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Abstract
We consider the problem of macroeconomic forecasting for China. Our objective is
to determine whether well-established forecasting models that are commonly used to
compute forecasts for Western macroeconomies are also useful for China. Our study
includes 19 different forecasting models, ranging from simple approaches such as
the naive forecast to more sophisticated techniques such as ARMA, Bayesian VAR,
and factor models. We use these models to forecast two different measures of price
inflation and two different measures of real activity, with forecast horizons ranging
from 1 to 12 months, over a period that stretches from March 2005 to December
2018. We test null hypotheses of equal mean squared forecasting error between each
candidate model and a simple benchmark. We find evidence that AR, ARMA, VAR,
and Bayesian VAR models provide superior 1-month-ahead forecasts of the producer
price index when compared to simple benchmarks, but find no evidence of superiority
over simple benchmarks at longer horizons, or for any of our other variables.
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1 Introduction

With an annual GDP of aroundUS$13.6 trillion1 in 2018, the Chinese economy is now
the second largest in the world and, if current growth rates continue, it will become
the largest within the next few years. From being a predominantly closed country in
the 1970s, China is now well integrated into the world economy. As examples, in
2017–2018, it accounted for 33.7% of Australia’s exports,2 in February 2019 it held
approximately 18% of US Treasury Securities,3 and in 2018 it provided 20% of the
imports of the European Union.4

Surprisingly, despite the importance of the Chinese economy, there is a paucity of
published academic research on forecasting the Chinese macroeconomy. This stands
in stark contrast to the published literature on forecasting the macroeconomies of
Western countries, which covers a wide range of forecasting models over long periods
of time. Examples include Ang et al. (2007), Artis et al. (2005), Atkeson and Ohanian
(2001), Bandt et al. (2007), Camba-Mendez et al. (2001), Ciccarelli andMojon (2010),
Faust and Wright (2013), Forni et al. (2003), Marcellino et al. (2003), Pincheira and
Medel (2015), den Reijer (2005), Schneider and Spitzer (2004), Schumacher (2007),
Stock and Watson (1999), Stock and Watson (2002b), and Stock and Watson (2008).

In this paper, we consider the following question: Do the models that are well
established for forecasting the Western macroeconomies also work well for China?
Although onemight hope that this is the case, the relatively short time span of available
Chinese macroeconomic data, variations in data quality and the rapid pace of ongoing
structural change could limit the effectiveness of forecasts obtained using established
methods. We are particularly interested in determining whether more sophisticated
forecasting models that require parameter estimation (e.g. ARMAmodels, VARmod-
els, and factor models) and forecasting models with fixed tuning parameters (e.g.
moving averages and exponential smoothing models) provide superior forecasts to
simple parameter-free methods (e.g. the naive forecast and the mean forecast).

The scholarly journals have published a small number of papers on forecasting
Chinese macroeconomic variables, but none are sufficient to answer the question that
we pose above. Mehrotra and Sánchez-Fung (2008), Lin and Wang (2013), Kamal
(2013), Zhou et al. (2013), and He and Fan (2015) all conduct comparisons of alter-
native forecasting models for Chinese macroeconomic variables, and between them
cover a broad range of models. However, these studies consider only a very small
number of forecasts. Mehrotra and Sánchez-Fung (2008) and Lin and Wang (2013)
provide forecasts for a maximum of 12 months only; Kamal (2013) generates annual
out-of-sample forecasts for each of 12 years; Zhou et al. (2013) consider only six
out-of-sample months, and He and Fan (2015) produce forecasts over only five quar-
ters. Stekler and Zhang (2013) consider forecasts produced by the IMF, OECD, and
private sector forecasters, but their analysis covers only 10–12 time periods. All of the

1 https://research.stlouisfed.org/fred2/series/MKTGDPCNA646NWDB.
2 https://dfat.gov.au/trade/resources/Documents/chin.pdf.
3 http://ticdata.treasury.gov/Publish/mfh.txt.
4 https://ec.europa.eu/eurostat/statistics-explained/index.php/China-EU_-_international_trade_in_goods_
statistics\#Both_exports_to_and_imports_from_China_rose_between_2008_and_2018.
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above papers provide rankings of forecasting models, but none provide any measures
of sampling variability or hypothesis tests. In the light of the very small number of
forecasts, it is reasonable to suspect that these rankings would not be robust to changes
in the sampling periods considered. In a more recent paper, Higgins et al. (2016) com-
pute monthly forecasts of Chinese GDP and inflation from 2011 to 2015 with forecast
horizons ranging from 1 year to 4 years. This provides 60 1-year-ahead forecasts and
24 4-year-ahead forecasts. However, as is the case in the papers cited above, they pro-
vide no measures of sampling variability, so it is not possible for the reader to deduce
whether the differences in the mean squared forecasting errors reported for different
forecasting models are statistically significantly different from zero.

In this paper, we present the results of an out-of-sample forecasting exercise for the
Chinese macroeconomy. We forecast two different measures of real economic activ-
ity and two different measures of price inflation in each of at least 155 months. Our
measures of price inflation are constructed from the Consumer Price Index and the
Producer Price Index, and wemeasure real activity using data on Industrial Production
and Electricity Production. As is the case for most of the studies we cite in the sec-
ond paragraph of this section, we use seasonally adjusted data since the nonseasonal
components of variables are generally of most interest in macroeconomic analysis.

We use 19 different forecasting models, each of which has proved itself useful
for forecasting macroeconomic variables in Western economies. Our set of mod-
els includes simple approaches such as the naive forecast and the mean forecast,
approaches based on smoothing, classical time series methods and factor-based fore-
casts. We use a rolling window of 100 observations for parameter estimation. We
calculate the relative mean squared forecasting errors, test null hypotheses of mean
squared error equality using the conditional and unconditional tests of Giacomini and
White (2006) and control the familywise error rate using the sequentially rejective
Bonferroni procedure of Holm (1979).

To the best of our knowledge, this is the first paper on forecasting the Chinese
macroeconomy that uses such a wide range of different forecasting models, considers
such a long time span of forecasts, and formally tests null hypotheses of equal fore-
casting power across alternative models instead of simply presenting point estimates
of the magnitude of forecast errors.

The remainder of this paper is structured as follows. In Sect. 2, we briefly describe
each of the forecasting techniques that we employ and the statistical methodology that
we use. In Sect. 3, we describe the data. In Sect. 4, we provide plots of the data and
the results of unit root tests. In Sect. 5, we present our empirical results. In Sect. 6, we
discuss our findings, and in Sect. 7, we make some concluding comments.

2 Methodology

Let T denote the total number of observations available on the variables of interest.
We use the first R observations to estimate model parameters. We generate forecasts
for the time period R+h using several competing forecasting models, where we set h
equal to 1, 3, 6, 9, and 12months.We then drop the first observation from the estimation
sample, add the (R+1)st observation to the estimation sample, re-estimate parameters,
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and generate forecasts for the time period R + h + 1. We continue this process—
updating the estimation sample, re-estimating the parameters, and computing forecasts
for the next time period—until we have computed out-of-sample forecasts for P time
periods using each forecasting model with a rolling sample of R observations. Thus,
P = T − R − h + 1.

In this study, we assess forecast accuracy using the mean squared forecasting error
(MSE). Let yt denote the variable to be forecast. If yt is integrated of order zero (I(0)),
then we fit a forecasting model to the level of the variable and, at time t , generate
the h-months-ahead forecast, which we denote ft+h|t . If yt is integrated of order one
(I(1)), then we fit a forecasting model to the first difference of the variable and, at
time t , for s = 1, . . . , h, generate the s-months-ahead forecast of the first difference
of the variable, which we denote f �

t+s|t . The h-month-ahead forecast of the level of

the variable is then ft+h|t = yt + ∑h
s=1 f �

t+s|t .
Our choice of forecasting models was guided by two considerations. Firstly, in this

paper our interest is focused on models that are well established and widely used for
forecasting macroeconomic variables in Western countries. Thus, we wish to include
in our study the types of models that might commonly be used for forecasting by cen-
tral banks, national treasuries, and by forecasters in industry, rather than models taken
from the recent research literature. Similarly, it is not our intention in this paper to
propose novel forecasting methods. Secondly, we wish to consider a range of models
which includes some very simple techniques, standard smoothing methods, classical
time series methods, and some more sophisticated approaches such as Bayesian vec-
tor autoregression and large-scale factor models. We settled on the following set of
models:

Mean For an I(0) variable, for all forecast horizons h ∈ N, the h-period-ahead
simple mean forecast computed in time period R is the mean of all the avail-
able observations up to and including period R, i.e. fR+h|R = 1

R

∑R
t=1 yR−t+1.

For an I(1) variable, the corresponding forecast computed in time period R is
fR+h|R = yR + h

R−1

∑R−1
t=1 �yR−t+1. If yt is a serially uncorrelated process or

a random walk with drift, then the appropriate mean forecast is a mean-square
optimal estimator of the mean-square optimal forecast.

Naive For all forecast horizons h ∈ N, the h-period-ahead naive forecast of an I(0)
variable is equal to the last available observation in the data set, i.e. fR+h|R = yR .
If the variable is I(1), then we compute the naive forecast as fR+h|R = yR +h�yR .

Moving average (MA) For an I(0) variable, for all forecast horizons h ∈ N, the h-
period-ahead moving average forecast of order m computed in time period R is the
mean of the last m observations in the data set, i.e fR+h|R = 1

m

∑m
t=1 yR−t+1. For

an I(1) variable, the corresponding forecast is fR+h|R = yR + h
m

∑m
t=1 �yR−t+1.

We consider two moving average models. For the first (MA(4)), we (arbitrarily) set
the order of the moving average to 4. For the second (MA-opt), we choose the order
of the moving average in each time period to minimize the mean squared error of
the MA forecast up until that point in time. Thus, the order of the moving average
potentially changes for every new forecast in the sequence of forecasts.

Simple Exponential smoothing (SES) For an I(0) variable yt , the simple exponen-
tial smoothing model produces the smoothed series st = αyt−1 + (1 − α)st−1,
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where α is a smoothing parameter for which 0 � α � 1. For all forecast
horizons h ∈ N, the h-period-ahead simple exponential smoothing forecast is
defined as fR+h|R = sR . For an I(1) variable, the corresponding forecast is
fR+h|R = yR + h�sR . We consider two implementations of this model. For the
first (SES(0.5)), the smoothing parameter α is (arbitrarily) set equal to 0.5. For
the second (SES-opt), for each forecast, α is set equal to the value that minimizes
the mean squared historical one-step-ahead forecasting error up until the time that
the forecast is made. We compute the SES forecasts using the ses command in the
forecast5 package in the R programming language.6

Direct (dAR) and multistep iterated (AR) autoregression We compute both mul-
tistep iterated and direct autoregressive forecasts.7 For an I(0) variable and an
autoregression of order p, yt = β0 + ∑p

j=1 β j yt− j + εt , the h-step-ahead multi-

step iterated forecast computed in time period R is fR+h|R = β̂0+∑p
j=1 β̂ j ŷR+h− j

where ŷt =
{
yt if t � R
ft |R if t > R

and β̂ j is the ordinary least squares (OLS) estimator of

β j computed using observations y1, . . . , yR . Similarly, for an I(1) variable and an
autoregression of order p in first differences, �yt = β0 +∑p

j=1 β j�yt− j + εt , the
h-step-ahead multistep iterated forecast computed in time period R is fR+h|R =
yR + hβ̂0 + ∑h

k=1
∑p

j=1 β̂ j�ŷR+k− j .
For an I(0) variable, a direct h-step-ahead forecast at time period R is cal-

culated by estimating by OLS the equation yt+h = β0 + ∑p
j=1 β j yt− j + εt

using observations y1, . . . , yR−1 and computing fR+h|R = β̂0 +∑p
j=1 β̂ j yR+1− j .

For an I(1) variable, the direct forecast is computed by estimating the equation
yt+h − yt = β0 + ∑p

j=1 β j�yt− j + εt using observations y1, . . . , yR−h and com-

puting fR+h|R = yR + β0 + ∑p
j=1 β̂ j�yR+1− j .

We consider two implementations of the AR and ARd models. For the first
(AR(1) and ARd(1)), the order of the model is (arbitrarily) set equal to 1. For the
second (AR(p) and ARd(p)), for each forecast generated, the order is chosen using
Akaike Information Criterion (AIC) with a maximum allowed order of 24.

Autoregressive moving average (ARMA) The ARMA(p,q) model for an I(0) vari-
able, yt = μ + ∑p

i=1 φi yt−i + ∑q
j=1 θ jεt− j + εt , may be written in state-space

form and estimated using the maximum likelihood method (see Gardner et al.
(1980)). Forecasts may then be computed using the Kalman filter (see Section
5.5 of Box et al. (2015)). For an I(1) variable, the model is instead �yt =
μ + ∑p

i=1 φi�yt−i + ∑q
j=1 θ jεt− j + εt . We consider two implementations of

the ARMA model. For the first (ARMA(1,1)), we (arbitrarily) set both orders of
the model to 1. For the second (ARMA(p,q)), for each forecast generated, the order
is chosen using the Akaike Information Criterion (AIC) with maximum allowed
orders of 2 and 2.We use theArima and auto.arima functions in the forecast package
of the R programming language to compute the ARMA forecasts.

5 Hyndman et al. (2018), Hyndman and Khandakar (2008).
6 R Core Team (2018).
7 See Marcellino et al. (2006).
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Vector autoregression (VAR) We follow Stock and Watson (2002b) by specifying
a vector to contain a price inflation variable, a variable measuring real activity, and
an interest rate variable. To forecast a price inflation variable, the vector Yt consists
of the variable to be forecast, Industrial Production, and the interest rate. To forecast
a real activity variable, the vector consists of the variable being forecast, the CPI
inflation rate, and the interest rate. The VAR model for an I(0) variable yt is then
Yt = A0 + ∑p

j=1 A jYt− j + ηt , where yt is the first element of the vector Yt . The
parameters are estimated using the OLS method, and the h-step-head forecast of
the vector Yt computed in time period R is fR+h|R = Â0+∑p

j=1 Â j ŶR+h− j where

Ŷt =
{
Yt if t � R
ft |R if t > R

. For an I(1) variable, the VAR is specified in first difference

form,�Yt = A0+∑p
j=1 A j�Yt− j +ηt , and the h-step-head forecast of the vector

Yt computed in time period R is fR+h|R = YR +h Â0 +∑h
k=1

∑p
j=1 Â j�ŶR+k− j .

In each case, the forecast of yR+h may be recovered from the forecast of the vector
YR+h .

We consider two implementations of the VAR model. For the first (VAR(1)),
the order of the model is (arbitrarily) set equal to 1. For the second (VAR(p)), for
each forecast generated, the order is chosen using the Akaike Information Criterion
(AIC) with a maximum allowed order of 4. We compute all the VAR estimates and
forecasts using the vars package8 in the R programming language.

Bayesian vector autoregression (BVAR) We also estimate a Bayesian vector
autoregression using the Minnesota prior of Doan et al. (1984) and Litterman
(1986). We refer the reader to Canova (2007) Chapter 10 for technical details of
the method.9 The construction of the vectors and forecasts is as for the frequentist
VAR described above. We set the lag order to 4 for all BVAR models. We compute
the BVAR forecasts using the BMR package10 in the R programming language.

Factor models Let xt be a N ×1 vector of macroeconomic variables that have been
suitably transformed to become I(0). Let st be a k×1 vector of unobservable factors
such that xt = Bst + ηt , where ηt is a N × 1 vector of unobservable errors, B is
a N × k matrix of unknown coefficients, and k << N . An estimator of the factor
vector ŝt may be constructed as the principal components of the sample covariance
matrix of xt corresponding to the largest k eigenvalues. We standardize all the
elements of xt prior to computing the principal components. For an I(0) variable
yt in time period R, the h-steps-ahead forecast is computed as fR+h|R = β̂ ′ŝR
where β̂ is the least squares estimator of β for the equation yt+h = β ′ŝt + εt
computed using observations from t = 1 to t = R − h. For an I(1) variable, β̂ is
the least squares estimator of β for the equation yt+h − yt = β ′ŝt + εt , but the rest
of the procedure is identical to the I(0) case. Stock and Watson (2002a) establish

conditions under which β̂ − β
p−→ 0 and ŝt − st

p−→ 0 as N and R jointly grow.
We consider two implementations of this forecasting model. In the first (F(2)), the

8 Pfaff (2008).
9 Using the notation of Canova (2007) Section 10.2.2, we set φ0 = φ1 = 0.5, φ2 = 100, φ3 = 2 and
specify h(	) to be geometric decay.
10 O’Hara (2018).
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number of factors is set (arbitrarily) to k = 2. In the second (F(k)), for each time
period in the forecasting exercise, the number of factors is estimated by minimizing
the PCp1(k) criterion11 of Bai and Ng (2002) with the maximum allowed number
of factors set to 10.

Factor-VAR We also consider VAR models in which the vector consists of the
variable being forecast and two factors, estimated in the way described above. Note
that this is the special case of the FAVAR model of Bernanke et al. (2005). We
consider two implementations of this model. In the first (F(2)VAR(1)), the VAR
order is (arbitrarily) set to 1. In the second (F(2)VAR(p)), the VAR order is chosen
to minimize the AIC with a maximum allowable lag of 4.

Our estimator of the mean squared error of the i th forecast is 1
P

∑T−h
t=R ( f it+h|t −

yt+h)
2. For all but one forecasting model, we also test the null hypotheses

Hu
0 : E

(
( f it+h|t − yt+h)

2
)

− E
(
( f bt+h|t − yt+h)

2
)

= 0

Hc
0 : E

(
( f it+h|t − yt+h)

2|Ft

)
− E

(
( f bt+h|t − yt+h)

2
)

|Ft ) = 0

where forecasting model b is a benchmark model that we choose. Hu
0 is the hypothesis

that model i has the same mean squared forecasting error as the benchmark model.
Note that this is a hypothesis about the model with estimated parameters, so sampling
uncertainty contributes to the forecasting error. It is possible that a correctly spec-
ified forecasting model could have a larger mean squared forecasting error than an
incorrectly specified benchmark model if the variance of the sampling error is suffi-
ciently large—as could be the case if the sample is quite small. Hc

0 is the hypothesis
of equality of the mean squared error conditional onFt , an information set available
at time t . Giacomini and White (2006) provide the method and theory for testing both
hypotheses, and we refer the reader to their paper for more details of the two tests.
We follow Giacomini and White (2006) closely by using the Newey–West estimator
of the variance with a bandwidth of h − 1 to construct the test statistics, and for Hc

0 ,
we condition on the lagged value of the difference of the squared forecast errors from
the pair of models under consideration. Since our study involves individual tests for
hypotheses for many forecasting models, several forecasting horizons, and multiple
variables, it is likely to yield some small p values purely by chance, even if all the
null hypotheses are true. In order to control the risk of false discovery, in addition
to reporting the p values for each hypothesis test, we also report the results of the
sequentially rejective Bonferroni procedure proposed by Holm (1979). For a set of m
null hypotheses, this consists of rejecting the null hypothesis with the smallest p value
if its p value is smaller than α/m. If this hypothesis is rejected, then the hypothesis
corresponding to the second smallest p value is rejected if its p value is smaller than
α/(m − 1). The process continues until no more hypotheses are rejected, with the p
value for the j th null hypotheses being compared to α/(m − j + 1). This procedure

11 Bai and Ng (2002) propose several alternative criteria for estimating the number of factors and findmany
that are both consistent and perform well in finite sample simulations. Our choice from these of PCp1(k) is
arbitrary. We have also used PCp2(k), ICp1(k), and ICp2(k) and found that the choice of criterion makes
very little difference to our results.
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provides strong control of the familywise error rate—that is to say, it controls the
probability of rejecting at least one true null hypothesis from a collection of multiple
hypotheses, for any combination of true and false hypotheses.

3 Data

Empirical research in economics is often constrained by data availability. This is
particularly the case for research on the Chinese macroeconomy. Many thousands of
economic time series are available fromChina’sNationalBureau of Statistics (NBS),12

the People’s Bank of China,13 and other government sources, but only a small pro-
portion are of sufficient length to be suitable for a study such as this. Moreover, many
series have missing observations and/or implausible outliers. A common concern with
Chinese data is the integrity of the data collection process. China is a large and com-
plex country which raises technical challenges for its statistical agencies. Furthermore,
questions are sometimes raised about the extent to which political pressure might be
such that the published data reflect production targets rather than actual outcomes.
We do not explore these issues here, but instead refer the interested reader to Crabbe
(2016), Holz (2014), Orlik (2011), Holz (2003), and Holz (2008).

The four variables that we forecast are the Consumer Price Index (CPI) month-
on-month inflation rate, the Producer Price Index (PPI) year-on-year inflation rate,
the year-on-year growth rate of industrial production (IP), and the month-on-month
growth rate of the production of electricity (EP). All our variables are monthly final
revisions and are measured fromOctober 1996 to December 2018.We do not consider
Gross Domestic Product (GDP) in this study since the data are available only at the
quarterly and annual frequencies, which would greatly reduce the number of obser-
vations in our sample.14 The CPI data are supplied by the NBS as month-on-month
percentage changes. The PPI and IP data are supplied as year-on-year percentage
changes, and the EP data are supplied in billions of kilowatt/hours which we con-
vert to a month-on-month growth rate. We downloaded these data sets from Thomson
Reuters Datastream15 since this was easier to work with than the NBS Website. The
IP and EP data sets have a number of missing values and outliers. We cleaned the data
sets by removing observations for which the first difference deviates from the median

12 http://www.stats.gov.cn/english/.
13 http://www.pbc.gov.cn/en/3688006/index.html.
14 Two approaches to dealing with this problem are to interpolate the quarterly GDP data to create a
monthly series (see, e.g. Higgins et al. (2016)) or to use mixed-frequency modelling techniques (see, e.g.
Ghysels (2016)). We are sceptical of the use of interpolation to create monthly series from quarterly series
in forecasting studies since it results in two-thirds of the forecasted data points being the outcomes of
the interpolation procedure, rather than actual data points. While the presence of outliers and missing
values dictates that a certain amount of interpolation is practically unavoidable when analysing Chinese
macroeconomic data, our preference is that this is kept to theminimumpossible.Mixed-frequencymodelling
techniques are interesting, but are beyond the scopeof the present paper,which focuses on forecastingmodels
that are well established in Western economies.
15 The Datastream codes for our variables IP, EP, CPI and PPI are CHIPTOT.H, CHPBRENTP,
CHCPINATR, and CHPXGPRDF, respectively.
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of the first differences by more than five times the interquartile range.16 All missing
values were then replaced by cubic interpolation.17 All four variables were seasonally
adjusted using the X-13 method with a deterministic adjustment made for the Chinese
New Year holiday.18

Our VAR models also include the Prime Lending Rate published by the People’s
Bank of China.19 For the factor models, we constructed factor estimates from 50
different monthly macroeconomic variables sourced from Datastream. Outliers and
missing values were dealt with as described above, and with the exception of financial
variables, all variables were seasonally adjusted. All 50 variables were either differ-
enced or log-differenced prior to the application of the principal components estimator.
“Appendix 1” includes tables which list the variable names, their Datastream codes,
whether they have missing values, and a code which indicates whether they were
differenced or log-differenced. All our code and data are available online.20

Readers familiar with the literature will notice that our cross-sectional dimension
of 50 variables is much smaller than that of, as examples, Stock and Watson (2002b)
(215 variables), Schumacher (2007) (124 variables) orArtis et al. (2005) (81 variables).
This is an important consideration since the asymptotic justification for the principal
components estimator requires the number of variables to grow simultaneously with
the number of observations. However, Boivin and Ng (2006) argue that “...as few as
40 pre-screened series often yield satisfactory or even better results than using all 147
series...” which may provide us with some hope that our 50 variables may suffice.21

Nonetheless, we must concede that our variables are ‘pre-screened’ only in the sense
that we used all the variables for which we had data available at the monthly frequency
over the entire time period of interest.

4 Preliminary analysis

Plots of the four variables that we will forecast appear in Fig. 1. Note that these plots
are of the data after outliers have been removed, missing values interpolated, and
seasonal adjustment applied.

16 We have also conducted our forecasting exercise using data without any outliers removed. The results
do not change the main conclusions of the paper, so we do not report them here.
17 The cubic interpolation was done using the na.spline function in the zoo package in R. See Zeileis and
Grothendieck (2005).
18 The seasonal adjustment was carried out using the seasonal package in R (Sax and Eddelbuettel (2018)),
which is an interface for the X-13 software written by the US Bureau of Census (https://www.census.gov/
srd/www/x13as/).
19 We downloaded these data from Datastream. The variable code is CHBANKR.
20 https://github.com/cheaton/China-Forecasting.
21 Precedents include Pincheira and Gatty (2016) who construct two sets of factors using inflation of 18
Latin American countries and inflation of 30 OECD countries, respectively.
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Fig. 1 Forecasted variables

Table 1 Augmented
Dickey–Fuller test statistics

CPI PPI IP EP

Lag 6.000 6.000 6.000 6.000

Statistic − 3.868 − 3.943 − 2.566 −6.433

p value 0.016 0.012 0.338 0.010

The results of Augmented Dickey–Fuller (ADF) tests for unit roots22 are presented
for each variable in Table 1. In each case, the maximum lag was set equal to the largest

integer smaller than 4(T /100)
2
9 . If a 5% significance level is used, then evidence

against a unit root exists for the CPI, PPI, and EP growth rates, but not for the growth
of IP.23

We also estimated each of the frequentist models with fixed model orders using
all the available observations for both the levels and first differences of the variables.
We note that, when judged by measures such as the R2 and the F-statistic for overall
significance, most of the models appear to fit the variables reasonably well. In the

22 The ADF test statistics were computed using the adf.test command in the tseries package in R. See
Trapletti and Hornik (2018).
23 Varying the lag order from 2 to 12 did not change the conclusions of the ADF test. Similar results were
also found using the Phillips-Perron unit root test.
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interests of saving space, these results are not presented here, but are available in an
online supplement.24

5 The forecasting results

The first step of the forecasting exercise is to take the first R = 100 observations from
the raw25 data set—that is, observations fromOctober 1996 to January 2005—remove
outliers, interpolate missing values, seasonally adjust, compute principal components,
estimate the model orders and all the model parameters using only the data in this
subsample, and thengenerate forecasts for the timeperiodshmonths after the endof the
subsample,where h = 1, 3, 6, 9, 12.After generating forecasts fromallmodels at each
horizon, we drop the first observation from the subsample and add an extra observation
of raw data to the end of the subsample of raw data. We repeat the same steps for the
second iteration of the forecasting exercise, with the subsample used for estimation
now running from November 1996 to February 2005. We continue in this fashion,
dropping the first observation, appending an extra observation of raw data to the end
of the subsample of raw data, adjusting for outliers, missing values26 and seasonality,
estimating principal components, model orders, and all the model parameters using
only the data in the subsample, and computing forecasts, until we have used the entire
data set. This produces a sequence of 167 1-month-ahead forecasts fromFebruary 2005
to December 2018. The sequences of h-month-ahead forecasts for h = 3, 6, 9, 12 start
h − 1 months later than the corresponding 1-month-ahead forecast. These forecasts
are compared to the data sets generated by removing outliers, interpolating missing
values, and applying seasonal adjustment to the entire span of data available for each
variable27 (i.e. from October 1996 to December 2018). We measure the deviations
of the forecasts from these variables using the mean squared error, and we test null
hypotheses of the equality of themean squared error of each forecast to that of a suitable
benchmark. For each variable forecast, we use as a benchmark model whichever of
the naive forecast and the simple mean forecast generates the smallest estimated mean
squared error.

Estimates of the mean squared forecasting errors for inflation produced by the
models are presented in Table 2. The mean squared errors have been standardized
so that the mean forecast has a standardized mean squared error of 1 for the CPI

24 https://cheaton.github.io/China-Forecasting/online_supplement.pdf.
25 By ‘raw,’ we mean the data that have not had outliers removed, missing values interpolated, or seasonal
adjustment applied.
26 For cases in which a missing value occurs at the beginning or end of the subsample, cubic extrapolation
is used to replace the missing value instead of cubic interpolation.
27 The more conventional approach, followed by (e.g.) Ang et al. (2007), Artis et al. (2005), Bandt et al.
(2007), Ciccarelli and Mojon (2010), Faust and Wright (2013), Marcellino et al. (2003), Marcellino et al.
(2006), den Reijer (2005), Schneider and Spitzer (2004), Schumacher (2007), Stock and Watson (1999),
Stock and Watson (2002b), and Stock and Watson (2008), is to make a single adjustment for outliers and
seasonality to the entire data set, or to source data that are already seasonally adjusted, and then use subsets
of these data in the forecasting exercise. As pointed out by an anonymous referee, this approach pollutes the
forecasts with information from the future of each subsample. We have also used this approach and found
that it produced results that are broadly similar to those we report in this paper.
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forecasts and the naive forecast has a standardized mean squared error of 1 for the
PPI forecasts since, in each case, these are the benchmarks with the smallest mean
squared error. A number of features of Table 2 are worth noting. For the CPI inflation
rate, the factor-VAR(1) model with two factors produced the best 1-month-ahead
forecasts within-sample and, in general, the more sophisticated forecasting models
outperform the simple models. For all other forecast horizons, the more sophisticated
techniques either performworse than the simple mean forecast or provide only a slight
improvement. Thus, judged purely by point forecasts, there appears to be little to gain
from using sophisticated methods to forecast Chinese CPI inflation at horizons longer
than one month.

The results for the PPI inflation rate are markedly different. In this case, the BVAR
model generates the smallest sample mean squared forecasting error for horizons of 1,
3 and 6months, and the improvement over the benchmark naive forecast is substantial.
The ARMA,AR(p), and ARd(p) models also perform relatively well at short horizons,
but the relative performance declines substantially as the forecast horizon grows. In
contrast, the factor models perform extremely poorly relative to the naive forecast at
short horizons, but perform the best at horizons of 9 and 12 months. The MA and
SES forecasts are generally outperformed by the naive forecast, and the simple mean
forecast performs poorly at horizons of 1, 3, and 6 months, but performs quite well at
horizons of 9 and 12 months.

The above comments are based purely on the sample estimates of the mean squared
forecast errors and take no account of sampling variability. Tables 3 and 4 provide the p
values for the conditional and unconditional Giacomini and White (2006) tests, using
themean forecast as the benchmark for theCPI and the naive forecast as the benchmark
for the PPI. For cases in which the p value is less than 0.05, if the corresponding
relative mean squared error is greater than 1 (i.e. the forecasting model is inferior to
the benchmark), the p value is presented in italics. If the p value is less than 0.05 and
the relativeMSE is less than 1 (i.e. the forecastingmodel is superior to the benchmark),
then the p value is displayed with a bold font. We have also applied the sequentially
rejective Bonferroni adjustment of Holm (1979) to each table of p values to control the
probability that at least one true null hypothesis in each table is rejected to be less than
0.05. The p values of any such rejected hypotheses are underlined. For example, in
Table 3(a) in the row marked ‘Factor(2)’ and the column headed ‘h = 6’ appears the
figure 0.022. This indicates that the p value for the null hypothesis that the conditional
expected value of the mean squared error of the factor model with two factors, when
used to forecast 6 months ahead, is equal to that of the mean forecast, is 0.022 when
tested against a two-sided alternative hypothesis. This number is printed in a bold
font to indicate that, if a Neyman–Pearson hypothesis test were conducted with a 5%
significance level, the null hypothesis would be rejected and that the estimated mean
squared error of the Factor(2) forecast is less than that of the mean forecast (i.e. the
Factor(2) model is superior). Note, however, that the null would not be rejected if a
1% significance level was used. Furthermore, the fact that the number 0.022 is not
underlined indicates that, when the sequentially rejective Bonferroni adjustment of
Holm (1979) is applied to restrict the probability that at least one true null hypothesis
in Table 3(a) is rejected to be less than 5%, the null hypothesis for the Factor(2) model
at a horizon of 6 months is not rejected. For this reason, we do not consider the fact
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that the individual p value for this hypothesis is less than 0.05 to constitute strong
evidence in favour of this particular forecasting model.

Overall, Tables 3(a) and 4(a) show no strong evidence that the forecasting models
considered are able to outperform the simple mean forecast when applied to the CPI
inflation rate for China. Furthermore, when restricting the familywise error rate to be
less than 5%,we find evidence only that the k-factormodelwith a horizon of 12months
has a worse performance than the simple mean forecast.

For the PPIwith a one-month forecast horizon,whenwe restrict the familywise error
rate to be less than 5%, the conditional test finds evidence that ARMAmodels provide
superior forecasts to the naive model. The unconditional test also finds evidence in
favour of the direct AR(p) model, the VAR(p) model, and the BVAR model. Some
individual p values are also less than 0.05 for longer forecasting horizons but in each
case the p values are reasonably close to 0.05 and the hypotheses are not rejected
when controlling the familywise error rate. For these reasons, we do not consider
these statistics to provide evidence of superior forecasting power at longer horizons.

We now consider the results for the forecasts of real activity. The relative mean
squared forecasting errors are presented in Table 5. For IP at a forecasting horizon
of 1 month, all the models considered are inferior to the simple mean forecast. For a
forecasting horizon of 3 months, only the AR(p) and ARd(p) models provide smaller
mean squared forecasting errors. At longer horizons, the relative performance of the
AR, VAR, BVAR, and factor models improves. Interestingly, however, ARMAmodels
are inferior at all forecasting horizons. Similarly, the naive, MA, and SES models
always perform poorly.

ForEP, the smallest relativemean squared error at anyhorizon is 0.974 (theFactor(2)
model with a horizon of 1 month). Thus, none of the models was able to produce an
economically meaningful improvement over the forecasting power of the simple mean
forecast.

The p values for the conditional Giacomini andWhite (2006) test appear in Table 6,
and for the unconditional test, in Table 7. The lack of evidence that any of the fore-
casting models considered are able to consistently produce mean squared forecasting
errors that are less than those of the simple mean forecast is striking.

6 Discussion

The forecasting models that we consider in this paper are all well established, and it
may be somewhat surprising thatwe find so little evidence of their utility in theChinese
context. However, from a theoretical perspective, themean squared optimal forecast of
a stochastic process yt relative to its past values is E(yR+h |yR, yR−1, yR−2, . . .) (see,
e.g. Hamilton (1994), Section 4.1). Furthermore, for any process yt that has a stable
ARMA representation, E(yR+h |yR, yR−1, yR−2, . . .) − E(yR+h) → 0 as h → ∞.
Consequently, we should expect our models to be less likely to produce forecasts
superior to the mean forecast as the forecast horizon grows. As a simple example,
consider the AR(1) model yt = β0 +β1yt−1 + εt . The mean squared optimal forecast
is fR+h = β0

∑h−1
j=0 β

j
1 +βh

1 yR . Plots of the values of the OLS estimator of β1 for each
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Fig. 2 AR(1) coefficient estimates: rolling 100-month window

Table 8 AR(1) estimates: full sample

Dependent variable:

C P It P P It �I Pt E Pt

Lagged dependent variable 0.402∗ ∗ ∗ 0.978∗ ∗ ∗ 0.069 0.162∗ ∗ ∗
(0.056) (0.013) (0.062) (0.061)

Constant 0.085∗ ∗ ∗ 2.215∗ −0.027 1.489∗ ∗ ∗
(0.021) (1.298) (0.080) (0.378)

p values are in parentheses. ∗,∗∗ and ∗ ∗ ∗ indicate p < 0.1, p < 0.05 and p < 0.01

of the subsamples used in the forecasting exercises reported in Sect. 5 are presented
in Fig. 2, and estimates of both coefficients computed using the full sample28 are in
Table 8.

Note that the coefficient estimates for the ‘slope’ term are fairly small for all vari-
ables except the PPI. The forecast equations for each horizon, computed using the
coefficient estimates from Table 8 obtained using the whole sample, are presented in
Table 9. With the exception of the PPI forecasts, the forecast equations all produce
forecasts that are very close in value to the estimated unconditional means of each
series for forecast horizons greater than 1. Thus, the main reason why the AR(1)
model fails to produce forecasts superior to the simple mean for these variables is that

28 Coefficient estimates for all the models computed using the entire sample are available in the online
supplement to the paper.
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Table 9 AR(1) forecast equations estimated using whole sample

CPI PPI

h = 1 E(yR+1|yR) = 0.085 + 0.402yR E(yR+1|yR) = 2.215 + 0.978yR
h = 3 E(yR+3|yR) = 0.133 + 0.065yR E(yR+3|yR) = 6.5 + 0.935yR
h = 6 E(yR+6|yR) = 0.142 + 0.004yR E(yR+6|yR) = 12.58 + 0.875yR
h = 9 E(yR+9|yR) = 0.142 + 0.000yR E(yR+9|yR) = 18.268 + 0.819yR
h = 12 E(yR+12|yR) = 0.142 + 0.000yR E(yR+12|yR) = 23.588 + 0.766yR
h = ∞ E(yR+h) = 0.142 E(yR+h) = 100.682

� IP EP

h = 1 E(yR+1|yR) = −0.027 + 0.069yR E(yR+1|yR) = 1.489 + 0.162yR
h = 3 E(yR+3|yR) = −0.029 + 0.000yR E(yR+3|yR) = 1.769 + 0.004yR
h = 6 E(yR+6|yR) = −0.029 + 0.000yR E(yR+6|yR) = 1.777 + 0.000yR
h = 9 E(yR+9|yR) = −0.029 + 0.000yR E(yR+9|yR) = 1.777 + 0.000yR
h = 12 E(yR+12|yR) = −0.029 + 0.000yR E(yR+12|yR) = 1.777 + 0.000yR
h = ∞ E(yR+h) = −0.029 E(yR+h) = 1.777

the estimated autocorrelation at a lag of 1 month is small. In contrast, the estimated
‘slope’ coefficient for PPI is consistently close to 1 which explains why the AR(1)
model produces a similar forecasting performance to the naive model, and why both
are markedly superior to the mean forecast.

More generally, there are a number of potential explanations for the relatively poor
performance of standard forecasting models in the Chinese context.

Firstly, itmight simply be that the availablemacroeconomic time series forChina are
not sufficiently long to provide statistically significant results. Our analytical approach
effectively requires two data sets—one to estimate the model parameters and another
to produce a series of out-of-sample forecasts. Western macroeconomic time series
are generally available over much longer time spans than their Chinese counterparts.
For example, Giacomini and White (2006) have 468 observations for their study of
forecasting models for US industrial production, personal income, CPI inflation, and
PPI inflation and generate forecasts for 318 months. In contrast, we have a total of 267
observations in total, yielding a maximum of 167 forecasts and raising the possibility
that statistically significant results might emerge from a larger sample of forecasts, if
it were available. Having said this, we note that only 31% of our CPI forecasts produce
point estimates of mean squared errors that are smaller than those of the benchmark
forecast. For the IP forecasts, this figure is 30%, and for EP it is 12%. Furthermore, as
seen in Tables 3, 4, 6, and 7, in many cases, the benchmark model provides forecasts
that are statistically significantly better than some of the other models considered.
Consequently, we are not convinced that a larger sample would significantly change
the conclusions of our study.

A second potential explanation for the failure of our more sophisticated models to
consistently outperform simple benchmarks is nonstationarity. Forecasting models in
the (vector) ARIMA tradition are well suited to variables that are weakly stationary
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(perhaps after differencing). In cases where the marginal distributions of variables
are slowly and continually changing over time, or where the marginal distributions
change more suddenly, the rationale for such models is less clear. It should be noted
that there can be little doubt that nonstationarity of these types exists. The question is
whether they are so extensive in the Chinese context as to render traditional forecasting
methods impotent. One particular potential source of nonstationarity is the financial
crisis that commenced in late 2008. In the online supplement29 to this paper, we have
provided plots of the mean squared forecasting errors over 24-month widows for every
forecasting model, forecasting horizon, and variable. We have also provided plots of
the period-by-period difference in the squared forecasting errors generated by each
forecasting model, and the squared forecasting errors generated by the benchmark
model. It is clear from these plots that the period immediately following the onset of
the crisis was one of great volatility in the forecasting performance of many models
relative to the benchmarks. However, with the mean squared errors and p values
recomputed using only forecasts from January 2010 to December 2018,30 we find
little difference from the results generated using the full samples that we report in
Sect. 5. Consequently, it does not appear to be the case that our results are being driven
primarily by thefinancial crisis.More generally, the impact of nonstationaritymayvary
across our forecasting models. Trivially, the naive forecast is unaffected by changes
in the marginal distribution that occurred more than one month previously, whereas
the estimation of parameters in other forecasting models usually places equal weight
on all past observations. How nonstationarity would affect the ranking of forecasting
models depends on the particular changes that occur in the marginal distribution over
time. Therefore, it is difficult to make general comments about these effects. Further
investigation into the issue of nonstationarity might proceed by comparingmodels that
explicitly incorporate parameter drift and structural change to the benchmark models
that we have used in this paper. This is an interesting but extensive task that we leave
for future research.

Finally, it is possible that traditional forecasting methods perform relatively poorly
for China because of low data quality. Much has been written about the quality of
Chinese macroeconomic data (see, for example, Crabbe (2016), Holz (2014), Orlik
(2011), Holz (2003) and Holz (2008)), and we do not have anything to add to this liter-
ature. To understand the potential impact of poor quality data, consider the following
simple model of measurement error: yt = y∗

t + et where y∗
t is a weakly stationary

stochastic process that we wish to forecast, and et is a measurement error that we
assume to be serially uncorrelated and uncorrelated with y∗

t at all leads and lags. It
is simple to show that Corr(yt , yt− j ) � Corr(y∗

t , y
∗
t− j ) for all j ∈ N and that the

difference between the two correlations increases with Var(et ). Thus, measurement
error is a possible cause of the small estimates of the AR(1) slope coefficients reported
in Fig. 2 and Table 8 and may contribute to the relatively poor forecasting power of
models that exploit correlation structure. Ultimately, if the published data do not reli-
ably measure the variables that they are claimed to represent, then forecasting those
variables may be a hopeless task and, in any case, might be argued to be pointless.

29 https://cheaton.github.io/China-Forecasting/online_supplement.pdf.
30 These tables are presented in the online supplement.
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In such a situation, the way forward is to seek better ways to measure the aspects of
Chinese economic activity that are of interest, and to forecast these measures directly,
rather than relying on the official data collection.

7 Conclusion

For analysts interested in forecasting real activity in China, the results in our paper
provide clear guidance. We find no evidence that any of the forecasting models that
we consider provide smaller mean squared forecasting errors than the simple mean
forecast. For inflation, the results are less clear-cut. For PPI inflation, we found statisti-
cally significant evidence that AR, ARMA, VAR, and BVARmodels produce superior
forecasts to the naive model at a forecasting horizon of 1 month. For each of these
models, the estimated mean squared forecasting error is approximately half that gen-
erated by the benchmark naive forecasting model. However, we do not find strong
evidence that any of the models that we consider produce better forecasts of the PPI
than the naive model at horizons longer than 1 month, and we find no evidence that
any of the models we consider produce superior forecasts of the CPI than the simple
mean model at any horizon.

An important contribution of our paper is that (to our knowledge) it is the first paper
on forecasting the Chinese macroeconomy that has formally tested hypotheses that
the forecasting models under consideration have forecasting power equal to that of
simple benchmark models. Our samples of forecasts range in size from 156 (for 12-
month-ahead forecasts) to 167 (for 1-month-ahead forecasts). These are much larger
samples than have been generated in the prior published literature, which range from
five observations to 60. The fact that we find so little statistically significant evidence
that sophisticated forecasting models provide forecasts superior to those available
from simple benchmark models raises considerable doubt about the generality of pre-
viously published results that suggest otherwise, beyond the particular sample periods
considered.

While our resultsmight create an impression that, for themost part, Chinesemacroe-
conomic variables cannot be forecast, such a conclusion should be resisted. Instead,
our main finding is that, with the exception of the PPI, for the variables we con-
sider there does not exist sufficiently strong serial correlation for the widely used
conventional forecasting techniques to consistently outperform a forecast based on
an estimator of the mean, in the sense of producing a smaller mean squared fore-
casting error. Therefore, for CPI, industrial production, and electricity production, we
recommend the mean forecast due to its simplicity. Note, however, that our results
do not necessarily imply that the more sophisticated models we consider would not
perform relatively well when judged against criteria other than the mean squared fore-
casting error (for example, for sign forecasting). Our findings also do not preclude
the possibility that using nonsample information might improve the forecasts, that
less conventional forecasting models might perform better than the models we have
considered, or that alternative measures of inflation and real activity might have more
forecastable structure than the ones used in this paper. Thus, while our results have
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important implications for those interested in forecasting Chinese macroeconomic
variables, considerable scope remains for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

The following tables list the variables that were used to estimate the factors used in
the factor forecasts (Tables 10, 11, 12, 13). All variables were sourced from Thomson
Reuters Datastream and are monthly variables dating fromOctober 1996 to December
2018. The tables provide the Datastream variable name and code in the first two
columns. The third column contains NA if the variable has missing observations. The
fourth column contains a 2 if the variable was used in first difference form, and a 3 if
logged first differences were used.
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Table 10 Real activity

Variable Code NAs Trans.

CH INDUSTRIAL PRODUCTION INDEX
VOLN

CHIPTOT.H NA 3

CH OUTPUT OF INDUSTRIAL
PRODUCTS—CRUDE STEEL VOLN

CHVALSTLH NA 3

CH OUTPUT OF INDUSTRIAL
PRODUCTS—MOTOR VEHICLES
VOLN

CHVALMVHH NA 3

CH OUTPUT OF PRIMARY
ENERGY—HYDRO-ELECTRIC
POWER VOLN

CHYDENRGR NA 3

CH INDUSTRIAL PRODUCTION:
ELECTRICITY VOLN

CHPBRENTP NA 3

CH CRUDE OIL PRODUCTION—CHINA
VOLN

CHPCOBD.P NA 2

CH INVESTMENT: FIXED
ASSETS—PRIMARY
INDUSTRY(CMLV)(%YOY) NADJ

CHIFARI%A NA 2

CH INVESTMENT:
FXD.ASS.—SECONDARY
INDUSTRY(CMLV) (%YOY) NADJ

CHIFARS%A NA 2

CH INVESTMENT:
FXD.ASS.—TERTIARY INDUSTRY
(CMLV) (%YOY) NADJ

CHIFART%A NA 2

CH GOVERNMENT EXPENDITURE
(BUDGETARY) CURN

CHEXPENDA 3

CH GOVERNMENT REVENUE—TAXES
CURN

CHTAXREVA NA 3

CH EXPORTS CURN CHEXPGDSA 3

CH IMPORTS CURN CHIMPGDSA 3

CH CARGO HANDLED AT MAJOR
SEAPORTS VOLN

CHCGOTOTP NA 3

CH EXTERNAL TRADE BALANCE
CURN

CHVISGDSA 2

CH FREIGHT TRAFFIC VOLN CHFRETOTP NA 3

CH RAILWAY CARGO TURNOVER
VOLN

CHCNXNO.M 3

CH RETAIL SALES: CONSUMER
GOODS (UNREVISED) CURN

CHRETUOTA NA 3

CH CONSUMER CONFIDENCE INDEX
NADJ

CHCNFCONR 3

CH CONSUMER EXPECTATION INDEX
NADJ

CHNBSCXIR 3

CH CONSUMER SATISFACTION INDEX
NADJ

CHNBSCSIR 3
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Table 11 Prices

Variable Code NAs Trans.

CH CPI (CPPY=100) NADJ CHCONPRCF 2

OPEC Oil Basket Price U$/Bbl T42463 3

CH RPI—RURAL (CPPY=100) NADJ CHGRPINRF 2

CH RPI (CPPY=100) NADJ CHORPOVEF 2

CH RPI: URBAN (CPPY=100) NADJ CHGRPINUF 2

Table 12 Financial variables

Variable Code NAs Trans.

CH 20 DAY RELOAN RATE NADJ CHRELOAN 2

CH DISCOUNT RATE (EP) NADJ CHDISCRT 2

CH PRIME LENDING RATE (EP) CHBANKR. 2

SHANGHAI SE COMPOSITE—PRICE
INDEX

CHSCOMP 2

SHENZHEN SE COMPOSITE—PRICE
INDEX

CHZCOMP 3

CH CHINESE YUAN TO 100 JAPANESE
YEN—WEIGHTED AVERAGE CURN

CHXRWJPY 2

CH CHINESE YUAN TO US DOLLAR
(AVERAGE AMOUNT) NADJ

CHXRUSD. 2

CH NOMINAL EFFECTIVE FX
RATE(NEER)BASED ON CONSUMER
PRICE INDEX

CHI..NECE 2

CH MONEY SUPPLY—CURRENCY IN
CIRCULATION CURN

CHM0....A 3

CH MONEY SUPPLY—M1 CURN CHM1....A 3

CH MONEY SUPPLY—M2
(METHODBREAK OCT2011) CURN

CHM2....A 3

CH FINANCIAL INST.—DEPOSITS
(RMB)(METHO BREAK IN 2011) CURN

CHFISD.RA 3

CH FINANCIAL INST-FINANCIAL
BONDS(RMB)(METHO BREAK IN
2011) CURN

CHKFIABFA 3

CH GOLD AND FOREIGN
RESERVES—FOREIGN RESERVE
CURN

CHRESERVA 2
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Table 13 External trade

Variable Code NAs Trans.

EX EU—IMPORTS FROM CHINA, (CIF)
CURN

EXI7D1CHA 3

UK UNITED KINGDOM—IMPORTS
FROM CHINA, (CIF) CURN

UKI7D1CHA 3

US UNITED STATES—IMPORTS FROM
CHINA, (CIF) CURN

USI7D1CHA 3

JP JAPAN—IMPORTS FROM CHINA,
(CIF) CURN

JPI7D1CHA 3

JP JAPAN—EXPORTS TO CHINA CURN JPI7D0CHA 3

UK UNITED KINGDOM—EXPORTS TO
CHINA CURN

UKI7D0CHA 3

US UNITED STATES—EXPORTS TO
CHINA CURN

USI7D0CHA 3

EX EU—EXPORTS TO CHINA CURN EXI7D0CHA 3

AU AUSTRALIA—EXPORTS TO CHINA
CURN

AUI7D0CHA 3

CN CANADA—EXPORTS TO CHINA
CURN

CNI7D0CHA 3
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