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Abstract
City size distributions are not strictly Pareto, but upper tails are rather Pareto like (i.e.
tails are regularly varying). We examine the properties of the tail exponent estimator
obtained from ordinary least squares (OLS) rank size regressions (Zipf regressions for
short), the most popular empirical strategy among urban economists. The estimator
is then biased towards Zipf’s law in the leading class of distributions. The Pareto
quantile–quantile plot is shown to offer a simple diagnostic device to detect such
distortions and should be used in conjunction with the regression residuals to select
the anchor point of the OLS regression in a data-dependent manner. Applying these
updated methods to some well-known data sets for the largest cities, Zipf’s law is now
rejected in several cases.

Keywords Rank size regression · Heavy tails · Extreme value index · Regular
variation · Zipf’s law · City size distributions

JEL Classification R12 · C13 · C14

1 Introduction

Zipf’s law continues to fascinate economists. In urban economics, it concerns the
largest city sizes and stipulates (in its strictest form) that the upper tail of the city size
distribution not only decays like a power function, but also that the tail exponent equals
unity. The most popular empirical strategy among urban economists is the estimation
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of the tail exponent by (variants of) an ordinary least squares (OLS) regression of
log sizes on log ranks (a Zipf regression for short).1 Since real-world (city) size
distributions are not strictly Pareto but the upper tails are rather Pareto like (i.e. tails
are regularly varying), such Zipf regressions suffer from asymptotic distortions. These
distortions are rarely taken into account in applied work. In particular, it turns out that
the Zipf regression estimator is biased towards Zipf’s law inmany situations, while the
associated Pareto quantile–quantile (QQ) plot is concave like and becomes linear only
eventually. This is of great practical relevance since practitioners usually select in a
data-invariant manner the threshold point of the Zipf regression. This paper addresses
these issues, by exploiting the relation between the Zipf regression and the Pareto
QQ-plot, using methods that are new to urban economics.

To bemore precise, consider the distribution function F of positive independent and
identically distributed city sizes that is regularly varying: for large x and γ ∈ (0,∞)

1 − F(x) = x− 1
γ l(x) (1)

where l is slowly varying at infinity.2 Focussing instead on the largest city sizes, the
tail quantile function U (x) ≡ F−1(1 − 1/x) gives an equivalent representation

U (x) = xγ l̃(x)

where F−1 denotes the generalised inverse and l̃(x) is another slowly varying function.
The parameter γ , usually referred to as extreme value index (and 1/γ as the tail
exponent), is unknown and needs to be estimated.

In particular, γ is the slope coefficient in the Pareto QQ-plot that Zipf regressions
seek to estimate. To see this and the ensuing problems, reconsider the tail quantile
function. As x → ∞, logU (x) ∼ γ log(x). Replacing these population quantities
with their empirical counterparts gives the Pareto QQ-plot. It follows that γ is the
ultimate slope of this plot. If the distribution were strictly Pareto,3 this plot would be
linear throughout. However, if the tail of the distribution varies regularly, the Pareto
QQ-plot will become linear only eventually. In Appendix A.3.1 we show that, using
the tail quantile function, the Pareto QQ-plot has a tendency to exhibit a concave-like
curvature for leading parametric models. A slow decay in the nuisance functions l(x)
and l̃(x)will then induce asymptotic distortions in the estimator of the slope coefficient
in the Zipf regression. Below, this slow decay will be modelled formally by higher-
order regular variation and quantified. In particular, building on asymptotic expansions

1 For instance, the meta study of Nitsch (2005) cites 29 papers providing 515 estimates based on Zipf
regressions, and a recent update in Cottineau (2016) 81 papers of which 23 are in core journals of regional
science providing 1702 estimates. In comparative cross-country work, Soo (2005), for instance, runs rank
size regressions for data on 75 countries, which are revisited in, for example, Nishiyama et al. (2008). We
reconsider some of these in Sect. 3.
2 That is, l(t x)/l(x) = 1 as x → ∞. Recall that a (positive measurable) function g is called regularly
varying at infinity with index θ ∈ R if limx→∞ g(t x)/g(x) = tθ with t > 0. If θ = 0, the function is said
to be slowly varying. See, for example, Bingham et al. (1987).
3 Strict Paretoness, 1 − F(x) = cx−1/γ , is usually assumed in formal statistical analyses in economics,
see, for example, in Nishiyama et al. 2008 p. 696 equation (3), or Gabaix and Ibragimov 2011, p. 25 equation
(2.1).
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developed in Schluter (2018), we show that the OLS estimator over-estimates γ in the
leading class of distributions inwhich the nuisance function l inmodel (1) converges to
a constant at a polynomial rate. In this case Zipf regressions are biased towards Zipf’s
law. The Pareto QQ-plot therefore offers a simple diagnostic device to detect the
presence of such distortions as it conveys important information about the behaviour
of the Zipf regression estimator.

It is then shown how the threshold parameter (i.e. the kth upper-order statistic) for
this Pareto QQ-plot and the OLS regression can now be selected in a data-dependent
manner, using regression diagnostics based on the residuals of the OLS regression.
The problem in common practice is that practitioners tend to select mechanically the
number of observations to be included in the Zipf regression. As Gabaix and Ioannides
(2004) observe “optimum cutoff techniques have not (..) been used in the context of the
city size distribution”. This choice determines the threshold, beyond which linearity
is implicitly assumed. Such “blind” choice (i.e. without visual reference to the Pareto
QQ-plot) then risks to fall within the curved, usually concave, part of the Pareto QQ-
plot, thus distorting the estimator. For instance, it is common practice to select the
top 1% of city sizes in complete census for all cities, or to consider only cities above
100,000 inhabitants (see, for example, Nitsch 2005, p. 95, or Giesen and Südekum
2011, p. 671, and reference therein), or using all observations in left-truncated data
sets for the largest cities. The latter case is illustrated in Sect. 3, by revisiting the data
and Zipf regressions reported in Soo (2005) and Nishiyama et al. (2008). When these
proposed updated methods are applied to these well-known data sets for the largest
cities, we detect some substantial differences to the results reported in the literature.
Zipf’s law (in the strictest sense with γ = 1) is now rejected in some of these cases
and confirmed in others.

The empirical importance of this threshold selection in the presence of a Pareto
QQ-plot that exhibit curvature is illustrated in Fig. 1 for administrative data for cities
in Germany in the year 2000, using up to the largest 5000 cities. Panel (a) depicts
the Pareto QQ-plot, and panel (b) plots the Zipf regression estimates γ̂ = γ̂ (k) as a
function of the k upper-order statistics. The Pareto QQ-plot clearly depicts a concave-
like curvature in the lower left part of the plot, which then leads to an over-estimate
of γ . The larger k, the larger is the resulting distorted estimate γ̂ (k). This curvature
then explains the unexplained observation in, for example, Nitsch (2005, p. 94) or
Gabaix and Ioannides (2004) that a larger number of observations tends to increase
the estimate γ̂ (i.e. in their notation reduce the estimate 1/γ̂ ).4 In Appendix A.3.1,
the curvature is examined parametrically using the tail quantile function. Below, we
quantify these distortions and propose a method for choosing k optimally.

This paper therefore makes a substantive contribution to the extensive literature
on the city size distribution, surveyed in, for example, Gabaix and Ioannides (2004)
and the meta-studies based on Zipf regressions (Nitsch 2005; Cottineau 2016) already
mentioned. A recent applied literature extends this scope and estimates Zipf regres-
sions for country size distributions (see, for example, Rose 2006) and considers the
world city size distribution (see, for example, Luckstead and Devadoss 2014). Clarity

4 For instance, Gonzales-Val (2010, Table 2) uses Zipf regressions to produce 165 estimates for US data,
letting the truncation point for the year 2000 distribution range from the largest 100 to the largest 19,200
cities yielding point estimates that range from γ̂ (100) = .76 to γ̂ (19, 200) = 1.86.
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Fig. 1 German cities: Pareto QQ-plot and the Zipf regression estimates γ̂ (k). German cities in the year
2000. The data are described in Sect. 3.1. a Pareto QQ-plots using the 5000 largest cities. b Estimates
γ̂ = γ̂ (k) as a function of the k upper-order statistics used in the Zipf regression (solid line) and associated
pointwise 95% symmetric confidence intervals (dashed line). For the Zipf regression, see Eq. (3), and for
the distributional theory, see Sect. 2.2

about the speed of tail decay for the largest cities is important. Firstly, the largest cities
contain most of the population. For instance, using a cut-off of 100,000 people in the
often used 2000US census place data captures 63%of the population and 1%of places.
15% of all places contain 80% of the population. Secondly, the speed of tail decay
informs about the underlying theoretical generative growth processes. For instance,
Gibrat’s classic model of i.i.d. proportional growth leads to a lognormal size distribu-
tion, while adding a lower reflecting barrier to geometric Brownian motion leads to a
Pareto size distributionwith unity exponent (used inGabaix 1999b), and subordinating
geometric Brownian motion can lead to the so-called double-Pareto-lognormal distri-
bution (Reed 2002). See also Perline (2005). Debates about the speed of tail decay
are ongoing and extend beyond urban economics into diverse fields in economics and
the natural sciences, see, for example, Gabaix (2009) and Schluter and Trede (2019)
for recent discussions.5 In particular, Schluter and Trede (2019) propose a unifying
statistical framework based on the classic Fisher–Tippett theorem and allied concepts
of maximum domains of attraction. This reasoning gives rise to encompassing tests
of whether the tail of the size distribution decays faster than any power function, i.e.
tests of the so-called Gumbel–Gibrat hypothesis γ = 0 (which includes the case of
the lognormal distribution). In the empirical applications to firm and city size data,
the hypothesis that γ be zero is robustly and clearly rejected in favour of γ > 0, the
setting of model (1) and thus justifying the use of Zipf regressions.

In order to illustrate the debates and the problemsof interpretation,Eeckhout (2004),
for instance, using US Census Bureau data, states that “cities grow proportionately”
and “it is shown that the size distribution of the entire sample is lognormal and not
Pareto”. However, using the same data, Levy (2009) observes that “[for the largest

5 In the literature on exchange rates, finance, insurance and risk management [where often 1/γ ∈ (2, 4)],
Ibragimov et al. (2013, 2015) emphasise that heavy tailsmay lead to sub-optimal diversification in the value-
at-risk framework, non-robustness of several economic and financial models, while finiteness of variances
is crucial for the applicability of classical econometric approaches.
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cities] the size distribution diverges dramatically and systematically from the lognor-
mal distribution, and instead is much better described by a power law”. This latter
observation is reiterated in, for example, Ioannides and Skouras (2013) based on dif-
ferent methods (which is revisited below). While the literature beginning with the
influential contribution of Eeckhout (2004) has the merit of considering the entire city
size distribution, Schluter and Trede (2019) clarify that the analysis of the largest city
sizes requires appropriate statistical techniques based on extreme value theory,6 and
that this task is distinct from fitting the main body of the size distribution. Moreover,
the asymptotic distortions caused by the slowly varying nuisance function l in model
(1) render problematic fully parametric attempts in the applied literature that seek to
test lognormality against strict Paretoness (see, for example, Malevergne et al. 2011,
for a statistically sophisticatedmaximum-likelihood-based approach to discriminating
between the tails of the two distributions).

A very recent literature in regional science seeks to combine the two distribu-
tional perspectives by smoothly pasting a strict Pareto tail to the main body of a
lognormal size distribution. For instance, Ioannides and Skouras (2013) propose a
maximum likelihood approach to estimate jointly the switching point and the dis-
tributional parameters. Fazio and Modica (2015) compare several other approaches
to identifying the smoothly pasted switching point (and assess their performance in
a simulation study when the data generating process is exactly Pareto-lognormal).
These recent approaches address the question of how data from the entire city size
distribution could be used. However, given the assumption of strict Paretoness in the
upper tail, this approach inherits the asymptotic distortion discussed above caused by
the confounding presence of the slowly varying function l in model (1). This obser-
vation is numerically illustrated in Appendix A.3.3. The semi-parametric model (1)
has the merit of avoiding the problems of fully specified distributions while imposing
informative restrictions on the data of city sizes. Furthermore, the threshold points of
the Zipf regression and the Pareto QQ-plot are determined below in a data-dependent
manner.

The paper is organised as follows. In the next section we introduce the concept
of higher-order regular variation that enables us to be precise about the decay of the
nuisance function l in model (1).We then recall the Pareto QQ-plot, relate it to the Zipf
regression, recall the asymptotic theory for the OLS estimate of γ and characterise the
asymptotic distortions. In Sect. 2.4, we consider the choice of threshold. We illustrate
themethods in several applications in Sect. 3.When thesemethods are applied to some
well-known data sets for the largest cities, we detect some substantial differences to
the results reported in the literature. Zipf’s law is now rejected in some of these cases
and confirmed in others.

6 The empirical problem posed by lognormality is its subexponentiality: Although the speed of tail decay
of the lognormal distribution is faster than that of power function class (1), it is slower than exponential and
sufficiently slow to generate a tail that is commonly considered as “heavy”, i.e. for both distributional classes
we have eβx (1 − F(x)) = ∞ for all β > 0 as x → ∞. Some authors refer to the lognormal distribution
as rapidly varying, since its index is −∞ and limx→∞[1 − F(t x)]/[1 − F(x)] equals ∞ if 0 < t < 1
and equals 0 if t > 1, reserving the term regular variation to finite and nonzero indices (e.g. Bingham et al.
1987, definition 2.4.2). As discussed above, Schluter and Trede (2019) show that the appropriate test is that
of the Gumbel–Gibrat hypothesis.
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2 The Pareto QQ-plot and the rank size regression

2.1 Preliminaries: higher-order regular variation

The distributional theory for the Zipf regression estimator exploits modelling the
slowly varying nuisance function l in (1) as higher-order variation. Recalling the
preceding discussion of the tail quantile function, it is immediate that model (1)
has the equivalent (first-order regular variation) representation limt→∞[logU (t x) −
logU (t)]/[a(t)/U (t)] = log x for all x > 0 where a is a positive norming function
with the property a(t)/U (t) → γ (see, for example, Dekkers et al. 1989). The prob-
lem for estimating the extreme value index γ is the behaviour of the slowly varying
function l in (1). It is therefore common practice in the extreme value literature to
model such second-order behaviour by strengthening the first-order regular represen-
tation to second-order regular variation. Following de Haan and Stadtmüller (1996),
we assume

lim
t→∞

logU (t x)−logU (t)
a(t)/U (t) − log x

A(t)
= Hγ,ρ(x) (2)

for all x > 0, where Hγ>0,ρ<0(x) = 1
ρ
( x

ρ−1
ρ

− log x) with ρ < 0. This parameter
ρ is the so-called second-order parameter of regular variation, and A(t) is a rate
function that is regularly varying with index ρ, with A(t) → 0 as t → ∞. As ρ

falls in magnitude, the nuisance part of l in (1) decays more slowly. Most heavy-
tailed distributions of interest satisfy representation (2). The Hall class of distributions
(Hall 1982), which includes, for instance, the Burr, Student t , Fréchet, and Cauchy
distributions, is but one example and considered explicitly in Appendix A.3, which
illustrates the role ofρ, the concavity of the ParetoQQ-plot, and the induced substantial
distortions of statistical inference.

2.2 The rank size regression estimator

We briefly recall the Pareto QQ-plot and the associated Zipf regression that yields an
estimator of the tail index γ . Details are collected in Appendix A.1. Variants of this
Zipf regression are discussed in Sect. 2.3.

The key insight is obtained from the tail quantile function: As x → ∞, logU (x) ∼
γ log(x) in model (1). Replacing these population quantities with their empirical
counterparts gives the Pareto QQ-plot whose ultimate slope is γ . To this end, let
X1,n ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn , and consider the k
upper-order statistics. The Pareto QQ-plot becomes ultimately linear for a sufficiently
high threshold Xn−k,n where k < n. In Sect. 2.4, we consider how this threshold,
which is usually ignored by practitioners in regional science, can be selected in a
data-dependent manner.

The estimator of the slope coefficient in the Pareto QQ-plot is obtained by min-
imising with respect to γ the least squares criterion of the Zipf regression of sizes on
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ranks,7

γ̂ = arg min
k∑

j=1

(
log

Xn− j+1,n

Xn−k,n
− γ log

k + 1

j

)2

(3)

with 1 ≤ j ≤ k < n. Schluter (2018) demonstrates that under assumption (2), as
k → ∞ and k/n → 0, this estimator is weakly consistent, and if

√
k A(n/k) → 0

√
k(γ̂ − γ ) →d N

(
0,

5

4
γ 2

)
. (4)

Asymptotically, the estimator is thus unbiased if
√
k A(n/k) → 0. But if this decay is

slow, the estimator will suffer from a higher-order distortion in finite samples given
by

bk,n ≡ 1

2

γ

ρ

2 − ρ

(1 − ρ)2
A(n/k) (γ > 0, ρ < 0) (5)

For instance, in the Hall class (see Appendix A.3 for details), the tail quantile
function is U (x) = cxγ [1 + dxρ + o(xρ)] so that A(t) = (ρ2/γ )dtρ . The sign of
the bias is therefore given by −sign(d), and one can show that d < 0 for the nested
Burr, Student t , Fréchet, and Cauchy distributions. It follows that bk,n > 0, so γ is
over-estimated, and Zipf regressions are thus biased towards Zipf’s law in models in
which the nuisance function l in model (1) converges to a constant at a polynomial
rate. The empirical evidence presented in Sect. 3 is in line with this theory.

2.3 OLS regression variants in the literature

The literature contains several variants of regression (3). Usually, practitioners include
the additional estimation of a regression constant: log Xn− j+1,n is regressed on a
constant and log j . Schultze and Steinebach (1996) prove weak consistency of the
estimator in this setting. Kratz and Resnick (1996) also prove weak consistency, obtain
the distributional theory for this alternative estimator, and show that its asymptotic
variance is 2γ 2/k, which exceeds the asymptotic variance of γ̂ given in (4). Hence,
this regression variant is less efficient (given the additional estimation of the regression
constant) and the estimate exhibits excessive variability (which can be an issue for
hypothesis testing, such as Zipf’s law). Similar comments apply to the so-called dual
regressions in which ranks are regressed on sizes (Nitsch 2005, refers to the two
regressions types as the Lotka and Pareto forms). Shifting ranks, as examined formally
in Gabaix and Ibragimov (2011) in the strict Pareto model, does not eliminate the

7 Since the OLS estimator of the slope coefficient is not invariant to shifts in the data, it is conceivable that a
purposefully chosen shift could yield an asymptotic refinement (Gabaix and Ibragimov 2011, demonstrate
the optimality of a shift of ranks by 1/2 in the strict Pareto model, show the asymptotic normality of the
estimator, and obtain the correct standard errors). Since it turns out that the higher-order distortion in model
(1) remains intact, we ignore such a shift for the sake of notational simplicity.
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asymptotic distortion in model (1) (Schluter 2018). Finally, we observe that some
practitioners augment the OLS regression with a squared regressor in order to control
directly the curvature of the QQ-plot (rather than selecting k). However, since the
distributional theory for this augmented regression is currently unknown (not even in
the strict Pareto model), statistical inference is not possible in this setting (Nishiyama
et al. 2008 p. 703, make a similar observation).8 Since Pareto-like tails lead to curved
ParetoQQ-plotswhen the nuisance function l inmodel (1) decays slowly (as illustrated
in Fig. 6a), it is also not clear how significance tests for the squared regressor should
be interpreted.

Many other estimators of γ have been proposed in the statistical extreme value lit-
erature (see, for example, the textbook treatments in Embrechts et al. 1997, or Beirlant
et al. 2004). The Hill estimator has received most attention, and its asymptotic normal-
ity has been studied in various settings (e.g. Hall 1982; Csörgő et al. 1985, or Haeusler
and Teugels 1985). In particular, using a second-order condition similar to (2), deHaan
and Peng (1998) show that if limn→∞

√
k A(n/k) = λ, then

√
k(γ̂ (Hill) − γ ) follows

asymptotically a normal law with mean λ/(1− ρ) and variance γ 2.9 We observe that
the variance of the Hill estimator for a given k is thus smaller than the variance of any
of the rank size OLS estimators. However, the Hill estimator also suffers from asymp-
totic distortions, and requires, as the OLS estimator, the selection of the threshold level
k. This problem is considered next.

2.4 The choice of the threshold k

TheOLS regression (3) provides further diagnostics that can be used to select optimally
the threshold level k in a data-dependent manner. Specifically, the residuals enable us
to estimate nonparametrically the asymptotic mean-squared error (AMSE), which,
in view of the bias–variance trade-off implied by (4) and (5), is commonly used in
the statistical literature as a selection criterion (e.g. Csörgő et al. 1985; Hall 1990,
or Beirlant et al. 1996).

Following Beirlant et al. (1996), we observe that the expectation of the mean
weighted theoretical squared deviation

1

k

k∑

j=1

w j,k E

(
log

(
Xn− j+1,n

Xn−k,n

)
− γ log

(
k + 1

j

))2

(6)

8 In the Burr model, this augmented regression increases the positive distortions of the point estimates of γ
for high k. For instance, in a Monte Carlo with 1000 replications in the Burr model with γ = 2/3, sample
sizes n = 1000 and k = 500, the mean point estimates of γ were 1.59 when ρ = −.5, 1.17 when ρ = −.75,
and 0.998 when ρ = −1. Evaluated at k = n, the distortions are even higher, exceeding the population
value at least by a factor of 8; for instance, when ρ = −.5, the mean estimate is 10.89.
9 In particular, de Haan and Peng (1998) obtain the asymptotic expansion for the Hill estimator γ̂ (Hill) =d

γ + γ√
k
Zk + 1

1−ρ
A(n/k)(1 + op(1)) where Zk = √

(k)(k−1 ∑k
i=1 Ei − 1) and Ei are i.i.d. standard

exponential random variables. However, since their second-order assumption differs from (2), their bias
expression is not directly comparable to (5).
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Table 1 Performance evidence for optimal k selection: Burr distribution

γ ρ n k̄∗ k∗
Burr γ̂ (k∗) γ̂ (k∗) − bBurrk∗,n γ̂ (k∗) − b̃k∗,n

2/3 −0.5 10,000 340 201 0.732 0.664 0.688

2/3 −0.5 1000 118 64 0.805 0.678 0.741

2/3 −0.75 10,000 604 444 0.698 0.661 0.664

2/3 −0.75 1000 173 112 0.743 0.663 0.692

2/3 −1 10,000 1114 765 0.692 0.664 0.664

2/3 −1 1000 226 164 0.719 0.662 0.671

k̄∗ is the mean value across 1000 Monte Carlo repetitions computed using the procedure described in Sect.
2.4. k∗

Burr minimises the parametric AMSE in the Burr model given by Var(γ̂ ) + [bBurrk,n ]2. b̃k∗,n is defined
in Eq. (8) and we have set ρ = −5

equals, to first order,

ckVar(γ̂ ) + dk(ρ)b2k,n (7)

for some coefficients ck depending only on k, and dk(ρ) depending on k and ρ (see
Appendix A.2 for details). The procedure then consists in applying two different
weighting schemes w

(i)
j,k (i = 1, 2) in (6), estimating the corresponding two mean

weighted theoretical deviations using the residuals of regression (3), and computing
a linear combination thereof such that

Var(γ̂ ) + b2k,n

obtains. We carry out this programme for weights w
(1)
j,k ≡ 1 and w

(2)
j,k = j/(k + 1) for

a set of preselected values of ρ.10

Table 1 reports some performance evidence for this AMSE-based selection proce-
dure in the Burr model parametrised as 1−F(γ,ρ)(x) = (1+x−ρ/γ )1/ρ with γ = 2/3,
ρ ∈ {−0.5,−0.75,−1}, and n ∈ {1000, 10,000}. Appendix A.3 provides additional
details for this model (e.g. the role of ρ and the curvature of the Pareto QQ-plot). The
higher-order distortion (5) becomes

bBurrk,n = 1

2
γ

2 − ρ

(1 − ρ)2

(n
k

)ρ

> 0.

Figure 2 illustrates further one such experiment. In panel (a) the theoretical AMSE,
Var(γ̂ ) + [bBurrk,n ]2, is plotted as well as a boxplot for the optimally selected k∗ in all
1000 Monte Carlo simulations. In panel (b) we examine one such random sample for
which the selection procedure yielded k∗ = 126 and depict the Pareto QQ-plot as
well as the Zipf regression line with anchor Xn−k∗,n . In the table we report the mean

10 Such preselection and the comparison of the resulting optimal k∗ = k∗(ρ) avoid the need to estimate
ρ. It is well known in the extreme value literature that reliable estimation of second-order objects ρ and A
is notoriously difficult.
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Fig. 2 AMSE in the Burr model and selection of k. Burr model with γ = 2/3 and ρ = −0.75 and sample(s)
of size n = 1000. a Parametric AMSE in the Burr model given by Var(γ̂ ) + [bBurrk,n ]2. The theoretical k∗
is 112, depicted by the faint vertical line. The lower part of the figure shows the boxplot for the realised
k∗ across all simulations for 1000 Monte Carlo repetitions. b For one random sample, Pareto QQ-plot,
and Zipf regression line (dashed line) with slope γ̂ (k∗) = .85 and threshold Xn−k∗,n where the selection
procedure yielded k∗ = 126

value k̄∗. This mean has the correct order of magnitude. The tendency to exceed the
theoretical optimal value k∗

Burr is explained by the asymmetry of the theoretical AMSE
plot illustrated in the figure (which varies across the experiments since the squared
bias increases at speed k−ρ whereas the variance does not depend on ρ).We also verify
that the theoretical bias in the Burr model is a good guide for the actual distortions,
by bias-correcting the estimate γ̂ (k∗). The table shows that across all experiments the
bias corrected estimate γ̂ (k∗) − bBurrk∗,n is very close to the population value 2/3.

2.5 Bias correction and lower bounds analysis

By trading off asymptotic bias and variance, the resulting optimal estimate γ̂ (k∗) still
exhibits a bias. A simple pragmatic procedure is based on (6) with w j,k ≡ 1, and
yields a lower bound for γ as follows. An estimate of the mean theoretical deviation
is the mean of the squared residuals k−1SSRk of the rank size regression (3). All the
measured deviation k−1SSRk is then ascribed to the bias,

b̃k,n(ρ) = [k−1SSRk/dk(ρ)]1/2 (8)

thereby defining a conservative bound γ̂ − b̃k,n(ρ). The sensitivity analysis then con-
sists of examining this expression for a range of values of ρ. Table 1 reports the results
of this exercise for the Burr case, setting ρ = −.5 as a conservative value, allowing,
by Fig. 6a, for curvature in the Pareto QQ-plot. It turns out that the resulting estimates
are very close to the population value of γ , improving on the estimate γ̂ (k∗).
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Fig. 3 German cities: Pareto QQ-plot and the Zipf regression estimates γ̂ (k). German cities in the year
2000. a Plot of the estimated AMSE as a function of k for selected ρ. The minimiser is k∗ = 908. b Pareto
QQ-plots using the 1000 largest cities, and Zipf regression line with slope γ̂ (k∗) = .761 and threshold
Xn−k∗,n . c Estimates γ̂ (k) as a function of the k upper-order statistics used in the Zipf regression (solid
line) and associated pointwise 95% symmetric confidence intervals (dashed line), based on the distributional
theory given in Eq. (4). The grey vertical line indicates k∗

3 Applications

We illustrate themethods in several applications to the upper tail of the size distribution
of cities, focussing on the diagnostic Pareto QQ-plot, the positive distortions of the
OLS estimator, and the selection of k.

3.1 The size distribution of cities in Germany

Our first empirical application concerns the size distribution of cities in Germany.
We use first an administrative dataset for Germany for the year 2000, provided by
the German Federal Statistical Office. These administrative data are highly accurate
due to the legal obligation of citizens to register with the authorities. The unit of
analysis is the “city”, or more precisely themunicipality or settlement (“Gemeinden”).
Population sizes are as of December 31, and the year 2000 size distribution comprises
13,854 cities. Figure 3 depicts the results. In panel (a), we plot the estimated AMSE
for several values of ρ. The minimisers closely agree, the estimated AMSE being
minimised at k∗ = 908. In panels (b) and (c) we revisit Fig. 1, now restricting the
plots to the 1000 largest cities. In panel (b) we redraw the Pareto QQ-plot, as well as
the regression line with slope γ̂ (k∗) = .761 and threshold Xn−k∗,n . In panel (c), we
draw again the estimates γ̂ (k) as a function of the k, as well as the pointwise 95%
symmetric confidence intervals. The vertical line at k∗ = 908 indicates the optimal
choice of k, yielding the associated γ̂ (k∗) = .761. This value seems a very sensible
choice, as the plot of γ̂ (k) in the interval [350, k∗] appears fairly flat, so the best choice
in this interval is then such that the variance is minimised.11 Returning to panel (b),
the depicted regression line describes the Pareto QQ-plot well.

11 Giesen and Südekum (2011, Figure 4) consider cities in West Germany. For the year 1997, and using
only the 71 largest cities, their point estimate is γ̃ (71) = 1/1.23 = .81 with 95% confidence interval
[.61, 1.22], which is similar to the corresponding point in Fig. 3c.
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Table 2 Revisiting the cross-country OLS regression analysis

Country Year n1 γ̂ (n1) k∗ γ̂ (k∗) γ̂ (k∗) − b̃k∗,n

Belgium 2010 158 0.608 156 0.600 0.570

Italy 2011 144 0.678 108 0.721 0.658

Netherlands 2014 175 0.910 164 0.889 0.840

Poland 2011 234 0.909 132 0.817 0.781

Russia 2010 166 0.955 64 0.691 0.581

Spain 2011 145 0.835 124 0.754 0.700

Sweden 2010 128 0.800 46 0.626 0.545

Switzerland 2010 162 0.879 156 0.637 0.569

Ukraine 2014 215 1.087 190 1.054 0.973

United Kingdom 2011 202 0.737 138 0.696 0.604

Data obtained from http://citypopulation.de/. n1 is the size of the left-truncated data set for the largest cities.
k∗ minimises the estimated AMSE using the procedure described in Sect. 2.4. Standard errors, not reported
but depicted in Fig. 4, can be easily computed using the distributional theory given in Eq. (4). b̃k∗,n is the
conservative bias correction with ρ = −0.5 given by Eq. (8)

3.2 Cross-country analysis: cities

This illustration revisits and updates the cross-country comparative analysis of Soo
(2005) and Nishiyama et al. (2008) using data for the largest cities from
citypopulation.de.12 These data sets are left-truncated, and we denote the
resulting sample sizes by n1. We consider the largest city sizes for European countries
for which at least 100 observations are available. Practitioners use typically the com-
plete data, thus computing (variants of) γ̂ (n1). The above theoretical analysis suggests
that these are likely to be over-estimates (hence biased towards Zipf’s law). The pur-
pose of this illustration is to examine whether k∗ < n1, whether γ̂ (k∗) differs from
γ̂ (n1), and, if so, relate it to the curvature of the diagnostic Pareto QQ-plot. Finally,
we perform the lower bounds analysis in order to gauge the magnitude of the potential
distortion.

Table 2 reports the results. Although the data are for recent years, the sample sizes
n1 and estimates γ̂ (n1) are similar to those reported in Soo (2005) (where 1/γ̂ (n1) is
given). For the majority of countries considered, k∗ is substantially smaller than n1,
which then results in substantially smaller estimates of γ .13 These positive distortions
are thus in line with the statistical theory developed above.

In Fig. 4 we examine the diagnostic Pareto QQ-plot for four case in which we
observe large differences. In panel (a), we depict the Swedish case. The plot reveals
a pronounced initial curvature of the QQ-plot, and this significant departure from lin-
earity explains the presence of positive distortions that increase as k increases beyond

12 Nishiyama et al. (2008) correctly point out that standard errors used in Soo (2005) are wrong, hence
undermine his statistical inference. Their empirical analysis uses the correct variance, 2γ 2/k, for their
variant of the rank size regression as discussed in Sect. 2.3.
13 We also observe that at k∗ the point estimates γ̂ (k∗) are very similar to the Hill estimates γ̂ (Hill)(k∗). For
instance, for Sweden, Russia, Poland, and the UK, we obtain 0.608, 0.683, 0.818, and 0.681, respectively.
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Fig. 4 Diagnostic Pareto QQ-plot and the Zipf regression estimates γ̂ (k). Pareto QQ-plots use the n1 largest
cities, and Zipf regression line with slope γ̂ (k∗) and threshold Xn−k∗,n . Estimates γ̂ (k) are depicted as
a function of the k upper-order statistics used in the Zipf regression (solid line) and associated pointwise
95% symmetric confidence intervals (dashed line),based on the distributional theory given in Eq. (4). The
grey vertical line indicates k∗

k∗. This is further depicted in the accompanying plot of γ̂ (k). Similar remarks apply
to the case of Russia, depicted in panel (b), and Poland, depicted in panel (c). For the
UK, the departure from linearity in the QQ-plot is very mild, thus explaining the small
difference between γ̂ (n1) and γ̂ (k∗). Turning briefly to Zipf’s law, we also observe
that the value of 1 lies above the pointwise 95% confidence interval at k∗ for Sweden,
Russia, and the UK; thus, Zipf’s law is rejected for these cases. Taking into account
the likely distortion, Table 2 also reports the lower bound given by γ̂ (k∗) − b̃k∗,n . A
bias adjustment in the implied range then suggests that in all cases bar Ukraine, Zipf’s
law is rejected.

3.3 Two agglomerations: Japan and France

In our final illustration concerns two urban agglomerations. First, we revisit the
Japanese Urban Employment (UEA) areas in the year 2000, based on commuting
patterns, examined in Nishiyama et al. (2008). Table 3 reports the results, and Fig. 5
the diagnostic Pareto QQ-plot and the estimates γ̂ (k). The point estimate using the
complete data, γ̂ (n1), suggests a point estimate very close to the Zipf value 1 (almost
identical to the value 1/.997 reported in Nishiyama et al. 2008). But the diagnostic
QQ-plot clearly shows an initial pronounced curvature inducing a substantial positive
distortion. By contrast, the selection procedure yields k∗ = 70, and a point estimate
of 0.853. However, the estimated variability of the estimate is sufficiently large so that
the Zipf value 1 still falls within the 95% confidence interval (even after accounting for
its shift suggested by b̃k∗,n). The same observations apply to the French agglomeration
data for the year 2015. The selection procedure for k∗ substantially reduces the point

123



542 C. Schluter

Table 3 Agglomerations in Japan and France

Country Year n1 γ̂ (n1) k∗ γ̂ (k∗) γ̂ (k∗) − b̃k∗,n

Japan 2000 113 1.031 70 0.853 0.761

France 2015 2226 1.124 512 1.070 1.022

Data obtained from http://www.csis.u-tokyo.ac.jp/UEA/uea_code_e.htm (Japan) and http://citypopulation.
de/ (France). k∗ minimises the estimated AMSE using the procedure described in Sect. 2.4. b̃k∗,n is the
conservative bias correction given by Eq. (8)
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Fig. 5 Pareto QQ-plot and the Zipf regression estimates γ̂ (k): Agglomerations in Japan and France. As per
Fig. 4

estimate compared to γ̂ (n1), but the associated variability is sufficiently large so that
the Zipf value 1 is still contained in the confidence interval.

4 Conclusions

A Zipf regression is the most popular method for estimating the tail exponent of
the city size distribution, and the established literature summarised in several meta-
studies and surveys covers close to 100 articles which report thousands of estimates.
The (deceptive) ease of computing such a regression has undoubtedly contributed to its
popularity. However, the econometric challenges posed by regular-varying upper tails
are often not well understood by practitioners: (i) the regression estimator suffers from
asymptotic distortions (the bias being usually towards Zipf’s law), and (ii) the choice of
the threshold parameter, often made mechanically, has important consequences. Both
issues have been addressed using techniques that focus on the tail quantile function
and that exploit the link between the Zipf regression and the Pareto QQ-plot, a key
insight being that this plot becomes linear only eventually and that γ is its ultimate
slope. The threshold parameter can now be selected in a data-dependent manner. These
considerations and proposed methods are new to urban economics.

The relevance of these empirical methods is demonstrated by reconsidering some
well-known data sets for the largest cities. While common practice in this established
literature uses all available data points n1, it has been shown that in several cases these
threshold points belong to the curved part of the Pareto QQ-plot, leading to an over-
estimation. By contrast, the proposed methods rectify this problem, yielding estimates
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γ̂ that are smaller than γ̂ (n1), sometimes substantially so. Zipf’s law is now rejected
in some of these cases and confirmed in others.

The formal analysis in this paper is based on the standard assumption made the
urban literature that city sizes are independent and identically distributed random
variables. All papers cited in footnote 1 and Sects. 1 and 2.3 adopt this assumption. In
order to examine to which extent the theoretical predictions hold for dependent data,
the Supplementary Material provides evidence for AR(1), MA(1) and GARCH(1,1)
processes. Results in Hsing (1991) suggest that the current theory might be a rea-
sonable guide if the dependence is sufficiently weak so that approximations to a
normal law still hold. The Supplementary Material demonstrates that this is the
case. In particular, in all experiments considered, the Pareto QQ-plots exhibit the
concave-like curvature, and our method selects well the ultimate linear part of these
QQ-plot.
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A Statistical Appendix

A.1 The Pareto QQ-plot, the Zipf regression, and �̂

TheParetoQQ-plot has coordinates (x, y) = (− log( j/(n+1)), log Xn− j+1,n) j=1,...,k .
Inmodel (1), this plot becomesultimately linear for a sufficiently high threshold Xn−k,n

where k < n. The line through the threshold point− log((k+1)/(n+1)), log Xn−k,n)

with slope γ is thus given by

y = log Xn−k,n + γ

[
x + log

(
k + 1

n + 1

)]
(1 ≤ j ≤ k < n).
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The OLS estimator of the slope parameter in the Pareto QQ-plot is obtained by min-
imising the least squares criterion

k∑

j=1

(
log

Xn− j+1,n

Xn−k,n
− γ log

k + 1

j

)2

(1 ≤ j ≤ k < n)

with respect to γ . The resulting OLS estimator is

γ̂ =
1
k

∑k
j=1 log

(
k+1
j

) [
log Xn− j+1,n − log Xn−k,n

]

1
k

∑k
j=1

[
log k+1

j

]2 .

A.2 The choice of k: details

The mean weighted theoretical squared deviation

1

k

k∑

j=1

w j,k E

(
log

(
Xn− j+1,n

Xn−k,n

)
− γ log

(
k + 1

j

))2

equals, to first order, ckVar(γ̂ ) + dk(ρ)b2k,n for some coefficients ck depending only
on k, and dk(ρ) depending on k and ρ. For model (2) Schluter (2018) shows that these
coefficients are dk(ρ) = ( 12

2−ρ

(1−ρ)2
)−2d̃k(ρ) and ck = (4/5)c̃k with

d̃k(ρ) = 1

k

k∑

j=1

w j,k

(
( j/(k + 1))−ρ − 1

ρ

)2

c̃k =
k∑

j=1

w j,k

⎛

⎜⎝
k− j+1∑

l=1

(
1

k − l + 1

)2

+
⎛

⎝
k− j+1∑

l=1

1

k − l + 1
− log

(
k + 1

j

)⎞

⎠
2
⎞

⎟⎠ .

A.3 Example: the Hall (1982) class of distributions

The Hall class of distributions (Hall 1982) satisfies the second-order representation
(2) and possesses a nuisance function l in model (1) that converges to a constant at a
polynomial rate. This class contains, among others, the Burr, Student t , Fréchet, and
Cauchy distributions.

In particular, the distribution function of the Hall class is given by

1 − F(x) = ax−1/γ [1 + bxβ + o(xβ)]
for large x with γ, a > 0, b ∈ R, β < 0, and tail quantile function

U (x) = cxγ [1 + dxρ + o(xρ)].
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It satisfies the second-order representation (2) with ρ = γβ < 0, and rate function
A(t) = (ρ2/γ )dtρ.14

The Burr distribution, parametrised here as

1 − F(γ,ρ)(x) = (1 + x−ρ/γ )1/ρ,

is a member of the Hall class with parameters γ and ρ < 0, c = 1 and d = γ /ρ < 0.
Its tail quantile function can be expanded as

U (x) = xγ [1 + (γ /ρ)xρ + o(xρ)].

Other members, for instance, are (ii) the Student tδ distribution with δ degrees of
freedom: with γ = 1/δ, ρ = −2/δ, d = γ BC−2γ , B = −.5δ2(δ + 1)/(δ + 2),
and C = �((δ + 1)/2)δ(δ−1)/2/(δπ)1/2�(δ/2) (valid for δ > 2); (iii) the Fréchet
distribution Fγ (x) = exp(−x−1/γ ) with ρ = −1, c = 1, and d = −.5γ ; and (iv) the
Cauchy distribution with γ = 1, ρ = −2, c = 1/π , and d = −.5π2.

A.3.1 Concavity of the Pareto QQ-plot

For distribution model (1) the Pareto QQ-plot becomes linear only eventually and
exhibits typically a concave-like curvature. This can be easily verified using the pop-
ulation analogue, i.e. the tail quantile function.15

In particular, in the Burr case, logU (x) ≈ γ log(x) + (γ /ρ)xρ for large x , and it
follows immediately that

∂ logU (x)

∂ log(x)
= γ + γ xρ > 0 and

∂2 logU (x)

∂ log(x)2
= γρxρ ≤ 0

logU (x) ∼ γ log(x) only as x → ∞. Thus, the presence of the nuisance function l in
model (1) augments the slope and induces concavity when x is not sufficiently large,
leading then to an over-estimation of γ by the Zipf regression. As the second-order
parameter ρ decreases in magnitude, and the nuisance function l decays more slowly,
the Pareto QQ-plot becomes steeper, ∂

∂|ρ|
∂ logU (x)
∂ log(x) < 0, and the distortion increases.

These properties are illustrated in Sect. A.3.3.
More generally, a similar calculation for the general Hall class reveals that the signs

of the first and second derivatives of logU (x) are given by sign(-d) and sign(d) respec-
tively, recalling that d < 0 for the Burr, Student t, Fréchet, and Cauchy distributions.

14 Gabaix and Ibragimov (2011) provide numerical evidence to show that the log-log rank size regressions
with shifted ranks performs well in Hall’s model with ρ = −1.
15 This calculation is valid, of course, for any parametric model. It is of interest, for instance, to consider
the lognormal distribution. Schluter and Trede (2019) show that in this limiting case γ = 0 and that its
tail quantile function satisfies, to first order, log(U (x)) = σ

√
2[log x]1/2. Then ∂ logU (x)/∂ log(x) =

(σ/
√
2)[log x]−1/2 ↓ 0. The Pareto QQ-plot can thus be seen to be concave, and its eventual slope is 0.
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Fig. 6 The Burr distribution: Pareto QQ-plot and the Zipf regression estimate γ̂ . Notes. Based on the Burr
distribution with γ = 2/3, and ρ ∈ {−2,−.5,−.25}. a Pareto QQ-plots for 3 random samples drawn from
the Burr distribution. Sample size is 1000. To aid comparison across cases, the points of each QQ-plot have
been connected and rendered as lines. b Mean of estimates γ̂ across 1000 Monte Carlo simulations for
given ρ, drawing samples of size 1000 in each iteration. The faint horizontal line is the population value
γ = 2/3. c For ρ = −.5, coverage error rate of the 95% symmetric confidence intervals (solid line),based
on the distributional theory given in Eq. (4), and bias corrected by the theoretical bBurrk,n (dashed line)

A.3.2 The sign of the higher-order bias of �̂

In the Hall class, it then follows that the sign of the higher-order bias of the slope
estimator γ̂ , bk,n stated in Eq. (5), is given by −sign(d).

Formanymembers of theHall class such as theBurr, Student t , Fréchet, andCauchy
distributions, the above results imply d < 0, so bk,n > 0. For instance, d = γ /ρ < 0
in the Burr case. Moreover, ∂bBurrk,n /∂|ρ| < 0, so that the smaller the magnitude of ρ,
the larger is the distortion.

We conclude that γ is over-estimated, so that Zipf regressions are biased towards
Zipf’s law in this settings.

The consequences are illustrated quantitatively next.

A.3.3 Numerical illustrations

We illustrate the second-order behaviour specifically for the Burr distribution. Figure 6
illustrates the role of ρ for the Pareto QQ-plot, and the resulting estimates γ̂ (k) when
γ = 2/3. In line with the theoretical discussion of Sect. A.3.1, we observe that
the smaller the magnitude of ρ, the greater the initial concave-like curvature and
steepness of the Pareto QQ-plot, and the larger the induced positive distortions of the
OLS estimator of its slope coefficient. This is also consistent with the theoretical bias
bBurrk,n discussed above. The qualitative results are similar to those for the real-world
distribution depicted in Fig. 1.

In panel (c) of Fig. 6 we illustrate the consequences of the distortions for statistical
inference for the case ρ = −.5, by plotting the empirical coverage error rates of
the usual 95% symmetric confidence intervals. The higher-order distortions lead to
undermining inference because of the considerable size distortions. For instance, at
k = 200, the empirical coverage error rate is 30% for a nominal 5% rate. Shifting the
estimate by the theoretical bias bBurrk,n reduces the coverage error rate to 7%.
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Table 4 Performance evidence
for the switching model: Burr
distribution

ρ N = 10,000 N = 1000

Mean γ̂ SD(γ̂ ) Mean γ̂ SD(γ̂ )

−2 0.684 (.0138) 0.729 (.430)

− .75 0.854 (.0334) 0.876 (.084)

− .5 1.000 (.0317) 0.977 (.077)

Burr model with fixed γ = 2/3 and variable ρ and sample of sizes
N . The Monte Carlo is based on R = 1000 repetitions. The switching
model is as proposed in Ioannides and Skouras (2013) and set out in
the main text. Estimation of all parameters is by maximum likelihood.
Reported is only the estimate of γ

Finally, we illustrate how recent switching models that are designed to fit the entire
city size distribution inherit the bias problem caused by the strict Pareto assumption.
In particular, we examine the performance of the switching model of Ioannides and
Skouras (2013) that smoothly pastes a strict Pareto tail to a lognormal body. Beyond
cut-off τ , the density model is proportional to a × x−1/γ−1 where the parameter-
dependent scaling factor a ensures that the density is continuous at the cut-off τ . The
parameters of the model (location and scale of the lognormal body, cut-off τ and γ )
are estimated by maximum likelihood.16 For this Monte Carlo illustration, we use
the Burr model above with parameters γ = 2/3 and varying ρ, repeat the experiment
R = 1000 times, and draw in each iteration a sample of size N = 10,000 or N = 1000.
The maximum likelihood procedure, it turns out, correctly dismisses the lognormal
body by invariably estimating a very low cut-off point τ . However, γ is over-estimated
and the distortion increases as ρ falls in magnitude (and the nuisance function l in
model (1) decays more slowly), as predicted by our statistical theory. Table 4 reports
the results. In particular, for samples of size N = 10,000, the distortion increases as
ρ changes from - 2 to - 0.5, the mean value of γ̂ being 1.0003 with mean standard
deviation 0.0317 for ρ = −.5. Drawing smaller samples has the predicted effect of
increasing variability.
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