Hk = Hk , E(xiui ) = E(ẋi ui ) = −�β, E(xi ẋ ′

i ) = Ȧ, and

� = (Ik ⊗ β ′�)HkG = diag(�β)G = G diag(�β).

Using themethod of repeated conditioning (Merckens andWansbeek 1989;Wansbeek
and Meijer 2000, p. 366) we readily obtain

E(xiui ui x
′
i ) = σ 2

u A + 2�ββ ′�
E[GH ′

k(ẋi ⊗ ẋi )(ẋi ⊗ ẋi )
′HkG] = GH ′

k[( Ȧ ⊗ Ȧ)(Ik2 + Pk,k) + ȧȧ′]HkG

= 2G( Ȧ ∗ Ȧ)G + �ββ ′�
E[ẋi ui (ẋi ⊗ ẋi )

′HkG] = −�βȧ′ − ( Ȧ ⊗ β ′�)(Ik2 + Pk,k)HkG

= −�βȧ′ − 2 Ȧ(Ik ⊗ β ′�)HkG

= −�ββ ′� − 2 Ȧ�,

where “∗” denotes the Hadamard (element-wise) product of two matrices of equal
dimensions. Collecting terms we obtain

E(h1i h
′
1i ) = σ 2

u A + �ββ ′� + 2[G( Ȧ ∗ Ȧ)G − Ȧ� − � Ȧ].

So, with hats as usual indicating the substitution of consistent estimators, we get

âvar(β̂) = ( Â − �̂)−1
(
σ̂ 2
u Â + �̂β̂β̂ ′�̂ + 2[Ĝ( ˆ̇A ∗ ˆ̇A)Ĝ − ˆ̇A�̂ − �̂ ˆ̇A]

)
( Â − �̂)−1,

(25)

with now, slightly adapting from (2), σ̂ 2
u = σ̂ 2 + β̂ ′�̂β̂ = ∑

i û
2
i /n, with �̂ as given

in (22). So the asymptotic variance for the case of known reliabilities is different from
the one for the case of known �, cf. (14), and quite a bit more complex.

4 Its defining property is Pk,k (a⊗b) = (b⊗a), where a and b are arbitrary k-vectors; see, e.g., Wansbeek
and Meijer (2000, p. 361), for some of its properties.
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5 Test statistics in the case of known reliability

The results for the R2 from the case with known � immediately carry over to the case
with known reliability, except that in the computation of ρ̂2∗ , �̂ is used instead of �.
The results for the Wald test also carry over, but less trivially so.

For comparingWald tests, τ0 and τ† are the same as before, because they do not use
any information about measurement error. However, the expression for τ∗ is different
now. Consider first the case of the joint test of whether all coefficients except the
constant are zero, that is, the Wald version of the standard F test. As discussed above,
this corresponds toU being the first k−1 columns of Ik and its complement being ek .
Define � = U ′(A−μμ′)U and �1 = U ′�U . That is, these are the variance matrices
of x and v, respectively, with their last element (corresponding to the constant) omitted.
Then

τ∗ = β ′U [U ′(A − �)−1U ]−1
−1[U ′(A − �)−1U ]−1U ′β
= β ′U (� − �1)


−1(� − �1)U
′β,

where the last equality follows from Lemma 1 in “Appendix A”,


 = σ 2
u � + �1U

′ββ ′U�1 + 2[G1(� ∗ �)G1 − ��1 − �1�],

andG1 and�1 are the upper-left (k−1)×(k−1) submatrices ofG and�, respectively,
or, equivalently, G1 = U ′GU and �1 = U ′�U . In contrast,

τ0 = β ′(A − �)A−1U (U ′A−1U )−1U ′A−1(A − �)β

σ 2
0

= β ′U (� − �1)�
−1(� − �1)U ′β

σ 2
0

.

It follows that if 
 ≥ σ 2
0 �, then τ0 ≥ τ∗. Therefore, we investigate

� = 
 − σ 2
0 � = (β ′U�1�

−1�1U
′β)� + �1U

′ββ ′U�1

+ 2[G1(� ∗ �)G1 − ��1 − �1�], (26)

where we have used

σ 2
u − σ 2

0 = β ′�A−1�β = β ′U�1U
′A−1U�1U

′β = β ′U�1�
−1�1U

′β,

which again uses Lemma 1. After some algebra, we find that � = R′SR, where S is a
symmetric positive semidefinite matrix, which implies that � is a symmetric positive
semidefinite matrix and therefore τ† > τ0 ≥ τ∗. The matrices in this expression are

R = (�½ ⊗ �−½�1U
′β)

S = Qk−1MLQk−1 + (K − L)(K − L)′
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ML = I(k−1)2 − L(L ′L)−1L ′

Qk−1 = 1
2 (I(k−1)2 + Pk−1,k−1)

K = (�−½ ⊗ �½)Hk−1�
½

L = (�½ ⊗ �½)Hk−1�
−1�−½

� = diag(�)

� = �−1H ′
k−1(� ⊗ �)Hk−1�

−1.

The matrix Qk−1 is a symmetric idempotent matrix (e.g., Wansbeek and Meijer 2000,
p. 361), as is ML , so it follows that S is symmetric and positive semidefinite.

This result generalizes, again after some algebra, to other tests for restrictions of the
form U ′β = 0 that do not involve the constant and that still satisfy �G = 0 (with G
the orthogonal complement ofU ) as in Sect. 3. (Hence, all mismeasured regressors are
included in the test.) So, by and large, the results for knownmeasurement error variance
carry over to the case of known reliability, but with some additional restrictions.

6 Estimated reliability

Often, we may not strictly “know” the reliability (or measurement error variance),
but we can consistently estimate it. Using the resulting estimate as if it is the known
reliability gives consistent estimators of the parameters of interest. However, treating
the estimate as the true value leads to an underestimate of the standard errors of the
estimators of the coefficients of interest. The estimator of interest is a two-step estima-
tor and the default second-step standard errors do not take the stochastic uncertainty
of the first-step estimators into account.

One way to correct this would be to stack the moment conditions of the estimators
of the model of interest as discussed in this paper and the moment conditions of the
estimator of the measurement error variance (or reliability), using similar techniques
as, for example, inMeijer andWansbeek (2007). As discussed in that paper, if the first-
step estimator is overidentified, the generalized method of moments (GMM) estimator
from stacking the moment conditions differs slightly from the two-step estimator.
This may not be a “problem” at all, as the joint estimator is asymptotically at least
as efficient, but it may be computationally or interpretationally more complicated, or
less robust to misspecification. To obtain the two-step estimator, the first-step moment
conditions have to be replaced by a set of asymptotically equivalentmoment conditions
that just-identify the estimators, leading to a two-step MM estimator.5

In some cases, the measurement error variance (or reliability) is estimated from
a different sample. In that case, correct standard errors can be obtained by using a
relatively straightforward correction to the default standard errors.6 Specifically, let
the parameters from the first step (reliabilities, measurement error variances, possibly
additional auxiliary parameters) be collected in the parameter vector κ . Then typi-

5 A joint estimator can also typically be obtained by specifying both submodels appropriately in a SEM
program and estimating the combined model.
6 Or by using the multiple groups facilities of most SEM programs.
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cally
√
m(κ̂ − κ) (where m is the first-step sample size) is asymptotically normally

distributedwithmean zero andvariancematrixVκ , say, and thefirst step estimationpro-
duces a consistent estimator V̂κ . The second step moment conditions are h̄(β; κ̂) = 0
and treating κ̂ as if it were the known κ , we obtain the asymptotic variance matrix V̂β ,
say, which is of the form Ĝ−1

β V̂h(Ĝ ′
β)−1, where Ĝβ = ∂ h̄/∂β ′ evaluated in (β̂; κ̂),

and V̂h is a consistent estimator of E(hi h′
i ). The corrected variance matrix is obtained

by writing

0 = √
n h̄(β̂; κ̂) = √

n h̄(β; κ) + Ĝβ

[√
n(β̂ − β)

] +
√
n√
m
Ĝκ

[√
m(κ̂ − κ)

] + op(1),

with n the second-step sample size, and Ĝκ = ∂ h̄/∂κ ′ evaluated in (β̂; κ̂), and using
the independence of

√
n h̄(β; κ) and

√
m(κ̂ − κ), leading to

V̂β,corr = V̂β + n

m
Ĝ−1

β Ĝκ V̂κ Ĝ
′
κ(Ĝ−1

β )′.

See, for example, Inoue and Solon (2010) for a similar approach in the case of
two-sample instrumental variables estimators, and Wooldridge (2002, p. 356) for an
analogous approach for two-step M estimators. It is also possible to arrive at this
starting from the formulas in Fuller (1987, chap. 3), but this is more involved.

We apply this general theory to the specific case of a single regressor (the first one)
with measurement error. First, assume that the measurement error is estimated from
an independent sample of size m to be λ̂, with variance v̂λ, so � = λe1e′

1. Since then
∂ h̄/∂λ = β1e1, the adaptation of the expression given in (9) is

âvar(β̂) = ( Â − �̂)−1
(
Ê(hi h

′
i ) + n

m
v̂λβ̂

2
1e1e

′
1

)
( Â − �̂)−1.

Second, assume that the reliability is estimated to be ρ̂1, with variance v̂ρ1 . Then (19)
becomes

Wi = (1 − ρ1)(xi1 − μ1)
2e1e

′
1,

so ∂ h̄1/∂ρ1 = −β1n−1 ∑
i (xi1 − μ1)

2e1 and the adaptation of (24) is

âvar(β̂) = ( Â − �̂)−1
(
Ê(h1i h

′
1i ) + n

m
v̂ρ1 β̂

2
1 (s

2
x1)

2e1e
′
1

)
( Â − �̂)−1,

with s2x1 = ∑
i (xi1 − x̄1)2/n.

7 Extension to panel data

So far we have considered the case of a single cross section. We now consider the
case of a panel data model, where measurement error issues are equally relevant, see,
for example, Baltagi (2005, sec. 10.1). As documented by Meijer et al. (2015, 2017),
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panel data (with independent cross-sectional units) imply additional opportunities for
identifying and estimating measurement error models. We now investigate to what
extent the analysis for the cross-sectional case we studied so far still essentially holds
in the panel data context.

The direct generalization of the cross-sectional model to the panel data case with
time dimension T is the following model,

yit = ξ ′
i tβ + εi t

xi t = ξi t + vi t ,

where t = 1, . . . , T denotes the time index, and for simplicity we assume a balanced
panel. We leave the covariance structure over time of εi t unrestricted. Let �t =
E(vi tv

′
i t ) and � = ∑T

t=1 �t . Extending (4) to the panel case, let

hit = xit yit − (xit x
′
i t − �t )β and hi =

T∑

t=1

hit = X ′
i yi − (X ′

i Xi − �)β, (27)

where yi is the vector that stacks the yit , t = 1, . . . , T , and Xi is the T×kmatrixwhose
t th row is x ′

i t . If εi t and ξi t are uncorrelated (contemporaneous exogeneity),E(hit ) = 0
and thus E(hi ) = 0, so this is a valid moment condition and, with X = (X ′

1, . . . , X
′
n)

′
and y = (y′

1, . . . , y
′
n)

′,

β̂ = (X ′X − n�)−1X ′y (28)

is the method-of-moments estimator of β from (27). It is basically the pooled OLS
estimator corrected for measurement error by using �, supposedly known. The usual
robust estimator of its variance takes care of correlation over time and hence covers
the random effects case, with the random individual effects implicitly included in εi .

With individual fixed effects, that is, εi t = αi+rit withαi potentially correlatedwith
ξi t , they need to be eliminated, which is typically done by the within transformation
or first differencing (e.g., Baltagi 2005, pp. 13, 136). After such a transformation, the
resulting data contain combinations of measurement errors from multiple time points:

vi t−∑T
s=1 vis/T in the case of thewithin transformation, and vi t−vi,t−1 in the case of

first differencing. The variances of these terms depend on the �t in more complicated
ways, and if the measurement errors are serially correlated, they also depend on the
covariances between themeasurement errors across time. Hence, in order to correct for
measurement error, information on themeasurement error structure over time has to be
known in addition to knowledge of�. The simplest (and strongest) assumption would
be that �t = �̄ does not vary over time and that the measurement errors are serially
uncorrelated. Then var(vi t −vi,t−1) = 2�̄ and var(vi t −∑T

s=1 vis/T ) = �̄(T −1)/T ,
which leads to straightforward adaptations of (27) for the transformed data.

In the case of knowledge of the reliability, a leading case is also when the reliability
is constant over time. First, consider the case without fixed effects. Let, as in the

123



Howmeasurement error affects inference in linear… 147

cross-sectional case, all �t be diagonal with

�t = diag[(1 − ρ j )(A j jt − μ2
j t )], (29)

with A j jt the j th diagonal element of At = E(xit x ′
i t ). Furthermore, let

Wit = diag[(1 − ρ j )(xi j t − μ j t )
2], (30)

where μ j t is the j th element of μt = E(ξi t ). Consequently, E(Wit ) = �t . Let
Wi = ∑

t Wit and let M be the T × k matrix with t th row equal to μ′
t . The moment

condition for the cross-sectional case as given in (20) generalizes to

hi =
(
X ′
i yi − (X ′

i Xi − Wi )β

vec(Xi − M)

)
.

So, also in the case of known reliability, the analysis for a single cross-section carries
over to the panel data case in a straightforward way.

Now, consider the case with fixed effects and assume the measurement errors are
serially uncorrelated. Let a tilde denote the within transformation. We then obtain

var(ṽi t ) = var
(
vi t − 1

T

T∑
s=1

vis

)
= (T − 1)2

T 2 �t + 1

T 2

T∑

s=1,s �=t

�s = �∗
t ,

say, with �t as in (29). In this case, let

hit = x̃i t ỹi t − (x̃i t x̃
′
i t − W ∗

i t )β

with

W ∗
i t = (T − 1)2

T 2 Wit + 1

T 2

T∑

s=1,s �=t

Wis

and Wit as in (30). Then hit is a valid moment for this case. An analogous expression
can be obtained in the case of first differencing.

In this section, we have only scratched the surface. The presence of panel data
allows for a large number of potential assumptions about how the measurement errors
evolve over time and how this can be used to estimate the coefficients consistently.
Moreover, we have not discussed dynamic panel data, in which the lagged dependent
variable is a regressor (e.g., Baltagi 2005, chap. 8), which is associated with a host
of econometric issues that we have not discussed here. However, the cases discussed
here serve as illustrations of how one can derive consistent estimators for such cases.
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8 Empirical example

To illustrate the above, we estimate a hedonic price function that specifies price of
wine as a function of its attributes or characteristics, see Oczkowski and Doucouliagos
(2015) for a review and meta-analysis. In part, the literature recognizes that wine qual-
ity influences prices, and most studies employ a subjective quality score from a wine
guide as an indicator of quality. Only a few studies, however, have recognized the con-
sequent measurement error associated with expert quality scores only reflecting some
underlying notion of latent wine quality. Oczkowski (2001) employs an instrumental
variable estimator using multiple expert scores to consistently estimate the relation
between price and latent quality. In contrast, Lecocq and Visser (2006) do adjust their
price-quality estimates for the attenuation bias associated with expert scores; however,
their adjustment formula ignores the impact of other (nonquality score) regressors on
the attenuation bias, and no adjustments are made for standard errors.

Our example focuses on Australian premium wines available during 2015 and an
average quality score from four expert tasters, Geddes (2015), Oliver (2015), Hooke
(2015), and Halliday (2015). We estimate the equation

ln(Pricei ) = β0 + γ Qi + β1Vintagei + β ′
2Regioni + β ′

3Varietyi + ui , (31)

where Pricei is the recommended retail price in 2015 measured in Australian dollars
(Halliday 2015); Qi is an average quality score measured out of 100; Vintagei is
the year in which the grapes were harvested; Regioni is a series of dummy variables
depicting the region from where the grapes were sourced; Varietyi is a series of dum-
mies representing the variety, blend or style of wine. Descriptive summary statistics
of the data are provided in Table 1.

The quality score is an average of four expert scores, where the scores are standard-
ized using a nonparametric distribution transformation to reflect the Halliday (2015)
rating, see Cardebat and Paroissien (2015). Effectively, the other three scores are trans-
formed to have the same quantiles as Halliday (2015). The standardized scores have
similarmeans across the average and individual scores. However, as expected, the stan-
dard deviation for the average score (1.62) is smaller than that of the individual expert
scores (2.20). The estimated standardized Cronbach’s alpha reliability coefficient for
the four experts is α = 0.728.7 The quality variable captures both the preferences of
consumers for higher quality wines and the increased costs of producing better quality
wines.

The vintage variable captures the preferences held by some consumers for older
wines and the increased costs of producing wines which are long-lived and the costs of
storing wines. In the sample, approximately 90% of wines come from the 2012, 2013,

7 Cronbach’s (1951) coefficient alpha is a measure of internal consistency of a scale that is a simple
sum (or average) of a number of items. It is very easy to compute and if the items can be viewed as
repeated measures in a simple measurement error model, it estimates the reliability of the scale. For these
reasons, it has been routinely reported in psychological and educational studies that utilize such scales.
More generally, it underestimates reliability and better measures are available. However, in our empirical
example, the difference between its value and the estimated reliability derived from a factor analysis model
is negligible, so this concern is inconsequential. See Sijtsma (2009) for a modern (and critical) review of
Cronbach’s alpha and its alternatives.
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Table 1 Descriptive statistics Variable Mean SD Min Max

Price 49.35 43.14 14.99 350

ln(Price) 3.689 0.588 2.707 5.858

Quality score 94.41 1.635 89.5 98.0

Vintage 2012.6 1.354 2005 2014

n = 258 with 11 varieties and 17 regions. Varieties and regions only
included if they contain at least 10 wines. One wine with an unusually
high price of $785 was omitted

and 2014 vintages, but some wines extend back to 2005. The region variables capture
both the preferences of consumers and the costs of producing wines in different cool
and warm climate regions. The main regions in the sample are Margret River (12.0%),
Clare Valley (9.7%), and McLaren Vale (9.3%). The variety variable mainly captures
consumer preferences. The main varieties in the sample are Shiraz (24.8%), Riesling
(13.6%), and Chardonnay (13.2%).

We estimate (31) using the estimator (21), allowing Qi to suffer from measure-
ment error, but the other regressors not, for a range of reliability values for Qi from
1.0 (uncorrected least squares) and reducing by 0.1 increments, also including the
estimated reliability of 0.728 for the data set. There is a lower limit for the proposed
reliability, because the implied covariance matrix of (yi , ξ ′

i )
′ needs to be positive

(semi)definite. Effectively, reliabilities below this limit cannot add any additional
explanatory power to the model.8 This lower limit is the R2 from the regression
of the quality score on the other regressors in (31) and ln(Pricei ). In our case, this
is R2 = 0.546, and therefore, we only present estimates for reliabilities of 0.60 and
higher.

The estimates of (31) for various reliabilities are reported in Table 2. The stan-
dard attenuation bias adjustment is evident with the quality score point estimate (γ̂ )
monotonically rising from 0.211 for no correction to 0.413 for a reliability of 0.60.
For the estimated alpha of 0.728, the quality score estimate is 0.316 which constitutes
an additional 10.5% increase in prices per quality point compared to the uncorrected
estimate. This is very important economically, as correcting for measurement error on
average leads to an additional $5.18 (in $AUD) per quality score point.

For the estimated alpha, the corrected quality coefficient estimate is approximately
50%higher than theOLS counterpart. This difference is similar toOczkowski’s (2001)
finding for the difference between 2SLS and OLS estimates for latent variable models
of wine reputation on price, using Australian wines assessed in 1999 and 2000 (n =
276). Lecocq and Visser (2006) identified the difference between measurement-error
corrected and uncorrected estimates of 24% for a 1992 Bordeaux (n = 519) sample,
85% for a 1993 Burgundy (n = 613) sample and 73% for a 2001 Bordeaux (n = 255)
sample. In general, the estimates appear to differ across time and samples, but they do
point to substantial differences between measurement-error corrected and uncorrected
quality-price estimates for wine. The robust standard errors for γ̂ based on (24) and

8 For this reason, Stata’s eivreg program refuses to estimate the model in such cases.
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Table 2 Hedonic price
estimates: different reliability
estimates

Reliability R2 Coeff. t-value

Robust Normal

1.0 0.648 0.211 13.06 14.36

0.90 0.687 0.240 13.12 14.28

0.80 0.739 0.279 13.03 13.94

0.728 0.788 0.316 12.78 13.42

0.70 0.811 0.333 12.62 13.13

0.60 0.918 0.413 11.56 11.59

n = 258; vintage, regions, and varieties suppressed

the standard errors based on the normal distribution (25) lead to mostly decreasing
t-ratios, though not completely monotonically for the robust ones.

As a robustness check, we have investigated some alternative specifications for
the model (31): (a) using vintage dummies instead of including vintage linearly; (b)
dropping the region and variety dummies; (c) both (a) and (b); (d) including the quality
measure as the only regressor in the model. The results for model (a) are very similar
to the results in the table. For models (b) and (c), the coefficient estimates increase
from about 0.20 to about 0.34, so they are a bit smaller than in the table. For model (d),
they increase from 0.216 to 0.361. The R2s follow expected patterns: They are slightly
higher when vintage is included as a set of dummies than when vintage is linear and
substantially lower when the variety and region dummies are dropped. For model (d),
R2 increases from 0.364 to 0.606. Most interesting are the results for the t-values. In
models (a) and (c), they decrease monotonically with decreasing reliability, both when
robust and when normality-based standard errors are used. In model (b), the t-values
are almost constant, but slightly increasing (from 12.21 to 12.26) with robust standard
errors and slightly decreasing (from 13.25 to 13.20) as usual with normality-based
standard errors. For model (d), the t-values are constant (11.65 for robust and 12.15
for normal).

In Fig. 1, we return to our reference model, but consider the situation when we
know either themeasurement error variance (left) or the reliability (right) and illustrate
graphically the relation between the assumedmeasurement error variance or reliability
and the estimation results. The t-values shown here are based on the robust variance
estimates (9) and (24). This shows again that with increasing measurement error
variance and decreasing reliability, the coefficient and the R2 increase, but the t-
value decreases, although the latter not monotonically for an assumed reliability close
to 1. The t-value graphs using the estimated variances (14) and (25) based on the
normality assumption (not shown) are qualitatively similar, but the t-values are a bit
higher—as in Table 2—and their relation with the assumed reliability is monotonic,
confirming the theoretical analysis. However, regardless of the specific assumptions
made, there is no question that the coefficient of the quality rating remains highly
statistically significant.

Up until now, we have assumed ignorance about the reliability of Qi as a proxy of
the true quality, Q∗

i , say. However, we can saymorewhenwe arewilling to assume that
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Fig. 1 Coefficient and t-value of the quality rating variable, and the resulting (corrected) R2, as a function
of measurement error variance (left) and reliability (right) of the quality rating, using robust standard errors
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the scores Qi1, Qi2, Qi3, and Qi4 given by the four expert tasters, after demeaning,
satisfy a one-factor model,

Qim = bmQ
∗
i + wim,

m = 1, 2, 3, 4, where the bm are the factor loadings and the wim are the error terms,
with variances ω2

m and covariances zero. By way of normalization, we set the variance
of Q∗

i equal to one. The case of no measurement error corresponds to ω2
m = 0 for all

m; the experts agree.9 The quality variable Qi was constructed as the average over the
expert scores. So, with bars denoting the average over m,

Qi = Q̄i · = b̄Q∗
i + w̄i .

The reliability of Qi as a proxy for Q∗
i can now be expressed as

ρ = b̄2

b̄2 + 1
4ω

2
.

We estimated the bm and ω2
m with Stata’s sem module using the original scores, and

find ρ̂ = 0.7286, which is almost identical to the Cronbach’s alpha value of 0.728
mentioned earlier. With this reliability, the estimate of the quality rating coefficient is
0.316, while the implied R2 of the regression is 0.788.

9 Discussion

It is well known that measurement error is pervasive in economic data and that it
tends to bias estimators that do not correct for measurement error in the explanatory
variables.We rigorously analyzed the linear regressionmodel withmeasurement error,
where either the variancematrix of themeasurement errors is known or the reliabilities
of the regressors are known. Although these cases have been discussed in the literature,
we bring the results together concisely within the framework of GMM theory. We also
discussed some special cases, in particular normality of the measurement errors and
measurement error in only a single regressor. For these cases, the expressions simplify
greatly. Furthermore, we derived expressions for the related case where measurement
error variance or reliability is not known, but consistently estimated, either from the
same sample or an independent sample.

Or main focus is on the effects of measurement errors on the t-statistics and hence
statistical significance. We compare the t-statistic of the consistent estimator with the
t-statistic of the (inconsistent) OLS estimator and the t-statistic of the (infeasible)
estimator if there was no measurement error and show that they are ordered with the

9 Because of the way the ratings were standardized, this would also imply that the bm values are equal
in this case. In other contexts, with a latent variable without a natural scale, we would allow the observed
variables to have different scales and hence the bm to vary, while still claiming absence of measurement
error.
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t-statistic of the consistent estimator being closest to zero and the t-statistic of the
(infeasible) estimator being largest in absolute value. This holds for both the case
with known measurement error variance and the case with known reliability. We also
greatly generalized our earlier finding (Meijer and Wansbeek 2000) that the t-value
decreases with the assumed measurement error variance and showed that the t-value
also decreases with decreasing assumed reliability of the regressor. These results use
normality of the measurement errors, as general results for robust standard errors
cannot be obtained. Our empirical results suggest that the results largely carry over to
robust inference, but there may be some minor departures from monotonicity.

We have also developed extensions of these estimators to panel data, which comes
with a number of additional issues and opportunities. In particular, we now have to
consider whether the measurement errors are serially correlated, whether they are
stationary, whether there are random or fixed effects in the model of interest, and
whether themodel is static or dynamic.Wehavederived estimators for some illustrative
cases in static panel data models with and without fixed effects, which also serve as
guides to how one could derive estimators in a specific panel data application with
more general assumptions.

We illustrated the results by estimating a hedonic regression for the price of Aus-
tralianwines.We showed the sensitivity of the coefficient of the quality indicator to the
assumed reliability of this indicator: This coefficient ranges from 0.2without measure-
ment error (reliability = 1) to 0.4 when reliability is 0.6. This also has consequences
for the implied R2 of the regression (which goes up with decreased reliability) and
the t-statistic of the error-ridden regressor (which goes down with decreased reliabil-
ity). However, in this particular regression, the coefficient of quality always remains
statistically significant.

In the empirical study, the quality indicator was obtained as the average of four
independent ratings of the quality of the same wine. By assuming a linear factor
analysis model for these four ratings, we were able to estimate the reliability of the
quality indicator, which is about 0.73. Taking this as the known reliability, point
estimates and other statistics follow from our formulas.
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A Auxiliary lemma

Lemma 1 Let U be the k× (k−1) matrix consisting of the first k−1 columns of Ik . If
D is a (k−1)× (k−1) nonsingular matrix and m is a k-vector such that m �= UU ′m,
then X = UDU ′ + mm′ is nonsingular and U ′X−1U = D−1.

Proof DefineV = (U ,m), which is nonsingular becausem �= UU ′m. Then (U , ek) =
Ik = V−1V = (V−1U , V−1m), where ek is the kth column of Ik , so V−1U = U .
Defining H = diag(D, 1), which is nonsingular, we have X = V HV ′ and thus X−1 =
(V ′)−1H−1V−1 and U ′X−1U = (V−1U )′H−1(V−1U ) = U ′ diag(D−1, 1)U =
D−1. 
�
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