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Abstract
Hong and Kao (2004) proposed a class of general applicable wavelet-based tests for
serial correlation of unknown form in the residuals from a panel regressionmodel. The
tests can be applied to both static and dynamic panel models. Their test, however, is
computationally difficult to implement, and simulation studies show that the test has
poor small-sample properties. In this paper, we extend Gençay’s (2010) time-series
test for serial correlation to panel data case. Our new test is also wavelet based and
maintains the advantages of the Hong and Kao (2004) test, but it is much simpler and
easier to implement. Furthermore, simulation results show that our test has quicker
convergence rate and hence better small-sample properties, compared to Hong and
Kao (2004) test. We also compare our test with several other existing tests for series
correlation, and our test has in general better statistical properties in terms of both size
and power.

Keywords Energy distribution · MODWT · Serial correlation · Static and dynamic
panel models

JEL Classification C11 · C12 · C15

1 Introduction

Serially correlated errors in regression models have several implications for econo-
metric modeling, such as making parameter estimation inefficient and invalidating
commonly used Student’s t test and F tests. For the panel data case, moreover, com-
monly used estimators of dynamic models such as system GMM and Arellano–Bond
(1991) are only valid as long as the model errors are serially uncorrelated. Testing
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for serially correlated errors in panel models is thus an essential part of econometric
modeling.

Most panel data tests; should be, for example, Breusch and Pagan (1980), Bhargave
et al. (1982), Baltagi and Li (1995) and Bera et al. (2001) test for no serial correlation
against the alternative of serial correlation of some known form. Lee and Hong (2001)
and Hong and Kao (2004) relaxed the assumption that the serial correlation form
should be known. This new class of tests is constructed using the wavelet spectrum,
which can detect serial correlation where the spectrum has peaks or kinks. This class
of tests can be applied to residuals from a wide range of different panel data models:
static models, dynamic models, one- or two-way error-component models and fixed-
effects and random-effects models. Because the Hong and Kao (2004) test is more
general than other tests, it also has higher power. Among the weaknesses of the Hong
and Kao (2004) test is its complex structure, which causes the convergence rate to be
slow. Additionally, although Hong and Kao test under the null has a limit standard
normal distribution asymptotically. For small samples, critical values are generated by
simulations, which further complicates the tests and makes the tests computationally
time-consuming.

In this paper, we propose an alternative serial correlation test for panel data models
that maintains the strengths of the Hong and Kao (2004) test and at the same time has a
more simplified structure, higher convergence rate and better small-sample properties.
Our test is still wavelet based and is constructed by combining the variance ratio test
proposed by Gençay (2010) for time-series models with the Fisher-type test applied in
Choi (2001). Our test has a simple construction and converges to a normal distribution
quickly. No empirical critical values need to be simulated; thus, the computational
burden is significantly reduced. Simulations show that the small-sample properties of
our test are compared favorably to those of other commonly used tests.

The rest of this paper has the following structures: Sect. 2 introduces the wavelet
transform and the Hong and Kao test, Sect. 3 introduces the panel data test, Sect. 4
contains the simulation study, and Sect. 5 concludes the paper.

2 Wavelet method and the Hong and Kao test

2.1 Introduction to the wavelet transform

Wavelet transformmethods began to gain the attention of statisticians and econometri-
cians after a series of articles by, for example, Schleicher (2002) and Crowley (2007),
Vidakovic (1999), Percival and Walden (2000) and Gençay et al. (2001). The wavelet
methodology represents an arbitrary time series in both time and frequency domains by
convolution of the time series with a series of small wavelike functions. Corresponding
to the time-infinite sinusoidal waves in the Fourier transform, the time-located wavelet
basis functions

{
ψ jk(·) : j, k ∈ Z

}
used in the wavelet transform are generated by

translations and dilations of a basic mother wavelet ψ ∈ L2(R). The function basis is
constructed throughψ jk(t) � 2 j/2ψ(2 j t−k), where k is the location index and j is the

scale index that corresponds to the information inside the frequencyband
[

1
2 j+1�

; 1
2 j�

]
,
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in which � is the length of sampling interval of the series. For a continuous signal f ,
its wavelet transform is given by the wavelet coefficients f ∗ � {γ ( j, k)}k, j∈Z with
γ ( j, k) � 〈 f , ψ jk〉 � ∫

f (t)ψ∗
jk(t) dt , which represent the resolution at time k and

scale j. The resolutions in the time domain and the frequency domain are achieved
by shifting the time index k and the scale index j, respectively. A lower level of j
corresponds to higher-frequency bands, and a higher level of j corresponds to lower-
frequency bands. For a time series Z � {Zt , t � 0, . . . , T − 1} sampled at discrete
time points, its wavelet coefficients are obtained via the discrete wavelet transform
(DWT) or maximum overlap discrete wavelet transform (MODWT).

The DWT is implemented by applying a cascade of orthonormal high-pass and
low-pass filters to a time series that separates its characteristics at different frequency
bands (Mallat 1989). The level J DWT transforms a dyadic time series to the form
of T − 1 wavelet coefficients structured as J scales and one scaling coefficient. Scale

j � 1, . . . , J contains information in the frequency band
[

1
2 j+1 ;

1
2 j

]
and consists of

T
2 j coefficients that correspond to strictly adjacent wavelet functions. The maximum
overlap wavelet transform is a variation of the DWT. The level J MODWT projects
time series Z on J × T wavelet functions. After the level J MODWT, we can get
J + 1-transformed vectorsW1, . . . ,WJ ,VJ . The T -dimensional vectorsW j and VJ

are computed by W j � w jZ, VJ � vJZ with j � 1, 2, . . . , J . The T × T matrices
w j ( j � 1, 2, . . . , J ) can be viewed as the high-pass filter which filters out the higher
part of the frequency band in Z. The output from this high-pass filtering is wavelet
coefficients W j , which corresponds to fluctuations or changes in average on a scale
of τ j � 2 j−1. The T × T matrix vJ is then the low-pass filter which filters out the
lowest part of the frequency band in Z . The output from this low-pass filtering is
scaling coefficients VJ , which corresponds to averages on a scale of λJ � 2J . In
MODWT, the T functions in each scale are translated by only one time period per
iteration and thus overlap to a great extent, making a difference to the strictly adjacent
wavelet functions of the DWT. The overlapping property allows considerably greater
smoothness in the reconstruction of selected frequency bands at the cost of losing the
orthogonality property. For detailed illustration of DWT and MODWT, we refer to
Vidakovic (1999), Percival and Walden (2000) and Gençay et al. (2001).

Generally, the wavelet coefficients from either the DWT or the MODWT are sep-
arated to different scales of wavelet and scaling coefficients representing different
frequencies. When the series Z � {Zt , t � 0, . . . , T − 1} is pure white noise, as the
variance of white noise is evenly distributed in the whole frequency interval, after the
DWT andMODWT transform, the variance of wavelet and scaling coefficients should
be evenly distributed as well. On the other hand, if Z � {Zt , t � 0, . . . , T − 1} is
not white noise and it contains serial correlation, the character of evenly distributed
variance will be violated. This concept can help us to build up a variance-ratio-based
test to test serial correlation in Sect. 3.
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2.2 The Hong and Kao (2004) test

The panel data model in Hong and Kao (2004) is given by:

Yit � α + X ′
i tβ + μi + λt + uit , t � 1, . . . , Ti ; i � 1, . . . , n (1)

where Xit can be either static or dynamic in the form of including lag values of Yit ,{μi } is an individual effect which is mutually independent for the individual and {λt }
is a common time effect. In the Hong and Kao test, the test framework is:

H0 : cov(uit , uit−|h|) � 0 for all h �� 0 and i � 1, . . . , n

H1 : cov(uit , uit−|h|) �� 0 for some h �� 0 and some i .

The test is performed on the demeaned estimated residuals v̂i t � ûi t − ūi . − ū.t +
ū, (t � 1, . . . , Ti ; i � 1, . . . , n), where ûi t � Yit − X ′

i t β̂, ūi . � T−1
i

∑Ti
t�1 ûi t ,

ū.t � n−1 ∑n
t�1 ûi t , ū.t � (nTi )−1 ∑n

i�1
∑Ti

t�1 ûi t and β̂ indicates the con-
sistent estimators under H0. Instead of using the lag h autocovariance function
Ri (h) � E(vi tvi t−|h|), Hong and Kao (2004) use the power spectrum fi (ω) �
(2π )−1 ∑+∞

h�−∞ Ri (h)e−ihω, ω ∈ [−π, π ] to build the test statistic because it can
contain the information on serial correlation at all lags. Moreover, instead of Fourier
representation of the spectral density, a wavelet-based spectral density Ψ jk(ω) using
the above-mentioned wavelet basis ψ ∈ L2(R) is used, with Ψ jk(ω) defined as:

Ψ jk(ω) ≡ (2π )(−1/2)
∞∑

m�−∞
ψ jk

( ω

2π
+ m

)
, ω ∈ [−π, π ].

Ψ jk(ω) can effectively capture the local peaks and spikes in spectral density by shift-
ing the time effect index k. Based on the empirical wavelet coefficients α̂i jk �
(2π )−1/2 ∑

h Ri (h)Ψ ∗
jk(ω), the heteroscedasticity-consistent test statistic W̃1 and

heteroscedasticity-corrected test statistic W̃2, as well as their distribution under H0,
are defined separately as:

W̃1 �
∑n

i�1

[
2πTi

∑Ji
j�0

∑2 j

k�1 α̂2
i jk − R̂2

i (0)(2
Ji+1 − 1)

]

2
[∑n

i�1 R̂
4
i (0)(2

Ji+1 − 1)
]1/2 −→ dN (0, 1)

W̃2 � 1√
n

n∑

i�1

2πTi
∑Ji

j�0

∑2 j

k�1 α̂2
i jk − (2Ji+1 − 1)

2(2Ji+1 − 1)1/2
−→ dN (0, 1).

The Hong and Kao (2004) test is spectral density based and requires no specifica-
tion of the alternative form; thus, it is generally applicable to a wide range of serial
correlations. However, Hong and Kao (2004) test has three main disadvantages. First,
both test statistics are constructed using the hyperparameters Ji (resolution level in
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wavelet decomposition), which are determined in a computationally intensive, data-
driven method. Second, although Hong and Kao (2004) show W̃1 −→ dN (0, 1) and
W̃2 −→ dN (0, 1), the slow convergence rates of both test statistics show a serious bias
below the nominal size when using the asymptotic critical values from the standard
normal distribution directly. It is therefore necessary to use bootstrapped or simulated
critical values, which further complicates the test. Third, because the test statistics are
based on the DWT, the data set is restricted as Ti should be a multiple power of 2. All
of these disadvantages hinder the test’s popularity. We hereby propose a much more
simplified test and show that our test overcomes the shortcomings of W̃1 and W̃2 while
still giving good results in testing a wide range of serial correlations in the generalized
panel model.

3 A panel data test based on wavelet variance ratio

The test in Hong and Kao (2004) is the panel version extension of the wavelet
spectrum-based serial correlation test in single series proposed by Lee and Hong
(2001). However, the Lee and Hong (2001) test has a slow convergence rate because
of the estimation of the nonparametric spectrum density. An alternative time-series test
for serial correlation of unknown form is the Gençay (2010) variance ratio test, which
converges to normal distribution at a much faster parametric rate. In this paper, we
extend the Gençay (2010) test to the panel data case by using a Fisher-type test com-
bining the p-values from individual serial correlation tests based on Gençay (2010).
This p value combination strategy is inspired by Maddala and Wu (1999) and Choi
(2001). Choi (2001) noted that themethod to combine p-values can allowmore general
assumptions of the underlying panel models such as stochastic or non-stochastic mod-
els, balanced or non-balanced data and homogeneous or heterogeneous alternatives.
This general assumption coincides with the aforementioned wide range assumption
of the panel models in Hong and Kao (2004), making our further comparisons pos-
sible. Choi (2001) also shows this p-value combination test generally has better size
and power performance compared with the previous panel unit root test. A potential
shortcoming of this testing procedure is that it requires the cross-sectional units to be
uncorrelated. This assumption is also imposed by the Hong and Kao test whereby we
do not consider the case of cross-sectional dependence in this paper.

Our test procedure for serial correlation is straightforward. First, the errors in Eq. (1)
for each individual i are estimated. Second, the estimated errors are transformed to the
wavelet domain using the Haar filter-based MODWT. Unlike the DWT, the MODWT
does not impose any restrictions on the sample size, whereby in the Hong and Kao
restriction, the sample size is restricted to the power of 2. The MODWT on the esti-
mated errors yields two sets of transform coefficients, Wi and Vi . For the discrete
time series which has the frequency band

(
0, 1

2

]
, then Wi represent the higher half

part of frequency component in the errors (frequency band is
( 1
4 ,

1
2

]
), and Vi repre-

sents the lower half part of frequency component in the errors (frequency band is(
0, 1

4

]
). Third, if the errors are white noise, each half part of the frequency has the

123



2356 Y. Li, F. N. G. Andersson

same energy. Thus, the following wavelet-ratio test statistic Gi �
∑Ti

t�1 W
2
i t∑Ti

t�1 W
2
i t+

∑Ti
t�1 V

2
i t

has the expected value 1
2 . Gençay (2010) shows that the test statistic Si � √

4T( 1
2 − Gi

) � N (0, 1) + Op(T
−1
i )−→ dN (0, 1) under H0, and it can be used to test for

an unknown order of serial correlation in time series. Gençay (2010) further shows
that the test based on Si performs well in small samples. The last step in our test
procedure is to combine the individual wavelet-ratio test with the Fisher type of the
test based on p-values of individual tests (Choi 2001). Three p value-based test statis-
tics are defined in Choi (2001) as P � −2

∑n
i�1 ln(pi ), Z � 1√

n

∑n
i�1 Φ−1(pi ),

L � ∑n
i�1 ln

(
pi

1−pi

)
where pi is the p-value of the test for individual i and Φ is

cumulative density functions for the normal distribution. Among the three test statis-
tics, we choose the inverse normal test statistic Z � 1√

n

∑n
i�1 Φ−1(pi ). Stouffer et al.

(1949) already proved that Z −→ dN (0, 1) under H0, and Choi (2001) showed that,
compared to other two Fisher-type tests P and L, the inverse normal test statistic Z per-
forms best and is recommended for empirical applications. Furthermore, the p value in
the Z test statistic is defined as pi � 1− Γ (S2i ) and Γ is cumulative density function
for Chi-square distribution. The reason why we use S2i instead of applying Si directly
to obtain the p values in the panel framework is that the test based on Si is a two-sided
normal test and will lose power seriously when the panel data contain both positive
and negative correlations. As S2i −→ dχ2(1), the test based on S2i is then a one-sided
test and can be used to test the heterogeneous alternatives. Another advantage of using
S2i instead of Si is that the convergence rate turns into Op(T

−2
i ) and will lead to even

better small-sample performance. The last advantage can be derived directly form the
rules of product for big oh (Lemma 1.18; p. 16, Dinneen et al. 2009): if g1 ∈ Op( f1)
and g2 ∈ Op( f2), then g1g2 ∈ Op( f1 f2).

4 Simulation study

The small-sample properties of our proposed inverse normal test statistic Z are com-
pared with those of the Hong and Kao (2004) test, Ŵ1 and Ŵ2, in a simulation
study. We also compare it with Hong’s (1996) kernel-based tests, K̂1, K̂2, Baltagi
and Li’s (1995) Lagrange multiplier (LM) test BL and Bera et al.’s (2001) modi-
fied LM test BSY. We use the same data generation process used in Hong and Kao
(2004) for direct comparison. To evaluate the size of the test, we assume both a static
panel model with a data-generating process (DGP1): Yit � 5 + 0.5Xit + μi + uit ,
Xit � 5 + 0.5Xit−1 + ηi t with ηi t ∼ i.i.d. U [−0.5, 0.5] and a dynamic panel model
DGP2: Yit � 5 + 0.5Yit−1 + μi + uit . In both DGP1 and DGP2, the individual effect
μi ∼ i.i.d. N (0, 0.4) and error process uit ∼ i.i.d. N (0, 1). The error processes {uit }
and {uls} are mutually independent for i �� l and all t, s; thus, we assume indepen-
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dence of cross-sectional units here. For the power part, the error process {uit } has two
alternatives:

AR(1) alternatives:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AR(1).a: uit � 0.2uit−1 + εi t , i � 1, . . . , n

AR(1).b: uit � −0.2uit−1 + εi t , i � 1, . . . , n

AR(1).c:

{
uit � 0.2uit−1 + εi t , i � 1, . . . , n/2

uit � −0.2uit−1 + εi t , i � 1, . . . , n/2

, (2)

ARMA(12,4) alternatives:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ARMA(12,4).a: uit � −0.3uit−12 + εi t + εi t−4, i � 1, . . . , n

AR(12,4).b: uit � 0.3uit−12 + εi t − εi t−4, i � 1, . . . , n

AR(12,4).c:

{
uit � −0.3uit−12 + εi t + εi t−4, i � 1, . . . , n/2

uit � 0.3uit−12 + εi t − εi t−4, i � 1, . . . , n/2

.

(3)

In our simulations, we employ the Haar wavelet to limit the number of boundary
coefficients, whichmay negatively affect the size and power of the test. Although other
wavelet filters such as the Daubechies filters or the least asymmetric filters come closer
to represent an ideal band pass filter, they also generate more boundary coefficients.
These filters are thereforemore appropriate for longer time dimensions than considered
in our simulations. See Percival and Walden (2006) for a detailed discussion of how
to choose an appropriate wavelet filter.

For the size and power of the Z test, we take the critical values at 10% and 5%
significance levels directly from theN(0, 1) distribution and set the replication number
for the simulation to 1000, the same as Hong and Kao (2004). We use Z1 to represent
ourZ test constructed from the static data generation processDGP1 and Z2 to represent
the Z test from the dynamic data generation process (DGP2). Table 1 shows the size
performance of our test statistic Z1, and Table 2 shows the size performance of our
of our test statistic Z2. Table 1 is compared with Hong and Kao’s (2004) Table I for
the static model, and Table 2 is compared to Hong and Kao’s (2004) Table II for the
dynamic model.

In Tables 1 and 2, K̂1, K̂2,BL andBSY are separately heteroscedasticity-consistent
Daniell kernel-based tests, heteroscedasticity-corrected Daniell kernel-based tests,
Baltagi–Li (Baltagi and Li, 1995) tests and Bera, Sosa-Escudero and Yoon tests
(Bera et al. 1995), respectively. When the replication number of the simulation is
set to 1000, the confidence intervals for an unbiased size at the 10% and 5% sig-

nificance levels are separately 0.10 ± 1.96 ∗
√

0.10(1−0.10)
1000 � (0.0814, 0.1186) and

0.05±1.96∗
√

0.05(1−0.05)
1000 � (0.0365, 0.0635), respectively. Tables 1 and 2 show that

the sizes of our test statistic Z are almost all unbiased for both the static panel model
and the dynamic panel model in all cases, even for very small sample sizes such as
when (n, T ) � (5, 8) or (8, 5). However, Tables I and II in Hong and Kao (2004) show
that when using the asymptotic critical values, the size is seriously under-biased for
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Table 1 Size table for static panel model (DGP1)

(n, T ) (5, 8) (10, 16) (25, 32) (50, 64) (5, 5) (10, 10)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Z 8.6 4.5 8.8 4.7 10.7 5.6 10.4 5.7 8.0 4.1 9.0 4.3
W̃1 1.8 1.3 3.3 1.9 6.3 4.0 7.9 4.0 0.6 0.0 2.0 1.3

W̃2 1.0 0.4 3.0 1.1 4.7 2.3 8.2 3.7 0.1 0.0 0.8 0.3

K̂1 2.5 1.5 3.6 1.7 6.6 3.9 7.2 3.9 0.9 0.0 2.3 1.3

K̂2 1.4 0.4 2.8 1.2 5.8 2.6 8.0 3.8 0.1 0.0 1.2 0.2

BL 30.5 19.9 22.6 14.9 23.2 14.6 22.5 14.5 45.3 32.4 35.2 23.9

BSY 9.0 3.0 5.7 2.1 6.7 1.8 7.7 2.2 18.3 9.3 13.5 5.1

(n, T ) (25, 25) (50, 50) (8, 5) (16, 10) (32, 25) (64, 50)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Z 11.0 4.6 10.0 5.2 9.2 3.9 9.3 3.8 9.1 4.9 10.0 4.3
W̃1 4.5 2.5 7.8 4.3 0.4 0.1 1.7 0.7 4.1 1.7 6.9 3.8

W̃2 3.0 1.6 7.2 3.6 0.1 0.0 0.7 0.3 2.6 1.3 6.3 3.7

K̂1 5.0 2.9 7.5 4.0 0.4 0.2 1.6 0.8 4.2 2.1 6.7 3.5

K̂2 3.3 2.0 7.5 3.4 0.1 0.0 0.7 0.2 3.1 1.7 7.1 3.2

BL 30.2 20.8 28.2 19.2 57.8 46.3 48.0 35.4 34.7 24.5 35.3 23.8

BSY 9.9 3.4 7.3 2.8 31.9 20.7 22.0 10.3 14.2 5.9 11.4 4.8

Ŵ1, Ŵ2, K̂1 and K̂2; for BL, the size is seriously over-biased, and for BSY, the size is
either under-biased or over-biased. The wide bootstrapped critical value is then used
for Hong and Kao (2004) to adjust the size, and there is still an under- or over-bias
problem for all of the tests. On the contrary, our test uses critical values directly from
the normal distribution, and the results are mostly unbiased.

To evaluate the power of the proposed tests, we let the error process follow an
AR(1) in Eq. (2) and ARMA(12.4) process in Eq. (3), and we get Tables 3 and 4
corresponding to Tables III and IV in Hong and Kao (2004). We use Z1 and Z2 to
report separately the results for static and dynamic cases, whereas Hong and Kao
(2004) did not show the results for the dynamic model.

In the power case for DGP1, because of poor performance for small-sample sizes
for their tests, Hong and Kao (2004) use a simulated empirical critical value and boot-
strap critical value for power comparison. This is a challenging task because critical
values must be simulated for all combinations of (n, T ). However, we can directly
use the critical values from the standard normal distribution for power tests, mak-
ing the testing procedure much more straightforward and easier to conduct. For the
AR(1) type of error, Table 3 shows that our test performance is modestly improved
compared to the other tests and its performance is much better than almost all of the
tests for the AR(1) model for sample size (5, 8) and is better than all three mod-
els for the sample size (50, 64). All of these examples demonstrate the much faster
convergence rate of our test statistic. However, for sample sizes (10, 16) and (25,
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Table 2 Size table for dynamic panel model (DGP2)

(n, T ) (5, 8) (10, 16) (25, 32) (50, 64) (5, 5) (10, 10)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Z 8.4 4.3 8.7 3.9 8.2 4.3 9.2 5.6 10.0 3.3 8.8 3.4
W̃1 0.5 0.2 1.1 0.4 2.8 1.1 6.3 3.3 0.0 0.0 0.4 0.3

W̃2 0.1 0.0 0.4 0.2 3.2 1.1 5.9 2.7 0.0 0.0 0.0 0.0

K̂1 0.6 0.3 1.6 0.7 3.7 2.2 7.0 3.8 0.0 0.0 0.3 0.2

K̂2 0.1 0.0 0.8 0.2 3.4 2.1 6.7 2.8 0.0 0.0 0.1 0.0

BL 16.6 9.8 4.8 1.8 2.1 0.3 0.3 0.0 40.2 31.4 12.8 5.8

BSY 12.9 6.2 29.8 19.8 99.9 99.7 0.0 0.0 24.0 16.3 14.2 7.3

(n, T ) (25, 25) (50, 50) (8, 5) (16, 10) (32, 25) (64, 50)

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Z 8.8 6.1 10.8 4.2 8.1 5.3 10.2 4.0 9.0 5.8 9.7 5.1
W̃1 2.3 1.5 3.5 1.8 0.4 0.1 1.7 0.7 4.1 1.7 6.9 3.8

W̃2 1.2 0.7 2.8 0.9 0.1 0.0 0.7 0.3 2.6 1.3 6.3 3.7

K̂1 2.8 1.4 3.2 1.5 0.4 0.2 1.6 0.8 4.2 2.1 6.7 3.5

K̂2 1.8 0.9 3.3 1.6 0.1 0.0 0.7 0.2 3.1 1.7 7.1 3.2

BL 2.8 1.0 1.3 0.2 56.7 44.2 17.7 10.0 1.9 0.5 0.6 0.2

BSY 96.9 93.1 94.9 94.9 23.3 16.0 14.5 8.1 99.4 98.6 59.0 59.0

32), even though the power performance of our test is modest, it is still quite accept-
able.

Table 4 shows that for the ARMA(12, 4) type of error, the tests in Hong and Kao
(2004) have almost no power when the sample size is (10, 16), whereas our test
performs much better. For sample sizes (25, 32) and (50, 64) in all three models, the
only Hong and Kao (2004) test that compares well with our test is their W̃1(J0) test.
However, this test requires a computationally intensive, data-driven procedure for the
choice of J0, making the already complex test even more of an obstacle. Moreover,
compared with W̃1 and W̃2, our test places no restrictions on T , whereas W̃1 and W̃2
require T to be a multiple power of 2.

5 Conclusion

Compared with the test statistics W̃1 and W̃2 in Hong and Kao (2004), our test based
on statistic Z has a much more simplified construction, quicker convergence rate and
better small-sample performances, especially in the perspective of size property. The
faster convergence rate of Z may be explained in two factors: First, the nonparametric
spectral density estimation in W̃1 and W̃2 slows the convergence rate; second, the
p values in Z are derived from S2i instead of Si , which lead to a convergence rate
in individuals being Op(T

−2
i ) instead of Op(T

−1
i ). Moreover, by using the inverse
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normal test, our test can be easily extended to a cross-sectional dependence robust
test by using a modified inverse normal test (Hartung 1999) when combining the p-
values or by obtaining critical values for the Fisher type of test by wavestrapping
(bootstrapping) method. Generally speaking, just by using the N(0, 1) distribution,
we obtain unbiased size and quite comparable power performance when compared
with all previous tests. The other shortage in Hong and Kao (2004) is that there
wavelet transform is based on orthonormal DWT, which requires T to be a multiple
power of 2. By using the MODWT in our test, this restriction is relaxed. Moreover,
in a small sample, the MODWT yields a more accurate energy decomposition due
to its smoothing property. A shortcoming of both the Hong and Kao (2004) test
and our test is that it requires the assumption of no cross-sectional dependence. We
have left the case of cross-sectional dependence to future research since the main
aim of this paper is to develop a test that maintains the strength of the Hong and
Kao test but has quicker convergence rate than the Hong and Kao test and does not
require bootstrapping the critical values when the cross-sectional units are indepen-
dent.
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