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Abstract
A purely Bayesian vector autoregression (VAR) framework is proposed to formulate
and compare tri-variate models for the logs of the economy-wide aggregates of out-
put and inputs (physical capital and labour). The framework is derived based on the
theory of the aggregate production function, but at the same time, accounts for the
dynamic properties of macroeconomic data, which makes it particularly appealing
for modelling GDP. Next, using the proposed framework we confront a-theoretical
time-series models with those that are based on aggregate production function-type
relations. The common knowledge about capital and labour elasticities of output as
well as on their sum is used in order to formulate prior distribution for each tri-variate
model, favouring the linearly homogenous Cobb–Douglas production function-type
relation. In spite of this, production function-based co-integration models fail empir-
ical comparisons with simple VAR structures, which describe the three aggregates by
three stochastic trends.

Keywords Bayesian inference · VAR models · Economic growth models ·
Co-integration analysis · Aggregate production function · Potential output

JEL Classification C11 · C51 · C52 · O40

1 Introduction

Aggregate production functions, which link aggregated product of an economy with
its aggregated physical capital and labour—treated as the factors of production—have
been widely used in macroeconomics, economic growth literature in particular. It
has been so, despite serious objections formulated by many economists against the
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very concept of aggregate production functions; this critique is summarized in Felipe
and McCombie (2013). While microeconomic production functions are reasonable
models that describe technology of individual producers, meaningful aggregation of
physical capital, labour and output is hardly possible, and any simple relation between
aggregates looks very suspicious—see, for example, Fisher (1969). Even in modern
attempts to derive aggregate production functions from micro-foundations, the under-
lying assumptions are extremely specific—see, for example, Jones (2005) andGrowiec
(2008, 2013). On the other hand, it is often argued that even though the link between
the aggregate production function (APF hereafter) and its microeconomic foundations
is not clear it still presents a reasonable, well-defined mathematical relationship.

In both theoretical and empirical models of economic growth the Cobb–Douglas
functional form is prevailing due to historical reasons, its simplicity, a relatively good
data fit as well as some formal justifications—e.g. it is a first-order local approximation
of any smooth production function expressed in terms of logs of inputs and output
(provided such a relation exists on the level of some aggregates of output and inputs).
A more general and quite popular form is translog, which is a second-order local
approximation. Nowadays, APF is used, for example, as the world technology frontier
in international growth comparisons and in decomposition of economic growth into
its main sources, as proposed in Koop et al. (1999, 2000), where Bayesian analysis of
stochastic production frontiers is applied; see Makieła (2014) for a more recent study.
Analyses of the production function-type relations between aggregates are mainly
performed by econometricians and empiricalmacroeconomists. Their focus ismore on
statistical issues of modelling and inference than on theoretical economic foundations
of such empirical models.

Stochastic production frontier models extend traditional production functions by
adding non-negative unobservable random terms that represent technical inefficiency.
Such models either are completely static, or use time trends (or time-varying param-
eters) to capture technology changes. On the other hand, however, GDP and GNP
data (mainly for the USA and some other developed economies) were used long ago
to demonstrate important models and techniques of modern econometrics; see, for
example, Koop et al. (1997) for a Bayesian approach to joint modelling and testing
of long memory and a unit root. Describing dynamic properties of economic time
series is a crucial issue, and co-integration analysis constitutes a standard framework
to establish stable, long-run relations amongmacroeconomic variables—variables that
can usually be described by integrated stochastic processes. Co-integration techniques
are useful tools to avoid spurious regressions. So far, the stochastic frontier—or, more
generally, a comparative—analysis of economic growth has ignored these issues when
analysing panel data, even those covering longer periods, like 30 years. Although our
initial motivation was rooted in stochastic frontier production functions for panel
data, we focus here on a simpler, purely time-series analysis with no panel con-
text.

Since production function specifications use data on three variables, we have to
build appropriate tri-variatemodels forBayesian comparisons. Thus, all our competing
models consist of three equations. We start from basic VAR(p) specifications—their
first two equations (for the logarithms of inputs aggregates) are also used in production
function-type models; only the form of the third equation (for the log of GDP) is
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specific. Empirical comparisons are based on individual economies (not on a panel of
countries), namely the USA and Poland, but also on the UK and Hungary—in order to
check whether the results are similar for different countries, developed ones as well as
those undergoing economic transformation. Since we use annual data from relatively
short periods, p=3 is taken as the maximum lag.

The Bayesian VAR framework enables us to calculate posterior probabilities of
many nested and non-nested models, in particular specifications that assume co-
integrating relations (for Bayesian co-integration analysis, see, for example, Koop
et al. 2004, 2010; Wróblewska 2009). In order to analytically obtain basic results,
we use as much as possible the conjugate prior distributions. We also resort to the
concept of Bayesian sequential cut (see, for example, Florens and Mouchart 1985;
Osiewalski and Steel 1996), which allows us to separate the analysis of aggregate
inputs dynamics from the main issue of analysing aggregate output given current
aggregate inputs levels. This main issue is closely related to the formal econometric
status of any APF-type relation. Thus, we would like to look from an a-theoretical,
purely time-series co-integration perspective at the issue of existence and empirical
adequacy of APF-type relations.

The aim of this study is to provide an unbiased, scientific evidence in favour or
against APF, and thus to shed more light on the topic that has been on the research
agenda for decades. Our contribution in this regard is threefold. Firstly, there are two
main approaches used by practitioners to calculate potential output or output gap in
macroeconomics: (i) a purely dynamic, time-series approach and (ii) a theory-driven
approach based on APF; see, for example, Turner et al. (2016) or Alichi et al. (2017)
for a survey of methods used to model macroeconomic output.We present a modelling
framework that, on the one hand, addresses the dynamic properties of macroeconomic
data and, on the other hand, encompasses models deeply rooted in economic theory of
aggregate production and productivity. Secondly, we present a formal Bayesian model
comparison, which brings together these two pieces of the literature that describe
aggregate production. Thirdly, we examine the role of APF-type relations, especially
Cobb–Douglas and translog, within a dynamic econometric framework and analyse if
APF can be viewed as an empirically valid co-integration relation.

We are fully aware that our study requires an explicit assumption that APF is a
testable, falsifiable construct. This, however, may not be feasible in some fields of
macroeconomics, which greatly rely on the very existence of APF. We do not wish
to dispute such studies since, given the Bayesian perspective, they merely imply a
strong prior belief as regards APF—a belief that, via prior odds, simply outweighs
any information thatmay come from (sometimesmessy and distorted)macroeconomic
data. We are also aware that our purely statistical approach to the relation between
economy-wide aggregates of output and inputs can be criticized—even if we find a
co-integration equation that can be interpreted as the APF. One should be aware of
the argument given in Shaikh (1974), also discussed in Felipe and McCombie (2013),
which shows that a well-fitted empirical Cobb–Douglas-type relation can be nothing
more but a straightforward consequence of a simple identity between constant-price
value added and the sum of wages and profits, provided that the observed shares of
wages and profits are constant over time. That is, even if we find a co-integration
relation with properties attributed to traditional production functions, the latter can
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still be considered spurious in a fundamental, economic sense. Such relation would
only show that the conditions formulated in Shaikh (1974) are approximately met.
However, if such co-integration relation is unlikely in view of the data, we obtain an
empirical evidence against conditions that wouldmake the APF-type equation a useful
approximation of reality.

The structure of the paper is as follows: Sects. 2 and 3 present the technical details
of the VAR modelling framework, Bayesian model comparison and the role of the
Cobb–Douglas relation. Readers more interested in the empirical results may move
forward to Sect. 4 where competing model classes are presented. Section 5 focuses on
the data and empirical results of model comparison. Section 6 is devoted to the best
specifications and posterior results on crucial parameters. Final remarks are summa-
rized in Sect. 7.

2 Bayesian VARmodelling framework

We describe annual data on GDP (i.e. aggregate product Qt) as well as aggregates of
capital (Kt) and labour (Lt) using a tri-variate VAR(p) model for the natural logarithms
of both inputs (kt � ln Kt , lt � ln Lt ) and output (qt � ln Qt ). The basic form of a
model for xt � [kt ltqt ] can be written as

xt �
p∑

i�1

xt−i�i + dt�o + εt , (1a)

where �i are (3×3) matrices of parameters accompanying lags xt−i �[
kt−i lt−i qt−i

]
(i � 1, . . . , p),�o is a (m×3)matrix of coefficients that post-multiplies

dt , the row vector of m deterministic components (e.g. m �2 and dt � [1 t]), and {εt}
is a tri-variate Gaussian white noise process with contemporaneous covariance matrix
�, a (3×3) symmetric positive definite matrix.

Denoting zt � [
xt−1 . . . xt−pdt

]
and Φ �

[
Φ ′

1 . . . Φ ′
pΓ

′
o

]′
we can rewrite (1a) as

xt � ztΦ + εt , (1b)

where� is (3p+m)×3 and can be represented by its 3 columns asΦ � [
ϕ(1)ϕ(2)ϕ(3)

]
,

where ϕ( j) groups the 3p +m unknown coefficients appearing in equation j (j=1, 2,
3).

For the purposes of co-integration analysis, the particularly important representation
of (1a) is the one in terms of first differences:

xt � xt−1(I3 + Π) +
p−1∑

j�1


xt− jΓ j + dtΓo + εt , (2a)
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where Π � −I3 +
p∑

i�1
Φi and, for p >1, Γ j � −

p∑
h� j+1

Φh . Denoting z̃t �
[
xt−1
xt−1 . . . 
xt−(p−1)dt

]
and Φ̃ �

[
Π ′Γ ′

1 . . . Γ ′
p−1Γ

′
o

]′
we can rewrite (2a) as

xt � xt−1 + z̃t Φ̃ + εt , (2b)

where, again, Φ̃ � [
ϕ̃(1)ϕ̃(2)ϕ̃(3)

]
is (3p +m)×3 with ϕ̃( j) grouping the 3p +m

unknown coefficients of equation j in (2a) (j=1, 2, 3). Note that Φ̃ � RΦ − F , where

R �

⎡

⎢⎢⎢⎢⎣

I3 I3 I3 . . . I3 0
0 −I3 −I3 . . . −I3 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −I3 0
0 0 0 . . . 0 Im

⎤

⎥⎥⎥⎥⎦
, F �

⎡

⎢⎢⎢⎢⎢⎣

I3
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
; RF � F .

For the parameter matrices � and � in (1a,b) we assume the conjugate joint prior
distribution, i.e. � has an inverted Wishart marginal prior distribution and � has a
matrix-variate normal conditional distribution (given �), that is

Σ ∼ IW (A, s), vec(Φ)|Σ ∼ N (vec(F),Σ ⊗ W ).

The hyper-parameters A (a 3×3 symmetric, positive definite scale matrix) and s
(degrees of freedom, s>2) will be elicited in the next section. In the conditional prior
of Φ � [

ϕ(1)ϕ(2)ϕ(3)
]
we reflect the idea that xt is, most likely, just the tri-variate

random walk, i.e. xt � xt−1 + εt . Thus, we take F � [I3 0]′ as the prior mean. The
precision of our prior assumptions on � is reflected by the choice of W , as Σ ⊗ W
is the covariance matrix of vec(�) given �. We assume that W , a square matrix of
order 3p +m, is block-diagonal with I3,

1
2 I3, . . . ,

1
p I3,W0 as diagonal blocks. Our

prior resembles the so-called Minnesota (Litterman) prior (see, for example, Doan
et al. 1984; Litterman 1986), except that we use a purely Bayesian approach and
our prior is exactly the marginal distribution of the parameters; thus, it does not use
hyper-parameters based on the data being modelled.

The induced conditional prior for the matrix Φ̃ � RΦ − F , which groups

the conditional mean parameters in (2b), is matrix-variate normal: vec
(
Φ̃
)
|Σ ∼

N
(
0,Σ ⊗ W̃

)
, where

W̃ � RW R′ �

⎡

⎢⎢⎢⎢⎢⎢⎣

(
1 + 1

2 + · · · + 1
p

)
I3 −

(
1
2 + · · · + 1

p

)
I3 . . . − 1

p I3 0

−
(
1
2 + · · · + 1

p

)
I3

(
1
2 + · · · + 1

p I3
)

. . . 1
p I3 0

. . . . . . . . . . . . . . .

− 1
p I3

1
p I3 . . . 1

p I3 0
0 0 . . . 0 W0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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The simple prior distribution described here enables us to use purely analytical
approach in order to obtain basic posterior results and the marginal data density (MDD
hereafter). Of course, our conjugate prior is defined for completely free, unconstrained
parameters of (1a, b) or, equivalently, (2a, b). In particular, we do not impose stability
conditions that are imposed in, for example, Wróblewska (2009).

There are many ways of generating competing models with the use of this gen-
eral framework. Obvious special cases are obtained by assuming different orders p
of VAR(p) or imposing ��0 for each p and considering VAR(p−1) for 
xt . But
our main task is to reconsider the production function-type relation within dynamic
framework; hence, the crucial transformation of VAR(p) is the one in terms of the
marginal sampling model for x (1)

t � [kt lt ], given the past of all three variables in xt ,
and the conditional sampling model for qt given x

(1)
t and the past of xt . This enables us

to directly consider exogeneity issues and to propose many other competing models.
Starting from (1a), we obtain the following forms of the sampling distribution of

x (1)
t given the past of xt (denoted as ψt−1) and the sampling distribution of qt given
x (1)
t and ψt−1:

x (1)
t |ψt−1, Φ,Σ ∼ N

(
ztΦ

(1), Σ11

)
, (3)

qt |ψt−1, x
(1)
t , Φ,Σ ∼ N

(
x (1)
t β + ztδ, ω

)
, (4)

where Φ(1) � [
ϕ(1)ϕ(2)

]
groups the coefficients of the first two equations of VAR(p),

�11 is the (2×2) left upper block of

Σ �
⎡

⎣
σkk σkl σkq
σkl σll σlq
σkq σlq σqq

⎤

⎦ �
[

Σ11 Σ21
Σ21 σqq

]
,

and β � Σ−1
11 Σ12, ω � σqq − Σ21β > 0, δ � ϕ(3) − Φ(1)β.

Due to the well-known properties of inverted Wishart distributions, �11 and (β, ω)

are stochastically independent, Σ11 ∼ IW (A11, s − 1), β|ω ∼ N
(
A−1
11 A12, ωA−1

11

)
,

and ω ∼ IW
(
aqq.1, s

)
or, equivalently, τ � ω−1 ∼ Gamma

( s
2 ,

aqq.1
2

)
, where we use

the obvious partitioning of the hyper-parameter matrix

A �
⎡

⎣
akk akl akq
akl all alq
akq alq aqq

⎤

⎦ �
[
A11 A12
A21 aqq

]
,

and aqq.1 � aqq − A21A
−1
11 A12 > 0. Thus, the decomposition of (1a) into (3) and

(4) has led to a one-to-one re-parameterization of the conditional (contemporaneous)
covariance matrix� into two groups of parameters,�11 and (β, ω), which are a priori
independent; �11 appears only in the marginal model for inputs (given the past of
xt) and (β, ω) together with δ parameterizes the conditional model of output (given
current inputs and ψt−1). The one-to-one re-parameterization of �, which appears
in (3) and (4), leaves Φ(1) � [

ϕ(1)ϕ(2)
]
in the marginal model for inputs and uses

123



Bayesian comparison of production function based and… 1361

δ � ϕ(3) − Φ(1)β in the conditional model for output. Note that the joint conditional
prior of vec

[
Φ(1)δ

] � Qβvec(Φ), given �, is normal with mean Qβvec(F) and
covariance matrix Qβ(Σ ⊗ W )Q′

β , where

Qβ �
[
I 0
−β ′ ⊗ I I

]
; thus Qβvec(F) � vec

⎡

⎢⎢⎣

1 0 −β1
0 1 −β2
0 0 1
0 0 0

⎤

⎥⎥⎦,

and Qβ(Σ ⊗ W )Q′
β is block-diagonal with matrices Σ11 ⊗ W and ωW as diagonal

blocks.
All this means that θ(1) � (Φ(1), Σ11) is a sufficient parameterization of (3),

θ(2) � (δ, β, ω) is a sufficient parameterization of (4), and both groups of param-
eters are independent a priori, which guarantees the Bayesian sequential cut (see, for
example, Florens and Mouchart 1985; Osiewalski and Steel 1996), leading not only
to posterior independence between θ(1) and θ(2) (i.e. their conditional independence
given observations), but also to a useful factorization of MDD given initial observa-
tions:

p(x1, . . . , xT |ψ0) �
∫

Θ1

∫

Θ2

p(θ(1))p(θ(2))
T∏

t�1

[p(x (1)
t |ψt−1, θ

(1))

p(qt |ψt−1, x
(1)
t , θ(2))]dθ(2)dθ(1) � C1C2

where

C1 �
∫

Θ1

p
(
θ(1)

) T∏

t�1

p(x (1)
t |ψt−1, θ

(1))dθ(1),

C2 �
∫

Θ2

p
(
θ(2)

) T∏

t�1

p(qt |ψt−1, x
(1)
t , θ(2))dθ(2),

p
(
θ(1)

)
and p

(
θ(2)

)
are prior densities and T is the number of tri-variate observations.

Thus, our prior assumptions lead to complete separation of the Bayesian analysis in
the marginal and conditional models (3) and (4).

The parameterization in terms of θ(1) and θ(2) is obviously not the only one that
leads to the sequential cut. Instead of (1a, b), we can start from (2a, b) and obtain the
following forms of the marginal and conditional sampling models:

x (1)
t |ψt−1, Φ̃,Σ ∼ N

(
x (1)
t−1 + z̃t

[
ϕ̃(1)ϕ̃(2)

]
,Σ11

)
, (5)

qt |ψt−1, x
(1)
t , Φ̃,Σ ∼ N

(
x (1)
t β + qt−1 − x (1)

t−1β + z̃t δ̃, ω
)
, (6)

where δ̃ � ϕ̃(3) − [
ϕ̃(1)ϕ̃(2)

]
β and (6) can be equivalently written as
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qt |ψt−1, x
(1)
t , Φ̃,Σ ∼ N

(

x (1)

t β + z̃t δ̃, ω
)
.

Now θ̃ (1) � (
ϕ̃(1), ϕ̃(2), Σ11

)
and θ̃ (2) �

(
δ̃, β, ω

)
are sufficient parameteri-

zations of the marginal and conditional models, respectively. Since vec
(
Φ̃
)
|Σ ∼

N
(
0,Σ ⊗ W̃

)
and vec

[
ϕ̃(1)ϕ̃(2)δ̃

]
� Qβvec

(
Φ̃
)
,

vec
[
ϕ̃(1)ϕ̃(2)δ̃

]
|Σ11, β, ω ∼ N

(
Qβ0, Qβ

(
Σ ⊗ W̃

)
Q′

β

)
� N

(
0,

[
Σ11 ⊗ W̃ 0

0 ωW̃

])
.

The conditional prior of vec
[
ϕ̃(1)ϕ̃(2)

]
given �11 is N

(
0,Σ11 ⊗ W̃

)
, the condi-

tional prior of δ̃ given (β, ω) is N
(
0, ωW̃

)
, which does not depend on β, and θ̃ (1)

and θ̃ (2) are a priori independent. Thus, under our prior structure, the complete sepa-
ration of posterior inference and MDD calculations is preserved not only for (3) and
(4), but also for (5) and (6). This is useful for the model formulation strategy. As
long as we do not impose restrictions that link parameters of the marginal and con-
ditional models, we can separately consider their competing variants. Consequently,
if we consider n1 variants of the marginal model and n2 variants of the conditional
model, n1·n2 models for xt can be formulated and compared. Note that it is formally
irrelevant which particular parameterization we choose—(3) or (5) for the marginal
model, (4) or (6) for the conditional model. For instance, it may be easier to formu-
late separate restrictions on θ(1) and θ̃ (2) (than on θ(1) and θ(2)) in order to create an
interesting (interpretable) model for xt . Incidentally, remind that θ(h) and θ̃ ( j) are a
priori independent (h, j � 1, 2; h �� j). Since θ(1)⊥θ(2) and

[
ϕ̃(1)ϕ̃(2)

]
is a (one-to-

one) transformation of
[
ϕ(1)ϕ(2)

]
, it is clear that θ̃ (1)⊥θ(2); starting from θ̃ (1)⊥θ̃ (2),

by the same argument we get θ(1)⊥θ̃ (2).

3 The role of the Cobb–Douglas-type relation in themodelling
strategy

In this section we focus on the conditional sampling model for output and present the
use of the relation between current levels of all three variables in both creating specific
models and eliciting prior distribution of the conditional covariance matrix �.

In both equivalent formulations of the conditional sampling model for output given
inputs, (4) and (6), the logarithm of output is linearly dependent on the logarithms of
current input levels (plus some linear function of past values of kt , lt , qt). In view of the
traditional concept of the APF, the presence of the relation between output and current
inputs in the conditional model could be called the contemporaneous or immediate
APF. Since we work within the VAR model framework for logs of Qt, Kt and Lt, this
relation takes the Cobb–Douglas form. It is nothing to be empirically discovered. It
is obtained by construction, as the nonzero vector β � Σ−1

11 Σ12 is a consequence of
nonzero conditional correlation between output and current inputs, i.e. nonzeroΣ12 in
the contemporaneous covariance matrix � (conditional with respect to the past of xt).
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As we consider standard VAR models, the conditional covariance matrix is constant
over time, so are the immediate capital and labour elasticities of output. Making this
covariance matrix vary over time would lead to time-varying elasticities in the spirit
of Koop et al. (2000). That is, the immediate Cobb–Douglas APF with either constant
or variable parameters is an obvious part of the standard VAR or a more general (TVP
VAR) model.

Although the static Cobb–Douglas form is just a matter of re-parameterization of
the basic VAR framework, there are some deeper, important questions, which can
be answered through empirical investigations only. First, we are interested whether
the immediate APF-type relation is the only important part of the conditional sam-
pling model. If so, the very old idea of a purely static Cobb–Douglas APF would
seem still relevant. If not, we may enquire about empirical validity of its different
extensions, like generalizing its functional form, keeping deterministic trend in the
equation, adding one-sided inefficiency terms, replacing β by a time-varying vector of
parameters. From the viewpoint of dynamic econometrics, the most interesting issue
amounts to testing if the immediate Cobb–Douglas APF-type relation is also a co-
integration relation linking all three aggregate variables, if they are treated as integrated
stochastic processes. If the issues mentioned above can be formalized as restrictions
on—or extensions of—the conditional sampling model only, such modelling strat-
egy preserves the Bayesian sequential cut. In this case weak exogeneity of inputs
(for inference on any function of the conditional model parameters) is assumed. Of
course, weak exogeneity can be tested within the full, three-equation framework—as
well as the presence of any co-integration relation among the three (obviously non-
stationary) variables. These issues require Bayesian analysis of the joint model for
inputs and output—without any separation of MDD calculations—and thus they are
computationally more demanding.

Before we present the competing models and their Bayesian comparison using
observations from four countries, let us use the immediate Cobb–Douglas APF idea
to elicit the hyper-parameters (A and s>2) of the inverted Wishart prior of �. Since,
given ω, β is normal with mean A−1

11 A12 and covariance matrix ωA−1
11 , and τ � ω−1

has the gamma distribution with mean sa−1
qq.1 and variance 2sa

−2
qq.1, the marginal prior

distribution of β is Student’s t with s>2 degrees of freedom, mean A−1
11 A12 and

covariance matrix
aqq.1
s−2 A−1

11 . Although, following Fisher (1969), Shaikh (1974) and
Felipe andMcCombie (2013), we are quite sceptical about the concept of the APF, we
do favour the traditional Cobb–Douglas case (with constant returns to scale) through
prior elicitation. Thus, this disputable concept, so popular in many economic models,
stands in the centre of our prior elicitation and β is treated as the vector of capital
and labour elasticities of output that, most likely, are equal and sum up to unity, with
prior standard deviations 0.2 for each elasticity and 0.1 for their sum. This leads to
five equations with seven unknowns; the sixth equation is obtained by assuming that
the diagonal elements of A are equal. Finally, we get s � 26

3 and

A � a

15

⎡

⎣
16 14 15
14 16 15
15 15 16

⎤

⎦, a > 0;
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since aqq.1 � a
15 , the corresponding marginal prior for τ � ω−1 is gamma

( 13
3 , a

30

)
.

We assume a=1, which results in the prior mean 130 and prior standard deviation
10

√
39 for the precision parameter τ .

Finally, let us focus on the prior distribution of the parameters of just one equa-
tion in (1b). Without loss of generality, we consider only the first equation, where
ϕ(1) given σkk is normal (with mean

[
1 0′]′ and covariance matrix σkkW ) and σ−1

kk
is gamma (with parameters s−2

2 and akk
2 , i.e. with mean s−2

akk
and standard deviation

a−1
kk

√
2(s − 2)). Hence, the marginal prior distribution of ϕ(1) is the Student’s t dis-

tribution with s−2 degrees of freedom, location vector
[
1 0′]′ and precision matrix

s−2
akk

W−1; our choice of the hyper-parameters values leads to the prior covariance

matrix V
(
ϕ(1)

) � akk
s−4W � 8

35Diag
(
I3,

1
2 I3, . . . ,

1
p I3,W0

)
. In the case of m �2 and

dt � [1 t] (unrestricted constant and trend) we take W0 � 100I2.

4 Competingmodels

4.1 Type Amodels: standardVAR andVEC specifications

Since we work with annual data, we only consider VAR(p) models with p ∈ {1, 2, 3}
and use the parameterization (2a, b), which enables us to impose rank restrictions
on the (3×3) long-run multiplier matrix �. Assuming that r � rank (�) is a par-
ticular number from the set {0, 1, 2, 3}, we generate four (very different) cases of
VAR(p).

In the case of r �0 (VAR(p– 1) for 
xt , ��0) or r �3 (VAR(p) for xt , unre-
stricted non-singular �) the sequential Bayesian cut is preserved when we work with
appropriate sufficient parameterizations of the marginal model for inputs and the con-
ditional model for output given current inputs, like in (5) and (6). Basic results can be
obtained analytically, and the marginal data density factorizes as MDD�C1 C2.

The cases of r �1 and r �2 amount to one or two co-integration relations with no
restrictions other than the basic identifying ones. Such specifications assume that the
same parameters (e.g. co-integrating vectors) appear in all three equations and thus
Bayesian cut is precluded. There is no MDD factorization, and numerical tools have
to be used (see “Appendix” for details of Bayesian co-integration analysis adopted in
this study).

All type A models belong to the VAR family; they differ in terms of p, r and the
presence and character of the deterministic variables dt in (2a).

4.2 Type Bmodels: based on production function

Type B models preserve (by their construction) the Bayesian sequential cut and thus
MDD factorization. In fact, in all type B models, as the marginal model for current
inputs,we take the first two equations (for x (1)

t ) of this typeAmodel (with r �0 or r=3)
that leads to the highest value of C1, the first factor of MDD. Type B specifications
differ in the form of the third equation, i.e. the conditional model for output given
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current inputs. The basic (and the simplest) one corresponds to zero restrictions on the
whole vector δ in (4) except for the intercept; that is, the third equation consists of the
static Cobb–Douglas APF and nothing else. In other type B models the conditional
part (for output given current inputs) is richer; its more general form can be written
as

qt � β1kt + β2lt + γ1k
2
t + γ2kt lt + γ3l

2
t + δ1t + δ0 + vt − zt , (7)

where vt ∼ i i N (0, ω) and zt ≡ 0 or zt ∼ i i Exp(λ); if they appear, the exponential
terms zt (with mean and standard deviation λ) are independent of symmetric errors vt
and represent period t technical inefficiency. The parameters β � [β1β2]′, δ0, δ1 and
ω appear also in (4), the conditional part of type A models with r �0 or r=3, so we
keep for (β1, β2, δ0, δ1, ω) the same conjugate prior distribution as in (4).

The translog parameters (γ1, γ2, γ3) are a priori normally distributed (given ω and
the remaining parameters) with zero mean and covariance matrix 60−1ωI3; higher
variances have also been tried in the empirical part, always leading to worse Bayesian
models in terms of MDD values. If zt � 0 for all t, (7) can be treated as the classical
normal linear regression model with a conjugate prior; C2 and basic posterior results
can be obtained analytically.

In cases where exponential inefficiency terms are introduced, we assume that λ

and the vector of other parameters are independent and λ−1 is a priori exponential
with mean (− ln r∗)−1, where r∗ ∈ (0, 1) is the prior median of technical efficiency
(see van den Broeck et al. 1994). Posterior inference is based on Gibbs sampling, as
described in Osiewalski and Steel (1998), where nT inefficiency terms are assumed
conditionally independent not only over n units, but also over T periods; this is directly
useful now, as in the present work we have n �1 (each economy is treated separately.)
Evaluating C2 in models with inefficiency is a non-trivial numerical task; we use a
very quick and efficient method, the modified arithmetic mean estimator proposed in
Pajor (2017).

Although the conditional part of any type B model is static (except for a possible
deterministic trend), the marginal part is always dynamic. Thus, the first two equations
(taken from some VAR(p) model) describe the dynamics of input aggregates (condi-
tionally not only on their own past, but also on the past of the aggregated output)
and the third equation postulates a strong (almost deterministic) relation between the
aggregates of output and current inputs.

Note that samplingmodels that can be obtained either by certain restrictions in class
A or, equivalently, by appropriate restrictions in class B are particularly important for
fair comparison of these two classes. Keeping, for the parameters of such a common
specification, the same marginal distribution in B as in A makes prior elicitation in
class B easier and enablesmakingBayesianmodel comparison as coherent as possible.
The full-efficiency (zt ≡ 0) Cobb–Douglas production function-type relations with
and without linear trend are two obvious special cases that can be obtained from either
(4) or (7); thus, they belong to both classes A and B.

123



1366 J. Osiewalski et al.

12.0

12.1

12.2

12.3

12.4

12.5

15.5

16.0

16.5

17.0

17.5

18.0

ln
(L

) 

ln
(K

), 
ln

(Q
) 

 ln(K)  ln(Q)  ln(L)

(a) 

10.2

10.2

10.3

10.3

10.4

10.4

10.5

12.5

13.0

13.5

14.0

14.5

ln
(L

) 

ln
(K

), 
ln

(Q
) 

ln(K) ln(Q) ln(L)

(b) 

10.6

10.7

10.7

10.8

13.7

14.2

14.7

15.2

ln
(L

) 

ln
(K

), 
ln

(Q
) 

ln(K) ln(Q) ln(L)

(c) 

8.9

9.0

9.1

9.2

9.3

9.4

9.5

11.5

12.0

12.5

13.0

ln
(L

) 

ln
(K

), 
ln

(Q
) 

ln(K) ln(Q) ln(L)

(d) 

Fig. 1 Annual data on GDP (solid line), capital (dashed line) and labour (dash-dot line); natural logs; a
the USA (1982–2011, T=30); b Poland (1992–2011, T=20); c the UK (1982–2011, T=30); d Hungary
(1983–2011, T=29)

5 The data and results of initial model comparison

We use annual data prepared for international comparisons and published in Penn
World Tables, version 8.0; Kt is capital stock (with PWT 8.0 code rkna), Lt denotes
total hours worked by engaged persons (given as emp*avh), and Qt is real GDP
(rgdpna). Four countries are considered. For the USA and UK, the observations since
1979 till 2011 are used, but the first three data points serve as initial conditions; thus,
we model T=30 tri-variate observations from the period 1982–2011. In the case of
Poland, wemodel only T=20 observations, covering the period 1992–2011, in order to
avoidmodelling pre-transformation data; the data from 1989 to 1991 are used as initial
conditions. In the case of Hungary, which was a more developed economy under the
communist regime,we use the data from the period 1980–2011 and focus onmodelling
T=29 observations from 1983 to 2011. Main interest is in the results for the USA,
the world leader, and Poland, an example of successful economic transformation. The
results for the UK and Hungary serve as a sensitivity check—whether similar findings
can be obtained for different economies.

The data are presented in Fig. 1. Due to scale differences between capital and
product variables (kt � ln Kt , qt � ln Qt ), relatively smooth upward trends constitute
a dominating picture, with fluctuations and short-term deviations being much less
visible. Labour (lt � ln Lt ) has its own scale on the right-hand side in each chart, so
its fluctuations are more visible. However, the stochastic and dynamic character of all
three aggregates is obvious when we look at the results of model comparison.

The natural Bayesian characteristic of how well a model fits the data is
p(x1, . . . , xT |ψ0), the marginal data density (MDD) value for the observations at
hand. MDD values constitute the main ingredient to the formal Bayesian procedure of
model comparison; see, for example, Osiewalski and Steel (1993). UsingMDDvalues,
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each reader can use his or her own prior distribution on themodel space and then easily
calculate the resulting posterior model probabilities. In order to avoid selecting prior
model probabilities, we are not going to report posterior probabilities of competing
specifications. Tables 1 and 2 contain the decimal logarithms of MDD values for type
A and B models, respectively. Of course, these values are based on particular prior
distributions on model parameters that we have proposed.

The MDD values, presented in Table 1 for different VAR(p) models (p=1,2,3),
indicate that simple specifications with non-stationarity, namely VAR(0), VAR(1) and
VAR(2) without constants for the tri-variate differenced series 
xt , are the best ones.
The second best are VAR(1), VAR(2) and VAR(3) models for levels, with one co-
integration relation and a constant restricted to this relation (or even without any
constant). Thus, Bayesian co-integration analysis leads to the conclusion that the
annual data on aggregate inputs and output are best described by three stochastic trends
(in particular, just by a tri-variate random walk), with some possibility of only two
stochastic trends and a long-run relation linking all three variables. However, three
stochastic trends—precluding any long-run relation—are much more likely. Under
equal prior probabilities for all models, specifications based on first differences are
more than 10 times more probable a posteriori than co-integrated VAR models for
levels. Also, these co-integration relations do not show any features of a regular pro-
duction function. All other specifications appearing in Table 1 can be omitted in further
considerations as they are unlikely in view of the data. The results presented above
are strikingly similar for all four economies, and, in view of the relatively short time
span of the data, they are strong even for the Polish economy, represented by 20 data
points only. Table 1 is based on a very diffuse prior for the linear trend parameters, as
we use W0 � 100I2 in the prior covariance matrix for the coefficients corresponding
to dt � [1 t]. It is not surprising that the models with time variable t are less likely—in
particular, models with an unrestricted trend becomeworse as the rank ofΠ increases;
the worst models appear at the bottom of Table 1. Using much more precise prior for
the deterministic components, with 1 and 0.01 as the diagonal elements of W0, leads
to the same general (qualitative) conclusions, but makes models with deterministic
terms slightly more likely a posteriori. In our final results in the next section we take
advantage of this increased role of the constant term under the more precise prior.

TheMDD values for the APF (or type B) models, presented in Table 2, are based on
our initial assumption that the joint tri-variate type B model always uses the first two
equations from one of the best VAR(p) models. So, we have taken these equations of
the VAR(1) specification for 
xt (without constants) as the marginal sampling model
for inputs, and we have assumed different specifications of the general form (7) as
conditional models for output given current inputs. All our type B models preserve
a Bayesian sequential cut by construction, so MDD�C1C2—where, for example,
log(C1)�22.64 for the USA. However, the values of log(C2) are so small for most
type Bmodels that we cannot treat them as competitors to the best type Amodels. The
basic, static, full-efficiency Cobb–Douglas APF model is completely unlikely in view
of the data. Extending it to the translog specification also does not seem to provide
any substantial difference (with some exception to Hungary) and adding exponential
inefficiency terms even worsens the initial situation, since such extension is clearly
not supported by the data. The only model extension that is worth noting amounts
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to adding linear trend to the basic APF (again, with the exception of Hungary), but
such primitive dynamics cannot compete with the best co-integrated VAR models.
We have also considered—among many other type B specifications, not mentioned
in Table 2—the Cobb–Douglas APF with time-varying parameters, proposed in Koop
et al. (2000). However, describing Cobb–Douglas elasticities by a certain bivariate
AR(1) process has appeared to be a worse modelling strategy than just adding a linear
trend.

6 A synthesis and final results

Our empirical results presented in the previous section suggest that a chance to obtain
a good type B specification, hopefully competing with VAR (i.e. type A) models, is in
richer dynamics in the APF equation. In order to achieve this goal, we extend a simple
Cobb–Douglas model (with or without trend) in an old-fashioned manner, by adding
an autocorrelation term. Hence, let us consider the following specification:

qt � β1kt + β2lt + ρ(qt−1 − β1kt−1 − β2lt−1) + δ0 + vt . (8)

It can be treated as a member of class B, if we appropriately extend (7) to cover
autocorrelation. On the other hand, (8) results from (4) if (taking δ1 � ρ) we impose
the restrictions: δ2 � −δ1β1, δ3 � −δ1β1 and δi � 0 for i � 4, . . . , 3p. In fact,
(8) can be obtained as the conditional part in the co-integrated VAR(1) model with
one co-integrating relation, [−β1 − β21]′ as the normalized co-integrating vector and
weakly exogenous inputs:

⎧
⎨

⎩


kt � γ0k + εtk

lt � γ0l + εtl

qt � (ρ − 1)(qt−1 − β1kt−1 − β2lt−1) + γ0q + εtq

(9)

The co-integrated VAR(1) model in (9) has a very interesting interpretation. In (9)
it is assumed that

(1) All three variables are conditionally correlated (given their past), as it is in any
type A model where matrix � has no zeros off the diagonal;

(2) The inputs formation is described by two stochastic trends;
(3) Both inputs are weakly exogenous for inference on the parameters in (8);
(4) The level of output, given current levels of inputs and the past of all variables,

is determined by the Cobb–Douglas-type relation, both through its “immediate”
impact and through deviations from it, which occurred in the previous period;

(5) The “immediate” Cobb–Douglas-type relation is a co-integrating relation as well.

Thus, the joint model (9), with its conditional part (8), reconciles the traditional
Cobb–Douglas APF (“immediate” and static) with the concept of co-integration, fun-
damental in modern econometrics. Note that this model significantly differs from
standard type A models with r �1 (see Sect. 4). Firstly, it imposes weak exogeneity
of inputs. Secondly, the normalized co-integrating vector [−a1 − a21]′ reflects the
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conditional (contemporaneous) correlation structure between output and inputs, as
a1 � β1, a2 � β2 and β � Σ−1

11 Σ12 (or the other way round: conditional correlation
reflects the co-integration relation).

The joint specification (9) is of particular interest, but it may occur too parsimonious
to win the competition with richer structures. However, it can be easily generalized,
keeping all its crucial properties. As in the case of any type Bmodel, the first two equa-
tions of (9)—i.e. the marginal model for inputs—can be replaced by two equations
with the highest value of C1 in class A. As the VAR(2) model with ��0 (assuming
three stochastic trends) is one of the three best specifications of type A, it is cru-
cial to consider its close VAR(2) alternative with only two stochastic trends and the
“immediate” Cobb–Douglas-type relation as the co-integration relation:

⎧
⎨

⎩


kt � 
xt−1γ
(1) + γ0k + εtk


lt � 
xt−1γ
(2) + γ0l + εtl


qt � (ρ − 1)(qt−1 − β1kt−1 − β2lt−1) + 
xt−1γ
(3) + γ0q + εtq

(10)

The first two equations in (10) give the assumed value of C1, the first component of
MDD, if both their intercepts are zero. The conditional model for output given current
inputs can be written in the following form, with the Bayesian sequential cut being
preserved:

qt � β1kt + β2lt + ρ(qt−1 − β1kt − β2lt ) + 
xt−1δ̃
∗ + δ̃0 + vt , (11)

vt is a Gaussian white noise (with variance ω); given ω, the parameters β, δ̃∗ and
δ̃0 are a priori independent, with conditional normal prior distributions presented in
Sect. 2, just below formula (6). In particular, δ̃∗ ∼ N

(
0, 1

2ωI3
)
and δ̃0 ∼ N (0, ωw00).

Note that the zero restriction on δ̃∗ leads to the simpler specification (8). In Table 3
we present the decimal logarithms of MDD values based on the assumed C1 and on
C2 corresponding to different values of ρ in the conditional model in (11). Since no
dynamic stability constraints have been imposed in type A models, we consequently
do not restrict ρ to the unit interval and the highest MDD values can be obtained
even for ρ slightly above 1. As they do not lead to interesting results, we do not
focus on specifications with ρ free, but on models with fixed values of this parameter,
namely ρ �1 (i.e. VAR with three stochastic trends) and ρ just below 1 (i.e. VAR
with two stochastic trends, “immediate” Cobb–Douglas relation as the co-integration
relationship and a slow adjustment). Models with and without constant are compared;
if δ̃0 is present, then w00 � 1 is assumed in the prior distribution, because w00 � 100
led to lower value ofC2.Our task is now tofind close competitors toVARspecifications
(without constants) for first differences of logs of the original data; w00 � 100 would
preclude finding them, as it is clear from Table 1.

Under equal prior probabilities, three stochastic trends are more likely a posteriori
than the co-integrating relation of the Cobb–Douglas form, but by less than one order
of magnitude for the USA and the UK (and even less for Hungary and Poland). If
an economist has strong prior beliefs that a stable, long-run APF is an adequate and
useful concept for macroeconomic analyses, and the case of three stochastic trends has
only small prior probability (say, less than 0.1), then—looking at our results of model
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Fig. 2 Marginal posterior densities of β1, β2 in (11) and their sum—informative priors; prior densities are
plotted using dashed line; posterior densities are plotted using: dash-dot line for ρ � 1; solid line for
ρ � 0.95; dotted line for ρ � 0.5; β1, β2 and β1 +β2 are capital, labour and scale elasticities, respectively;
model with ρ � 1 has the highest marginal data density (i.e. under equal prior odds it is the most likely of
the three presented given the data); model with ρ � 0.5 has the lowest marginal data density

comparison—such economist still chooses (11) with ρ just below 1 as a better model
than the specification in terms of first differences alone. Now the situation is different
than in the case of comparison between pure type A models (see Table 1), where we
did not impose any extra restrictions on the specifications with one co-integration rela-
tion and they were more than one order of magnitude worse than the models assuming
three stochastic trends. As we can see, the additional assumptions (weak exogeneity of
inputs and equivalence between the co-integration relation and the “immediate” Cob-
b–Douglas relation, together with fixing ρ just below 1 and introducing the constant
term of high prior precision), imposed jointly, are helpful to make the co-integration
VAR model a competitor to the VAR model for first differences.

Finally, in Figs. 2 and 3we present plots of themarginal prior and posterior densities
of β1, β2 and their sum; the posterior densities correspond to three values of ρ: namely
ρ �1, ρ �0.95 and ρ �0.5. The value ρ �0.99 (that yields a particularly goodmodel)
leads to almost the sameposterior densities asρ �1, so there is nopoint in plotting them
separately. Figure 2 corresponds to our original prior specification for the parameters
of (11), and Fig. 3 is based on 100 times smaller prior precision for β1, β2 and their
sum.

As our model specification gets better (i.e. the closer we are to the case ρ �1,
which amounts to three stochastic trends and lack of any co-integration relation), the
marginal posterior distributions of β1, β2 and their sum become very similar to the
marginal prior distributions. This empirical result, the same for all four different data
sets, indicates that our inference—on the parameters that have clear interpretation
within the APF context—is very fragile and based mainly on prior assumptions, if
we restrict to relevant dynamic models. For other specifications, which we can treat
as completely inadequate, our posterior inference seems to be driven by the data.
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Fig. 3 Marginal posterior densities of β1, β2 in (11) and their sum—diffuse priors; prior densities are plotted
using dashed line; posterior densities are plotted using: dash-dot line for ρ � 1; solid line for ρ � 0.95;
dotted line for ρ � 0.5; β1, β2 and β1 + β2 are capital, labour and scale elasticities, respectively; model
with ρ � 1 has the highest MDD (i.e. under equal prior odds it is the most likely of the three presented,
given the data); model with ρ � 0.5 has the lowest marginal data density

However, any conclusions based on a highly misspecified model can be misleading.
It seems that, for our data covering the decades around the year 2000, the APF cannot
be confirmed even as a purely empirical relation explained in Shaikh (1974). The
dynamics of the output and inputs aggregates is best described by a tri-variate random
walk.

7 Concluding remarks

The concept of modelling an economy-wide output via aggregate production function,
APF, although fundamentally questionable and criticized, has been very important for
both the theory of economic growth and empirical growth studies (e.g. growth account-
ing, development accounting). However, the studies have not focused on the empirical
justification ofAPFwithin themodern dynamic econometrics. For this reason,we have
used annual data on total production and two input aggregates in order to formally
compare basic time-series and more traditional models. The crucial issue in mod-
elling this tri-variate, non-stationary time series is to adequately capture its dynamics.
We start within the VAR framework and stress that the “instantaneous” or “short-
run” Cobb–Douglas-type relation appears through an obvious re-parameterization
and representation of VAR in terms of the conditional and marginal models—for
the output and inputs, respectively. The important empirical question is whether such
APF-looking relation is also a co-integration relation (linking aggregate output with
aggregate inputs) based on modern econometric techniques. If so, it could be treated
as a valid tool to describe such links and interpreted at least as in Shaikh (1974).
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For the purpose of formulation and comparison of our competing models we have
devised a fully Bayesianmodelling and inference framework. The framework is rooted
in both a purely statistical, time-series analysis of the data and the macroeconomic
theory of APF. This makes it particularly appealing to practitioners and statistical
agencies who seek a well-founded framework for modelling the aggregate output.
Furthermore, since Bayesian model comparison is sensitive to prior distributions, we
have conducted our research carefully, keeping the same Bayesian Cobb–Douglas
model in the two general classes (A and B); this model appears as a special case in
class A, and it is the starting point for extensions in class B. In order to make the
comparison fully operational, reduce the computational burden and avoid the possi-
bility of critiques from the purely numerical perspective, we have restricted to the
simplest prior distribution classes, like the natural conjugate one in the case of basic
VAR models. Of course, other Bayesian models considered (co-integrated VAR mod-
els, stochastic frontier specifications) required much more effort, but they were built
around the basic structures.

In fact, we have favoured a priori the regular, linearly homogenous Cobb–Douglas
relation by using it to partially elicit the prior for the VAR covariance matrix. Despite
the central role of the Cobb–Douglas case in our Bayesian modelling strategy, pos-
terior results have not confirmed the empirical relevance of the APF-type relation in
modelling yearly input and output data from individual economies. It is worth noting
that we have also explored possible extensions to traditional Cobb–Douglas, translog
in particular. However, an APF based on the translog specification has turned out to
be less probable a posteriori.

Among all specifications under consideration, the best ones are VAR(0), VAR(1)
and VAR(2) models for the logarithmic growth rates of output and inputs aggregates.
Thus, our tri-variate series is (most likely) best described by three stochastic trends
with only “instantaneous”Cobb–Douglas-type relation, reflecting possible conditional
correlation between current output and inputs. The second best specifications are the
specially constructed models with the error correction term in the output equation
only. Therefore, less likely than the three stochastic trends, but still probable, are
two stochastic trends, which are responsible for the dynamic formation of exogenous
inputs, along with the co-integrating Cobb–Douglas-type relation, the same as the
“instantaneous” one.

This main result of model comparison is not totally conclusive (in favour of three
stochastic trends), which is rather obvious given the relatively short observation peri-
ods. However, the empirical role of APF-type relation is further diminished by poor
identification of its crucial economic characteristics within the best specifications with
co-integration; i.e. the better the model is, the less informative our posterior inference.
Our results are strikingly similar for all four data sets—for the leading developed
economies (the USA and the UK), as well as for the two transforming economies
(Poland and Hungary)—which makes the findings more interesting.

An extension of this study could, perhaps, consider panel data or longer time frames.
In particular, panel data with their cross section component can bring a new dimen-
sion of aggregate product’s variation which could be relevant in examining the APF.
Nonetheless, the results presented in this study suggest that APF may be difficult to
support empirically, at least if we look at it from dynamic econometrics perspective.
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This can be an additional argument in the debate summarized in Felipe andMcCombie
(2013).
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Appendix: Bayesian co-integration analysis

In order to introduce prior distributions employed in the analysis of VEC models, we
rewrite representation (2b) (xt � xt−1 + z̃t Φ̃ + εt ) as


xt � z̃t Φ̃ + εt � xt−1Π + z̃2t Γ + εt , (12)

where Γ �
[
Γ ′
1, Γ

′
2, . . . Γ

′
p−1, Γ

′
0

]′
and z̃2t � [


xt−1,
xt−2, . . . 
xt−(p−1), dt
]
.

In the case of co-integration, the matrix � is of reduced rank (r(�)� r, r �1, 2)
and can be decomposed as the product of two full column rank matrices. Following
the idea of Koop et al. (2010) to perform the analysis, we consider two equivalent
parameterizations of �:

βα′ ≡ BΠA′
Π (13)

where β has orthonormal columns, whereas BΠ ∈ R
(3+l)r (l �1 when a constant

or a linear trend is added to the co-integration relation, l �0 when there are not
any deterministic components in the co-integration relations). As β (B�) and α (A�)
may have different dimensions we start (as suggested by Koop, León-González and
Strachan, 2010) with the A�, B� parameterization.


xt � xt−1BΠA′
Π + z̃2t Γ + εt � (

xt−1BΠ z̃2t
)(A′

Π
Γ

)
+ εt � (

xt−1BΠ z̃2t
)
ΓA + εt ,

(14)

We have decided to assume that B� and �A are a priori independent and impose
the following matrix normal distributions for the considered parameters:
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vec(BΠ) ∼ N

(
0,

1

3 + l
I(3+l)r

)
,

vec(ΓA) ∼ N
(
0,Σ ⊗ W̃A

)
, (15)

where W̃A � MW̃M ′, with M �
[
M11 0
0 I

]
M11 � [

Ir 0r×(3−r)
]
.

From vec(BΠ) ∼ N
(
0, 1

3+l I(3+l)r
)
follows that the orientation of BΠ (i.e.

BΠ

(
B′

ΠBΠ

)− 1
2 ) is uniformly distributed over the Stiefel manifold (see, for exam-

ple, Chikuse 1990) and so is the space spanned by this matrix (which is the element
of the Grassmann manifold). In other words, by such formulated prior distribution
we impose uniform prior over the set of all possible co-integration spaces, we do not
favour any direction. Keeping that in mind and knowing that the uniform distribution
over the Stiefel manifold is right orthogonal invariant, we can, without loss of gener-

ality, assume that β � BΠ

(
B′

ΠBΠ

)− 1
2 Or and α � AΠ

(
B′

ΠBΠ

) 1
2 Or , where the r × r

matrix Or � diag(±1) is constructed in such a way that it controls the element of the
first row of β to be positive, so it helps us to deal with the many-to-one relationship
between the Stiefel and the Grassmann manifolds.

Summing up our prior assumptions we obtain the following joint prior density
function:

p(BΠ, ΓA,Σ) � p(BΠ)p(ΓA|Σ)p(Σ) � c1 exp

{
−1

2
tr
[
(3 + l)B′

ΠBΠ

]}

× c2|Σ |− r+3(p−1)+m
2 exp

{
−1

2
tr
[
Σ−1Γ ′

AW̃
−1
A ΓA

]}
× c3|Σ |− s+3+1

2 exp

{
−1

2
tr
[
Σ−1A

]}

� c|Σ |− s+r+m+3(p−1)+4
2 exp

{
−1

2
tr
[
Σ−1

(
A + Γ ′

AW̃
−1
A ΓA

)]}
exp

{
−1

2
tr
[
(3 + l)B′

ΠBΠ

]}

(16)

where |C| denotes the determinant of C, tr(C)—the trace of C, c1, c2—the normalizing
constants of the matrix-variate normal distribution, c3—the normalizing constant of
the inverted Wishart distribution, and

c � c1c2c3 � (2π)−
(3+l)r

2

∣∣∣∣
1

3 + l
I(3+l)r

∣∣∣∣
− 1

2

(2π)−
(r+3(p−1)+m)3

2

∣∣∣W̃A

∣∣∣
− 3

2 |A| s2 2− 3s
2 π− 3(3−1)

4

×
[

3∏

i�1

Γ

(
s + 1 − i

2

)]−1

� (2π)−
(6+l)r+3(3(p−1)+m)

2 2− 3s
2 π− 3

2 (3 + l)
(3+l)r

2

×
[

3∏

i�1

Γ

(
s + 1 − i

2

)]−1∣∣∣W̃A

∣∣∣
− 3

2 |A| s2 .
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Combining the joint prior with the likelihood density function leads us to the joint
posterior:

p(BΠ, ΓA, Σ |X) � c̃|Σ |− s+r+m+3(p−1)+4+T
2 exp

{
−1

2
tr
[
Σ−1

(
A + Γ ′

AW̃
−1
A ΓA + E ′E

)]}

× exp

{
−1

2
tr
[
(3 + l)B′

ΠBΠ

]}
, (17)

where c̃ � c(2π)− 3T
2 and E � (

ε′
1 ε′

2 . . . ε′
T

)′
. To obtain MDDwe have to integrate

out BΠ,ΓA and� from the likelihood according to the imposed priors. The parameters
�A and � can be integrated out analytically, which leads to the following conditional
(on B�) data density:

p(y|BΠ) � (2π)−
3T
2

3∏

i�1

Γ
( T+s+1−i

2

)

Γ
( s+1−i

2

)
∣∣∣W̃A

∣∣∣
− 3

2 |A| s2
∣∣∣W̃−1

A + Z ′
BZB

∣∣∣
− 3

2 |A + RA + DA|− s+T
2 ,

where ZB � (
Z1BZ2

)
, RA �

(
Z0 − ZBΓ̂A

)′(
Z0 − ZBΓ̂A

)
, Γ̂A �

(
Z ′
BZB

)−1
Z ′
BZ0, DA � Γ̃ ′

AW̃
−1
A

(
W̃−1

A + Z ′
BZB

)−1
Z ′
BZBΓ̂A, Z0 �

(

x ′

1 
x ′
2 . . . 
x ′

T

)′
, Z1 � (

x ′
0 x ′

1 . . . x ′
T−1

)′
, Z2 � (

z̃2′1 z̃2′2 . . . z̃2′T
)′
. To

integrate out BΠ we have to use Monte Carlo methods, mainly the arithmetic mean
estimator.

References

Alichi A, Bizimana A, Laxton D et al (2017) Multivariate filter estimation of potential output for the United
States. IMF Working Paper WP/17/106

Chikuse Y (1990) The Matrix Angular Central Gaussian distribution. J Multivar Anal 33:265–274
Doan T, Litterman RB, Sims CA (1984) Forecasting and conditional projection using realistic prior distri-

butions. Econom Rev 3:1–100
Felipe J, McCombie JSL (2013) The aggregate production function and the measurement of technical

change. Edward Elgar, Cheltenham
Fisher FM (1969) The existence of aggregate production functions. Econometrica 37:553–577
Florens J-P, Mouchart M (1985) Conditioning in dynamic models. J Time Ser Anal 6:15–34
Growiec J (2008) A new class of production functions and an argument against purely labor-augmenting

technical change. Int J Econ Theory 4:483–502
Growiec J (2013) A microfoundation for normalized CES production functions with factor-augmenting

technical change. J Econ Dyn Control 37:2336–2350
Jones CI (2005) The shape of production functions and the direction of technical change. Q J Econ

120:517–549
Koop G, Ley E, Osiewalski J, Steel MFJ (1997) Bayesian analysis of long memory and persistence using

ARFIMA models. J Econom 76:149–169
Koop G, Osiewalski J, Steel MFJ (1999) The components of output growth: a stochastic frontier analysis.

Oxf Bull Econ Stat 61:455–487
Koop G, Osiewalski J, Steel MFJ (2000) Modelling the sources of output growth in a panel of countries. J

Bus Econ Stat 18:284–299
KoopG, Strachan R, Dijk H, VillaniM (2004) Bayesian approaches to cointegration. In:Mills TC, Patterson

K (eds) The Palgrave handbook of econometrics, vol 1. Econometric theory. Palgrave-Macmillan,
Basingstoke, pp 871–898

123



1380 J. Osiewalski et al.

Koop G, León-González R, Strachan R (2010) Efficient posterior simulation for cointegrated models with
priors on the cointegration space. Econom Rev 29:224–242

Litterman RB (1986) Forecasting with Bayesian vector autoregressions—five years of experience. J Bus
Econ Stat 4:25–38

Makieła K (2014) Bayesian stochastic frontier analysis of economic growth and productivity change in the
EU, USA, Japan and Switzerland. Cent Eur J Econ Model Econom 6:193–216

Osiewalski J, SteelMFJ (1993)Una perspectiva bayesiana en selección demodelos. Cuadernos Economicos
55/3:327–351 (original English version available at: http://www.cyfronet.krakow.pl/~eeosiewa/pubo.
htm)

Osiewalski J, Steel MFJ (1996) A Bayesian analysis of exogeneity in models pooling time series and cross
sectional data. J Stat Plan Infer 50:187–206

Osiewalski J, Steel MFJ (1998) Numerical tools for the Bayesian analysis of stochastic frontier models. J
Prod Anal 10:103–117

Pajor A (2017) Estimating the marginal likelihood using the arithmetic mean identity. Bayesian Anal
12:261–287

Shaikh A (1974) Laws of production and laws of algebra: the humbug production function. Rev Econ Stat
56:115–120

Turner D, Cavalleri M, Guillemette Y et al (2016) An investigation into improving the real-time reliability
of OECD output gap estimates. OECD Working Paper ECO/WKP(2016)18

van den Broeck J, Koop G, Osiewalski J, Steel MFJ (1994) Stochastic frontier models: a Bayesian perspec-
tive. J Econom 61:273–303

Wróblewska J (2009) Bayesian model selection in the analysis of cointegration. Cent Eur J Econ Model
Econom 1:57–69

123

http://www.cyfronet.krakow.pl/%7eeeosiewa/pubo.htm

	Bayesian comparison of production function-based and time-series GDP models
	Abstract
	1 Introduction
	2 Bayesian VAR modelling framework
	3 The role of the Cobb–Douglas-type relation in the modelling strategy
	4 Competing models
	4.1 Type A models: standard VAR and VEC specifications
	4.2 Type B models: based on production function

	5 The data and results of initial model comparison
	6 A synthesis and final results
	7 Concluding remarks
	Acknowledgements
	Appendix: Bayesian co-integration analysis
	References




