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Abstract This paper attempts to shed empirical light on one of the oldest debates in
the literature on infrastructure—whether infrastructure capital contributes to aggre-
gate output in the long run, and related to that, whether investing in infrastructure
is an effective tool to promote regional development. Drawing from a panel data set
of 29 Chinese provinces over the period 1985–2012, it constructs a synthetic infras-
tructure index and employs panel time series techniques. The findings suggest that
infrastructure is, on average, a strong determinant of economic growth and that there
are provincial differences in the marginal productivity of infrastructure due proba-
bly to differences in the relative shortage or overprovision of infrastructure stocks.
Therefore, policy makers should use infrastructure investment as a means of boosting
output or promoting regional development only to the extent that it does not lead to
oversupply of infrastructure.
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1 Introduction

The effect of infrastructure on aggregate output and productivity has long been debated
by researchers and practitioners. Many countries have relied on investment in infras-
tructure to boost output and promote economic development. Among them is China,
whose zest for infrastructure construction started as early as the 1980s and contin-
ued in the new century with various development programmes aiming at stimulating
regional growth and reducing regional development disparities. Overall, the country
spent an average 8.5% of its GDP on infrastructure over the period of 1992–2011,
overtaking the USA and the European Union to become the world’s largest investor
in infrastructure.

However, China’s large-scale investment in infrastructure has raised concerns
among economists and policy makers. One of the issues is whether massive and con-
tinuous injection of capital into infrastructure projects can help the country maintain
its growth in a sustainable manner. Another question of interest is whether improv-
ing infrastructure in less developed areas can boost regional economic growth. These
concerns are not just specific to China, but also relate to the probably oldest debate in
the literature on infrastructure. That is, whether infrastructure capital can contribute
to aggregate output in the long run.

The literature on the role of infrastructure could perhaps be traced back to the
works of Rosenstein-Rodan (1943) and Hirschman (1957), which have highlighted
the importance of capital investment in promoting growth. However, it is not until the
1970s (see, e.g. Arrow and Kurz 1970) and in the 1980s and 1990s (see Romer 1986,
1990; Lucas 1988; Barro 1990) that public capital has been theoretically modelled
in an aggregate production function. Empirical studies on the impact of infrastruc-
ture took off with the seminal work of Aschauer (1989), which concludes that the
marginal productivity of public infrastructure spending is two to four times higher
than that of private capital. Large output elasticities of infrastructure are also found
in subsequent studies by Munnell (1990) and Ford and Poret (1991). However, these
findings have been questioned on methodological grounds and the high rates of return
to infrastructure investment reported are often dismissed as implausible. One of the
major caveats of the earlier studies and, to a less extent, some later ones is the fail-
ure to take into account non-stationarity of the data, which may lead to the spurious
regression problem—apossible reason for unrealistically high estimates of the produc-
tivity of infrastructure (Gramlich 1994). Some studies attempt to avoid this problem
by transforming data into first differences, but at the expense of destroying the long-
term relationships (Munnell 1992). Another issue of concern is the potential reverse
causality between output and infrastructure investment. Failing to take into account
the problem runs the risk of jumbling the estimates of the output elasticity of infras-
tructure with the income elasticity of the demand for infrastructure services, leading
to biased estimation results.1

1 It should be noted that unobservable factors which affect both income and infrastructure investment may
also lead to estimation biases, due to the potential correlation between the infrastructure variable and the
error term. One way to deal with this problem is to introduce fixed effects into the specification.
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This paper joins the discourse by investigating the contribution of infrastructure to
aggregate output based on empirical evidence fromChina. Over the last three decades,
China experienced phenomenal economic growth, enlarging regional development
disparities and waves of massive infrastructure investment made by both national
and provincial governments as part of development policy packages. Thus, Chinese
provinces provide an interesting empirical context to shed light on whether infrastruc-
ture capital has a long-run effect on aggregate output. To address the aforementioned
methodological issues of earlier studies, we follow Calderón et al. (2015) and adopt a
panel cointegration approach to deal with the non-stationarity of the variables included
in our model and investigate the long-run effect of infrastructure. Although there has
been a growing body of literature looking at the impact of infrastructure drawing from
data on Chinese provinces (e.g. Demurger 2001; Ding et al. 2008; Fan and Chan-Kang
2008; Shiu and Lam 2008; Yu et al. 2012, 2013; Shi and Huang 2014), the analysis in
this paper adopts an empirical strategy which distinguishes itself in some ways from
existing China-specific studies.

First, our paper focuses on steady-state long-term relationships, a research issue
which is difficult for most earlier studies to address due to short sample periods that
do not allow some of infrastructure’s effects (like indirect ones) to set in. More recent
studies do employ longer periods (e.g. Shiu and Lam 2008; Yu et al. 2012, 2013),
but the sample period used in this paper covers the years over which there were
most marked changes in both aggregate output and infrastructure stocks. Secondly,
in order to ascertain that estimates of the output elasticity of infrastructure are not
confoundedwith the income elasticity of the demand for infrastructure, this paper tests
the direction of causality based on the procedure developed by Dumitrescu and Hurlin
(2012). Thirdly, existing China-specific studies usually focus on individual types of
infrastructure. This paper considers the multidimensional aspect of infrastructure by
constructing synthetic indicators, using principal component analysis (PCA) from four
core infrastructure assets, namely electric power, telecommunications, paved roads
and railways. Surely, it is important to examine the impact of individual infrastructure
types, which may vary to some extent from one category to another. However, as
noted by Agénor (2010), different infrastructure networks are complementary to each
other. For instance, having electricity to produce commodities but no roads to carry
them to the markets limits the productivity effects of a programme designed to expand
electricity generation capacity and transmission networks. Therefore, it is the joint
availability or operation that will generatemore efficiency gains in a growing economy
(Agénor 2010). The use of synthetic infrastructure indices in our paper is motivated to
capture multidimensionality and the overall availability of infrastructure. Indeed, two
composite infrastructure indictors are constructed—one derived from the conventional
method of PCA and the other based on Robust PCA which takes into account outliers.

Finally, we do not assume a common linear production function, due to an observed
factor specific to each province in our sample. To this end, we derive the pooled mean
group estimates as well as the estimates for each of the sample provinces. This makes
our approach different from existing studies which usually address heterogeneity in
infrastructure’s impact by running separate regressions for sub-samples of geograph-
ical areas. The analysis allows us to examine whether there is provincial difference in
the infrastructure-growth nexus and explore possible explanations. It also casts light
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on a related research issue: whether increasing infrastructure investment in poor areas
can help reduce regional development disparities.

It should be noted that our analysis using data on China has the potential to provide
research insights and policy implications of wider relevance. China has transformed
itself from one of the poorest countries in the world to a middle-income economy.
Meanwhile, it has witnessed dramatic improvement in infrastructure facilities. The
findings from such an empirical context regarding the long-run impact of infrastructure
on aggregate output may be interesting to other developing countries. The part of the
analysiswhich attempts to explore provincial differences in infrastructure’s impact and
possible underlying factors may be able to shed light on why infrastructure has high
productivity in some locations but negligible effects in other places. Related policy
implications are not just limited to China, but also relevant to other countries (even
developed countries).

The rest of the paper is organised as follows. Next section provides a brief overview
of economic growth and infrastructure development in China over the last 30 years.
Sections 3 and 4 detail the econometric strategy and data issues, respectively. The
results of the empirical analysis are presented in Sect. 5. The last section concludes.

2 Economic growth and infrastructure in China

Since the economic reform initiated in the late 1970s, China has experienced unprece-
dented economic growth, with GDP growth averaging about 10 per cent over the last
three decades. The growth performance of China has, however, been uneven across
provinces. The development strategy implemented in the pre-1979 era and the early
years of economic reform put emphasis on heavy industries, which concentrated in the
north-eastern provinces and part of the central region. Since the mid-1980s, provinces
along the eastern coastline were encouraged to grow, where special economic zones
were established and more and more firms started to export. The growth momentum
of the region was accelerated after 1992 when more favourable policies were granted,
making it the most economically advanced area of the country. In order to reduce
the resultant regional development disparity and promote economic growth in interior
provinces, the ‘Open-up the West’ Strategy was initiated from 2000, followed by the
‘North-east Revival’ and ‘Rise of Central China’ schemes.

Large amounts of resources have been mobilised in China to develop and improve
infrastructure facilities. Investment made in the 1980s was to alleviate energy-related
bottlenecks, and, therefore, priority was given to the development of the gas and oil,
coal, and electric power sectors (Naughton 2007). The transport and telecommuni-
cation sectors received much less recourses for the ensuing years, with their share
in state fixed-asset investment at around 10% in comparison with that of the energy
sector at 20% (Demurger 2001). Things started to change from 1992 when infrastruc-
ture was reasserted as a major development priority and implemented as an integral
part of preferential policies applied to coastal provinces. This led to fast expansion
of transport and telecoms facilities in the region. It was followed by an even faster
growth in infrastructure investment around the year 1998, when infrastructure spend-
ing was used as an instrument of fiscal policy to stimulate economic growth. In the
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new millennium, with the unfolding of the programs aimed to promote economic
development in the western, central and north-eastern parts of the country, both the
central and local governments invested heavily in infrastructure projects, leading to
significant improvement in the overall infrastructure endowments in these areas (Yu
et al. 2012). In particular, provinces with abundant energy resources (e.g. Xinjiang
and Inner Mongolia) received massive funding to build themselves as energy centres
of the country. All the aforementioned infrastructure investments were topped up by
a recent wave of infrastructure spending following the global financial crisis, making
China the world’s largest investor in infrastructure.

3 Econometric methodology

3.1 Model specification

Following the existing literature we adopt an augmented production function in which
infrastructure appears alongside physical capital, labour and human capital as factors
of production. Keeping with most of earlier studies, the assumption of constant returns
to scale is imposed, which leads to the following empirical specification after taking
logarithms of the variables and subtracting the labour variable from both sides of the
equation:

yit � β1kit + β2hcit + β3zit + γi + ηt + εi t . (1)

yit denotes the logarithm of output per worker in province i at time t; kit denotes the
logarithm of physical capital per worker; zit is infrastructure capital per worker2; and
hcit stands for human capital. ηt allows for time-specific effects, whilst γi capture
province-specific effects. The residual εi t reflects the influence of shocks that affect
the (log) level of output per worker which is assumed uncorrelated across provinces
and over time.

Estimation results based on Eq. (1) may be spurious if individual variables in the
specification are non-stationary. This is a methodological issue which many earlier
studies and in particular those using data on Chinese provinces have failed to deal
with. The first step in our empirical strategy is, therefore, to ascertain the time series
properties of the variables.

2 Equation (1) corresponds exactly to the production function framework adopted by some influential
studies like Canning (1999), Canning and Bennathan (2002), Canning and Pedroni (2007), Candelon et al.
(2013) and Calderón et al. (2015). Infrastructure enters the equation twice: as part of physical capital k and
on its own. The genuine contribution of infrastructure to output can be approximated as ψ ≈ β3 + �β1
where � is the share of infrastructure in the overall physical capital stock. Evaluation of this parameter
requires data on prices or costs of infrastructure, which are unavailable and could be problematic in the
context of China where prices of constructing infrastructure networks were or still are regulated by the
government. Nonetheless, as suggested by Canning and Bennathan (2002) and Calderón and Servén (2004),
� is typically a small number and therefore discrepancy between the genuine elasticity of outputwith respect
to infrastructure and the coefficient estimate β3 is little. As in the cited papers, a more precise interpretation
of the result is that the productivity of infrastructure exceeds (if β3 > 0) or falls short of (if β3 < 0) that of
non-infrastructure capital.
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3.2 Unit root tests

To test for the order of integration of the variables, we use panel data unit root tests.
Indeed, we consider three tests, namely the Levin et al. (2002)-LLC, the Im et al.
(2003)-IPS and the Pesaran (2007) panel unit root tests. The first two tests assume
cross-sectional independence; however, if provinces are spatially dependent as they
usually lie in the same geographical area, the assumption of the independence of error
processes will be violated. Thus, the LLC and IPS tests in this context might lead to
spurious results. The Pesaran (2007) test allows us to deal with this issue.

The basic framework followed by these tests can be viewed as an extension of the
standard (augmented) Dickey–Fuller test and takes the following form:

�wi t � g
′
i tθ + ηiwi t−1 +

k∑

j�1

ρi j�wi t−1 + ϑi t , (2)

where wit denotes each variable under consideration, k is the lag length, the vector
g

′
i t includes panel-specific fixed effects or panel-specific fixed time effects and is the

corresponding vector of coefficients.
TheLLC test assumes the coefficient of the auto-regressive term to be homogeneous

across all i (i.e. ηi � η) and examines the null hypothesis of H0 :η �0 against the
alternative H1 : η < 0. In the IPS test, however, the coefficient of the auto-regressive
term is allowed to vary across the different units. This test applies a standardised t-bar
statistic which is based on estimating separate unit root tests and averaging their ADF

t-statistics. That is, t̄ � √
N

(
tiT − N−1 ∑N

i�1 E(tiT )
)

/

√
N−1

∑N
i�1 var(tiT ), where

tiT is the individual ADF t-statistics for the N cross-sectional units, and E(tiT ) and
Var(tiT ) are, respectively, the mean and variance of tiT .

The Pesaran (2007) test addresses cross-sectional dependence by including the
cross-sectional mean of the lagged values of wi t and its differences. The correspond-
ing test is then defined as the simple average of the individual cross-sectional ADF
regressions: CADF � 1

N

∑N
i�1 ti , where ti is the t statistic of the OLS estimate of the

auto-regressive term in the modified version of Eq. (2).

3.3 Cointegration tests

If the variables in our model are found non-stationary, one can proceed to test whether
they are bound together in the long run, i.e. whether they are cointegrated. If so,
Eq. (1) represents a long-run relationship between permanent movements in the (log)
level of output per worker, infrastructure per worker, physical capital per worker
and human capital. Several cointegration tests have been proposed in the literature,
including Kao (1999)’s residual panel cointegration test and Pedroni (2000)’s residual
panel cointegration test. However, as noted by Calderón et al. (2015), these tests
only ascertain the presence of cointegration among the variables; but do not provide
any information on the cointegration rank. These tests, therefore, implicitly assume
the existence of one cointegrating relationship. In a model with four variables (as
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in our context), there is a possibility that more than one cointegration relationship
exists. In order to ascertain whether there exists cointegration as well as the number
of cointegration relations, this paper adopts the Johansen–Fisher panel cointegration
test proposed by Larsson et al. (2001).

To illustrate how the test is conducted, let us consider a panel data set that consists
of a panel ofN cross-sectional units (provinces in our case) (i�1,…N) observed over
T time period (t �1, … T ). The data generating process for each group in our sample
can be represented by the following heterogenous vector error correction model:

�yit � �i yi,t−1 +
ki−1∑

k�1

Γik�yi,t−k + uit . (3)

k is the number of lags; uit is an i.i.d. error term; � � αβ
′
with α being a p ×

r matrix of short-run adjustment coefficients; and β
′
a p × r matrix of long-run

cointegrating relations. The Johansen–Fisher panel cointegration procedure consists
of testing the hypothesis that all of theN groups in the panel have atmost r cointegrating
relationships among the p variables. For this end, Larsson et al. (2001) consider the
following rank hypotheses, for all i �1, … N

H0 : rank(�i ) � ri ≤ r (4)

H1 : rank(�i ) � p. (5)

Similar to the trace statistics from Johansen (1995), the trace statistic for each group
i can be expressed as:

LRiT (H (γ )|H (p)) � −2 ln QiT H (γ )|H (p), (6)

where H (r) : rank (�) ≤ r and H (p) : rank (� � p).
Defining the LR-bar statistic as the average of the N individual trace statistics:

LRiT (H (γ )|H (p)), Larsson et al. (2001) propose the use of a standardised LR-bar
statistic as a basis for the panel cointegration rank test, which is:

γ LR(H (γ ) |H (p)) �
√
N (LR(H (γ ) |H (p)) − E(Zk))√

var(Zk)
. (7)

E(Zk) and var(Zk) are, respectively, the mean and variance of the variable Z which
follows the same asymptotic distribution as the individual trace statistics.

To test for the existence of cointegration, one can let r take the value 0 and see
whether the null hypothesis H0 : rank(�) � 0 can be rejected. In order to test whether
there is only one single cointegration relation, one can impose the value of 1 on r and
see whether the hypothesis H(r ) : rank(�) ≤ 1 is true.
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3.4 Estimation of panel data model

As our cointegration results show later, there exists a single cointegrating vector among
the variables in Eq. (1). We interpret this single cointegration relation as the long-run
production function and therefore adopt a single-equation approach to estimate the
coefficients of the variables in concern.3 Several estimators for cointegrated panel
data have been proposed in the literature. In choosing the appropriate estimator for
purpose, we adopt the following strategy. First, we take the nature of our data set
into consideration. Indeed, our data set consists of 29 Chinese provinces over the
period 1985–2012; thus, N �28 and T �28 are moderate in size. Second, cross-
sectional dependence has become, increasingly, an important issue in panel data
estimations. Thus, choosing an estimator that overcomes this problem is crucial in
deriving consistent estimates. For this reason, we use two estimation techniques in
the main analysis, namely Pesaran (2006)’s common correlated effects mean group
(CCEMG) estimator and the augmented mean group (AMG) estimator introduced
by Eberhartd (2012). These estimators allow for unobserved correlation across panel
members (cross-sectional dependence). Moreover, it has been shown that the CCEMG
estimator provides consistent estimates of the slope coefficients and standard errors
under the more general case of multifactor error structure and spatial error correlation,
and performs well in small samples and can handle the presence of autocorrelation
in the residuals and unit roots in the common factors (Pesaran and Tosetti 2011). We
also conduct a robustness check by using estimators proposed by Bai et al. (2009).

To implement the CCEMG, the error term in Eq. (1) can be rewritten as hav-
ing a multifactor structure, in the form of εi t � ω

′
i t ft + vt . f t is a vector of k × 1

unobserved common factors, which affect each of the provinces with different intensi-
ties, andυt is the province-specific error termwhich is assumed to beweakly dependent
across the cross-sectional units. Rewriting Eq. (1) as yit � δ

′
i xi t + γi + ηt +ω

′
i t ft + υt ,

where xit is the set of our regressors, one can obtain the estimated coefficient CCEMG

as,
�

δCCEMG � N−1 ∑
i

�

δ i .
The AMG estimator improves on the standard mean group by including a ‘common

dynamic process’ extracted from a pooled OLS regression of first differences, which
provides a panel-equivalent average movement of the unobserved common factors.
Common factors are those factors that are time specific and common across provinces.
The AMG is a two-stage procedure, which can be expressed as follows:

stage(1) : �yit � δ
′
i�xit +

T∑

t�2

ct�Dt + et

�
ct ≡ �

μt

stage(2) : yit � δ
′
i xi t + r + ci t + di

�
μt + et

3 Johansen (1992) shows that the single-equation estimators are equivalent to those based on the estimation
of a system of all possible equations, although they may be inefficient under certain circumstances.
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�

δAMG � N−1
∑

i

�

δ i

where we have (T −1) year dummies D in first difference with corresponding param-
eter vector ct from which the year dummy coefficients that are relabelled as �

μt are

collected. In the second stage, �
μt is included as an additional regressor in each of the

N standard province regressions which also include linear trend terms t to capture
omitted idiosyncratic processes that evolve in a linear fashion over time.

3.5 Panel causality test

The estimates of the output elasticity of infrastructure and associated inference
obtained from the single-equation estimation based on Eq. (1) are only valid when
infrastructure is weakly exogenous. If not, the estimates obtained could mix up
the output elasticity of infrastructure with the income elasticity of the demand for
infrastructure. To infer the causal relationship between the variables, we adopt the
methodology developed by Dumitrescu and Hurlin (2012). This approach accounts
for heterogeneity in the data series and assumes that all coefficients are different across
the units in our sample. Dumitrescu and Hurlin (2012) extend the Granger (1969) con-
tribution to panel data. To illustrate, let us assume xit and yit are the two stationary
series (which could be the differences of non-stationary variables). To test whether x
Granger causes y, the following underlying model can be used:

yit � a1 +
K∑

k�1

θik yit−k +
K∑

k�1

δik xit−k + �i t (8)

with i � 1, . . . , N and t � 1, . . . , T . The procedure to determine the existence of
causality consists of testing for significant effects of past values of x on the present
value of y. The null hypothesis, which corresponds to the absence of causality for all
individuals in the panel, can thus be defined as:

H0 : δi1 � δi2 � · · · � δi K � 0, ∀i � 1, . . . , N . (9)

The alternative hypothesis can be written as:

H1 : δi1 � δi2 � · · · � δi K � 0, ∀i � 1, . . . , N1, (10)

δi1 	� 0, or δi2 	� 0 or . . . or δi K 	� 0, ∀i � N1 + 1, N1 + 2, . . . , N

where N1 ∈ [0, N − 1] is unknown. For causality to exist for all individuals, the
following must hold N1 < N ; otherwise, the null hypothesis applies. If N1 � 0, this
would imply that there is causality for all individuals in the panel.

With the above in mind, Dumitrescu and Hurlin (2012) propose aWald test derived
from the average of individual Wald statistics associated with the test of the non-
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causality hypothesis for units i � 1, . . . , N . They define the average Wald associated
with the null homogeneous non-causality hypothesis (HNC) as:

WHNC
NT � 1

N

N∑

i�1

WiT , (11)

where WiT represents the Wald statistic for the ith cross-sectional unit corresponding
to the individual test H0 : δi � 0. Using Monte Carlo experiments, Dumitrescu and
Hurlin (2012) show that the proposed standardised panel statistics have very good
small sample properties and are robust in the presence of cross-sectional dependence.

4 Data

The data used in this paper consist of a balanced panel of 29 Chinese provinces over
the period 1985–2012. Table 9 in Appendix provides the list of sample provinces.
Output is measured by real GDP per worker in the 1987 prices. The variable physical
capital is constructed using the perpetual inventory method. The values of provincial
physical capital stocks for the year 1984—the year before the beginning of the sample
period—are taken from Zhang and Wu (2004). They are then used to calculate capital
stocks for the sample period from 1985 to 2012, based on Kit � Kit−1(1− δi t ) + Ii t ,
where δi t denotes the depreciation rate and Iit the gross fixed capital formation. In line
with Zhang andWu (2004), 9.6% is used as the depreciate rate in the calculation.4 Cal-
culated capital stocks are converted to the 1987 prices by using the deflators obtained
from China Statistical Yearbook and then transformed into the per worker terms by
using the data on provincial employment from China Labour Statistical Yearbook.
Human capital is proxied as the % of provincial population with at least 9 years of
compulsory school education, with data from China Population Statistical Yearbook.

To capture the multidimensional nature of infrastructure capital, we consider four
categories of infrastructure assets, namely electric power, telecoms, paved roads and
railways. Electricity is measured by total amount of electricity generated, with data
obtained fromChinaEnergy Statistical Yearbook. Telecoms infrastructure ismeasured
by the number of landlines and cellular phones, and the two transport indicators are
total length of paved roads and that of railway routes. The data are collected from
China Statistical Yearbook. The indicators are converted into the per 1000 worker
terms by using the data on provincial total employment from China Labour Statistical
Yearbook. Summary statistics of the variables are provided in Table 1.

The strategy used in this paper is to construct a synthetic indicator of the four
infrastructure stocks as a measure of the overall availability of infrastructure. By
doing so, we can also deal with some empirical difficulties arising from introducing
a variety of infrastructure indicators as inputs in the production function. Given that

4 Two alternative depreciation rates are also experimented. One is 6%, as used in some empirical studies
with cross-country data (e.g. Calderón et al. 2015); the other is a much higher rate 16%, following studies
such as Bai et al. (2006) and Shi and Huang (2014). However, the regression results based on thus calculated
physical capital stocks are similar to the ones reported in Sect. 5.
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Table 1 Descriptive statistics

Variables Mean S.D. Min. Max.

Real GDP per worker (10,000 Yuan) 0.4478 0.3043 0.1045 1.8909

Physical capital stock per worker
(10,000 Yuan)

2.1265 2.6357 0.2212 20.3367

Human capital 0.4850 0.1616 0.1093 0.8845

Electricity generation per 1000
workers (10 million kwh)

0.3263 0.3304 0.0249 2.7650

Landline and mobile phones per
1000 workers (no. of lines)

620.5026 763.1551 3.33758 3658.7

Length of paved road per 1000
workers (km)

2.8873 2.2422 0.2670 21.2276

Length of railway per 1000 worker
(km)

0.1504 0.1413 0.0180 0.7552

our estimations are based on panel cointegration analysis, it would be computation-
ally difficult to accommodate all the four variables in a single regression (because
of over-parametrisation). Another problem relates to multicollinearity if individual
infrastructure indicators are highly correlated, as it is the case in our context. Bearing
this in mind, we construct a composite index for infrastructure derived from principal
component analysis (PCA), inwhich the underlying variables are standardised in order
to abstract from their units of measurement. The analysis shows that the first principal
component has an eigenvalue of 2.92, whilst other components have eigenvalues lower
than 1. The Kaiser rule suggests that we retain components with eigenvalue higher
than 1. Moreover, the first component explains around 73% of the variance of the
four variables. Finally, the overall Kaiser–Meyer–Olkin (KMO) measure of sampling
adequacy is 72.5% with the individual KMO ranging from 67 to 81%. Therefore, we
use the first principle component to construct the composite infrastructure index, as
follows:

(12)

0.54 × ln
(
paved

)
i t + 0.55 × ln

(
electricity

)
i t + 0.35

× ln (rail)i t + 0.53 × ln (telecommunication)i t ,

where paved is the length of paved roads (in kilometres per 1000 workers); electricity
is power generation (in 10 million kwh per 1000 workers); rail represents the length
of rail lines (in kilometres per 1000 workers); and telecommunication is the number
of main lines and mobile phones (per 1000 workers). The synthetic index is highly
correlated with the individual infrastructure indicators used in its construction. More
precisely, the correlation coefficients are 87% for paved roads, 96% for electricity
generation, 74% for railways and 97% for telecommunications.

The standard approach of PCA as adopted above may become less valid because
the covariance matrix used in the calculation may be sensitive to outliers (if any). To
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Table 2 Panel unit root results

IPS LLC Pesaran (2007)

GDP −0.493 3.650 2.306

Physical capital 1.949 3.067 1.787

Human capital 1.170 4.089 −0.051

Infrastructure-robust −1.200 1.754 2.851

Infrastructure 2 −1.039 1.782 3.061

(1) 5% critical value for the null hypothesis of unit root is −1.96 for the LLC and IPS test statistic and
−2.56 for the Pesaran (2007) statistic. (2) Two lags were used in the estimations

overcome this potential problem, we construct another composite infrastructure index
based on a robust principal component analysis, as follows:

(13)

0.49 × ln
(
paved

)
i t + 0.52 × ln

(
electricity

)
i t + 0.48

× ln (rail)i t + 0.51 × ln (telecommunication)i t

We use this infrastructure index in the main regression analysis. Nevertheless, we
also report the results using the composite indicator in which outliers are not dealt
with, as the robustness check.

5 Empirical results

The analysis starts with checking the stationarity of the variables and testing for coin-
tegration. It then moves on to the estimation of the long-run elasticities of output with
regard to infrastructure and other inputs in the production function as specified in
Eq. (1).

5.1 Panel unit root tests and cointegration results

Table 2 reports the results of the panel unit root tests. Both the IPS and LLC tests
suggest that the null hypothesis of unit root cannot be rejected at the 5% significance
level. The two tests are less valid if there is cross-sectional dependence, which is the
case in our context (see Table 10 in Appendix). The results from the Pesaran (2007)
test are therefore more insightful, which also point to non-stationarity of the variables.
However, applying the tests to the first difference of the variables produces results
which lead to the rejection of the null of non-stationarity.5 We therefore conclude that
all the variables are I(1).

The next step is to test for cointegration. The results are summarised in Table 3,
with the upper panel reporting those from the Johansen–Fisher test and the lower part
the panel LR-bar test. Both the trace and eigen statistics from the Johansen–Fisher

5 Results are not reported here, but available upon request.
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Table 3 Panel cointegration test results

Johansen–Fisher panel cointegration test

No. of cointegrations Trace test Prob. Eigen test Prob.

None 195.9 0.000 142.2 0.000

At most 1 96.01 0.13 65.19 0.2411

Panel LR-bar test

H0 : rank ≤ r Test statistics

0 16.25

1 1.132

Thenull hypothesis ofmaximumcointegration rank is sequentially tested against the alternative ofmaximum
rank equal to p (i.e. the No. of variables considered). The 5% critical value is 1.96

test indicate the rejection of the null of no cointegration, and we therefore conclude
that the variables are cointegrated. In order to find out the number of cointegration
vectors, we rely on the panel LR-bar test. It is evident from the results that the null
that the maximum rank is zero (i.e. no cointegration) is rejected. However, the test
does not reject the maximum rank of 1. Based on these results, it can be concluded
that the null hypothesis of a common cointegrating rank for all provinces in the panel
cannot be rejected. This implies that for each group in our sample, there exists one
cointegrating relationship, which can be interpreted as the infrastructure-augmented
production function as expressed in Eq. (1).

5.2 Estimation results from long-run cointegration relationship

As discussed earlier, the Pesaran (2006)’s common correlated effects mean group
(CCEMG) estimator and the augmented mean group (AMG) estimator introduced
by Eberhartd (2012) are adopted to estimate Eq. (1). One of the reasons to employ
them relates to the concern of cross-sectional dependence. A test of cross-sectional
dependence against the residuals obtained from the standard mean group estimator
yields a test statistic of 44.93 (with a p value of 0.00). This confirms the existence of
the issue and justifies the use of CCEMG and AMG.

Table 4 reports the results using the synthetic infrastructure index based on robust
PCA. The first thing to notice is that the two econometric methods produce very
similar results: the parameter estimates are very similar in magnitude except for the
variable of human capital which is nevertheless statistically insignificant. The esti-
mated coefficient of physical capital is 0.254 from CCEMG and 0.225 from AMG,
suggesting a long-run positive output elasticity of this variable. The magnitude of the
coefficient is a bit lower than that found in the most influential cross-country studies
using data sets which include observations on China (e.g. Canning 1999; Canning and
Bennathan 2002; Calderón and Servén 2004; Candelon et al. 2013; Calderón et al.
2015). Although caution should be taken when comparing cross-province results like
ours with those from cross-country studies, the relatively lower coefficients of physical
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Table 4 Estimation of long-run elasticities of output (period�1985–2012; no. of provinces�29)

(1) (2)
CCEMG AMG

Physical capital 0.254*** (0.0733) 0.225*** (0.025)

Human capital 0.294 (0.180) 0.084 (0.096)

Infrastructure robust 0.126*** (0.029) 0.148*** (0.023)

Constant 0.0821 (0.257) −0.612*** (0.161)

Observations 812 812

(1) Dependent variable is log GDP per worker. (2) Figures in parentheses are standard errors. (3) ***
represents 1% statistical significance

capital shown in the table may be an indication of problems with China’s extensive
growth—a strategy which relies heavily on investing aggressively. The human capital
variable registers a positive coefficient and falls just below the 10% significance level
based on CCEMG and is statistically no different from zero according to the AMG
method.

Turning to the focus of the study, we find the estimated coefficient of infrastructure
is positive and highly significant in statistical terms, irrespective of the econometric
techniques used. The magnitude of the coefficient is 0.126 or 0.148, in the range of
estimates in cross-country studies which use samples including developing economies
and employ indicators of individual infrastructural sectors. The coefficients are also
similar in size to those found on electricity and telecoms infrastructure for a full
sample of Chinese provinces in Zhang and Ji (2018) and that on transport stocks
in Yu et al. (2012). The magnitude of infrastructure’s coefficient in our analysis is
relatively larger in comparison with the results of Calderón et al. (2015) in which
a composite infrastructure indicator is registered with a coefficient around 0.8 for
a sample of 88 industrial and developing countries including China. One plausible
explanation is that our larger coefficient may reflect an overall underprovision of
infrastructure at the national level in China, whilst the Calderón et al. (2015) study
includes some sample countries inwhich there is an oversupply of infrastructure and/or
factors that hamper the materialisation of infrastructure’s contribution to economic
growth. Note that infrastructure capital appears twice in the augmented production
function of Eq. (1)—once on its own and once as part of total physical capital. It’smore
appropriate to interpret the coefficient of the infrastructure variable as the output effect
of increasing infrastructure stocks when holding overall physical capital constant. As
pointed out by Canning (1999), Calderón and Servén (2004), Candelon et al. (2013)
andCalderón et al. (2015),which all adopt the same approach, a positive and significant
coefficient of infrastructure indicates that infrastructure capital ismore productive than
overall capital in boosting aggregate outputs. All in all, the results lead us to conclude
that infrastructure is a strong determinant of economic growth in Chinese provinces.

One merit of the two econometric techniques is that they take into consideration
unobserved common factors, which in the case of this study are shocks to GDP corre-
lated across provinces. The estimation results shown in the second column of Table 4
are thus less prone to noises caused by events like the 1997 Asian financial crises, the
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2008 global financial crises and macroeconomic policies or measures implemented
nationwide in China. Moreover, the CCEMG estimators can take into account multi-
factor error structures and spatial error correlation that are very likely in our sample
of Chinese provinces. Therefore, the coefficient estimates obtained from these tech-
niques are consistent even when there is nuisance spatial dependence across provinces
(i.e. a province’s growth is affected by changes in other provinces to the extent that
the latter deviate from their steady-state equilibrium).6

To explore the robustness of the results, we replicate the same exercise using the
alternative measure of infrastructure—the composite indicator constructed from the
standard PCA. Table 5 reports the results. The estimated coefficients of physical cap-
ital are very similar, in terms of size, to those shown in Table 4. So are the estimates
of the output elasticity of human capital, although it becomes marginally significant
based on the method of CCEMG. It seems that the parameter estimates of the alterna-
tive infrastructure indicator are slightly smaller than those of the robust-PCA index.
A close look at the two synthetic indices reveals that the outliers fall into two types.
One includes observations in the earlier years of the sample period on provinces like
Jiangsu, Zhejiang and Shandong, which turned out to have not very low GDP but
relatively poor infrastructure endowments at the time. This phenomenon occurred in
the early years of China’s economic reform when such provinces had to overstretch
on their limited infrastructure facilities which had not been fed with much state invest-
ment. The other group of outliers are the data points covering the most recent years
of the sample period for provinces like Qinghai, Inner Mongolia and Xinjiang, which
have received heavy investment in infrastructure under the ‘Open-up the West’ pro-
gram and as part of the country’s plan to transform them into major energy suppliers.
It seems that leaving the outliers undealt with tends to produce lower estimates for the
effects of infrastructure, because for the former group it suggests that infrastructure is
not much required to generate high output and for the latter it implies that high infras-
tructure stocks do not lead to more output. Nonetheless, the coefficient estimates are
positive and statistically significant, confirming that infrastructure plays an important
role in promoting growth in China.

We also conduct another robustness check by adopting the CupBC (continuously
updated and bias corrected) and CupFM (continuously updated and fully modified)
estimators proposed by Bai et al. (2009). The two estimators, which are iterative in
nature, are able to accommodate cross-sectional dependence generated by unobserved
global stochastic trends and allow for the joint estimation of the slope parameters and
the stochastic trends. Another appealing aspect of the estimators is that they remain
valid in the presence of mixed stationary and non-stationary factors, as well as the
observed regressors. The estimation results are summarised in Table 6. Overall, they
are qualitatively similar to those obtained from the CCEMG and AMG estimators.

The above analysis tells us that a long-run relationship exists among the variables
in Eq. (1). To complement the analysis and investigate the direction of causality,
we employ the procedure developed by Dumitrescu and Hurlin (2012), as discussed

6 There is contention in the literature that spatial dependence is of a substantive type (i.e. spatial spillovers
arising from technological diffusion and pecuniary externalities) rather than a nuisance case caused by
regional transmission of random shocks. Nonetheless, it is at large outside the scope of our paper.
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Table 5 Estimation of long-run elasticities of output: alternative infrastructure index (period�1985–2012;
no. of provinces�29)

(1) (2)
CCEMG AMG

Physical capital 0.255*** (0.073) 0.207*** (0.022)

Human capital 0.296* (0.180) 0.0791 (0.093)

Infrastructure 2 0.106*** (0.024) 0.121*** (0.018)

Constant −0.149 (0.142) 0.626*** (0.099)

Observations 812 812

(1) Dependent variable is log GDP per worker. (2) Figures in parentheses are standard errors. (3) ***
represents 1% statistical significance

Table 6 Estimation of long-run elasticities using estimators proposed in Bai et al. (2009)

(1) (2)
CupFM CupBC

Panel A

Physical capital 0.285*** (0.019) 0.289*** (0.009)

Human capital −0.013 (0.038) −0.006 (0.022)

Infrastructure_robust 0.089*** (0.008) 0.092*** (0.005)

Panel B

Physical capital 0.307*** (0.019) 0.335*** (0.011)

Human capital 0.027 (0.038) 0.034 (0.020)

Infrastructure 2 0.076*** (0.008) 0.074*** (0.006)

(1) Dependent variable is log GDP per worker. (2) Figures in parentheses are standard errors. (3) ***
represents 1% statistical significance. (4) CupFM refers to the continuously updated and fully modified
estimator and CupBC the continuously updated bias-corrected estimator

in Sect. 3.5. Table 7 presents the results, which indicate that causality runs from
infrastructure to output. This finding remains robust irrespective of the measures of
infrastructure used. Thus, it is fair to say that the estimates of infrastructure’s coefficient
obtained from our analysis have not mixed up the output elasticity of infrastructure
with the income elasticity of the demand for infrastructure.

So far the analysis has assumed a common linear production function for all
provinces. It is possible that there are regional differences in the impact of infras-
tructure in a country like China. To this end, we obtain the estimates for individual
provinces and present the coefficient of the infrastructure variable obtained from the
CCEMG and AMG techniques in the first two columns of Table 8. Provinces are
grouped into three regions according to the classification which is based principally
on geographical location but also reflects the differences in economic development,
with the eastern region being the most developed and the western area the least devel-
oped. It is evident from the results that the estimated coefficient of infrastructure is
positive and significant in all the coastal provinces, with a magnitude larger than that
obtained from the full sample in the majority of the cases. It is in general smaller for
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Table 7 Heterogenous panel causality

Null hypothesis Z-bar statistic Prob.

Index: infrastructure_robust

Infrastructure does not cause GDP 2.247** 0.025

GDP does not cause infrastructure 1.499 0.134

Index: infrastructure 2

Infrastructure does not cause GDP 2.418** 0.016

GDP does not cause infrastructure 1.394 0.163

(1) ** Represents rejection of null hypothesis at the 5% significance level. (2) The analysis is conducted
using MATLAB, with the maximum lags set at 5

the provinces in the central region and even turns negative in the cases of Guangxi
and Jiangxi (although insignificant). In the western region, the estimated parameter is
statistically no different from zero for at least half of the provinces, indicating there
is no discernible impact of infrastructure on economic growth or, more precisely,
infrastructure stocks there are no more productive than overall physical capital.

The cross-province heterogeneity in infrastructure’s effect may be due to various
reasons. A possible explanation lies in quality differences in infrastructure across
provinces. It is agreed in the literature that the effectiveness of infrastructure depends
crucially on its quality. Despite a lack of comprehensive data on the quality of provin-
cial infrastructure stocks, there have been observations that coastal areas are endowed
with better quality infrastructure (e.g. more high-speed railways and better mainte-
nance of highways) (Bai and Qian 2010; Yu et al. 2012). Differences in quality and
maintenance of infrastructure may have contributed to differences in infrastructure’s
growth-enhancing role.

Another plausible explanation is the one we have used to explain the relatively
higher output elasticity of infrastructure found in our analysis in comparison with that
of the cross-country studyofCalderón et al. (2015); that is, the relative shortage or over-
supply of infrastructure capital.As indicated byCanning andPedroni (2007),Aschauer
(2000) and Cadot et al. (2006), the extent to which an increase in infrastructure (at
the price of lowering investment in other physical capital) can raise aggregate outputs
depends on an optimal allocation between the two types of capital. Following this
line of argument, it is predicted that the efficacy of infrastructure varies according
to the ratio of the two types of capital. To examine whether the relative shortage or
oversupply of infrastructure is a possible explanation to the provincial differences
in the coefficient estimate, we compute the ratio of infrastructure stocks (the robust-
PCA measure) to total physical capital. Due to the lack of data on costs or prices of
constructing infrastructure facilities, we are unable to construct ratios with both types
of capital measured in the monetary terms. Nonetheless, the ratios constructed in this
paper are comparable across provinces and over time. The last column of Table 8
shows the ratios of individual provinces averaged over the sample period. It can be
seen that, roughly speaking, high ratios are more likely to associate with low and/or
insignificant coefficients of the infrastructure variable.
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Table 8 Estimation of long-run elasticity of output with regard to infrastructure: individual provinces

CCEMG AMG Infrastructure/k ratio

Beijing 0.417*** 0.667*** 192.786

Fujian 0.386*** 0.159** 48.5352

Guangdong 0.162*** 0.146** 167.566

Hainan 0.176*** 0.165*** 108.485

Hebei 0.109* 0.031 128.851

Jiangsu 0.167*** 0.220*** 58.5927

Liaoning 0.410*** 0.263*** 151.441

Shandong 0.138** 0.077* 76.8465

Shanghai 0.165*** 0.175*** 14.6139

Tianjin 0.199** 0.252*** 28.5300

Zhejiang 0.176** 0.130** 104.924

Eastern region average 0.228 # 0.204# 98.288#

Anhui 0.130** 0.075** 192.786

Guangxi −0.063 −0.063 198.302

Heilongjiang 0.282** 0.350** 160.622

Henan 0.134** 0.149** 123.131

Hubei 0.135*** 0.059** 179.637

Hunan 0.059** 0.058** 200.803

Inner Mongolia 0.058* 0.083*** 285.085

Jiangxi −0.148 0.039 240.119

Jilin 0.246*** 0.321*** 157.559

Shanxi 0.107*** 0.067** 138.846

Central region average 0.115# 0.120# 187.689#

Gansu −0.155 −0.156 245.800

Guizhou 0.083* 0.004 252.879

Ningxia 0.130 0.161* 154.944

Qinghai 0.028 0.020 410.142

Shaanxi 0.106** 0.150** 154.287

Sichuan 0.114*** 0.118*** 105.843

Xinjiang 0.026 0.038* 243.165

Yunnan −0.128 0.019 719.973

Western region average 0.038# 0.058# 285.879#

(1) # Regional averages of the coefficient are calculated based on province-specific coefficient estimates
which are statistically significant. (2) ***, ** and * indicate statistical significance at 1, 5 and 10% level,
respectively

To shed further light on this, a panel threshold regression proposed by Hansen
(1999) is carried out with the infrastructure-to-physical-capital ratio being the thresh-
old variable. This is to see whether the effect of infrastructure varies according to the
ratio, or whether there is nonlinearity in the effect conditional on the relative shortage
or oversupply of infrastructure stocks. It should be noted that it is practically difficult
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(if not impossible) to integrate the CCEMG or AMG estimator into a panel thresh-
old regression model. Therefore, we only undertake a standard threshold regression
and the magnitude of the coefficients obtained are not directly comparable to those
shown in Tables 4 and 5. The estimation reveals that there exists a single threshold and
that infrastructure’s coefficient is 0.041 and statistically significant when the ratio is
smaller than 165 and it is −0.020 but statistically insignificant with higher ratios. The
result implies that infrastructure complements other physical capital only to the extent
that there is no relative oversupply. Although it is by no means a rigorous analysis, the
exercise indicates that the marginal productivity of infrastructure tends to be higher
in places with relative undersupply of infrastructure and low or even null in locations
where infrastructure is too much in relation to other physical capital.

6 Conclusions

Infrastructure investment has longbeenused as adevelopment tool, but its effectiveness
remains a controversial issue among researchers and practitioners. One of the oldest
debates in the literature iswhether infrastructure capital contributes to aggregate output
in the long run. A related question is whether it is beneficial to increase infrastructure
investment in less developed regions to boost their growth. This paper attempts to shed
empirical light on these issues by employing an infrastructure-augmented production
function approach and drawing on the case of China, which has now become the
world’s largest investor in infrastructure. A panel data set of 29 Chinese provinces over
the period 1985–2012 is analysed based on an econometric strategy which addresses
somemethodological limitations of earlier literature. Synthetic indices are constructed
to capture multidimensionality of infrastructure, based on physical indicators of four
types of infrastructure assets. The analysis deals explicitly with non-stationarity of the
variables and tests for the direction of causality.

The analysis results show that infrastructure, on average, impacts positively on
growth in China. Infrastructure capital is in general more productive than physical
capital in boosting output. The causality test indicates that causality runs from infras-
tructure to growth. However, the analysis on individual provinces suggests that there
are provincial differences in the impact of infrastructure, probably due to the dif-
ferences in the relative overprovision or shortage of infrastructure. From the policy
perspective, the findings provide empirical support for development strategies involv-
ing the use of infrastructure investment. It is desirable for countries or regions which
suffer from inadequate infrastructure to increase infrastructure stocks and benefit in the
long run. However, if the over- or under-supply explanation is plausible, the effective-
ness of such policiesmay be limited if adopted by countries (developing and developed
ones alike) or areas with high infrastructure stocks relative to, for instance, physical
capital. In other words, policy makers should use infrastructure investment as a means
of boosting growth or promoting regional development only to the extent that it does
not lead to oversupply of infrastructure.
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Appendix

See Tables 9 and 10.

Table 9 List of sample provinces and geographical regions

Eastern coastal area

Beijing
Fujian
Guangdong
Jiangsu

Hainan
Hebei
Liaoning
Shandong

Shanghai
Tianjin
Zhejiang

Central area

Anhui
Heilongjiang
Henan
Hunan

Inner Mongolia
Jiangxi
Jilin

Shanxi
Guangxi
Hubei

Western area

Gansu
Guizhou
Ningxia

Qinghai
Shaanxi
Sichuan (including Chongqing)

Xinjiang
Yunnan

Table 10 Cross-sectional
dependence test for individual
variables

CD-test p value

Output 99.74 0.00

Physical capital 104.43 0.00

Human capital 103.95 0.00

Infrastructure robust 101.77 0.00
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