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Abstract
Since the liberalization of electricity markets, electricity prices are more volatile and 
expansion in electricity derivatives trading occurs. Indeed, a well-known feature of 
electricity prices concerns its high volatility. For this reason, operators use power 
futures to hedge against unexpected risk deriving from adverse fluctuations of spot 
prices within the planned delivering period. Indeed, futures contracts permit to fix 
the price of electricity in advance for the use in the scheduled period. Our paper 
is devoted specifically to the Italian electricity market. In this respect, we examine 
empirical data from IDEX, the Energy Derivatives part of the Italian derivatives 
market IDEM, administered by “Borsa Italiana.” We finally survey the possible con-
nections concerning futures and spot prices and, as a consequence, we deduce infor-
mation about important indicators whereof the ex-post risk premium and the net 
convenience yield. For this purpose, we use several regression techniques to deter-
mine suitable explanatory variables inherent the Italian market for the ex-post risk 
premium and the net convenience yield.
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1  Introduction

As a consequence of the liberalization of electricity markets, electricity prices 
are extremely volatile, and expansion in electricity derivatives trading occurs. 
Besides, the electricity markets are currently coping with important transforma-
tions with the introduction of the category of renewable energies.

Pricing electricity derivatives is a challenging task because of the peculiar charac-
teristics of the underlying stocks and commodities (namely non-storability, genera-
tion and transmission binds, seasonality feature and weather influence for example).

A striking peculiarity of electricity derivatives pricing is that electricity pro-
duction and consumption must be in equilibrium at any time, to prevent net-
work collapses. Besides, the no-arbitrage paradigm does not hold for commod-
ity futures’ prices (unlike to typical investment assets). Indeed, storage costs, for 
example, are often needed.

Futures are used in the framework of energy risk management to hedge against 
adverse variations of spot prices occurring within the delivery period. Futures 
contracts aim to fix the price of electricity beforehand to manage efficiently the 
costs of future scheduled consumptions. The investors can also use futures to get 
a position in electricity markets but avoiding the problems of holding the under-
lying commodity.

Our paper is devoted to the Italian market. In this regard, we examine the IDEX 
market which is the Energy Derivatives part of IDEM (a company of London 
Stock Exchange Group), the Italian derivatives market administered by “Borsa 
Italiana.” This regulated market started in 2008, and it currently negotiates both 
baseload and peakload power futures (on a monthly, quarterly and yearly basis).

The underlying power spot market (which is the day-ahead market) is admin-
istered by GME (“Gestore Mercati Energetici”) which is a company managed by 
the state. Within this market, the so-called single national purchase price PUN 
(“Prezzo Unico Nazionale”) is estimated hourly through a weighted average of 
the zonal prices issued by the day-ahead market. We examine then in detail the 
risk premium and the convenience yield associated with futures contracts. The 
risk premium permits to analyze the links between spot and futures prices and the 
convenience yield represents the advantage of holding the physical commodity.

We list hereafter some significant and recent contributions concerning electric-
ity Markets.

We present at first some general references about electricity derivatives.
A general and exhaustive survey about electricity derivatives is presented in 

Aïd book (2015).
Benth and Krühner (2015) examine the pricing of typical energy derivatives. 

Besides, they set up a theoretical framework for modeling forwards contracts in 
an infinite-dimensional context.

Branger et  al. (2010) aim to price electricity derivatives with hourly basis. 
They focus then on the German market, and they emphasize that risk premiums 
are time-dependent. They linked this variation with the dynamic hedging fluctua-
tions incurred by consumers and producers.
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Redl and Bunn (2010) present a classification of the factors which influence the 
ex-post forward premium (such as fuels and higher moments). The authors apply 
econometric models, and they examine specifically the Western European Power 
market (EEX).

Diko et al. (2006) survey three important European energy markets (namely Ger-
man, Dutch and French). The authors deduce then the dynamic features of the risk 
premiums for these markets. They highlight significant risk premiums from empiri-
cal data. Finally, they find evidence that the risk premium structure depends on 
the skewness and the variance of the spot prices. For this purpose, the effect of the 
skewness is decreasing on time to maturity. Then, the variability prevails and forces 
the risk premium to decrease.

Then, we present some contributions focused mainly on electricity futures.
Ballester et al. (2016) analyze futures products within the Spanish market MIBEL 

(Iberian Electricity Market). The authors investigate some price relationships, for 
example, between futures market and the forward and spot market.

Bauwens et  al. (2013) examine electricity futures within the European Energy 
Exchange index. They take into account a particular multiplicative dynamic condi-
tional correlation model (namely mDCC) to investigate about the dynamic feature of 
the volatility and the correlation.

Flasza et al. (2011) apply an econometric model for the pricing of long-term elec-
tricity futures. For this purpose, the authors use data coming from EEX AG, and 
they deduce some typical characteristics of the German market. Finally, the authors 
take into account some fuels prices (oil, coal, natural gas), emission allowances and 
some financial assets (for example Germany bonds with 1 and 10 years maturity and 
EUR/USD exchange rate).

Fleten et  al. (2015) investigate, in their survey, the dynamic links involving 
electricity futures prices and some fossil fuels contracts. They examine data from 
Germany and the UK markets, and they find evidence that time-varying relations 
between these contracts are more suitable.

The links between spot and futures prices have also been investigated by Handika 
and Trück (2013). The authors analyzed some regional Australian electricity mar-
kets. They highlighted that, for several regions, the (ex-post) risk premiums are sig-
nificant and positive. Another finding concerns the seasonality of the premiums.

Islyaev and Date (2015) set up a one-factor model to price electricity futures con-
tracts. This model allows random volatility, and they perform numerical applications 
by using a database from the Nord Pool market.

Lucia and Torró (2011) investigate empirically in their survey how spot and 
futures prices in electricity markets are linked. For this purpose, they use some 
futures contracts data inherent the Nordic Power Exchange market. They prove 
the presence of average positive risk premiums when considering short-term con-
tracts. The amplitude of the premiums exhibits seasonality as already proved in 
other surveys. Besides, the authors observe that the risk premiums depend on higher 
moments of the future spot prices (variance and skewness) in particular periods.

Shawky et al. (2003) analyze the features of the spot and futures prices coming from 
the New York Mercantile Exchange (for the California–Oregon Border electricity mar-
ket). They also investigate the links involving spot and futures prices/returns using a 
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dynamic approach. For this purpose, they use an Exponential GARCH model for prices 
and a vector autoregression model for returns.

We conclude with the following papers which deal with risk premium and conveni-
ence yield in the Nord Pool market.

Botterud et al. (2010) examined spot and futures prices data in the Nord Pool mar-
ket. They discover that futures prices are significantly higher than the corresponding 
spot prices. They deduce that the convenience yield is on average negative. Besides, 
it shares a seasonal trend and it is linked to hydro reservoirs levels as the hydroelectric 
component of this market is sizeable. In this survey, the authors highlight that the con-
venience yield and risk premium are both negative and then opposite respect to other 
commodities.

Weron and Zator (2014) applied correctly the linear regression to study the links 
between the spot and futures prices in electricity markets. In particular, they investigate 
the errors generated in simultaneity problems as well as correlated measurements and 
the consequences of seasonality on the overall results. Finally, they discover (applica-
tion to the Nord Pool market) that the levels of water reservoir have a positive effect on 
the risk premium. Nevertheless, this expected result disproves the findings of Botterud 
et al. (2010).

In this contribution, we investigate about Italian futures traded on the IDEX mar-
ket. This market is rather young (set up in 2008) and, at our knowledge, no academic 
surveys are available yet. We examine the possible interrelations concerning futures 
and spot prices, and we deduce some consequences concerning the ex-post risk pre-
mium and the net convenience yield. We investigate thoroughly the explanatory vari-
ables which can affect ex-post risk premium and net convenience yield by using several 
regression techniques (linear regression, partial least squares regression and prin-
cipal components regression) which generalize the surveys of Botterud et  al. (2010) 
and Weron and Zator (2014). The associated adequacy tests (such as the adjusted 
R-squared) showed a good accordance with the regression models proposed to explain 
ex-post risk premium and net convenience yield.

According to the references listed before, some typical explanatory variables are 
certainly fuel prices (oil, coal, natural gas) and higher spot price moments (variance, 
skewness, and kurtosis). We then tried to enlarge the set of variables in order to include 
some calendar variables or other variables specific to the Italian market.

The paper is partitioned as follows. In the current Sect. 1, we have introduced the 
objectives of our survey, and we have listed state of the art about electricity futures in 
several markets. Section 2 is dedicated to theoretical aspects involving spot and futures 
electricity prices and the implementation to the Italian IDEX market. The description 
of the database used is preliminarily presented. The factors which affect the net conven-
ience yield and ex-post risk premium are analyzed in Sect. 3 through suitable general 
regression techniques. Finally, Sect. 4 concludes.
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2 � Power derivatives

2.1 � Database description

IDEX represents the Energy Derivatives part of IDEM which is the Italian deriv-
atives market (conducted by Borsa Italiana). It is part of London Stock Exchange 
Group (information can be retrieved in the brochure edited by “Borsa Italiana”). 
The IDEX market launched in 2008 trades both baseload and peakload power 
futures (note that peakload products were introduced later on May 2013). A well-
known characteristic of electricity price dynamics is represented by high volatil-
ity values. For this purpose, electricity futures may be used by the operators as 
hedging tools to face unexpected risks. This produces a more efficient business 
management.

We describe hereafter these products’ characteristics.
Regards the underlying power spot market:

•	 The day-ahead electricity market is administered by GME (“Gestore Mercati 
Energetici”) which is state-owned;

•	 The so-called single national purchase price (namely “Prezzo Unico Nazi-
onale”—PUN), estimated hourly, is determined by the weighted mean of the 
zonal prices coming from the day-ahead market.

The traded futures are categorized as follows: monthly, quarterly and yearly 
products (both baseload and peakload). The specific features of these contracts 
are illustrated in the IDEX brochure edited by Borsa Italiana: http://st.forma​zione​
.ilsol​e24or​e.com/a/energ​y2014​/broch​ure/IDEX_Broch​ure.pdf.

We just note that these contracts are quoted in €/MWh.
The participants of IDEX markets (suppliers/producers, energy consumers, 

and financial players/traders) use the futures to satisfy their specific goals.
The access to trading occurs via a financial intermediary or direct membership.
The platform used for IDEX trading is the so-called SOLA® platform (also used 

for the IDEM market). Trading also occurs on the Trayport GlobalVisionSM Portal.
Cassa di Compensazione e Garanzia (CC&G) is the main agency and ensures 

the execution of all the market transactions. CC&G has a separate section (Energy 
Derivatives Section), and it comprises a Default Fund to manage the products 
traded on IDEX. Additional information can be retrieved by consulting Borsa 
Italiana website (http://www.borsa​itali​ana.it).

Historical time series for load and prices on an hourly basis are available on 
the website http://www.merca​toele​ttric​o.org/It/Downl​oad/DatiS​toric​i.aspx (from 
April 20, 2004, to present).

Besides, futures prices for the IDEX market can be freely downloaded from the 
website http://www.borsa​itali​ana.it/borsa​itali​ana/stati​stich​e/merca​ti/commo​ditie​s/
commo​ditie​s.htm (from December 2011 to present). We will conduct our survey 
only for monthly contracts (with delivery period one to three months) which are 
the ultimate contracts.

http://st.formazione.ilsole24ore.com/a/energy2014/brochure/IDEX_Brochure.pdf
http://st.formazione.ilsole24ore.com/a/energy2014/brochure/IDEX_Brochure.pdf
http://www.borsaitaliana.it
http://www.mercatoelettrico.org/It/Download/DatiStorici.aspx
http://www.borsaitaliana.it/borsaitaliana/statistiche/mercati/commodities/commodities.htm
http://www.borsaitaliana.it/borsaitaliana/statistiche/mercati/commodities/commodities.htm
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We illustrate in Fig. 1 the baseload monthly contracts for the next three calendar 
months delivery. The main statistics for baseload, peakload, and spot prices are then 
given in Table 1.

We can highlight from Fig.  1 that the futures with delivery 1–3  months are 
strongly correlated with each other. The correlation coefficients for each pair of 
futures are 98.14% (1–2 months); 95.58% (1–3 months) and 97.71% (2–3 months). 
The futures are also strongly correlated with the spot prices. Indeed the correlations 
are, respectively: 88.13%, 85.80%, and 82.65% (for delivery 1–3  months, respec-
tively). The baseload futures share then the same trend as the underlying spot prices 
and the correlation decreases with delivery time but remains strong.

The same conclusions hold for peakload futures. The correlation coefficients for 
each pair of futures are 92.20% (1–2  months); 82.59% (1–3  months) and 91.34% 
(2–3 months). The futures are also strongly correlated with the spot prices. Indeed 
the correlations are, respectively: 78.82%, 76.94%, and 69.85% (for delivery 
1–3 months, respectively). The peakload futures share then the same trend as the 
underlying spot prices and the correlation decreases with delivery time but remains 
strong. Note that the correlations with spot prices are lower with respect to the case 
of baseload contracts.

We deduce, as expected, that monthly futures are rather less volatile than the 
underlying spot prices. Besides, baseload and peakload contracts present very simi-
lar features.

2.2 � Spot and futures prices

We can investigate the links involving commodity spot and futures prices through 
two specific theories. The first one deals with the cost and measures the interest 
of keeping inventories. The second approach takes into account the standard risk 

Fig. 1   Baseload monthly contracts (next three calendar months delivery) for the period Dec. 2011/Sept. 
2016
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premium to assess the link between short- and long-term prices. These theories 
must be adjusted carefully to fit the peculiarities of the electricity markets.

Concerning the first approach, inventories are fundamental to determine the 
price of commodities which can be stored. Indeed, in the light of storage theory, 
the divergence between spot prices and futures prices becomes clearer. The con-
cept of convenience yield has been introduced to measure the “convenience” in 
storing a given commodity. Specifically, it represents a sort of liquidity premium 
linked to the benefit of keeping this commodity. Besides, it represents the possi-
ble supply of this commodity at a future date, and it decreases with respect to the 
stocks quantity.

The formula for the futures price, Ft, T , at a time t  for delivery at time t + T  
assumes the usual paradigm of no arbitrage among the spot and the futures prices:

where St denotes the spot price at the time t , rT is the usual risk-free interest rate for 
the holding period T  , uT denotes the storage expense and yT is the convenience yield 
over the period T  . Note also that the storage expense and the convenience yield are 
given as a fraction of spot price.

We say that futures market presents “backwardation” when the actual spot 
price exceeds futures price. In this case, the net convenience yield (defined as 
yT − uT ) is positive and greater than the risk-free interest rate. In the opposite 
situation, we introduce the term “contango.” The percentage of backwardation for 
baseload is 60.25%, 56.31% and 53.36% for 1–3-month delivery. The percentage 
for peakload contracts is, respectively, 20.91%, 20.33%, and 24.04%.

We note that for baseload contracts backwardation status prevails, whereas 
contango prevails for peakload contracts.

Regards the second approach, the price of a futures contract Ft, T , at a time t 
for delivery at time t + T  is expressed as the expected future spot price, Et

(
St+T

)
 , 

plus a so-called risk premium associated with the underlying commodity. We 
denote here iT an opportune risk-adjusted discount rate associated with the com-
modity over the period T  . We can then express the futures price as:

where pT = iT − rT represents the risk premium associated with this commodity.
We deduce from this formula that futures price coincides with the expected 

future spot price if the risk premium vanishes. This occurs when the equality 
iT = rT holds.

Finally, we observe that we can introduce the risk premium concept even when 
the commodity involved is not storable. Instead, regards the second approach, 
note that the no-arbitrage paradigm does not hold anymore. In this situation, we 
cannot buy a non-storable commodity in a spot market and afterward sell it in a 
futures market to realize a risk-free condition.

Additional details about these two approaches can be retrieved in Botterud 
et al. (2010) and Weron and Zator (2014).

(1)Ft, T = St ⋅ e
rT+uT−yT

(2)Ft, T = Et

(
St+T

)
⋅ erT−iT = Et

(
St+T

)
⋅ e−pT



645

1 3

Electricity derivatives: an application to the futures Italian…

2.3 � An application to the Italian IDEX market

In Fig. 2 we present the spot prices’ dynamics and compare then with the prices 
of baseload futures contracts given in Fig. 1. We observe that the futures with one 
to three-month delivery share the same trend as the spot price, whereas this trend 
slightly decreases with respect to time delivery (the same feature also holds for 
peakload contracts). The high values of linear correlations involving the spot and 
the futures prices unveiled previously confirm this finding.

We illustrate then the interrelations concerning spot and futures prices through 
the two approaches just described. We determine at first the characteristics con-
cerning the net convenience yield. Afterward, we investigate the presence of 
eventual risk premium concerning the futures market. (as in Botterud et al. 2010; 
Weron and Zator 2014 surveys).

As outlined in Sect.  2.2, the convenience yield represents the advantage of 
holding the physical commodity. Whenever the net convenience yield is posi-
tive, this entails that the convenience yield proves to exceed the costs of storage. 
Besides, we deduce that if the net convenience yield exceeds the risk-free interest 
rate, as a consequence the spot price is greater than the futures price.

We now estimate the (net) convenience yield for monthly futures contracts 
with one to three months until delivery by using all available historical data. We 
assume here a zero interest rate.

Remark  We can use, as a proxy for the risk-free interest rate, the return of Treas-
ury Bills “BOT” (“Buoni Ordinari del Tesoro”) with six-month maturity. The yearly 
returns, retrieved from http://www.dt.tesor​o.it, have been the following: 0.80% 
(2013), 0.43% (2014), 0.052% (2015) and − 0.161% (2016). Besides, when consid-
ering short periods (1–2–3 months), the returns become negligible so that we can 
assume, without loss of generality, a zero risk-free interest rate.

Fig. 2   Spot prices for the interval Dec. 2011/Sept. 2016

http://www.dt.tesoro.it
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For this purpose, we deduce from Eq. (1) the formula which gives the net conveni-
ence yield:

where cvt, T is the net convenience yield, at day t , for holding period T  months, St 
represents the spot price at day t , Ft, T represents the futures price at day t for con-
tract with delivery in months t + T .

Table 2 illustrates some statistics for the net convenience yield. We observe that for 
baseload contracts, the net convenience yield is on average positive for every holding 
period. We deduce that the spot price reveals to be generally higher than the futures 
price (as observed before). Besides, its standard deviation increases with respect to 
the time of delivery. Furthermore, the extreme values differ widely. For example, the 
baseload future with 3-month delivery has minimum value − 0.50 and maximum value 
+ 0.88. On the contrary, for peakload contracts, the net convenience yield is on average 
negative for every holding period so that the spot price reveals to be generally lower 
than the futures price (indeed contango status prevails). The other characteristics are 
similar. Some test statistics are included in Table 2.

We present in Fig. 3 the net convenience yield only for baseload monthly futures 
with delivery 1, 2 and 3 months.

Figure 3 highlights some seasonal patterns (as well as for peakload version). The 
futures market alternates backwardation and contango states.

In spite of the previous discussion, convenience yield notion may not be suitable 
within electricity markets. Indeed, the profit from detaining electricity is not evident 
and quantifiable; this is still a challenging problem.

Let examine the second approach again. We have stated the forward price is the sum 
of the expected spot price with an (ex-ante) risk premium. As a consequence, the ex-
ante risk premium is understood as a prevision of the spot price minus the forward 
price. We deduce then from Eq. (2):

where Et

(
St+T

)
 is the expected value (performed at the time t ) concerning the spot 

price at the time t + T  and Ft, T represents the price at the time t of a futures contract 
with delivery period at the time t + T .

In practical terms, it may be suitable to use as a proxy of the ex-ante risk premium 
pT the effective ex-post risk premium. The ex-post risk premium estimation requires 
substituting the expectation Et

(
St+T

)
 by the actual value at the time t + T , i.e., St+T.

Thus, the so-called ex-post risk premium can be estimated as:

Finally, as a consequence of a straightforward calculation (see Weron and Zator 
(2014)) we deduce that the net convenience yield is the result of the difference 

(3)cvt, T = yT − uT = ln
St

Ft, T

(4)pT = ln
Et

(
St+T

)
Ft, T

(5)p̂T = ln
St+T

Ft, T
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between two terms: the effective risk premium and the change of the spot price in 
the interval [t, t + T] . That is:

where ΔSt, T represents the variation of the spot price in the interval [t, t + T].
Next, we present in Fig. 4 the ex-post risk premium only for baseload monthly 

futures with delivery 1–3 months.
Table 3 reveals the main statistics for the ex-post risk premium for monthly base-

load and peakload futures contracts with delivery 1–3 months.
We note that for baseload and peakload contracts, the ex-post risk premium is 

on average negative for every holding period and its volatility increases respect to 
delivery time.

(6)cvt, T = ln
St

Ft, T

= ln

(
St+T

Ft, T

⋅

St

St+T

)
= p̂T − ln

St+T

St
≃ p̂T − ΔSt, T

Fig. 3   Net convenience yield—baseload monthly (next three calendar months)

Fig. 4   Ex-post risk premium—baseload monthly (delivery next three calendar months)
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See Botterud et al. (2010) and Weron and Zator (2014) again for further details.

3 � Linear regression for risk premium and convenience yield

3.1 � Multiple linear regression

We perform a regression analysis to explain net convenience yield and ex-post risk 
premium for monthly contracts (both baseload and peakload) for 1–3-month deliv-
ery. The purpose is to set up the more suitable explanatory variables and their rela-
tive impact on the dependent variable.

As a preliminary investigation, we can take into account the following groups of 
regressors:

•	 Spot price (with variance, skewness, and kurtosis; lagged spot prices values may 
also be considered).

Spot price values are freely available from http://www.merca​toele​ttric​o.org/
It/Downl​oad/DatiS​toric​i.aspx. The data are available from April 20, 2004, on an 
hourly basis and can be then converted on a daily basis. Then, the daily variance, 
skewness, and kurtosis can be estimated for each day by considering the 24 hourly 
values given for this day. We also consider lagged spot price values up to 5 lags.

•	 Calendar variables (months, seasons, day of the week, time to delivery).

The regressors representing the calendar variables (12 months, four seasons and 
the five opening market days of the week) are simply given by Boolean vectors with 
ones and zeroes (except for the time to delivery which represents the exact number 
of days before the start of the delivery period). A preliminary analysis highlighted 
that seasons and days of the week are never significant.

•	 Energy and fuel prices (coal, carbon emissions, oil, gas, gasoline, heating oil).

We consider as a proxy for coal price the Dow Jones Coal (DJUSCL). The his-
torical values can be retrieved at the following link: http://www.inves​ting.com/indic​
es/dj-coal-histo​rical​-data.

The carbon emission historical data can be retrieved at the following link: http://
www.inves​ting.com/commo​ditie​s/carbo​n-emiss​ions-histo​rical​-data.

Finally, the other data concerning oil, gas, gasoline and heating oil prices are 
available on the U.S. Energy Information Administration page http://www.eia.
gov. Specifically, the sources for these data are, respectively: http://www.eia.gov/
dnav/pet/hist/LeafH​andle​r.ashx?n=PET&s=RBRTE​&f=D (available from May 
20, 1987); http://www.eia.gov/dnav/ng/hist/rngwh​hdd.htm (available from January 
7, 1997); http://www.eia.gov/dnav/pet/hist/LeafH​andle​r.ashx?n=PET&s=EER_
EPD2F​_PF4_Y35NY​_DPG&f=D (available from Mach 11, 2003); http://www.

http://www.mercatoelettrico.org/It/Download/DatiStorici.aspx
http://www.mercatoelettrico.org/It/Download/DatiStorici.aspx
http://www.investing.com/indices/dj-coal-historical-data
http://www.investing.com/indices/dj-coal-historical-data
http://www.investing.com/commodities/carbon-emissions-historical-data
http://www.investing.com/commodities/carbon-emissions-historical-data
http://www.eia.gov
http://www.eia.gov
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=D
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=D
http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx%3fn%3dPET%26s%3dEER_EPD2F_PF4_Y35NY_DPG%26f%3dD
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx%3fn%3dPET%26s%3dEER_EPD2F_PF4_Y35NY_DPG%26f%3dD
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx%3fn%3dPET%26s%3dEER_EPMRR_PF4_Y05LA_DPG%26f%3dD
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eia.gov/dnav/pet/hist/LeafH​andle​r.ashx?n=PET&s=EER_EPMRR​_PF4_Y05LA​
_DPG&f=D (available from June 2, 1986).

These data (available on a daily basis for opening market days) are highly corre-
lated. We present in Table 4 their correlation matrix.

Some statistics for these variables are presented in the subsequent Table 5.
The data are characterized by a high variability as we can deduce from standard 

deviation and range.

•	 Economic indicators (industrial production, consumer price index, load with 
some lagged values).

Economic indicators for Italy can be downloaded from the National Institute of 
Statistics http://www.istat​.it/en. We take into account the following two indices: the 
industrial production IP and the consumer price index CPI. The data are accessible 
on a monthly basis.

These two series are weakly correlated (the correlation coefficient is 15.28%). 
The source for load (consumption) data is the same as for the spot price values. 
These data are available on an hourly basis. Besides, we consider lagged load values 
up to 5 lags.

•	 Climatic indices (temperature, solar radiation, wind intensity).

Table 4   Correlation matrix energy products’ prices

Oil (%) Gas (%) Gasoline (%) Heating oil (%) Carbon (%) Coal (%)

Oil 100 53 92 99 17 90
Gas 53 100 45 55 − 32 33
Gasoline 92 45 100 91 22 81
Heating oil 99 55 91 100 18 90
Carbon 17 − 32 22 18 100 39
Coal 90 33 81 90 39 100

Table 5   Summary statistics 
(oil, gas, gasoline, heating oil, 
carbon, coal) for the period Dec. 
2011/Sept. 2016

Indicator Oil Gas Gasoline Heating oil Carbon Coal

Mean 85.15 3.21 2.45 2.35 6.96 112.05
Median 103.09 3.04 2.71 2.75 6.80 127.74
SD 30.09 0.90 0.68 0.76 1.89 60.70
Kurtosis − 1.48 2.42 − 0.95 − 1.39 − 0.31 − 0.46
Skewness − 0.47 0.91 − 0.51 − 0.51 0.51 0.18
Range 102.13 6.66 3.56 2.49 9.86 262.34
Minimum 26.01 1.49 0.62 0.82 3.15 12.33
Maximum 128.14 8.15 4.18 3.30 13.01 274.67
Count 1220 1220 1220 1220 1220 1220

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx%3fn%3dPET%26s%3dEER_EPMRR_PF4_Y05LA_DPG%26f%3dD
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx%3fn%3dPET%26s%3dEER_EPMRR_PF4_Y05LA_DPG%26f%3dD
http://www.istat.it/en
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Climatic indices may be suitable regressors. For example, solar radiation and 
wind intensity are essential for the production of renewable energies. Nevertheless, 
these variables vary considerably throughout the country so that it is rather difficult 
to capture their overall effects.

Regards the temperature we could, for example, perform the mean daily values 
measured for the main Italian cities. Besides, we can construct an alternative tem-
perature index � as a mixture of heating and cooling degree days (HDD and CDD) 
as follows (where T is the mean daily temperature):

The daily temperature values and wind intensity data are available for example 
through the WeatherData command of Mathematica software.

See for this purpose the following page: https​://refer​ence.wolfr​am.com/langu​age/
ref/Weath​erDat​a.html.

This temperature index is weakly correlated with futures contracts. For example, 
the correlations with monthly baseload futures (delivery 1–3 months) are, respec-
tively, 22.79%, 13.82%, and 5.23%.

We have then obtained at this stage a set of 37 explanatory variables.
The choice for explanatory variables comes, in part, from literature references 

discussed before (for example skewness, variance, temperature index, calendar vari-
ables), and in part from some characteristics of the Italian Market (for example eco-
nomic indicators and load).

The general equation of the multivariate regression is:

where the dependent variable yt denotes, in turn, the convenience yield and the ex-
post risk premium. Besides, the explanatory variables are Mi (months), Fi (energy 
and fuel prices), Ei (economic indicators), Ii (spot price moments), Pt (spot price 
with some lags), Lt (load with some lags), � (temperature index) and T  (time to 
delivery).

Remark  The electricity production sources for the Italian market (concerning the 
year 2014) are given in Fig. 5. These data can be retrieved from Terna annual report 
(see http://www.terna​.it; “Statistical Data on Electricity in Italy—2014”), and they 
may be useful to list the factors which affect the Italian electricity markets.

𝜏 =

⎧
⎪⎨⎪⎩

T − 20 T > 20

0 if 16 < T < 20

16 if T < 16

yt =

12∑
i=1

�i ⋅Mi +

6∑
i=1

�i ⋅ Fi +

2∑
i=1

�i ⋅ Ei +

3∑
i=1

�i ⋅ Ii

+

5∑
i=0

�i ⋅ Pt−i +

5∑
i=0

�i ⋅ Lt−i + � ⋅ � + � ⋅ T + �

https://reference.wolfram.com/language/ref/WeatherData.html
https://reference.wolfram.com/language/ref/WeatherData.html
http://www.terna.it
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We perform now a multivariate regression analysis to explain the ex-post risk 
premium and the net convenience yield for monthly futures contracts with one to 
three-month delivery (both baseload and peakload). For this purpose, we should 
seek for each case, adequate explanatory variables. These regressors should be 
all significant at a given level (for example 5%). We then test the performance of 
the regression thanks to the most common indicators (namely the R-squared and 
adjusted R-squared).

To handle a high number of regressors, we use an algorithm developed within 
xlstat software. For this purpose, we can fix the number of regressors (from one 
to the maximum number of available regressors). The algorithm determines, for 
each number, the optimal selection of regressors which maximizes the adjusted 
R-squared (other criterions are also available, such as Akaike’s AIC, MSE, Mal-
lows Cp, Schwarz’s SBC or Amemiya’s PC). This selection is performed for each 
combination of regressors. For the final selection, we can also estimate the impact 
of adding or removing a particular explanatory variable (keeping the other regres-
sors in the selection set). Besides, the determination of the normalized regression 
coefficients (often called beta coefficients) permits to establish the weight of the 
associated variable. Indeed a higher absolute value of the beta coefficient cor-
responds to a higher impact of this regressor in the explanation of the dependent 
variable.

We then examine in a separate analysis the two kinds of monthly futures (namely 
baseload and peakload) for net convenience yield and ex-post risk premium, 
respectively.

•	 Baseload monthly futures (net convenience yield).

We show in Fig. 6 the adjusted R-squared as a function of the number of regres-
sors (the optimal regressors have been selected for each fixed number of regressors 
through the optimization of the adjusted R-squared). We have presented in the same 
plot the three delivery period types: 1-month delivery (series 1), 2-month deliv-
ery (series 2) and 3-month delivery (series 3). We note at first that the adequacy 

Fig. 5   Electricity production sources for year 2014—Italy (Terna annual report)



654	 L. Casula, G. Masala 

1 3

performance improves with longer delivery periods. Besides, the adjusted R-squared 
improves slowly if we include more than 12 explanatory variables. This is an impor-
tant remark to set up the more parsimonious model. The best adjusted R-squared 
values attained are 81.40% (1 month), 85.30% (2 months) and 90.10% (3 months).

We examine now thoroughly the optimal explanatory variables. We exhibit in 
Fig. 7 the normalized beta coefficients (for 3-month delivery time for brevity) to 
visualize the impact (positive or negative) of each regressor. The coefficients are 
significant with a confidence level of 95%.

The meaning of each regressor is listed in Table 6.
The following explanatory variables have a positive impact: spot price, load, 

skewness, time t. d., months (except August), load 3-lags, load 4-lags, oil, gas, 
CPI, carbon, coal.

The following explanatory variables have a negative impact: variance, kurto-
sis, load 1-lag, spot price 1-lag, spot price 2-lags, spot price 3-lags, spot price 
4-lags, gasoline, heating oil, IP.

The most important variables are spot price, months (overall), oil, heating oil, 
CPI.

Fig. 6   Adjusted R-squared versus number of explanatory variables for convenience yield (baseload 
futures)

Fig. 7   Normalized regression coefficients for net convenience yield (baseload futures—3-month deliv-
ery)
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Finally, we plot in Fig. 8 the predicted values (estimated from the parameters’ 
regression, with confidence interval 95%) against the real values of the dependent 
variable by considering all the regressors (for 3-month delivery contract).

The results of adequacy tests for the regression estimations with all the explana-
tory variables are presented in Table 7. We consider several indicators (we present 
here futures with time to delivery 1–3 months).

In addition to (Adjusted) R-squared, we include also in the table DF (degrees of 
freedom of the model), MSE (mean squares of errors), MAPE (mean absolute per-
centage error), DW (Durbin-Watson statistic), Cp (Mallows’ Cp), AIC (Akaike’s 
information criterion), SBC (Schwarz’s Bayesian criterion), PC (Amemiya’s predic-
tion criterion).

Remark  We can set up a parsimonious model (in the case of 3-month delivery 
period) with these 5 explanatory variables: spot price, 2 months variables, heating 
oil and CPI. This model has Adjusted R-squared 77.8% and AIC = − 6643.37.

Table 6   List of regressors—normalized regression for net convenience yield (baseload futures—3-month 
delivery)

×1 Price ×11 Month 6 ×21 Price 2-lags ×31 Heating oil
×2 Load ×12 Month 7 ×22 Load 3-lags ×32 Temperature
×3 Variance ×13 Month 8 ×23 Price 3-lags ×33 Ip
×4 Skewness ×14 Month 9 ×24 Load 4-lags ×34 Cpi
×5 Time t. d. ×15 Month 10 ×25 Price 4-lags ×35 Kurtosis
×6 Month 1 ×16 Month 11 ×26 Load 5-lags ×36 Carbon
×7 Month 2 ×17 Month 12 ×27 Price 5-lags ×37 Coal
×8 Month 3 ×18 Load 1-lag ×28 Oil
×9 Month 4 ×19 Price 1-lag ×29 Gas
×10 Month 5 ×20 Load 2-lags ×30 Gasoline

Fig. 8   Predicted values of net convenience yield (baseload—3-month delivery) versus real values
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•	 Baseload futures (ex-post risk premium)

We show in Fig. 9 the adjusted R-squared with respect to the number of regres-
sors (the optimal regressors have been selected as before). We superimpose in the 
same plot the three delivery period types: 1-month delivery (series 1), 2-month 
delivery (series 2) and 3-month delivery (series 3). We note at first that the ade-
quacy performance increases with the increasing of the delivery period. Besides, 
the adjusted R-squared improves slowly if we include more than 18 explanatory 
variables. The best adjusted R-squared values attained are 30.10% (1  month), 
43.90% (2 months) and 55.80% (3 months).

Let examine the normalized beta coefficients for 3-month delivery time (we 
omit here the figure for brevity).

The following explanatory variables have a positive impact: kurtosis, months 
(except October and November), load 1-lag, load 5-lags, IP, CPI, coal.

The following explanatory variables have a negative impact: spot price, vari-
ance, skewness, time t.d., spot price 1-lag, spot price 2-lags, spot price 3-lags, 
load 4-lags, spot price 4-lags, spot price 5-lags, oil, gas, gasoline, heating oil, 
temperature, carbon.

The most important variables are months (overall), oil, gasoline, IP, CPI, coal.
Finally, we plot in Fig. 10 the predicted values (estimated from the parameters’ 

regression, with confidence interval 95%) against the real values of the dependent 
variable by considering all the regressors (for 3-month delivery contract).

The results of adequacy tests for the regression estimations with all the explan-
atory variables are presented in Table 7.

Remark  We can set up a parsimonious model (in the case of 3-month delivery 
period) with these 6 explanatory variables: 2 months variables, heating oil, tempera-
ture, CPI, and coal. This model has Adjusted R-squared 39.3% and AIC = − 5515.66

.

Fig. 9   Adjusted R-squared versus number of explanatory variables for ex-post risk premium (baseload 
futures)
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•	 Peakload futures (net convenience yield)

We show in Fig.  11 the adjusted R-squared with respect to the number of 
regressors (the optimal regressors have been selected as before). We have super-
imposed in the same plot the three delivery period types: 1-month delivery 
(series 1), 2-month delivery (series 2) and 3-month delivery (series 3). We note 
again that the adequacy performance increases with the increasing of the delivery 
period. Besides, the adjusted R-squared improves slowly if we include more than 
18 explanatory variables. The best adjusted R-squared values attained are 81.60% 
(1 month), 86.20% (2 months) and 92.20% (3 months).

We examine the beta coefficients again (for 3-month delivery time for brevity).

Fig. 10   Predicted values of ex-post risk premium (baseload—3-month delivery) versus real values

Fig. 11   Adjusted R-squared versus number of explanatory variables for net convenience yield (peakload 
futures)
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The following explanatory variables have a positive impact: spot price, load, 
skewness, time t.d., months (except July to November), load 4-lags, oil, temperature, 
CPI, coal.

The following explanatory variables have a negative impact: variance, kurtosis, 
load 1-lag, spot price 1-lag, spot price 2-lags, spot price 3-lags, spot price 4-lags, 
spot price 5-lags, gas, gasoline, heating oil, IP, carbon.

The most important variables are spot price, months (overall), oil, heating oil, 
CPI, coal.

The results of adequacy tests for the regression estimations with all the explana-
tory variables are presented in Table 7.

Remark  We can set up a parsimonious model (in the case of 3-month deliv-
ery period) with these 6 explanatory variables: spot price, 2 months variables, 
heating oil, gasoline, and coal. This model has Adjusted R-squared 74.1% and 
AIC = − 4374.29.

•	 Peakload futures (ex-post risk premium)

We show in Fig. 12 the adjusted R-squared with respect to the number of regres-
sors (the optimal regressors have been selected for each fixed number of regressors 
through the optimization of the adjusted R-squared). We have superimposed in the 
same plot the three delivery period types: 1-month delivery (series 1), 2-month 
delivery (series 2) and 3-month delivery (series 3). We note that the adequacy per-
formance increases with the increasing of the delivery period. Besides, the adjusted 
R-squared improves slowly if we include more than 16 explanatory variables. The 
best adjusted R-squared values attained are 52.70% (1 month), 63.90% (2 months) 
and 70.30% (3 months).

We deduced some conclusions by analyzing the beta coefficients (for 3-month 
delivery time for brevity).

Fig. 12   Adjusted R-squared versus number of explanatory variables for ex-post risk premium (peakload 
futures)
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The following explanatory variables have a positive impact: load, kurtosis, load 
1-lag, load 3-lags, load 5-lags, spot price 5-lags, heating oil, temperature, CPI, car-
bon, coal.

The following explanatory variables have a negative impact: spot price, variance, 
skewness, months (except April, June to September), load 1-lag, load 4-lags, spot 
price 4-lags, oil, gas, gasoline, IP.

The most important variables are months (overall), oil, gas, gasoline, heating oil, 
coal.

The results of adequacy tests for the regression estimations with all the explana-
tory variables are presented in Table 7.

Remark  We can set up a parsimonious model (in the case of 3-month delivery 
period) with these 8 explanatory variables: 4 months variables, gas, kurtosis, car-
bon, and coal. This model has Adjusted R-squared 53.9% and AIC = − 3707.94.

We note that the regression performance increases with longer delivery periods.
We find evidence that the following explanatory variables are always significant:

•	 Calendar variables (months) which explain the seasonality feature;
•	 Load values;
•	 Spot price with higher moments (variance, skewness, kurtosis);
•	 Fuel and energy prices (oil, gas, heating oil, carbon emission, coal);
•	 Economic variables (IP, CPI).

Instead, some regressors are generally not significant or produce a low impact on 
the dependent variable. For instance:

•	 Lagged variables (load and spot prices);
•	 Time to delivery;
•	 Temperature.

3.2 � Other regression techniques

In the previous section, we have applied a multivariate linear regression model with 
a high number of explanatory variables, some of which were highly correlated. In 
this situation, other regression techniques such as partial least squares regression 
(denoted as PLSR) and principal components regression (denoted as PCR) may be 
more suitable.

These two methods consist in determining new explanatory variables, denoted 
as components, obtained as linear combinations of the starting variables. Neverthe-
less, these components are constructed differently by PLSR and PCR. Indeed, the 
components created by PCR aim to explain only the fluctuations of the explanatory 
variables while PLSR also takes into account the dependent variable. The overall 
goal of these techniques is to set up the more parsimonious model. Since PLSR is a 
mixture of multivariate regression and PCR, we present first PCR and then PLSR.
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•	 Principal components regression

The principal components regression follows two main steps. At first, we per-
form a principal components analysis (PCA) on the set of the explanatory vari-
ables. At this stage, the so-called principal components are determined. Then, we 
compute a multivariate regression of the dependent variable on the components 
just created, and we determine the parameters of the model. These tasks can be 
achieved thanks to the xlstat software.

The adequacy tests of these regressions are presented in Table 8 for net con-
venience yield and ex-post risk premium, both for baseload and peakload con-
tracts with one to three-month delivery (all the components are considered).

Finally, we plot in Fig. 13 the predicted values (estimated from the parameters’ 
regression, with confidence interval 95%) against the real values of the dependent 
variable. We consider, for brevity, contracts with 3-month delivery.

We note that the fitting for net convenience yield is better than the fitting for 
ex-post risk premium. In both cases, the fitting for peakload contracts is better.

•	 Partial least squares regression

Partial least squares regression technique applies to handle data which com-
prise correlated or sometimes collinear explanatory variables. The new compo-
nents built with this technique come from linear combinations of the given list 
of explanatory variables. The settlement of these components takes into account 
the observed dependent variable. We get then a more parsimonious model which 
shares a good predictive power.

This technique can be viewed as a mix of the classical multiple linear regres-
sion with a principal component analysis. Indeed, the multiple linear regression 
aims to determine a suitable combination of the explanatory variables which cor-
rectly predicts a dependent variable, whereas principal component analysis aggre-
gates explanatory variables (the so-called components) to reduce correlations 
without taking into account the dependent variable.

We can perform a PLSR by using several software tools given for example by 
MATLAB or xlstat. These tools determine automatically the components (after 
fixing its number), the coefficients of the linear combinations of the original pre-
dictors needed to construct the components and finally, the percentage of variance 
explained in the dependent variable with respect to the number of components. 
These results can be used then to determine the optimal number of components 
useful for a reliable and parsimonious model.

We finally exhibit in Figs. 14 and 15 the proportion of variance explained as a 
function of the number of components (only baseload case for brevity).

We note that 10 components are sufficient to explain more than 60% of the var-
iability of the dependent variable. The proportion remains quite unchanged when-
ever we add more than 22 components. The proportion of variance explained with 
all the components is, respectively: 83.84% (1 month), 85.71% (2 months) and 
90.40% (3 months).
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Fig. 13   Predicted values of net convenience yield and ex-post risk premium (baseload/peakload with 
3-month delivery) versus real values

Fig. 14   Variance explained (%) versus number of PLSR components for net convenience yield (baseload 
contracts)
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For peakload case, we find evidence that 16 components are sufficient to explain 
more than 60% of the variance of the dependent variable. The proportion remains 
quite unchanged whenever we add more than 20 components. The proportion of var-
iance explained with all the components is, respectively: 85.37% (1 month), 86.76% 
(2 months) and 92.85% (3 months).

We note that 22 components are sufficient to explain more than 30% of the vari-
ability of the dependent variable. The proportion remains quite unchanged whenever 
we add more than 24 components. The proportion of variance explained with all the 
components is, respectively: 32.55% (1 month), 52.37% (2 months) and 69.56% (3 
months).

For peakload case, we find evidence that 18 components are sufficient to explain 
more than 40% of the variance of the dependent variable. The proportion remains 
quite unchanged whenever we add more than 22 components. The proportion of var-
iance explained with all the components is, respectively: 57.12% (1 month), 66.48% 
(2 months) and 80.15% (3 months).

Finally, Figs. 14 and 15 highlight that the performance of PLSR increases with 
longer time delivery periods.

The regression models used in this survey (multivariate linear regression, partial 
least squares regression and principal components regression) produced a good fit-
ting with the aim of explaining the net convenience yield and the ex-post risk pre-
mium for several types of monthly futures contracts (baseload and peakload with 
delivery period 1–3 months). For this purpose, we used a long list of explanatory 
variables and we showed how to get a more parsimonious model.

Finally, the comparison between these techniques is not straightforward as the 
multivariate regression relies on the number of explanatory variables while PCR and 
PLSR rely principally on the number of components built with the available vari-
ables. Nevertheless, one can compare the adequacy tests for the two main techniques 
illustrated in Table  7 (for multivariate regression) and in Table  8 (for PCR). We 

Fig. 15   Variance explained (%) versus number of PLSR components for ex-post risk premium (baseload 
contracts)
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present also a graphical inspection concerning the percentage of explained variance 
with respect to the number of variables/components for the multivariate regression 
(Figs. 6, 9, 11, 12) and for the PLSR (Figs. 14, 15).

4 � Conclusions

This paper investigates the possible relationships between futures and spot prices 
for the Italian electricity market through the net convenience yield and the ex-post 
risk premium concepts. For this purpose, we take into account a large database for 
monthly futures (both baseload and peakload) traded at the IDEM market. In the 
subsequent empirical application, we have employed these futures prices from 2011 
to 2016.

At first, we find evidence that the ex-post risk premiums are negative on average. 
This issue is in agreement with results present in other electricity markets. Never-
theless, we further examine the dynamic evolution of the premiums, and we high-
lighted that its value varies seasonally.

Besides, we detect that the net convenience yield for monthly futures is on aver-
age positive within all the considered holding periods for baseload contracts (back-
wardation prevails) and negative for peakload contracts (contango prevails).

Finally, a multivariate linear regression conducted on the net convenience yield 
and the ex-post risk premium for monthly futures with 1–3-month delivery period 
permitted to highlight the explanatory variables which mainly affect these quantities.

We conclude our survey with more general regression techniques such as par-
tial least squares regression and principal components regression. The scope was to 
reduce the number of explanatory variables to get a more parsimonious model.

Our paper followed the framework of Botterud et al. (2010) and Weron and Zator 
(2014) used for the Nord Pool market. We investigated here about the Italian futures 
market with more refined regression techniques and a greater set of explanatory 
variables to explain ex-post risk premium and net convenience yield. The adequacy 
tests for the regression models produced very reliable results.
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