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Abstract
The hedonic imputation method allows characteristic shadow prices to evolve over
time. These shadow prices are used to construct matched samples of predicted prices,
which are inserted into standard price index formulas.We use a spatio-temporal model
to improve themethod’s effectiveness on housing data at higher frequencies. The prob-
lem is that at higher frequencies, there may not be enough observations per period to
reliably estimate the characteristic shadow prices. In such cases, the reliability of
the hedonic imputation method is improved by using a state-space formulation which
yields estimates of the shadowprices that areweighted sums of previous periods’ infor-
mation. In addition, the state-space representation of the model includes a geospatial
spline surface which significantly reduces the number of parameters to be estimated
when compared to the standard practice of including postcode dummies in the model.
Empirically, using a novel criterion, we show that in higher frequency comparisons,
our hedonic method outperforms competing alternatives.
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1 Introduction

Since the global financial crisis, there is an increased awareness of the importance of
the housing market to the broader economy. Hence, there is a growing demand from
central banks, governments, banks, real estate developers, and households for reliable
and more timely house price indices, and for the development of tradable derivatives
(Bokhari and Geltner 2012). The increased availability of housing data and advances
in computing power and econometric techniques is making it possible to deliver more
timely indices to meet this demand.

Much progress has beenmade recently on computing higher frequency repeat-sales
house price indices (Bokhari and Geltner 2012; Bollerslev et al. 2016; Bourassa and
Hoesli 2016). However, less progress has been made on computing higher frequency
hedonic indices.1 It is such higher frequency hedonic indices that are the focus of our
attention here.

Hedonic methods estimate the price of a product (here housing) as a function of a
vector of explanatory characteristics. The hedonic imputation method, first proposed
by Court (1939) and further developed by Griliches (1961), re-estimates the hedonic
model each period. The hedonic model is then used to predict prices for matched sam-
ples, after which the overall price index can be computed using a standard price index
formula. The method is more flexible and timely than other hedonic methods such
as the time-dummy method in that the characteristic shadow prices are updated each
period. This flexibility can be important, especially when structural changes occur in
the market (Shimizu and Nishimura 2007). Unlike the time-dummymethod, the hedo-
nic imputation method also satisfies non-revisability (i.e. the indices once computed
are never revised). Index users often find this useful. For example, Eurostat (2016)
advises European countries to use a non-revisable hedonic method when constructing
their official house price indices.

The hedonic imputation method, however, becomes problematic in a number of
settings. vonAuer (2007) raised the issue in the context of constructing price indices for
information technology products. For the case of housing as in this study, the challenge
arises when computing indices at higher frequencies. For example, the hedonic model
typically includes dummies to control for location (e.g. using postcodes) in addition
to other hedonic characteristics of the dwelling. At higher frequencies (e.g. weekly
indices), even in large data sets, there may not be enough price observations in each
period to satisfactorily estimate the hedonic model. As a consequence, computational

1 Quality-adjusted indices are typically computed using either hedonic or repeat-sales methods. The latter
are more common in the USA—the best-known example being the S&P CoreLogic Case-Shiller indices.
In Europe, hedonic methods are more widely used. For example, the national statistical institutes (NSIs)
of most member countries of the European Union now compute an official House Price Index (HPI) at a
quarterly frequency using hedonic methods (Eurostat 2016). One reason for this difference is that repeat-
sales methods tend to work better when the frequency of transactions (i.e. turnover) is high as it is in the
USA. In Europe, turnover is generally much lower. Elsewhere in the world, it is less clear which approach
is preferred. CoreLogic, for example, computes both hedonic and repeat-sales indices for Australian cities.
One advantage of hedonic methods is that they are less prone to sample selection bias issues. For example,
Shimizu et al. (2010) find that repeat-sales indices for Tokyo fail to correctly measure the turning points in
the housing market.
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and statistical problems occur (e.g. no observations for some postcodes, a loss in
degrees of freedom, or an increased variance of estimated parameters).

Geltner and Ling (2006) describe the trade-off between statistical quality per period
and the frequency of index reporting, holding constant the overall quantity and quality
of raw valuation data and index construction methodology. They conclude that the
usefulness of an index for research purposes clearly increases the greater the frequency
of reporting, holding statistical quality (per period) constant (Bokhari and Geltner
2012).

The innovation in this paper is to use a spatio-temporal specification to improve the
effectiveness of the hedonic imputation method at higher frequencies. As noted above,
at higher frequencies, there may not be enough observations per period to reliably
estimate the characteristic shadow prices. In such cases, the reliability of the hedonic
imputation method is improved by using a state-space formulation which yields esti-
mates of the shadow prices that are weighted sums of previous periods’ information.
The spatial component of the model is a locational price effect defined by a geospa-
tial spline surface. This replaces the standard postcode dummies commonly used in
the housing hedonic imputation literature and thus significantly reduces the number
of parameters that need to be estimated. The spatio-temporal specification provides a
unique form of accounting for spatial and temporal variability. This approach builds on
the smoothed polynomial method proposed by von Auer (2007), and the state-space
representation of hedonic functions proposed by von Auer and Trede (2012) when
modelling the laser printer market, and Rambaldi and Fletcher (2014) in the housing
context.

Like von Auer (2007), we use the double imputation hedonic method to construct
the index, which partially controls for omitted variables (when they are reasonably
stable over time as is typically the case in a housing context) (Hill 2013). Double
imputation implies using predicted prices in both the numerator and denominator
when computing each price relative to the price index formula. To see how double
imputation controls for omitted variables, consider an example where a property is
located next to a busy road. This means that its predicted price from the hedonic model
in each period may tend to be too high (as the hedonic model will have difficulty fully
capturing the effect of the road). The upward bias in the predicted priceswill somewhat
offset each other when we take price relatives (i.e. the price change) for this property.

We represent the hedonic pricing function using a spatio-temporal state-space spec-
ification. This model is used to produce matched predictions of the sale price of each
house in the sample across two time periods, providing a model-based measure of
price relatives which enter the computation of a superlative index formula (see Diew-
ert 1976). We are not aware of any prior research in econometrics that incorporates
spatial heterogeneity and variability, temporal dynamics and their interactions in the
form we propose.

The estimation is a two-step approach. A nonparametric estimate of a locational
price effect that varies over individual properties at any given time period is identified
by the first stage. These estimates (and their statistical uncertainty) enter the second
stage, a time-varying parameter model written as state-space. The estimation of the
second stage is by the Kalman filter although the state-space model itself has a number
of non-standard features. Lastly, the predictions from the model needed to provide the
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correct matching as required by the Törnqvist price index formula (a superlative index
based on the ratio of two predictions) are not from standard predictors. In summary,
the model being estimated and its purpose, to provide a model based matching sample
to construct a price index, are not a regular feature of either academic publications or
standard practice by official or commercial providers of house price indices.

There are some similarities here with the literature on constructing monthly or
weekly price indices for consumer goods using scanner data. In particular, Melser
(2018) uses the hedonic imputation method to estimate superlative price indices and
impose non-revisability using a rolling window method. He then endogenizes the
window length and allows each period in the window to be weighted differently. We
impose non-revisability using an approach thatmimics an endogenous rollingwindow.
However, there are important differences aswell.We focus on the construction of house
price indices, not consumer price indices. By representing the hedonicmodel as a state-
space, estimation by the Kalman filter produces predictions that optimally weight
prior periods’ information (expressions for the weights can be found in Koopman and
Harvey 2003).

In addition to evaluating how well each of our hedonic models predicts prices in
each period, we also consider the performance of the Törnqvist indices. To do this,
we use a recently developed criterion proposed by Hill and Scholz (2018) and apply
it to data for Sydney (Australia) over the period 2003–2014. This criterion focuses
on comparing the predicted price relatives of properties with those of actual observed
repeat sales within our sample. The rationale behind the use of this measure is that
predicted price relatives form the basic building blocks of the Törnqvist superlative
price index, and thus, it is the ability of the model to predict price changes over time
rather than the price level of each property that really matters. Based on this criterion,
we find that our preferred index outperforms competing alternatives. Furthermore, we
find that weekly indices are quite sensitive to the choice of method.

The remainder of this article is structured as follows. Section 2 provides an overview
of the hedonic imputation method, the hedonic model, and the methods used to esti-
mate the generalized additive and the spatio-temporal components of the model. The
criterion used to compare the performance of competing hedonic imputed indices is
also considered here. Section 3 presents our data set, the empirical study, and the
results of our analysis. Section 4 concludes by summarizing our main findings.

2 Hedonic imputation and index quality

2.1 Index definition

Hedonic price indices for housing are typically constructed using one of the time-
dummy, hedonic imputation, and average characteristic methods (Diewert 2010; Hill
2013; European Commission, Eurostat, OECD, and World Bank 2013; Diewert and
Shimizu 2015; Silver 2016). All of them have in common that in a hedonic model,
the price of a product is regressed on a vector of characteristics (whose prices are not
independently observed). The hedonic equation is a reduced form that is determined by
the interaction of supply and demand. Hedonic models are used to construct quality-
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adjusted price indices in markets (such as computers) where the products available
differ significantly from one period to the next. Housing is an extreme case in that
every house is different.

Here, we focus on the hedonic imputation method since it is more flexible than
either the time-dummy or average characteristics methods (Silver and Heravi 2007).
The hedonic imputation method uses the predictions from a hedonic model to predict
prices over a matched sample which can then be inserted into a standard price index
formula. Let x ′

i,t be a vector of characteristics associated with property i sold in period
t , and p̂i,t+1(x ′

i,t ) as the predicted price for that property had it sold in period t + 1.
The model used in this study to produce these predictions is presented in the next
section. To obtain a hedonic imputed price index comparing periods t and t + 1,
we use a Laspeyres-type formula that focuses on the properties sold in the earlier
period t , and a Paasche-type formula that focuses on the properties sold in the later
period t + 1. Our price indices are constructed by taking the geometric mean of the
price relatives, giving equal weight to each house.2 Taking a geometric mean of the
Laspeyres and Paasche-type indices, we obtain a Törnqvist-type superlative index that
has the advantage that it treats both periods symmetrically and is consistent with a log
price hedonic model (Hill and Melser 2008).

The indices presented below are all of the double imputation type.3 This means that
both prices in each price relative are predicted. For example, the double imputation
Laspeyres (DIL), Paasche (DIP), and Törnqvist indices (DIT) are defined as follows:

PDI L
t,t+1 =

Nt∏

i=1

⎡

⎣
(
p̂i,t+1(x ′

i,t )

p̂i,t (x ′
i,t )

)1/Nt
⎤

⎦ , (1)

PDI P
t,t+1 =

Nt+1∏

i=1

⎡

⎣
(
p̂i,t+1(x ′

i,t+1)

p̂i,t (x ′
i,t+1)

)1/Nt+1
⎤

⎦ , (2)

PDIT
t,t+1 =

√
PDI P
t,t+1 × PDI L

t,t+1, (3)

where i = 1, . . . , Nt indexes the dwellings sold in period t , and i = 1, . . . , Nt+1
indexes the dwellings sold in period t + 1. The overall price index is then constructed
by chaining together these bilateral comparisons between adjacent periods. As is dis-
cussed in the next section, the predictions used to compute the bilateral indices must
take into account the spatio-temporal nature of our modelling approach.

2 This democraticweighting structure is in our opinionmore appropriate in a housing context thanweighting
each house by its expenditure share. See Hill andMelser (2008), de Haan (2010), Rambaldi and Rao (2011),
and Rambaldi and Fletcher (2014) for a discussion on alternative weighting schemes.
3 Double imputation indices tend to be slightly more robust to omitted variables bias (Hill and Melser
2008). We also calculated single imputation indices where only one price in each price relative is predicted.
The results are virtually indistinguishable. Hence, to save space, we focus here only on double imputation
indices.
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2.2 Themodel

The objective of the hedonic model is to provide predictions of the prices of prop-
erties included in the Törnqvist index calculation. The econometric model combines
elements from the work of Wikle and Cressie (1999) and Rambaldi and Fletcher
(2014). Wikle and Cressie (1999) provide a temporally dynamic and spatially descrip-
tive model and an efficient estimation algorithm designed to deal with a large-scale
spatio-temporal dataset. We adopt a similar modelling approach in that measurement
error, location, property quality components, and a term that captures small-scale spa-
tial variability are incorporated. This term conceptually extends the spatio-temporal
models proposed by Rambaldi and Fletcher (2014), where two parametric alternatives
to model location are used. Following Hill and Scholz (2018), the model incorporates
an estimated locational price effect obtained by estimating a semi-parametric model
using observed sales in each individual period. The periodwise estimation provides
a required measure of spatial variability and identification of the parameters of the
spatio-temporal model.

We denote the observed (log transformed) price by yit = ln priceit . The objective
is to predict y∗

i t , a smoother but unobservable (log) price of property i in period t , for
i in any location and over all time periods t , regardless of when and where the data
are observed.

We write this model as

yit = y∗
i t + εi t ; εi t ∼ N (0, σ 2

ε ). (4)

The random process εi t is independent across location or time and captures overall
measurement error. Thus, E(εtε

′
t ) = σ 2

ε INt , where Nt properties are transacted in
period t .

At each time period t = 1, 2, . . . , T the multivariate process y∗
t is the sum of

two components, one explained by temporal and spatial dynamics, x†t , and a spatially
descriptive random component, v|t (with the notation “|t” used to refer to random
quantities that vary within each time period t) ,

y∗
i t = x†i t + vi |t ; v|t ∼ N (0, V|t ) (5)

where v|t is a random error that does not have a temporally dynamic structure but
might have some spatial structure, and thus, the covariance V|t might not be diagonal.
It is assumed that E(vi |tε j t ) = 0 and −∞ ≤ t ≤ ∞.

x†t is assumed to evolve according to three components, trend, property quality, and
location,

x†i t = μt +
K∑

k=1

βk,t zk,i t + γt gi |t (6)

where μt is a trend component common to all i in period t and captures overall
macroeconomic conditions that affect all locations in the market under study; zk,i t is
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the kth hedonic characteristic froma set of K providing information on the type/quality
of the property (e.g. number of bedrooms, bathrooms, size of the lot).

Note that the vector zk,t contains the kth hedonic characteristic for the set of prop-
erties sold in period t , which is different to the set of properties sold in t − s where
s �= 0, and thus, these are not trending variables.

gi |t := gi |t (zlong,i , zlat,i ) is ameasure of the locational price effect of property i on a
continuous surface defined by the Nt properties sold in period t . Thus, it is temporally
uncorrelated as the set sold in period t is different from that sold in t − 1 or t + 1.4

βk,t are time-varying parameters associated with the hedonic characteristics and
are to be estimated.

γt is a state parameter that carries the temporal information associatedwith location.
At each time period, it interacts with the spline, gi |t , to shift its position due to temporal
information. The law of motion for this state parameter is presented below.

E(zkvt ) = 0, E(zkεt ) = 0 for all k = 1, . . . , K , E(gi |tv j |t ) = 0, E(gi |tε j t ) = 0,
for all i, j, t .

Putting together Eqs. (4), (5), and (6) gives the model to be estimated from where
we then obtain the required predictions to construct the index [using the expressions
in (1)–(3)],

yit = μt +
K∑

k=1

βk,t zk,i t + γt gi |t + vi |t + εi t (7)

The identification strategy and estimation of this model are presented in the next
section.

2.2.1 Identification and estimation

Inspecting Eq. (7), it is clear that an identifying assumption is required to be able to
estimate γt and compute covariances V|t and Ht = σ 2

ε INt . We estimate a locational
price effect, denoted by ĝi |t , and the covariance V|t as a first step of the estimation using
an auxiliary semi-parametric model of the form in (8) estimated at each time period
t using only transacted properties from that period (details are provided in Appendix
Sect. A.1).

yi |t = θ0|t + z′i |tθ
†
|t + gi |t + vi |t , (8)

where θ
†
|t = {θ1|t , . . . , θK |t }′ and gi |t is centered around the (conditional) expectation

of yi |t .5

4 The only overlap is that of properties that repeat sale. The hedonic imputation method treats these as
independent sales. We use this feature of the approach to compute an index performance indicator as
explained in Sect. 2.5.
5 The shape restriction on the spline surface g is a standard identifiability constraint for generalized additive
models.

123



424 R. J. Hill et al.

The estimation of Eq. (8) gives predictions of (log) prices, ŷi |t , and of the location
effect, ĝi |t , for each property i = 1, . . . , Nt . The corresponding residuals, v̂i |t , are
used to compute V̂|t .

With the above definitions, themodel in Eq. (7) can bewritten in familiar state-space
representation,

yt = Xtαt + v|t + εt ; εt ∼ N (0, Ht ) (9)

αt = Dαt−1 + ηt ; ηt ∼ N (0, Q) (10)

where Xt is Nt ×(K +2) and with the i th row being x ′
i t = {1, z1,i t , . . . , zK ,i t , ĝi |t }, yt

is the vector of log transformed observed prices of properties sold at t .
Ht = σ 2

ε INt

αt = {μt , β1t , . . . , βK ,t , γt }′

D =
⎡

⎢⎣
1 0 0

0 IK 0

0 0 ρ

⎤

⎥⎦; 0 ≤ ρ ≤ 1; If ρ < 1, the estimate of γt is mean reverting. If

ρ = 1, γt evolves as a random walk as do the other state parameters in αt .

Q =
⎡

⎢⎣
σ 2

μ 0 0

0 σ 2
β IK 0

0 0 σ 2
γ

⎤

⎥⎦

The estimate ĝi |t enters the spatio-temporal model as a generated regressor, and the
parameter γt , in (9) and (10), provides the flexibility for the vector of location spline
estimates of properties sold in period t , i = 1, . . . , Nt , to be shifted by temporal
market information up to time t . The additional uncertainty induced by replacing gi |t
by an estimate is captured by v|t in (9).

The combination of spatial and temporal information leads to two unconventional
features of this model, compared to one in a standard setting (e.g. hedonic func-
tion with postcode dummies), with consequences for the Kalman filter algorithm as
well as the price prediction to be used for the computation of the Törnqvist price
index.

The estimation of the state vector via the Kalman filter in this model [Eq. (11)]
differs from that in the standard case. First, as the model has a composite error term,
the Kalman gain, Gt , is a function of the sum of the two covariances (Ht + V|t ) under
the assumptions already stated [see (12)]. Second, the locational price effect must
be consistent with the required prediction error (expression in curly brackets). The
prediction error is the difference between the observed vector of log prices in the
current time period t , yt , and its conditional prediction. The conditional prediction is
computed from the conditional state estimate,αt |t−1, and hedonic characteristics of the
sold properties at t . For this model, the form of the matrix involved in this conditional
prediction is X1

t = {1, z1,t , . . . , zK ,t , ĝ|t(t−1)}.6 That is, the hedonic characteristics in
the z vectors are for properties sold in time t , and the prediction of the locational price

6 1 is an Nt × 1 vector of ones.
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effect is of the properties sold in time t computed using the model fitted at time t − 1.
To reflect this, we used the notation ĝ|t(t−1), which should be read as the estimated
locational price effect of properties sold in time t as predicted by model (8) fitted in
t − 1.

αt |t = αt |t−1 + Gt {yt − X1
t αt |t−1} (11)

The mean square error matrix given information up to time period t is Pt |t = Pt |t−1 −
Gt Xt Pt |t−1, and the Kalman gain is given by,

Gt = Pt |t−1X
′
t {Ht + V|t + Xt Pt |t−1X

′
t }−1 (12)

The updating equations are of the standard form, αt |t−1 = Dαt−1|t−1 and Pt |t−1 =
DPt−1|t−1D′ + Q.

Estimates of the state (11), α̂t |t , are obtained by replacing Ht , Q, D, and V|t , by
suitable estimates.

The model given by the state-space representation in Eqs. (9)–(10) with associated
estimates from (11) and (12) will be referred to as SS+GAM.

2.3 Constructing the predictions

The computation of the index (3) depends crucially on the prediction of log price.
Given the spatio-temporal features of the model, the prediction of the log price for
property i is given by the natural predictor plus a correction term as follows,7

ŷi,t |t p = x ′
i,tαt |t + c′

vt,i

−1
|t et (13)

where ŷi,t |t p is the predicted log price for property i andαt |t is the state vector at period
t conditional on information up to and including time period t ; 
|t = cov{yt , yt };
c′
vt,i = E(vi |t , v|t ) is the row of V|t corresponding to property i and has elements
cvt,i j ≡ E{vi |tv j |t } = {cv(i, j1), . . . , cv(i, jNt )}′ which could be equal to zero for
i �= j ; et = yt − E(yt ).

To show this result, in addition to assumptions already stated, we assume vi |t and yt
have a joint multivariate normal distribution. Taking the characteristics and location
of properties as given, the predictor is derived as follows,

ŷi,t |t p = E{y∗
i t |yt , yt−1, . . . , y1}

= E{x ′
i,tαt + vi |t |yt , yt−1, . . . , y1}

= x ′
i,t E{αt |yt , yt−1, . . . , y1} + E{vi |t |yt , yt−1, . . . , y1}

= x ′
i,tαt |t + c′

vt,i

−1
|t et

The last term is of this form since E{vi |t y j t } = cvt,i j .

7 The term is similar to that derived by Goldberger (1962) for the first-order autoregressive model.
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In this study, we implement this prediction by defining v̂i |t = yi |t − ŷi |t , which
are the residuals from estimating (8) and eit = yit − x ′

i,t α̂t |t , which are the residuals
from the estimated state-space model, where x ′

i,t α̂t |t is the state-space prediction of
the (log) price of property i at time t .

For the index calculation, predictions of the prices are needed. Replacing by suit-
able estimates on the right-hand side of the expressions and reverting the logarithmic
transformation, the prediction of the price of property i sold in period t = 1, . . . , T
is defined as

p̂t,i (z
′
i,t , ĝi |t(t)) = exp(x ′

i,t α̂t |t + ĉ′
vt,i 
̂

−1
|t et ), (14)

and the prediction of the price of property i sold in period t for period t − 1 is given
by

p̂t−1,i (z
′
i,t , ĝi |t(t−1)) = exp(x1i,t

′α̂t−1|t−1 + ĉ′
v(t−1),i 
̂

−1
|t et(t−1)) (15)

The crucial point is that the constructed location effect and parameters need to be
matched with the correct period for which the prediction is being made. In this case,
ĝi |t(t−1) enters in x1i,t

′
, c′

v(t−1),i and together with α̂t−1|t−1 in et(t−1). Estimates of the
location spline for j = −1, 0, 1, and ĝ|t(t+ j), respectively, obtained from (8), are used
to implement the predictions to construct the index.8

2.4 Specification and robustness

2.4.1 Postcodes versus spline surfaces

We use two alternative models from the literature to compare to the model presented
in Sect. 2.2, SS+GAM. The first is the generalized additive hedonic model (proposed
by Hill and Scholz 2018). The semi-parametric model (8) is estimated separately for
each week.9 The model (and corresponding index) will be referred to as GAM.

The second is a model where location is controlled by postcode dummies. As
mentioned in Sect. 1, this is a common specification used in the price index literature
to control for location. The model is given by

yt = μt + Ztβt + Dtπt + εt (16)

where μt is the intercept, Zt is a matrix of hedonic characteristics, Dt is a matrix
of postcode dummies containing the location information, and πt is the vector of
corresponding shadow prices for the postcodes.

8 The notation used in the subscript “|t(t+ j)” was explained in the paragraph above Eq. (11).
9 A period-by-period estimation of the model is standard practice in the hedonic imputation literature.
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Computing hedonic imputation price indices using period-by-period estimation
with (16) is not feasible in a weekly context. It happens that for some postcodes,
we have no observations in some weeks causing both statistical and computational
problems, especially in the hedonic prediction step. However, it can be estimated as a
regression with time-varying parameters by setting it up as a state-spacemodel (details
provided in Appendix A.3). We will refer to this model (and corresponding index) by
SS+PC.

One interesting test to compare alternative model specifications is the non-nested
test proposed byGoodman andThibodeau (2003) to study submarkets. TheGoodman–
Thibodeau test derives from the J test of Davidson and MacKinnon (1981). This test
is for linear models with fixed parameters estimated by least squares. However, in our
setting, the models are semi-parametric (GAM), including a generated regressor (SS
+ GAM), and the parameters are time-varying (all three). These characteristics of our
modelling imply the J test is not directly applicable, as its distribution in these settings
is unknown.

For this reason, we follow a different approach here. We compare our three speci-
fications (GAM, SS + GAM, SS + PC) by computing root-mean-square errors of log
predictions (RMSPE) at different important geographical locations in the city and for
the whole city, as follows:

RMSPE =
√√√√ 1

NR

NR∑

i=1

(ln p̂i − ln pi )2, (17)

where NR denotes the number of price observations within a particular region. We
choose a given point (the entrance of Sydney harbour or Bondi beach in our empir-
ical example) and find all observations in the sample that are located within a given
radius distance from that point. These comparisons allow us to assess both the global
fit of each model and the local fit in the vicinity of important boundaries such as
beaches.

2.5 Measuring the quality of the index

The constructed indices should be useful instruments for policymakers and market
participants. A criterion is needed therefore to evaluate the quality of the proposed
indices. An important distinction can be made here between the fit of the hedonic
model and the performance of the resulting price index. Ultimately, it is the latter that
matters more. Hence, performance criteria should focus more on the Törnqvist index
defined in (3), rather than the within-period fit of the hedonic model itself. Guo et al.
(2014) and Jiang et al. (2015) take a similar view. Guo et al. (2014) suggest criteria
based on the autocorrelation and volatility of the index, and Jiang et al. (2015) create
a testing sample which is used for out-of-sample evaluation of the model’s fit. We
follow a more direct approach here that makes use of the underlying structure of our
hedonic imputation price indices.
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The Törnqvist index is the geometric mean of the Laspeyres and Paasche-type
price index formulas (1) and (2). From inspection of (1) and (2), it can be seen
that the building blocks of the Laspeyres-type index are the predicted price relatives
p̂i,t+1(x ′

i,t )/ p̂i,t (x
′
i,t ), while the building blocks of the Paasche-type index are the

predicted price relatives p̂i,t+1(x ′
i,t+1)/ p̂i,t (x

′
i,t+1). Hence, the performance of the

index depends on the quality of these predicted price relatives. Following Hill and
Scholz (2018), the key insight is that repeat-sales price relatives can be used as a
benchmark for evaluating the predicted price relatives.10 To ensure a large enough
sample size, repeat-sales price relatives over any time horizon in our data set are
compared to their predicted counterparts.

More formally, suppose property i sells in both periods t and t+k. For this property,
therefore,we have an observed repeat-sales price relative: pi,t+k/pi,t . The correspond-
ing predicted price relative is p̂i,t+k/ p̂i,t . The subsample of properties that have repeat
sales is indexed by i = 1, . . . , NRS . We can now define the ratio of predicted to actual
price relative for house i as follows:

di = p̂i,t+k

p̂i,t

/
pi,t+k

pi,t
. (18)

Our quality measure is given by the mean squared error (MSE) of the log predicted
price relatives on the repeat-sales sample of each hedonic method:

MSE(RS) =
(

1

NRS

) NRS∑

i=1

[
ln

(
p̂i,t+k

p̂i,t

)
− ln

(
pi,t+k

pi,t

)]2

=
(

1

NRS

) NRS∑

i=1

[ln(di )]2, (19)

where the summation in (19) takes place across the whole repeat-sales sample.11

We prefer whichever hedonic imputation model generates the smallest MSE, on the
grounds that the resulting Törnqvist indices will be constructed from the most reliable
predicted price relatives.

10 Focusing on repeat sales potentially creates a sample selection problem. Starter homes typically transact
more frequently than other properties, which could cause a lemons bias in a repeat-sales price index (see
Clapp and Giaccotto 1992; Gatzlaff and Haurin 1997; and Shimizu et al. 2010). However, in our context,
lemons bias is not so much of an issue since we are comparing matched actual and predicted price changes
on the same properties. In other words, any lemons bias will apply equally to both the actual and predicted
samples being compared.
11 The reason for taking logs of the price relatives in (19) is so that over and under predictions of the price
relatives are treated symmetrically. Ideally the predicted and actual price relatives should be the same, and
hence di = 1. Suppose instead that di = 1/d j . In this case, the predictions for properties i and j should be

viewed as equally inaccurate. Taking logs before squaring ensures that [ln(di )]2 = [ln(d j )]2.
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Table 1 Summary of characteristics

PRICE AREA LAT LONG FREQ. BED BATH

Minimum 56,500 100.0 −34.20 150.6 1: 1348 190,395

1st Quartile 420,000 461.0 −33.93 150.9 2: 38,578 174,161

Median 610,000 587.0 −33.84 151.0 3: 200,428 57,673

Mean 784,041 626.1 −33.85 151.0 4: 147,794 8835

3rd Quartile 900,000 720.0 −33.76 151.2 5: 38734 1746

Maximum 3,200,000 4998.0 −33.40 151.3 6: 6320 392

Minimum allowed 50,000 100.0 −34.20 150.60

Maximum allowed 4,000,000 5000.0 −33.40 151.35

Price is measured in Australian dollars. Area is land area measured in square meters. The last two rows show
the thresholds that were applied to delete outliers. The last two columns show the frequency of observations
under each size bedrooms and bathrooms

3 Empirical application

3.1 The data set

We use a data set obtained from Australian Property Monitors that consists of prices
and characteristics of houses sold in Sydney (Australia) for the years 2001–2014.12

For each house, we have the following characteristics: the actual sale price, time of
sale, postcode, property type (i.e. detached or semi), number of bedrooms, number
of bathrooms, land area, exact address, longitude, and latitude. (We exclude all town-
houses from our analysis since the corresponding land area is for the whole strata and
not for the individual townhouse itself). Some summary statistics are provided in Table
1, and a plot of the number of sales per week is shown in Fig. 1. As can be seen from
Fig. 1, the number of transactions falls very significantly each year during the sum-
mer holiday period from mid-December to late January. Any method for computing
weekly indices needs to be able to handle such seasonal fluctuations in transactions
volume.

For a robust analysis, it was necessary to remove some outliers. This is because
there is a concentration of data entry errors in the tails, caused, for example, by the
inclusion of erroneous extra zeroes. These extreme observations can distort the results.
The exclusion criteria we applied are also shown in Table 1. Complete data on all our
hedonic characteristics are available for 433,202 observations. The quality of the data
improves over time. In particular, missing characteristics are quite common in the
first 2 years (i.e. 2001 and 2002). Thus, we present the hedonic indices starting in
2003. Nevertheless, we use the full sample period to run the Kalman filter algorithm

12 Indices are now increasingly also being computed using listing prices, which can often be scraped
online. Listing price indices will tend to differ slightly from transaction-based indices (Haurin et al. 2010).
Our spatio-temporal hedonic approach can equally well be applied to listing price data. However, our mean
square error quality measure in (19) can only be applied to listing data when it is possible to identify repeat
listings of the same property.
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Fig. 1 Number of transactions per Week, 2001–2014

but compute the log likelihood function with all weeks in the 2003–2014 period (see
Appendix Sects. A.2 and A.3).

3.2 Empirical model specification and parameter estimates

In all three models (GAM, SS+GAM, SS+PC), the dependent variable is the natural
logarithmic transformation of the observed contract sale price. The hedonic charac-
teristics included in all models are: Zt = (ln Land, DBED3, DBED4, DBED5,
DBAT H2, DBAT H3) where

Land: ln Land is the logarithmic transformation of the land area in sq. mts.

Bedrooms: DBED3 =1 if the number of bedrooms is equal to three; DBED4 =1 if the
number of bedrooms equals to four; DBED5=1 if the number of bedrooms equals five
or more. The models’ intercepts capture houses with one or two bedrooms.

Bathrooms: DBATH2=1 if the number of bathrooms equals to two; DBATH3=1 if the
number of bathrooms equals three or more. The models’ intercept capture houses with
one bathroom.

We compare the parameter estimates from the three models in Fig. 2 and Table 2.
The GAM estimates are much more volatile than their SS+GAM and SS+PC coun-

terparts as expected. Estimating via a state-space representation provides a linking of
the parameters overtime and reduces greatly the effect of the change in the composition
of properties across periods. As transacted properties are not random samples of the
market at each period, the effect of sales composition together with small samples in
some periods can lead to this high volatility in the shadow price parameter estimates
which should not be there in theory. We note that in a number of periods and across
all the θ̂

†
k|t , there are estimates that fall outside the 95% bound of α̂k,t |t (not shown but

available from the authors). These can have potentially important implications for the
index constructed using predictions from this model (presented in the next section).
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Fig. 2 Comparison of intercept trends (GAM and SS+GAM)

One additional parameter of the spatio-temporal representation is the process γt ,
which we modelled as possibly mean reverting unlike the shadow price parameters of
hedonic characteristics. This process provides the flexibility for the vector of location
spline estimates of properties sold in period t , i = 1, . . . , Nt , to be shifted by temporal
market information up to time t , and is mean reverting if the estimate of |ρ| < 1 [see
Eq. (10)]. We found the estimate of ρ to be 0.4. Summary statistics of the estimates
γ̂t are shown in the last row of Table 2.

The RMSPE, as defined in (17), is shown in Table 3. The focus here is on assessing
the extent to which our models capture locational effects. Each RMSPE is computed
using the data from all time periods. The differences relate to geographical scope.
The geographical scopes considered are: the whole city, within a 5km radius of the
entrance of Sydney harbour, within a 2.5km radius of Bondi beach, and within a
30km radius of the Blue Mountains (while still being within Sydney). In all cases,
SS+PC performs worst. Over the whole city, SS+GAM performs best. SS+GAM also
performs best in the vicinity of Sydney harbor and in the vicinity of Bondi beach.
GAM performs best in the vicinity of the Blue Mountains. So while over the whole
city, SS+GAM generates the best price predictions, it does not dominate GAM in all
locations.
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Table 2 Comparison of time-varying parameter estimates across models

Min Max Mean Std_dev

Intercept_GAM 10.1872 13.1015 11.5346 0.4024

IntercTrend_SS+GAM 10.6850 12.2980 11.4770 0.3327

IntercTrend_SS+PCa 11.0230 12.8330 12.2250 0.3638

DBED3_GAM −0.1238 0.5769 0.1040 0.0452

DBED3_SS+GAM 0.0070 0.1797 0.1105 0.0259

DBED3_SS+PC −0.1057 0.1237 0.1023 0.0129

DBED4_GAM 0.0209 0.6095 0.2042 0.0501

DBED4_SS+GAM 0.1305 0.3058 0.2124 0.0301

DBED4_SS+PC 0.1013 0.2280 0.2014 0.0123

DBED5_GAM −0.3828 0.7486 0.2741 0.0847

DBED5_SS+GAM 0.0062 0.4286 0.2806 0.0467

DBED5_SS+PC 0.0795 0.3053 0.2707 0.0178

DBATH2_GAM 0.0085 0.2854 0.1166 0.0299

DBATH2_SS+GAM 0.0063 0.1828 0.1098 0.0235

DBATH2_SS+PC 0.0727 0.1721 0.1063 0.0182

DBATH3_GAM 0.0911 0.8150 0.3065 0.0666

DBATH3_SS+GAM 0.1372 0.4424 0.2908 0.0488

DBATH3_SS+PC 0.1853 0.3729 0.2885 0.0419

lnLand_GAM 0.0012 0.4793 0.2469 0.0572

lnLand_SS+GAM 0.1462 0.3730 0.2558 0.0430

lnLand_SS+PC 0.1114 0.3143 0.2461 0.0300

γ̂t 0.4242 0.6150 0.5404 0.0083

a This trend is not comparable to that of the GAM or SS+GAM models as it captures the price movement
of the market for houses with one or two bedrooms and one bathroom for the first postcode in the sample.
The intercept parameter in the GAM and trend in SS+GAM capture the price movement of the market for
houses with one or two bedrooms and one bathroom for the whole city

3.3 Property price indices

We construct hedonic price indices from the three models (GAM, SS+GAM, SS+PC),
and in addition a repeat-sales index and a quality unadjusted index.

There are 80,060 repeat sales in our dataset. However, we exclude repeat sales
where the house was renovated between sales. We attempt to identify such houses
in two ways. First, we exclude repeat sales where one or more of the characteris-
tics have changed between sales (for example, a bathroom has been added). Second,
we exclude repeat sales that occur within 6 months on the grounds that this sug-
gests that the first purchase was by a professional renovator.13 Finally, for houses
that sold more than twice during our sample period (2001–2011), we only include
the two chronologically closest repeat sales (as long as these are more than six

13 Exclusion of repeat sales within 6 months is standard practice in repeat-sales price indices such as the
Standard and Poor’s/Case-Shiller (SPCS) Home Price Index.
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Table 3 Model prediction and index quality comparison

Radius

Model RMSPE Index MSE(RS)

Sydney Harbour Bondi beach Blue Mountains Weekly Monthly
5 Km 2.5 Km 30 Km

GAM 0.1857 0.3136 0.3008 0.1260 0.0233 0.0245

SS+GAM 0.1775 0.3067 0.2954 0.1315 0.0102 0.0112

SS+PC 0.2088 0.3518 0.3239 0.1540 0.0246 0.0264

Sample 433202 13222 6950 19089

The mean square prediction error of prices (RMSPE) is uniformly higher for the model with postcodes
across all geographical alternatives. Similarly, the mean square error of the prediction of price relatives
(MSE(RS)) is higher at both the SS+PC at both weekly and monthly frequency. The RMSPE is lowest for
the SS+GAM model except in one case (the Blue Mountains) when GAM is the lowest. The SS+GAM is
uniformly the lowest in MSE(RS) for both weekly and monthly frequencies

months apart). This ensures that all repeat-sales houses exert equal influence on our
results.

We compute all indices for the sample (2003–2014) although the state-space mod-
els are estimated for the full sample as indicated in the previous section. The cleaned
repeat-sales sample for this period has 61024 observations. Figure 3 shows the three
hedonic indices (chained), the repeat-sales index calculated using the standard for-
mula from Bailey et al. (1963), and the quality unadjusted price index computed from
the median of the prices of observed sales in each week. The median index is both
a quality and location unadjusted index. It is extremely volatile, thus demonstrat-
ing the need for quality adjustment to generate an economically meaningful index.
All indices except for SS+GAM lie below the median price index for most of the
sample period. The GAM index appears to suffer from some chain drift. Prior to
2011, the index is closer to the median and the SS+GAM; however, it drifts down
to the SS+PC and repeat-sales indices after 2011. Index drift may occur with the
conventional hedonic imputation method when the market is thin as small samples
and sales’ composition in thin markets can affect the parameter estimates and lead
to large changes in the price relatives. This is clearly the case in this instance as is
discussed in Sect. 3.2. Chaining can then compound this drift. Rambaldi and Fletcher
(2014) find chain drift occurs in monthly indices even when using a two-month
rolling window to estimate the parameters of the model. The SS+PC and repeat-
sales indices are uniformly below the median and virtually indistinguishable from
each other.

The differences between the hedonic indices in Fig. 3 are larger than one might
expect to observe in hedonic indices computed at annual or quarterly frequency (Hill
and Scholz 2018). To illustrate this point, we have estimated the three models and
computed all the indices at a quarterly frequency. Figure 4 shows that at a quarterly
frequency, our hedonic indices approximate each other quite closely. Hence, it can
be seen that the choice of hedonic method is of greater importance when indices are
computed at higher frequencies, such as weekly. We explore this point further in the
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Fig. 3 Weekly property price indices from 2003 to 2014. Note GAM is based on periodwise estimation of
model (8); SS+PC is the state-space model (16) with postcode dummies; SS+GAM is the spatio-temporal
model; Repeat_Sales index is calculated using the Bailey et al. (1963) formula; Median is the usual median
index computed at a weekly frequency. Base: Week starting 30/12/2002 = 1

next section by comparing the indices quality at the weekly and monthly frequencies
using the MSE(RS) measure.

3.4 Comparing the quality of the indices

The performance of our three indices according to the mean square error of the pre-
dicted price relatives, MSE(RS), on the repeat-sales sample is shown in Table 3. We
compute MSE(RS)’s based on weekly and monthly indices. In both cases, the ranking
of methods is the same. The SS+GAM model performs best followed by GAM, with
SS+PC performing worst.

Furthermore, the superior performance of SS+GAM is highly statistically signif-
icant. To show this, we test whether the MSE(RS)s are significantly different across
different hedonic models. It is clear from Eq. (19) that these measures are aver-
ages. Thus, the null hypothesis is that the true difference between two means is zero
(H0 : MSE(RS)M1 −MSE(RS)M2 = 0), where M1 and M2 denote two of the hedo-
nic models (e.g. GAM and SS+GAM). To decide on a suitable statistic to conduct
the test, we note that there is no dependence structure in the computed MSE(RS)
values as we do not include repeat sales that are within 6 months of each other. Each
pair in the sample is for a unique dwelling and for each pair the length between
sales varies. Scatter plots of the [ln(di )]2 confirm there are no patterns.14 Thus, based

14 These scatter plots are available from the authors upon request.
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Fig. 4 Quarterly property price indices from 2003 to 2014. Note: GAM is based on periodwise estimation
of model (8); SS+PC is the state-space model (16) with postcode dummies; SS+GAM is the spatio-temporal
model; Repeat_Sales index is calculated using the Bailey et al. (1963) formula; Median is the usual median
index computed at a quarterly frequency. Base: First Quarter 2003 = 1

Table 4 p values for H0: MSE(RS)M1 − MSE(RS)M2=0

Weekly Monthly

SS+PC vs. SS+GAM 0.0000 0.0000

SS+PC vs. GAM 0.0483 0.0014

GAM vs. SS+GAM 0.0000 0.0000

These p values imply that SS+GAM is highly significantly different from both SS+PC and GAM at both
the weekly and monthly frequencies

on the central limit theorem (see, for example, pp. 490–491 in Devore and Berk
2012),

MSE(RS)M1 − MSE(RS)M2 ∼ N
(
0,

s21 + s22
NRS

)
,

where s j ( j = 1, 2) is the sample standard deviation of the Dj for hedonic model j .
The computed two-sided p values of this exercise are presented in Table 4.

These results therefore show the importance of correctly modelling space and time
in a unified framework which can account for all sources of error. The SS+GAM
method generates the most accurate matched sample price relatives. The Törnqvist
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price index as defined in (3) is computed by taking a geometric mean of these price
relatives.

4 Conclusion

This article has focused on the construction of weekly house price indices using the
hedonic imputationmethod. The hedonic imputationmethod provides a flexibleway of
constructing quality-adjusted house price indices using a matching sample approach.
We develop a state-space model that controls for location with a geospatial spline
surface. Estimation of the model requires a modified form of the Kalman filter. The
geospatial spline surface replaces postcode dummies which are more commonly used
to control for location in the hedonic price index literature. The use of the spline
achieves greater precision and a large reduction in the dimensionality of the spatio-
temporal model. Predicted prices are obtained using an adjusted form of the natural
predictor. These predicted prices provide a matched sample, thus allowing the price
index to be computed using the superlative Törnqvist price index formula. Using a data
set for Sydney, Australia, weekly hedonic indices are shown to be far more sensitive
to the method of construction than indices computed at lower frequencies such as
quarterly. Hence, it is at these higher frequencies that the choice of hedonic method
matters most. It is then shown, based on a criterion that compares the predicted price
relatives with actually observed repeat-sales price relatives, that our preferred method
for computing weekly indices outperforms alternative hedonic imputation methods.
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Appendix

A Estimation and algorithms

A.1 Step I: Location spline and spatial uncertainty

This step provides estimates of g|t (.) and V|t using spatial only information given by
the sample of Nt transacted houses at each period. A semi-parametric hedonic model
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with the specification in (8) is implemented as a generalized additive model (GAM)—
a flexible model class that generalizes linear models with a linear predictor combined
with a sum of smooth functions of covariates. The estimates of the spline surface, ĝ|t ,
enter the spatio-temporal model’s Xt matrix; while the vector of Nt predictions from
this model, ŷ|t , provide residuals, v̂i |t = yit − ŷi |t , from which a sample estimate of
V|t , and thus c′

vt,i , makes operational the correction term in (14) and (15).

A.1.1 Generalized additive model: GAM implementation

The semi-parametric hedonic model in (8) is an example of a generalized additive
model (GAM). Here, we follow Hill and Scholz (2018) when estimating the GAM
(see Appendix A.3 of Hill and Scholz 2018, for further details). The GAM is estimated
using the mgcv package (see Wood 2006) of the statistical software R 3.4.3 (R Core
Team 2017). The values of two parameters k and n (where k < n) must be chosen by
the researcher, where k is the rank approximation to the smoothing spline, and n is the
number of observations over which the spline is fitted.

It is important that k is not too small; otherwise, it would force oversmoothing. On
the other hand, using a too large value enormously increases the computational burden
without necessarily improving the fit. Typically the number of covariate values used
will be substantially smaller than the number of data points, and substantially larger
than the basis dimension, k. For our house price data, we set k = 600 and a subsample
of size n = 2500 when possible. For weeks when the number of observations is less
than 2500, we use the available sample and choose k to be n − 6 (six is the number of
parameters in our model). This approximation is required to reduce the computational
burden to a manageable level. (The default choice of n in the bam-function is 2000
observations).

Hill and Scholz (2018) estimated a model at annual frequency and conducted an
experiment to test the approximation. They found a strong decline in the mean square
error up to k = 600 and a slight increase afterward. They also found an almost linear
increase in computational time indicating that, for example, the use of k = 900 would
give a similarmean square error as k = 600, but the computational cost would increase
by 50 percent.

It is expected that for weeks when the sample is smaller than 1000 observations,
the spline surface will be adjusted more by the γt parameter in step II.

A.2 Step II: Estimation of the state-spacemodel for prediction

This step produces estimates of the state vector, αt (and its mean squared prediction
matrix, Pt |t ) via the algorithm outlined in Sect. 2.2.1 [see Eqs. (11) and (12)]. The
algorithm requires estimates of D, Ht , Q. These can be obtained by maximum like-
lihood estimation. Given yt , Zt = {z1t , . . . , zK t }, ĝ|t (·) and V̂|t , the Kalman filter
algorithm is run to evaluate the log likelihood, ln L , in predictive form (details are
provided next).

The model is given in Eqs. (9) and (10).
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The estimator’s algorithm is a function of a prediction error, νt |t−1 = yt −X1
t α̂t |t−1,

and the Kalman Gain (12), which is a function of Ft = E(νt |t−1ν
′
t |t−1) = Ht + V̂|t +

Xt Pt |t−1X ′
t .

Both νt |t−1 and Ft are obtained by running the Kalman filter,

αt |t = αt |t−1 + Gt {yt − X1
t αt |t−1}

Pt |t = Pt |t−1 − Gt Xt Pt |t−1

Gt = Pt |t−1X
′
t {Ht + V̂|t + Xt Pt |t−1X

′
t }−1

αt |t−1 = Dαt−1|t−1, and

Pt |t−1 = DPt−1|t−1D
′ + Q.

The log likelihood in prediction form is given by,

ln L(ρ, σ 2
ε , σ 2

μ, σ 2
β , σ 2

γ ; yt ,Yt−1, Zt , ĝt , ĝt(t−1), V|t )

= −NT

2
ln(2π) − 1

2

T∑

t=d

ln|Ft | − 1

2

T∑

t=d

ν′
t |t−1F

−1
t νt |t−1

where Yt−1 = yt−1, yt−2 . . . . We use a standard Newton–Raphson algorithm to esti-
mate σ̂ 2

ε , σ̂
2
μ, σ̂

2
β and σ̂ 2

γ within a grid search forρ in the range (0.1 to 1); N = ∑T
t=d Nt ;

d is sufficiently large to avoid the log likelihood being dominated by the initial con-
dition, α0 ∼ N (a0, P0). In the empirical implementation, we have 731 weeks and
set d = 105 (with this choice, data from 2003 onward are used to estimate these
hyperparameters). For details on estimation of state-space models, see Harvey (1989)
or Durbin and Koopman (2012).

A.3 SS+PC state-space

The system is given in Eq. (16) with Ht = σ 2
ε INt and a set of transition equations

αt = αt−1 + ηt

where αt = {μt , β1t , . . . , βK ,t , π2, . . . , πNpc }′ and Npc number of postcodes in the
dataset

ηt has variance–covariance

Q =
⎡

⎣
σ 2

μ 0 0
0 σ 2

β IK 0
0 0 σ 2

π INpc

⎤

⎦
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The Kalman filter in this case is of a standard form,

αt |t = αt |t−1 + Gt {yt − Xtαt |t−1}
Pt |t = Pt |t−1 − Gt Xt Pt |t−1

Gt = Pt |t−1X
′
t {Ht + Xt Pt |t−1X

′
t }−1

αt |t−1 = αt−1|t−1, and

Pt |t−1 = Pt−1|t−1 + Q.

The log likelihood in prediction form is given by,

ln L(σ 2
ε , σ 2

μ, σ 2
β , σ 2

π ; yt ,Yt−1, Zt )

= −NT

2
ln(2π) − 1

2

T∑

t=d

ln|Ft | − 1

2

T∑

t=d

ν′
t |t−1F

−1
t νt |t−1 (20)

We use a standard Newton-Raphson algorithm to estimate σ̂ 2
ε , σ̂ 2

μ, σ̂ 2
β and σ̂ 2

π ;

N = ∑T
t=d Nt ; d is sufficiently large to avoid the log likelihood being dominated by

the initial condition, α0 ∼ N (a0, P0). In the empirical implementation, we have 731
weeks and set d = 105 (with this choice, data from 2003 onward is used to estimate
these hyperparameters). For details on estimation of state-space models, see Harvey
(1989) or Durbin and Koopman (2012).

The estimation of the model and computation of indices were coded by the authors.

B Model specification and functional form

The use of dummy variables across sizes of bedrooms and bathrooms provides flexi-
bility and is much more informative on the size of the dwelling than using the number
of bedrooms and number of bathrooms as single metric variables.

Nevertheless, we have tested this alternative specification using data for a year in
fixed parameters postcodes dummymodel and GAMmodel using relevant Wald tests.
We strongly reject the specification using the bathroom and bedrooms in favour of
the dummy specification. We also tested the functional form of land between a log
linear and a log–log form and found support for the second, which is also the common
choice in the literature.15

The choice of specifying location of the dwellings in themodel (postcodes or spline)
is dealt with by the computation of RSMPE and MSE(RS) which uniformly reject the
postcode alternative (see Tables 3 and 4 in the body of the paper).
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