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Abstract This paper derives optimal forecast combinations based on stochastic
dominance efficiency (SDE) analysis with differential forecast weights for different
quantiles of forecast error distribution. For the optimal forecast combination, SDEwill
minimize the cumulative density functions of the levels of loss at different quantiles
of the forecast error distribution by combining different time-series model-based fore-
casts. Using two exchange rate series on weekly data for the Japanese yen/US dollar
and US dollar/Great Britain pound, we find that the optimal forecast combinations
with SDE weights perform better than different forecast selection and combination
methods for the majority of the cases at different quantiles of the error distribution.
However, there are also some very few cases where some other forecast selection and
combination model performs equally well at some quantiles of the forecast error dis-
tribution. Different forecasting period and quadratic loss function are used to obtain
optimal forecast combinations, and results are robust to these choices. The out-of-
sample performance of the SDE forecast combinations is also better than that of the
other forecast selection and combination models we considered.
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1 Introduction

Since the seminal work of Bates and Granger (1969), combining the forecasts of
different models, rather than relying on the forecasts of individual models, has come
to be viewed as an effective way to improve the accuracy of predictions regarding a
certain target variable. A significant number of theoretical and empirical studies, e.g.,
Timmermann (2006) and Stock andWatson (2004), have been able to demonstrate the
superiority of combined forecasts over single-model-based predictions.

In this context, the central question is to determine the optimal weights used in
the calculation of combined forecasts. In combined forecasts, the weights attributed to
eachmodel depend on themodel’s out-of-sample performance. Over time, the forecast
errors used for the calculation of optimal weights change; thus, the weights themselves
vary over time. However, in empirical applications, numerous papers (Clemen 1989;
Stock andWatson 1999a, b, 2004; Hendry andClements 2004; Smith andWallis 2009;
Huang and Lee 2010; Aiolfi et al. 2011; Geweke and Amisano 2012) have found that
equally weighted forecast combinations often outperform or perform almost as well
as estimated optimal forecast combinations. This finding is frequently referred as the
“forecast combination puzzle” by Stock and Watson (2004) because the efficiency
cost of estimating the additional parameters of an optimal combination exceeds the
variance reduction gained by deviating from equal weights.1 Overall, even though
different optimal forecast combinationweights are derived for static, dynamic, or time-
varying situations, most empirical findings suggest that the simple average forecast
combination outperforms forecast combinations with more sophisticated weighting
schemes.

In this paper, we will follow an approach for the combination of forecasts based on
stochastic dominance (SD) analysis, andwe testwhether a simple average combination
of forecasts would outperform forecast combinations with more elaborate weights.
In this context, we will examine whether an equally weighted forecast combination
is optimal when we analyze the forecast error distribution. Rather than assigning
arbitrary equal weights to each forecast, we use stochastic dominance efficiency (SDE)
analysis to propose a weighting scheme that dominates the equally weighted forecast
combination.

Typically, SD comparisons are conducted in a pair-wisemanner. Barrett andDonald
(2003) developed pair-wise SD comparisons that relied onKolmogorov–Smirnov-type
tests developed within a consistent testing environment. This offers a generalization

1 Smith and Wallis (2009) found that the finite sample error is the reason behind the forecast combination
puzzle. Aiolfi et al. (2011) suggested that potential improvements can be made by using a simple equally
weighted average of forecasts from various time-series models and survey forecasts. See also Diebold and
Pauly (1987), Clements andHendry (1998, 1999, 2006), and Timmermann (2006) for a discussion ofmodel
instability and Elliott and Timmermann (2005) forecast combinations for time-varying data.

123



Quantile forecast combination using stochastic dominance 1719

of Beach and Davidson (1983), Anderson (1996), and Davidson and Duclos (2000),
who examined second-order SD using tests that rely on pair-wise comparisons made
at a fixed number of arbitrarily chosen points, an undesirable feature that may lead to a
test inconsistency. Linton et al. (2005) propose a subsampling method that can address
both dependent samples and dependent observations within samples. This is appro-
priate for conducting SD analysis for model selection among many forecasts. In this
context, comparisons are available for pairs for which one can compare one forecast
with another forecast and conclude whether one forecast dominates the other. Hence,
one can find the best individual model by comparing all forecasts. In this case, the
dominantmodel (optimal one) will always produce a distribution of forecast errors that
is lower than the distribution of forecast errors obtained from another forecast model.
Pair-wise dominance would suggest that the optimal model will always produce a
lower number of errors above all given error levels than any other model. Lately, mul-
tivariate (multidimensional) comparisons have becomemore popular. Multivariate SD
comparisons in the finance literature led to the development of SD efficiency testing
methodologies first discussed by Fishburn (1977). In line with Fishburn (1977), Post
(2003) provided a SD efficiency testing approach to test market efficiency by allowing
full weight diversification across different assets. Recently, Scaillet and Topaloglou
(2010), ST hereafter, used SD efficiency tests that can compare a given portfolio with
an optimally diversified portfolio constructed from a set of assets.2 The recent testing
literature in finance examines whether a given weighted combination of assets domi-
nates the market at all return levels. In this paper, we adapt the SDE methodology into
a forecasting setting to obtain the optimal forecast combination. The main contribu-
tion of the paper is the derivation of an optimal forecast combination based on SDE
analysis with differential forecast weights. For the optimal forecast combination, this
forecast combination will minimize the number of forecast errors that surpass a given
threshold level of loss. In other words, we will examine the forecast error distribution
of the average forecast combination at different parts of the empirical distribution and
test whether the average forecast combination is optimal at different sections of the
forecast error distribution. Furthermore, we investigate whether there is an alternative
forecast combination that can offer an optimal forecast combination at some parts of
the forecast error distribution.

The mainstream forecast combination literature obtains the forecast combination
weights through the minimization of the total sum of the squared forecast errors (or
the mean squared forecast errors) taking into account all the forecasts over the whole
period. For instance, the seminal paper of Granger and Ramanathan (1984) employs
ordinary least squares (minimizing the sumof squared errors) to obtain optimalweights
for the point forecasts of individual models. The forecast combination literature also
consists of methods that analyze the optimal forecast combinations based on quan-

2 In a related paper, Pinar et al. (2013) used a similar approach to construct an optimal HumanDevelopment
Index (HDI). See also Pinar et al. (2015) for optimal HDI for MENA region, Pinar (2015) for optimal
governance indices, and Agliardi et al. (2015) for environmental index. The same methodology was applied
in Agliardi et al. (2012), where an optimal country risk index was constructed following SD analysis with
differential component weights, yielding an optimal hybrid index for economic, political, and financial
risk indices that do not rely on arbitrary weights as rating institutions do (see also Agliardi et al. 2014 for
Eurozone case).
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tiles of the forecasts (see e.g., Taylor and Bunn 1998; Giacomini and Komunjer 2005;
Clements et al. 2008; Gerlach et al. 2011). In that context for example, Giacomini and
Komunjer (2005) obtain forecast weights based on a generalized methods of moments
(GMM) estimation approach conditional on quantile forecasts. In a standard quan-
tile regression setting, when the quadratic loss function is replaced with the absolute
loss function, individual point forecasts are used to minimize the absolute forecast
errors for a given quantile level (Koenker 2005). In that case, if the absolute forecast
errors are considered from the whole distribution, this leads to a quantile regression for
the median (see, e.g., Nowotarski et al. 2014). Our approach differs from the above-
mentioned mainstream forecast combinations, and it is complementary to them. In
particular, methods that minimize the sum of the squared forecast errors find forecast
combinations that work well at the center of the distribution. However, different fore-
cast combinations might work better at different areas of the empirical distribution of
the forecast errors if the loss function or forecast error distribution is skewed (see, e.g.,
Elliott and Timmermann 2004). Similarly, quantile regressions minimize the absolute
forecast errors (or mean absolute forecast errors) based on given quantile forecasts.
This objective function (similar to that of sum of squared forecast errors) is set to
minimize a single measure, such as the mean absolute forecast errors up to a given
quantile; however, it ignores how the absolute forecast errors are distributed up to
the given quantile. In this context, our paper analyzes the entire forecast error distri-
bution, which takes into account all moments. Rather than relying on single optimal
forecast combinations, we derive the optimal forecast combinations at different parts
of the empirical forecast error distribution. In other words, rather than choosing the
one forecast combination that minimizes the mean squared forecast errors (or mean
absolute forecast errors), we derive different combinations that will maximize the
cumulative distribution function (cdf) of forecast errors up to a given threshold level.
In this respect, SDE method does not provide the lowest mean absolute forecast error
at a given quantile; however, it provides the lowest number of forecast errors above a
given threshold level.

In order to better understand the distinction between the two approaches, one relying
on minimizing the number of forecast errors above a given threshold and the other
minimizing the overall squared forecast errors (or absolute forecast errors) for a given
quantile, we provide a brief discussion on how SDE methodology complements the
mainstream forecast combinations. Forecasters and investors follow a certain strategy
and depending on their risk attitudes they try to minimize their losses or forecast
errors. Some might consider to minimize the forecast errors for all possible forecast
levels, and as such, they minimize the total sum of (squared) forecast errors (e.g.,
MSFE). Others might want to try to minimize the forecast errors for a given quantile
of forecasts (quantile regression). On the other hand, there may be a forecaster (like
an insurance company) who compensates above a given threshold level of loss. In that
case, the company in question would offer a guarantee to compensate their customers
if their forecast error (loss) is above a given level. Hence, this company would like to
minimize the forecast errors (losses) that are above this threshold so that tominimize its
compensation levels, something that may not be achieved by minimizing the total sum
of squared forecast errors (or the absolute forecast errors for this quantile). The latter
methodswillminimize theoverall loss (or quantile loss), but the number of losses above
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a given threshold level might not be the lowest as derived by the SDE approach. In that
context, the SDE methodology is designed to combine forecasts that minimizes the
number of forecast errors above a given threshold, and this is obtained by maximizing
the empirical cumulative distance between the loss generated by the equally weighted
forecasts and the alternative one for this threshold loss level. Therefore, the SDE
method produces a forecast combination that complements the more conventional
forecast selection and combination methods and can serve forecasters and investors
to obtain better forecast combinations depending on their strategy and policy.

We use two exchange rate series given in a weekly frequency for the Japanese
yen/US dollar and US dollar/Great Britain pound to derive optimal forecast combi-
nations with the SDE methodology for different forecasting periods (during and after
the 2007/2009 financial crisis) and for different forecast horizons. Overall, we find
that the optimal forecast combinations with SDEweights perform better than different
forecast selection and combination methods for the majority of the cases. However,
there are also some very few cases where some other forecast selection and combi-
nation model performs equally well at some parts of the forecast error distribution.
For the optimal forecast combination obtained with SDE weights, the best forecasting
model (i.e., the model that gets relatively more weight than other forecasting models)
includes different sets of models at different parts of the empirical distribution. On
average, autoregressive and self-exciting threshold autoregressive models are themain
contributors to the optimal forecast combination for both the Japanese yen/US dollar
and US dollar/Great Britain pound exchange rate application, and during and after the
2007/2009 financial crisis.

The remainder of the paper includes the following. In Sect. 2, we define the concept
of SDE and discuss the general hypothesis for SDE at any order. Section 3 describes
the data, time-series forecasting models and forecast methods used in our paper as
well as alternative forecast selection and combination methods. Section 4 presents the
empirical analysis where we use the SDE methodology to find the optimal forecast
combination for the two exchange rate series for different forecast periods with dif-
ferent forecast horizons and compare these findings with those from the other forecast
selection and combination methods. Section 5 offers robustness analysis, and finally,
Sect. 6 concludes.

2 Hypothesis, test statistics and asymptotic properties

Let us start with data {yt ; t ∈ Z} and the (m × 1) column vector of forecasts{
ŷt+h,t ; t, h ∈ Z

}
for yt+h obtained fromm different forecasting models generated at

time t for the period of t + h (h ≥ 1), where h is the forecast horizon and T is the
final forecasting period. Furthermore, let yt+h denote the actual values over the same
forecast period.

The equally weighted column vector, τ , is used to obtain the simple average of
individual forecasts derived from the m different models, i.e., ŷewt+h,t = τ

′
ŷt+h,t ,

where τ is the (m × 1) column vector with entries 1
m ’s. Forecast errors with the

equally weighted forecast combination are obtained by εewt+h,t = yt+h − ŷewt+h,t . Let us
now consider an alternative weighting column vector λ ∈ L, where L := {λ ∈ R

n+ :
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e′λ = 1} with e being a vector of ones. With this alternative weighting scheme, one
can obtain a forecast combination, i.e., ŷw

t+h,t = λ′ ŷt+h,t . Similarly, forecast errors
with this alternative weighting scheme are obtained by εw

t+h,t = yt+h − ŷw
t+h,t .

For this paper, we follow a loss function that depends on the forecast error, i.e.,
L(εt+h,t ), that has the following properties (Granger 1999):

i . L(0) = 0,
i i . min

e
L(ε) = 0, i.e., L(ε) ≥ 0,

i i i . L(ε) is monotonic non-decreasing as ε moves away from 0:

i.e., L(ε1) ≥ L(ε2) if ε1 > ε2 ≥ 0 and if ε1 < ε2 ≤ 0.
(i) suggests that there is no loss when there is no error, (i i) suggests that the

minimum loss is zero, and finally, (i i i) suggests that the loss is determined by its
distance to zero error irrespective of its sign.3 This loss function may have further
assumptions, such as being symmetric, homogenous, or differentiable up to some
order (see Granger 1999, for the details). Hence, the associated loss functions with
the equally weighted forecast combination and forecast combination with alternative
weighting scheme are L(εewt+h,t ) (i.e., L(yt+h−τ ′ ŷt+h,t )) and L(εw

t+h,t ) (i.e., L(yt+h−
λ′ ŷt+h,t )), respectively.

Note that we can have different forecast errors depending on the different choices of
weights available to combine forecasts. The forecast combination literature employs
various objective functions derived from the loss function to obtain optimal weights
to combine forecasts (see, e.g., Hyndman and Koehlerb 2006, for an extensive list of
accuracy measures). It is common in the literature to use the norm of the loss function
based on forecast errors to find the optimal weights (see Timmermann 2006).

In other words, the most common way of obtaining the optimal vector of combina-
tion weights, λ∗

t+h,t , is given by solving the problem

λ∗
t+h,t = argmin

λ

E
[
L(εt+h,t (λt+h,t )) | ŷt+h,t

]
s.t. e′λ = 1, (1)

where the expectation is taken over the conditional distribution of εt+h,t . Similarly,
the loss function might be based on quadratic loss function (see, e.g., Elliott and
Timmermann 2004).

However, it is well known that all of the moments of the forecast error distribution
will affect the combination of weights (see, e.g., Geweke and Amisano 2011), and if
one were to find the optimal weights by analyzing the entire distribution of the errors,
this would lead to a more informative outcome. In this paper, SDE analysis allows
for all moments to be considered as it examines the entire forecast error distribution.
For example, if one were to find weights by minimizing the mean squared forecast
errors (MSFE) and the forecast distribution was asymmetric with some important
outliers, then the weighted forecast combination, which would have been obtained as
the solution, would have ignored these important features of the empirical distribution.

3 In this paper, loss function is based on the magnitude of the forecast errors. Hence, we take the absolute
values of negative errors and evaluate the errors based on their magnitude, that is, the distance from zero
error, not the sign of errors.

123



Quantile forecast combination using stochastic dominance 1723

In other words, under anMSFE loss function (i.e., quadratic loss function), the optimal
forecast combination is obtained by the optimal trade-off between squared bias and
the forecast error variance (i.e., the optimal forecast combination only depends on the
first two moments of the forecast errors). However, if the forecast error distribution is
skewed, different weighted forecast combinations would work better at different parts
of the empirical distribution of the forecast errors (see, e.g., Elliott and Timmermann
2004). Hence, looking at all of the moments of the forecast error would result in more
robust weighting schemes. In the case of asymmetric loss and nonlinearities, optimal
weights based on the general loss functions that rely on first and second moment of the
forecast errors are not robust (see e.g., Patton and Timmermann 2007). In this paper,
rather than the loss function that relies on only two moments, we analyze the full
empirical distribution of the loss which incorporates information beyond the first two
moments. One could obtain optimal forecast combination for different sections of the
distribution rather than single forecast combination where the latter case might work
well in some sections of the loss distribution and worse in other parts, whereas, in our
case, one could obtain various combinations which would work well for at different
sections of the error distribution and one could choose which combination to use. Our
approach is also a nonparametric one that does not rely on assumptions as its criteria
do not impose explicit functional form requirements on individual preferences or
restrictions on the functional forms of probability distributions since we are analyzing
the full distribution of the loss (i.e., magnitude of the forecast error distribution).

In short, the quadratic loss function minimizes the sum of squared forecast errors
(or mean squared forecast errors) and the quantile regression minimizes the sum of
absolute errors (or mean absolute errors) for a given quantile. If one were to minimize
the squared forecast errors by looking at the whole distribution (or quantile), these
approaches could be appropriate. On the other hand, with the SDE methodology one
minimizes the number of forecast errors (or squared forecast errors) above a given
threshold error level. In that respect, SDE approach complements the existing forecast
selection and/or combination methods when one’s priority is to minimize the number
of forecasts above a given threshold. For example, this could be the case, when a
company promises to compensate its consumers if their forecasts give errors that are
above a threshold error level. Standard approaches would minimize an overall single
measure (mean squared forecast error or mean absolute error for a given quantile).
However, these objective functions are not designed to minimize the number of errors
above a given threshold error level and might produce a higher number of losses above
this given threshold. In this respect, SDE offers a complementary approach to forecast
combination if the number of losses above a threshold is deemed more important than
the overall (or quantile) loss.

In this paper, we test whether the cumulative distribution function (cdf) of
the loss function with the equally weighted forecast combination is stochasti-
cally efficient or not. F(L(εewt+h,t )) and F( L(εw

t+h,t )) are the continuous cdf of
the L(εewt+h,t ) and L(εw

t+h,t ) with weights τ (equal weights) and λ (alternative
weights). Furthermore, G(z, τ ; F) and G(z,λ; F) the cdf’s of the loss functions
associated with the forecast combinations of τ

′
ŷt+h,t and λ

′
ŷt+h,t at point z

given G(z, τ ; F) :=
∫

Rn
I{L(εewt+h,t ) ≤ z}dF(L(εt+h,t )) and G(z,λ; F) :=
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∫

Rn
I{L(εw

t+h,t ) ≤ z}dF(L(εt+h,t )), respectively, where z represents the level of loss4

and I represents the indicator function (Davidson and Duclos 2000).
For any two forecast combinations, we say that the forecast combination λ

′
ŷt+h,t

dominates the distribution of the equally weighted forecast combination τ
′
ŷt+h,t

stochastically at first order (SD1) if, for any point z of the loss distribution,
G(z,λ; F) ≥ G(z, τ ; F).5 In the context of our analysis, if z denotes the loss level,
then the inequality in the definition means that the proportion of loss obtained with the
forecast combination of λ

′
ŷt+h,t at point z is no lower than the value (mass) of the cdf

of the loss with the equally weighted forecast combination, τ
′
ŷt+h,t . In other words,

the proportion of loss generated with the forecast combination of λ
′
ŷt+h,t above a

given z level is less than the one with the equally weighted forecast combination,
τ

′
ŷt+h,t . If the forecast combination λ

′
ŷt+h,t dominates the equally weighted fore-

cast combination τ
′
ŷt+h,t at the first order, then λ

′
ŷt+h,t yields the optimal forecast

combination for that given loss level, z.
More precisely, to achieve stochastic dominance, wemaximize the following objec-

tive function:

Max
λ

[G(z,λ; F) − G(z, τ ; F)]for a given z level.

This maximization results in the optimal forecast combination, λ
′
ŷt+h,t , that can

be constructed from the set of forecast models in the sense that it reaches the minimum
number of loss above a given loss level, z. In other words, λ

′
ŷt+h,t gives a combination

that offers the highest number of forecast combinations that generates a loss that is
below a given z level, and hence, it minimizes the number of forecasts that gives a
loss above a given threshold, z.

The general hypotheses for testing whether the equally weighted forecast com-
bination, τ

′
ŷt+h,t , is the optimal forecast combination at the stochastic dominance

efficiency order of j , hereafter SDE j , can be written compactly as:

H j
0 :J j (z,λ; F) ≤ J j (z, τ ; F) for given z ∈ R and for allλ ∈ L,

H j
1 :J j (z,λ; F) > J j (z, τ ; F) for given z ∈ R or for someλ ∈ L.

where

J j (z,λ; F) =
∫

Rn

1

( j − 1)! (z − L(εw
t+h,t ))

j−1
I{L(εw

t+h,t ) ≤ z}dF(L(εt+h,t )) (2)

4 As suggested by the assumptions above, we concentrate on the magnitude of the forecast errors, and
therefore, z represents the monotonic non-decreasing distance to zero error. Throughout the paper, we refer
to z as “loss” level so this could be clearly identified as magnitude of the forecast error rather than forecast
error itself.
5 In general, combination with τ will be considered as dominating one when G(z, τ ; F) lays below the
G(z, λ; F) when the dominant combination refers to a “best outcome” case because there is more mass to
the right of z such as in the case of income or return distribution. In the context of the present analysis,
because the distribution of outcomes refers to the loss with forecast errors, the “best outcome” case (i.e.,
dominant case) corresponds to a forecast combination with the largest loss above a given level z.
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and J1(z,λ; F) := G(z,λ; F). Under the null hypothesis H j
0 there is no distribution

of loss obtained from any alternative forecast combination λ
′
ŷt+h,t that dominates the

loss distribution that is obtained from the equally weighted forecast combination at
given level of loss, z level (i.e., a chosen quantile of loss level). In other words, under
the null, we analyze whether the equally weighted forecast combination, τ

′
ŷt+h,t ,

is optimal at a given quantile of the loss distribution when compared to all possible
combinations of forecasts , λ

′
ŷt+h,t , whereas under the alternative hypothesis H

j
1 , we

can construct a forecast combination λ
′
ŷt+h,t for which, for given loss level of z (i.e.,

chosen quantile of loss level), the function J j (z,λ; F) is greater than the function
J j (z, τ ; F). Thus, j = 1, the equally weighted forecast combination τ

′
ŷt+h,t is

stochastically dominated (i.e., does not yield the optimal forecast combination) at
the first order at a given quantile of loss function if some other forecast combination
λ

′
ŷt+h,t dominates it at a given quantile of loss level z. In other words, there is an

alternative weighting scheme, λ, such that when forecasts are combined with these
weights, λ

′
ŷt+h,t , yields a distribution of loss (i.e., distribution of forecast errors based

on the loss function) that offers a lower number of forecast errors above the chosen z
level when compared to average forecast combination.

We obtain SD at the first and second orders when j = 1 and j = 2, respec-
tively. The hypothesis for testing the SDE of order j of the distribution of the equally
weighted forecast combination τ

′
ŷt+h,t over the distribution of an alternative forecast

combination λ
′
ŷt+h,t takes analogous forms but uses a single given λ

′
ŷt+h,t rather

than several of them.
The empirical counterpart of (2) is simply obtained by integrating with respect to

the empirical distribution F̂ of F , which yields the following:

J j (z,λ; F̂) = 1

Nf

Nf∑

Nf =1

1

( j − 1)! (z − L(εw
t+h,t ))

j−1
I{L(εw

t+h,t ) ≤ z}, (3)

where Nf is the number of factor of realizations.6 In other words, Nf is the number
of forecasts made by different time-series models which are under evaluation. The
empirical counterpart counts the number of forecast combinations that offers loss that
are less than the given z level (i.e., given quantile of the loss distribution) when j = 1.
On the other hand, we look for the sum of the area under the integral (i.e., sum of the
forecast errors) up to a given z level with a given forecast combination when j = 2.

We consider the weighted Kolmogorov–Smirnov-type test statistic

Ŝ j := √
Nf

1

Nf
sup
λ

[
J j (z,λ; F̂) − J j (z, τ ; F̂)

]
for given z level (4)

6 Forecasts from different models are updated recursively by expanding the estimation window by one
observation forward, thereby reducing the pseudo-out-of-sample test window by one period. Therefore, for
each of h -step forecasts, we calculate Nf forecasts from each of the model, as explained in the following
section.
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and a test based on the decision rule

“Reject H j
0 if Ŝ j > c j ”,

where c j is some critical value.
To make the result operational, we need to find an appropriate critical value c j .

Because the distribution of the test statistic depends on the underlying distribution,
this is not an easy task, and we decide hereafter to rely on a block bootstrap method to
simulate p-values, where the critical values are obtained using a supremum statistic.7

In this context, the observations are functions of error terms that can be assumed to
be serially uncorrelated. Hence, we apply the simulation methodology proposed by
Barrett andDonald (2003) for i.i.d. data inmultivariate context (seeBarrett andDonald
2003 for details). The test statistic Ŝ1 for first-order stochastic dominance efficiency
is derived using mixed integer programming formulations (see “Appendix”).8

To sum up, for a given quantile of loss distribution, we analyze whether the equally
weighted forecast combination is optimal or not.We test whether an alternative combi-
nation of forecasts provides a loss distribution up to a given quantile of loss that would
dominate such distribution when forecasts are combined in an equally weighted way.
If an alternative combination of forecasts dominates the equally weighted combina-
tion, then there is an alternative combination which yields a distribution of loss that is
the optimal one at that given quantile.

3 Empirical analysis

3.1 Data, forecasting models, and forecast methodology

In this section, we apply the SDE testing methodology to obtain optimal forecast
combinations on Japanese yen/US dollar and US dollar/Great Britain pound exchange
rate returns data.We use log first differences of the exchange rate levels. The exchange
rate series data are expressed with a weekly frequency for the period between 1975:1
and 2010:52.9 The use of weekly data avoids the so-called weekend effect, as well
as other biases associated with non-trading, bid-ask spread, asynchronous rates, and
so on, which are often present in higher-frequency data. To initialize our parameter
estimates, we use weekly data between 1975:1 and 2006:52.We then generate pseudo-
out-of-sample forecasts of 2007:1–2009:52 to analyze the forecast performance at the
2007/2009financial crisis period.Wealsogenerate pseudo- out-of-sample forecasts for

7 The asymptotic distribution of F̂ is given by
√
Nf (F̂ − F), which tends weakly to a mean zero Gaussian

process B ◦ F in the space of continuous functions on Rn (see, e.g., the multivariate functional central limit
theorem for stationary strongly mixing sequences stated in Rio (2000)).
8 In this paper, we only test first-order SDE in the empirical applications below. Because there are forecast
combinations with alternative weighting schemes that dominate the equally weighted forecast combination
at the first order, we do not move to the second one.
9 The daily noon buying rates in New York City certified by the Federal Reserve Bank of New York for
customs and cable transfer purposes are obtained from the FREDÂ� Economic Data system of Federal
Reserve Bank of St. Louis (http://research.stlouisfed.org). The weekly series is generated by selecting the
Wednesday series (if Wednesday is a holiday, then the subsequent Thursday is used).
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the period between2010:1 and2012:52 to analyze the performance of the forecasts out-
of-financial crisis period. Parameter estimates are updated recursively by expanding
the estimation window by one observation forward, thereby reducing the pseudo-out-
of-sample test window by one period.

In our out-of-sample forecasting exercise, we concentrate exclusively on univariate
models, and we consider three types of linear univariate models and four types of
nonlinear univariate models. The linear models are random walk (RW), autoregres-
sive (AR), and autoregressive moving-average (ARMA) models; the nonlinear ones
are logistic smooth transition autoregressive (LSTAR), self-exciting threshold autore-
gressive (SETAR), Markov-switching autoregressive (MS-AR), and autoregressive
neural network (ARNN) models.

Let ŷt+h,t be the forecast of yt+h that is generated at time t for the time t + h
(h ≥ 1) by any forecasting model. In the RW model, ŷt+h,t is equal to the value of yt
at time t .

The ARMA model is

yt = α +
p∑

i=1

φ1,i yt−i +
q∑

i=1

φ2,iεt−i + εt , (5)

where p and q are selected to minimize the Akaike information criterion (AIC) with a
maximum lag of 24. After estimating the parameters of Eq. (5), one can easily produce
h-step (h ≥ 1) forecasts through the following recursive equation:

ŷt+h,t = α +
p∑

i=1

φ̂1,i yt+h−i +
q∑

i=1

φ̂2,iεt+h−i . (6)

When h > 1, to obtain forecasts, we iterate a one-period forecasting model by
feeding the previous period forecasts as regressors into the model. This means that
when h > p and h > q, yt+h−i is replaced by ŷt+h−i,t and εt+h−i by ε̂t+h−i,t = 0.

An obvious alternative to iterating forward on a single-period model would be
to tailor the forecasting model directly to the forecast horizon, i.e., to estimate the
following equation by using the data up to t :

yt = α +
p∑

i=0

φ1,i yt−i−h +
q∑

i=0

φ2,iεt−i−h + εt , (7)

for h ≥ 1. We use the fitted values of this regression to directly produce an h-step
ahead forecast.10

Because it is a special case of ARMA, the estimation and forecasts of the ARmodel
can be obtained by simply setting q = 0 in (5) and (7).

10 Deciding whether the direct or the iterated approach is better is an empirical matter because it involves
a trade-off between the estimation efficiency and the robustness-to-model misspecification, see Elliott and
Timmermann (2008). Marcellino et al. (2006) have addressed these points empirically using a dataset of
170 US monthly macroeconomic time series. They have found that the iterated approach generates the
lowest MSE values, particularly if lengthy lags of the variables are included in the forecasting models and
if the forecast horizon is long.
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The LSTAR model is

yt =
(

α1 +
p∑

i=1

φ1,i yt−i

)

+ dt

(

α2 +
q∑

i=1

φ2,i yt−i

)

+ εt , (8)

where dt = (1 + exp {−γ (yt−1 − c)})−1. Whereas εt are regarded as normally dis-
tributed i.i.d. variables with zero mean, α1, α2, φ1,i , φ2,i , γ , and c are simultaneously
estimated by maximum likelihood methods.

In the LSTAR model, the direct forecast can be obtained in the same manner as
with ARMA, which is also the case for all of the subsequent nonlinear models11, but
it is not possible to apply any iterative scheme to obtain forecasts for multiple steps
in advance, as can be done in the case of linear models. This impossibility follows
from the general fact that the conditional expectation of a nonlinear function is not
necessarily equal to a function of that conditional expectation. In addition, one cannot
iteratively derive the forecasts for the time steps h > 1 by plugging in the previous
forecasts (see, e.g., Kock and Terasvirta 2011).12 Therefore, we use the Monte Carlo
integration scheme suggested by Lin and Granger (1994) to numerically calculate the
conditional expectations, and we then produce the forecasts iteratively.

When |γ | → ∞, the LSTAR model approaches the two-regime SETAR model,
which is also included in our forecasting models. As with LSTAR and most nonlinear
models forecasting with SETAR does not permit the use a simple iterative scheme to
generate multiple-period forecasts. In this case, we employ a version of the normal
forecasting error (NFE) method suggested by Al-Qassam and Lane (1989) to generate
multistep forecasts.13 NFE is an explicit, form-recursive approximation for calculating
higher-step forecasts under the normality assumption of error terms and has been
shown by De Gooijer and De Bruin (1998) to perform with reasonable accuracy
compared with numerical integration and Monte Carlo method alternatives.

The two-regime MS-AR model that we consider here is as follows:

yt = αs +
p∑

i=1

φs,i yt−i + εt , (9)

where st is a two-state discrete Markov chain with S = {1, 2} and εt ∼ i.i.d. N (0, σ 2).
We estimate MS-AR using the maximum likelihood expectation–maximization algo-
rithm.

Although MS-AR models may encompass complex dynamics, point forecasting is
less complicated in comparison with other nonlinear models. The h-step forecast from
the MS-AR model is

11 This process involves replacing yt with yt+h on the left-hand side of Eq. (9) and running the regression
using data up to time t to fitted values for corresponding forecasts.
12 Indeed, dt is convex in yt−1 whenever yt−1 < c, and −dt is convex whenever yt−1 > c. Therefore, by
Jensen’s inequality, naive estimation underestimates dt if yt−1 < c and overestimates dt if yt−1 > c.
13 A detailed exposition of approaches for forecasting from a SETARmodel can be found in Van Dijk et al.
(2003).

123



Quantile forecast combination using stochastic dominance 1729

ŷt+h,t = P (st+h = 1 | yt , . . . , y0)
(

αs=1 +
p∑

i=1

φ̂s=1,i yt+h−i

)

+P (st+h = 2 | yt , . . . , y0)
(

αs=2 +
p∑

i=1

φ̂s=2,i yt+h−i

)

, (10)

where P (st+h = i | yt , . . . , y0) is the i th element of the column vector Ph ξ̂t |t . In
addition, ξ̂t |t represents the filtered probabilities vector andPh is the constant transition
probability matrix (see Hamilton 1994). Hence, multistep forecasts can be obtained
iteratively by plugging in 1, 2, 3, . . .-period forecasts that are similar to the iterative
forecasting method of the AR processes.

ARNN, which is the autoregressive single-hidden-layer feed-forward neural net-
work model14 suggested in Terasvirta (2006), is defined as follows:

yt = α +
p∑

i=1

φi yt−i +
h∑

j=1

λ j d

( p∑

i=1

γi yt−i − c

)

+ εt , (11)

where d is the logistic function, which is defined above as d = (1 + exp {−x})−1.
In general, the estimation of an ARNN model may be computationally challenging.
Here, we follow the QuickNet method, which is a type of “relaxed greedy algorithm”;
it was originally suggested byWhite (2006). In contrast, the forecasting procedure for
ARNN is identical to the procedure for LSTAR.

To obtain pseudo-out-of-sample forecasts for a given horizon h, the models are
estimated by running regressions with data that were collected no later than the date
t0 < T , where t0 refers to the date when the estimation is initialized and T refers to
the final date in our data. The first h-horizon forecast is obtained using the coefficient
estimates from the initial regression. Next, after moving forward by one period, the
procedure is repeated. For each h-step forecast, we calculate Nf (= T − t0 − h − 1)
forecast errors for each of the models that we use in our applications.

3.2 Forecast selection and combination

Before proceeding with our application, in this section we offer different set of model
selection and combination methods that are employed extensively in the literature.
Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) are
two of the most commonly used selection criteria that serve to select a forecasting
model (see, e.g., Swanson and Zeng 2001; Drechsel and Maurin 2010, among many
others). The model that provides the lowest AIC or BIC, calculated as below, for a
model m is chosen as the preferred model.

AIC(m) = n ln(̂σ 2
m) + 2km, (12)

14 See Franses and Franses and van Dijk (2000) for a review of feed-forward-type neural network models.
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BIC(m) = n ln(̂σ 2
m) + km ln n, (13)

where σ̂ 2
m is the forecast error variance estimate and km is the number of regressors

used in each respective model. This procedure requires the selection of the forecasting
model that offers the minimum value of AIC or BIC. Another classical method that is
used to select the best individual forecasting model is to select the model that offers
the least forecast variance, also called predictive least squares (PLS) (Rissanen 1986).

However, these procedures neglect the fact that, as is discussed above, the com-
bination of different models could perform better than the selection of a single
model as the best model. Therefore, the procedure can be modified accordingly so
that weights given to each model are determined based on the distance between
each model’s AIC (BIC) from the minimal performing model’s AIC (BIC) level.
Hence, defining the difference between the AIC(m) (BIC(m)) and the min(AIC)

(i.e., the model that offers the lowest AIC) as 
AIC(m) = AIC(m) − min(AIC)

(
BIC(m) = BIC(m) −min(BIC)), the exponential “Akaike weights,” wAIC (m),
(see, e.g., Burnham and Anderson 2002) and “Bayesian weights,”wBIC (m) (see, e.g.,
Raftery 1995; Fernández et al. 2001; Sala-i-Martin et al. 2004, among many others)
can be obtained as follows:

wAIC (m) = exp
(− 1

2
AIC(m)
)

∑M
j=1 exp

(− 1
2
AIC( j)

) , (14)

wBIC (m) = exp
(− 1

2
BIC(m)
)

∑M
j=1 exp

(− 1
2
BIC( j)

) . (15)

Then, these weights can be utilized to combine the forecasts of m models. Another
commonly used method to combine forecasts is to allocate weights to each model
inversely proportional to the estimated forecast error variances (Bates and Granger
1969), whereas Granger and Ramanathan (1984) employs ordinary least squares (min-
imizing the sum of squared errors) to obtain optimal weights for the point forecasts
of individual models. Given that we also compare the distribution of loss at a given
quantile of equally weighted forecasts, we also compare our findings with the weights
obtained the standard quantile regression weights (Koenker 2005).

Among all these model selection and combination methods, the recent literature,
as mentioned earlier, also employs the equally weighted forecast combination and
the median forecast (see e.g., Stock and Watson (2004); Kolassa (2011)). All forecast
model selection and combination methods discussed in this section will be employed
and compared to the method with SDE weights proposed in this paper.

4 Results for the efficiency of forecast combinations

This section presents our findings of the tests for first-order SD efficiency of the
equally weighted forecast combination. We find that the equally weighted forecast
combination is not the optimal forecast combination at all quantiles of the forecast
error distribution, but it offers to be equally well in some quantiles of the distribution.
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It might seem that the SDE methodology finds an optimal forecast combination when
compared to the equally weighted forecast combination scenario alone and ignores
the performance of the rest of the available combinations. However, this is not the
case. The SDEmethodology finds the optimal combination from the set of all possible
combinations (i.e., full diversification is allowed across different univariate forecasts).
Hence, the optimal SDE forecast combination would also dominate the rest of the
possible combinations as these are part of the available choice set. We obtain the best
forecast combinations of themodel-based forecasts for the Japanese yen/US dollar and
the US dollar/Great Britain pound exchange rate forecasts by computing the weighting
scheme on each forecastmodel that offers the optimal forecast combination at different
quantiles of the loss distribution.

In our applications, because the loss distribution (i.e., absolute forecast error distri-
bution) with the equally weighted forecast combination is known, we can obtain the
number of forecast combinations that generate loss that are less than each given level
of loss, z. In other words, one could obtain the number of forecasts that generate loss
that is below a given quantile of the loss distribution with the equally weighted fore-
cast combination. We test different quantiles of the empirical loss distribution of the
average forecast combination, that is, we test whether the equally weighted forecast
combination is the best forecast combination against the alternative combination at
different parts of the empirical distribution. In the next section, we report the optimal
forecast combination for different percentiles (i.e., 50th, 75th, 95th percentiles) of the
empirical loss distribution for the two applications for different forecast periods and
horizons.15 We also report the average of the optimal forecast combinations that are
obtained for different loss levels (i.e., different quantiles of the loss distribution).16

For each application, we also compare the best forecast combinations obtained with
SDE weights with different set of model selection and combinations that are used
commonly in the literature.

4.1 The Japanese yen/US dollar exchange rate application

First, we begin our empirical analysis with the weekly Japanese yen/US dollar
exchange rate forecasts for different forecast horizons for the financial crisis period of
2007/2009 (i.e., 2007:01 and 2009:52). We proceed with testing whether the equally
weighted forecast combination of the forecasting models for different horizons is the
optimal forecast combination at different levels of loss or there are alternative weights
on the forecast models that stochastically dominate the equally weighted forecast
combination, τ

′
ŷt+h,t , in the first-order sense for some or all levels of loss, where

15 In this paper,we only report optimal forecast combinations for 50th, 75th, and 95th percentiles of the error
distribution. However, the SDE methodology can also be used to obtain optimal forecast combinations at
lower percentiles of the distribution.We do not report these results to conserve space, given that the practical
gains of optimal forecast combination at lower percentiles may not be as are important.
16 The empirical distribution of loss consists of different levels of loss, possibly exceeding 150 depending
on the nature of the application. Therefore, rather than reporting the optimal forecast combination for all
levels of loss, we only report results at selected percentiles of the loss function. However, the full set of
optimal forecast combinations for different loss levels can be obtained upon request from authors.
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the number of forecast combinations that generates loss above a given z level is min-
imized.17

Table 1 presents the results for the 50th, 75th, and 95th percentiles of the loss
distribution of the equally weighted forecast combination for the different forecast
horizons (h). The second column gives the details of the forecast period, whereas
the third column reports the loss levels (i.e., absolute forecast errors) with the equally
weighted forecast combinations at these particular percentiles. The following columns
provide the weights of the underlying forecasting models for the optimal forecast
combinations at the 50th, 75th, and 95th percentiles of the loss distribution with the
equally weighted forecast combination.

In one step ahead forecast horizon, i.e., when h = 1, we have 156 forecasts for
each of the different time-series models. As indicated in the first panel of Table 1,
there is always an alternative forecast combination that generates less number of loss
above a given loss level at the 50th, 75th, and 95th percentiles of the loss distribution
(i.e., optimal forecast combination). For example, at the 50th percentile of the loss
distribution, when forecasts from AR, ARMA, and SETAR obtain weights of 4.33,
4.04 and 91.63%, respectively, this combination offers the optimal combination for this
part of the distribution. For the 75th percentile of the loss distribution, when forecasts
fromAR, RW, and SETAR obtain weights of 94.20, 0.62, and 5.18%, respectively, this
combination offers the optimal combination up to this percentile. Similar to the 75th
percentile of the loss distribution, AR, RW and SETAR contributes to the optimal
forecast combination for the 95th percentile of the loss distribution with weights
of 86.64, 1.87, and 11.50%, respectively. Overall, when h = 1, different forecast
combinations generate the best forecast combinations for different sections of the loss
distribution. SETAR contributes the most to the optimal forecast combination at the
50th percentile of the loss distribution and AR contributes the most at the 75th and
95th percentiles of the loss distribution.

We carried out the same application when we extended the forecast horizon for
6 months (26 weeks) and a year (52 weeks) (i.e., h = 26 and 52, respectively), where
for each case, each model produces 130 and 104 forecasts, respectively.

For h = 26, at the 50th and 75th percentiles, AR model contributes relatively
more to the optimal forecast combination, whereas at the 95th percentile, ARMA
contributes to the optimal forecast combination the most with 45.88%, followed by
the contribution of the SETAR, RW, and ARmodels with weights of 27.03, 14.53, and
12.56%, respectively. The similar trend for the optimal forecast combination continues

17 In the exchange rate application, over-forecasting or under-forecasting (forecasts that are above and
below the realization, respectively) would lead to decisions that would harm the traders. For example, over-
prediction (predicting appreciation of foreign currency) could reinforce investors to sell short the domestic
currency (and buy foreign currency now, which is forecasted to appreciate in future). Similarly, under-
prediction (predicting depreciation of foreign currency) can lead to a short-selling of the foreign currency
(i.e., selling the foreign currency now and trading it back in near future). Both over- and under-forecasting
would lead to decisions that would harm the traders and hence the trader would aim to minimize the forecast
errors rather than the sign of the error and they would not worry about whether the errors have all the same
sign.However, given the context of the application, it is possible that the sign of the errorsmight be important
to take into account. We thank the one of the anonymous referees for pointing out this issue.
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Fig. 1 Cumulative distribution functions with the average and SDE forecast combinations for Japanese
yen/US dollar exchange rate

for h = 52 where ARMA model contributes the most at the 50th percentile and AR
model contributes the most at the 75th and 95th percentiles.

Figure 1 shows the cumulative distribution functions of the absolute error terms
with equally weighted (EW) and SDE forecast combinations for forecast periods
of 2007:01–2009:12, 2007:07–2009:12 and 2008:01–2009:12 (h = 1, 26 , and 52,
respectively). Vertical and horizontal axes describe the probability and forecast error
levels. For a given error level, there is always a higher portion of forecasts that offer
absolute error that is below this error level with the SDE forecast combination when
compared to the EW combination. In Panel A (where the forecast period is 2007:01–
2009:12), 50% of the EW forecast combinations offer an error that is below 0.0117,
whereas the 56.5% of the forecast combinations with SDE weights have an error that
is less than this error level. One could interpret the results as follows. If a company
guarantees to provide compensation to their customers if their forecasts give an error
level (loss) above 0.0117, then the company would compensate 50% of its customers
relying on the EW forecast combination, whereas this compensation rate would have
been only 43.5% if the SDE weights would have been used.

In this subsection, we presented the best forecast combinations at different
percentiles of loss distribution when we consider the equally weighted forecast com-
bination as the “benchmark.” In the next subsection, we offer a comparison of SDE
weights not only with equally weighted forecast combination but also with median
forecast, model selection methods (i.e., AIC, BIC, and PLS), and the forecast combi-
nation methods (i.e., combination of forecasts with Bates and Granger, Granger and
Ramanathan, AIC, and BIC weights, quantile regression).

4.2 Comparisons

SDEweights obtained in the previous section suggested thatwhen the equallyweighted
forecast combination is the benchmark, there is always an alternative forecast combi-
nationwhichwould constitute a better case at different quantiles of the loss distribution
for all forecast horizons. To evaluate SDEweights further, we also obtain median fore-
cast, and forecasts with different model selection and combination methods that are
mentioned above.
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To make the results more apparent for each forecast horizon, Table 2 presents the
number of forecasts with different forecast selection and combination methods that
offer loss levels that are equal to or less than a given level of loss, z, at the 50th, 75th,
and 95th percentiles with the equally weighted forecast combination (EW), median
forecast (Median), forecasts with the best model chosen with AIC, BIC, and PLS, and
forecast combinations with Bates and Granger, Granger and Ramanathan, AIC, BIC,
and quantile regression weights.

In Table 2, we calculate the number of forecasts with different forecast selection
and combination methods that offer loss levels that are equal to or less than a given
level of loss, z, at the 50th, 75th, and 95th percentiles of the loss distribution from the
equally weighted forecast combination. The optimal forecast combinations with the
SDEweights are obtained using theweights fromTable 1.Moreover, we obtainmedian
forecast, forecasts from the model that is chosen with the AIC, BIC, and PLS criteria,
and forecast combinations with Bates and Granger, Granger and Ramanathan, AIC,
BIC weights, and quantile regression weights for a given percentile. Each of these
methods yields loss distributions which are compared with the distribution of loss
obtained with the optimal forecast combinations using the SDEweights. For example,
for h = 1, at 50th percentile of loss distribution, there are 78 combined forecasts
that generate loss levels that are less than or equal to the loss level of 0.0109 when
forecasts are combined with equal weights. On the other hand, the best forecast com-
bination with SDE weights yields 88 combined forecasts that generate loss levels
that are equal to or less than 0.0109, whereas the forecasts obtained with other fore-
cast selection and combination methods generate less number of loss levels that are
equal to or less than 0.0109, suggesting that these methods offer more forecasts that
give a loss level that is above 0.0109 when compared to the best case with the SDE
weights. In other words, the SDE weights offer the least number of forecasts with a
loss above a given threshold (which is 0.0109 in this case). If a company agrees to
compensate consumers if their forecast errors are above 0.0109, then if it uses the
forecast combination with SDE weights, it would need to compensate 10 less cases
than the second best case offering the lowest number of forecasts above 0.0109, which
in this case is the equally weighted forecast combination. Similarly, for the 75th and
95th percentiles, the best forecast combination with SDE weights performs better
than the most of other forecast selection and combination methods where there are
120 and 150 forecasts that produce loss levels that are equal to or less than 0.0181
and 0.0364, respectively. In other words, the optimal forecast combinations with SDE
weights produce 36 and 6 forecasts that give loss levels that are above 0.0172 and
0.0318, respectively. We also find that the median forecast and forecast combination
with the Bates and Granger weights produce equally well outcomes at the 75th and
95th percentiles, respectively. However, the SDE weights offer the best or equally
well position for different parts of the absolute error distribution, whereas the forecast
selection and combination methods only work equally well in certain percentiles of
the loss distribution.

We carry out the same analysis when we change the forecast horizons. When
h = 26, at the 50th percentile of the loss distribution, SDE weights offers the least
number of forecasts that give an error level above 0.0117 when compared to other
methods. On the other hand, at the 75th and 95th percentiles of the loss distribu-
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Table 3 Average weights of optimal forecast combinations for the whole distribution (Japanese yen/US
dollar exchange rates)

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR

h = 1 (1 week) 2007:01–2009:12 0.5222 0.0253 0.0004 0.0887 0.0000 0.0119 0.3514

h = 26 (6 months) 2007:07–2009:12 0.4491 0.1382 0.1679 0.0120 0.0074 0.0389 0.1865

h = 52 (1 year) 2008:01–2009:12 0.4848 0.0973 0.1248 0.0000 0.0025 0.0676 0.2230

tion, the forecasts with PLS and forecast combination with Granger and Ramanathan
weights offer an equally well, respectively. For h = 52, at the 50th percentile of
the loss distribution, forecast combination with quantile regression offers equally
well case compared to forecast combination with SDE weights. However, at the 75th
and 95th percentiles of the loss distribution, forecast combination with SDE weights
offers the least number of forecasts that give an error level that is above a given
level.

We only presented the SDE weights for the best forecast combination at 50th,
75th, and 95th percentiles of the loss distribution. However, Table 3 illustrates the
average contribution of each forecasting model to the best forecast combination with
SDE weights. These average contributions are calculated by averaging the different
weights over all percentiles of the entire loss distribution. One can see that each
model contributes slightly to the optimal forecast combination in different areas of
the loss distribution for different forecast horizons. However, the main contributor to
the optimal forecast combination is the AR model, followed by SETAR, LSTAR, and
ARMA, on average considering all horizons.

Overall, for the weekly Japanese yen/US dollar exchange rate forecasts, we find
that the best forecast combination with SDE weights mostly outperforms the other
forecast selection and combination models, with some few exceptions where some
other models perform equally well. We also should note that the objective of the
SDE weight allocation is to obtain the lowest number of forecasts that give a loss
above a given threshold, not to minimize the overall loss. Hence, we do not produce
conventional comparisons of different methods, but we simply compare whether SDE
approach dominates other forecast selection and combination methods given the loss
level. For example, when h = 1, if one were to use conventional comparisons, for
the 50th percentile, the combination obtained with the quantile regression offers the
lowest mean absolute error for this percentile compared to other methods. In other
words, if the forecaster’s objective is to minimize the aggregate (or mean) loss up to a
given forecast percentile, the forecast combination through quantile regression would
be a better model to use. Yet, if the forecaster’s objective is to minimize the number of
forecasts that gives a loss above a given level, then SDE weights offer better (and in a
few cases equallywell) forecast combinations compared to any other forecast selection
and combination. Therefore, forecast combinations with the SDE methodology offer
a complementary approach to the standard forecast selection/combination methods
used in the forecasting literature as they can produce better outcomes if one were to
minimize the number of forecasts with a loss above a given threshold.
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4.3 US dollar/Great Britain pound exchange rate application

In this subsection, we obtain the optimal forecast combination for the foreign exchange
rate of US dollar/Great Britain pound forecasts for different time horizons at different
quantiles of the loss distribution for the financial crisis period of 2007/2009 (i.e.,
2007:01 and 2009:52). Table 4 presents the best forecast combinations with SDE
method at the 50th, 75th, and 95th percentiles of the loss distribution of the equally
weighted forecast combination when h = 1, 26, and 52, respectively. Table 5 reports
the number of forecasts with different forecast selection and combination methods
that offer loss levels that are equal to or less than a given level of loss for different
percentiles of the loss distribution. Finally, Table 6 presents the average SDE weights
of each model that contributes to the optimal forecast combination.

The optimal weights obtained for the foreign exchange rate of US dollar/Great
Britain pound are very similar to the ones obtained for the Japanese yen/US dol-
lar exchange rate data (see Table 4 for details). For h = 1, AR, ARMA, ARNN
and SETAR are the main contributors to the optimal forecast combination with SDE
weights with differing levels of contribution in different percentiles. AR model con-
tributes themost to the optimal forecast combination at 50th, 75th, and 95th percentiles
of the loss distribution when h = 26. Finally, when h = 52, ARMA and SETAR con-
tribute the most to the optimal forecast combination at the 50th percentile and AR
model is the main contributor to the optimal forecast combination at the 75th and 95th
percentiles.

Figure 2 shows the cumulative distribution functions of the absolute error terms
with equally weighted (EW) and SDE forecast combinations for forecast periods
of 2007:01–2009:12, 2007:07–2009:12 and 2008:01–2009:12 (h = 1, 26, and 52,
respectively). Vertical and horizontal axes offer the probability and forecast error
levels. For a given error level, there is always a higher portion of forecasts that produce
absolute errors below this level with the SDE forecast combination when compared
to the EW combination. In Panel A (where the forecast period is 2007:01–2009:12),
50% of the EW forecast combinations offer an error that is below 0.01, whereas the
54% of the forecast combinations with SDE weights have an error that is less than this
error level.

Table 5 summarizes the comparisons of performance of different models at differ-
ent sections of the loss distribution for different horizons. SDE weights for the best
forecast combination outperform the other forecast selection and combination mod-
els for h = 26 at 75th and 95th percentiles of the loss distribution. Similarly, when
h = 52, forecast combination with the SDE weights outperforms the other forecast
selection and combination models at the 50th and 75th percentiles of the loss distri-
bution. However, when h = 1, at 50th, 75th, and 95th percentiles, there are always
other forecast selection and/or combination methods that perform equally well. These
cases are obtained by the forecast combination with quantile regression at the 50th per-
centile; forecast combinations obtained by the Granger and Ramanathan and quantile
regression weights at the 75th percentile; and forecasts obtained with the median, AIC
and BIC methods and forecast combinations with the AIC and BIC weights. Overall,
we find that the best forecast combination with SDE weight performs better than other
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Table 6 Average weights of optimal forecast combinations for the whole distribution (US dollar/Great
Britain pound exchange rates)

Forecast horizon Forecast period AR ARMA LSTAR MS-AR ARNN RW SETAR

h = 1 (1 week) 2007:01–2009:12 0.3182 0.1317 0.0000 0.0598 0.2984 0.0228 0.1691

h = 26 (6 months) 2007:07–2009:12 0.6070 0.0875 0.0201 0.0722 0.0007 0.0269 0.1857

h = 52 (1 year) 2008:01–2009:12 0.4848 0.0973 0.1248 0.0000 0.0025 0.0676 0.2230
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Fig. 2 Cumulative distribution functions with the EW and SDE forecast combinations for US dollar/British
pound exchange rate

forecast selection and combination cases in most of the cases with very few cases
where other forecast selection and combination methods offer equally well outcomes.

On average, forecasts from the AR, SETAR, ARMA, and ARNNmodels contribute
themost to the optimal forecast combination obtainedwith SDEweights with different
contribution levels at different forecast horizons (see Table 6 for details). However,
these models contribute differently at different parts of the loss distribution. For exam-
ple, theARmodel contributes themost to the optimal forecast combinationwhen at the
75th and 95th percentiles of the loss distribution for all horizons considered, whereas
forecasts from the ARMA model contributes relatively more to the optimal forecast
combination at the 50th percentile of the loss distribution for h = 1 and h = 52.
Overall, the AR model is the main contributor to the optimal forecast combination
throughout the error distribution, and SETAR, ARMA, and ARNN models contribute
significantly more to the optimal forecast combination at different horizons and per-
centiles (see Tables 4, 6 for details).

5 Robustness analysis

5.1 Different forecast periods and out-of-sample performance

In the previous section, we considered the financial period (i.e., forecasts obtained
between 2007 and 2009) and we find that the forecast combinations obtained with the
SDE produce the lowest number of forecasts that give a loss above a given threshold
in most of the cases analyzed over this period. In this section, we repeat our analysis
to obtain optimal forecast combination for the US dollar/Great Britain pound and
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1742 M. Pinar et al.

Japanese yen/US dollar exchange rate forecasts with the SDE methodology with the
forecasts obtained for the period between 2010 and 2012 and compare its performance
with other forecast selection and combination methods.

Panels A and B of Table 7 summarize the forecast combinations obtained with
the SDE methodology for the Japanese yen/US dollar and US dollar/Great Britain
pound exchange rate forecasts, respectively. Absolute forecast errors obtained with the
equally weighted forecast combination are given at the 50th, 75th, and 95th percentiles
when different forecast horizons are used.When compared to the financial crisis period
(see Tables 1, 4 forecast error levels at different percentiles), after the financial crisis,
the equally weighted combination produced better forecasts at all horizons. However,
the SDE methodology produced an alternative forecast combination that dominated
the equally weighted one at a given level. For the Japanese yen/US dollar (Panel A of
Table 7), we find that AR model contributes the most to the forecast combination at
the 50th and 75th percentiles of the loss distribution for h = 1andh = 52, and 95th
percentile of the loss distribution forh = 26,whereas theSETARmodel contributes the
most to the optimal forecast combination at the 95th percentile of the loss distribution
for h = 1 and at the 50th and 75th percentiles of the loss distribution for h = 26.
Finally, LSTAR is the other model that contributes significantly high to the optimal
combination at the 95th percentiles of the loss distribution for h = 26and h = 52.
On the other hand, with the US dollar/Great Britain pound exchange rate application,
the AR model contributes significantly high levels to the optimal combination at the
50th and 75th percentiles of the loss distribution for h = 1, at the 50th percentile
of the loss distribution for h = 26, 50th and 75th percentiles of the loss distribution
for h = 52. Similarly, SETAR is the other model that contributes significantly to the
optimal forecast combination at the 50th, 75th, and 95th percentiles for h = 1, at the
75th and 95th percentiles of the loss distribution for h = 26, and 95th percentile of
the loss distribution for h = 52. Finally, the LSTARmodel contributes the most to the
optimal combination at the 50th percentile of the loss distribution for h = 52. Overall,
for the 50th, 75th, and 95th percentiles of the loss distributions with different forecast
horizons, AR and SETAR models are the main ones that contribute significantly to
the optimal forecast combination, where LSTAR also contributes significantly in few
cases, whereas other models’ contributions are either minimal or none.

Similar to the previous section, we provide comparisons of forecast combination
obtainedwith the SDEmethodologywith the standard forecast selection and combina-
tion methods where Panels A and B of Table 8 summarize the results for the Japanese
yen/US dollar and US dollar/Great Britain pound exchange rate, respectively. With
few exceptional cases, the forecast combinations obtained with the SDE produce a
minimum number of forecasts that have a loss above a given level. The second best
model for the application at hand is the quantile regressionwhich produces equallywell
outcomes in some cases. In particular, with the Japanese yen/US dollar exchange rate
application, the quantile regression also produces the best case at the 50th percentiles
of the loss distribution at all forecast horizons and 75th percentile of the loss distribu-
tion for h = 52 (see Panel A of Table 8). On the other hand, with the US dollar/Great
Britain pound exchange rate application, the quantile regression offers equally well
results at the 50th percentiles of the loss distribution at all forecast horizons and 95th
percentile of the loss distribution for h = 52 (see Panel B of Table 8).
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Tables 7 and 8 present the forecast combinations and comparisons at 50th, 75th,
and 95th percentiles of the loss distribution, respectively, yet we obtain forecast com-
binations for all percentiles of the loss distribution. Panels A and B of Table 9 give
the average contribution of each forecasting model to the best forecast combination
with SDE weights for the Japanese yen/US dollar and US dollar/Great Britain pound
exchange rate, respectively. On average, the AR model contributes the most to the
optimal combination at all horizons, followed by the SETAR model. With respect to
Japanese yen/US dollar application, the AR is the main model contributing the most
at all horizons, whereas the second most contributing model is the LSTAR (SETAR)
when h = 1 (h = 26 and h = 52) for the forecasting period after the financial crisis.
When we compare the after crisis period results with the one before the crisis (see
Table 3), AR is the main model contributing to the optimal forecast combination in
both cases, followed by SETAR. On the other hand, ARMA model’s contribution to
the optimal forecast has decreased at all horizons. The LSTAR model’s contribution
to the optimal forecast has increased for h = 1 but decreased for h = 26 and h = 52.
For the US dollar/Great Britain pound exchange rate application, when we compare
the results with respect to the crisis period (see Table 6), AR and SETAR models are
significant contributors in each case, however, both AR and SETAR models’ contri-
bution to the optimal forecast combination is significantly higher at all horizons for
the after the financial crisis period. Similar to the Japanese yen/US dollar application,
the ARMA model’s contribution to the optimal combination is lower for the after the
crisis period. Similarly, on average, the contributions of ARNN for h = 1 and LSTAR
for h = 52 are lower after the crisis.

Overall, the SDE model still produces the optimal forecast combination even after
changing the forecast period in most percentiles (with few exceptions where other
model selection and combination methods produce an equally well outcomes) where
there is always a lower number of forecasts that produce a loss above a given threshold.
The only difference between the during and the after the financial crisis periods is that
the AR and SETARmodels contribute relativelymore to the optimal combination after
the financial crisis period, while the contributions of ARMA, ARNN, and SETAR
models are relatively less after the crisis period when compared to the financial crisis
period.

We also evaluate the out-of-sample performance of the SDE forecast combination
when compared to the out-of-sample performance of all other forecast selection and
combination models. To do this, we use forecast combination weights obtained for
2010–2012 period for one-step ahead forecasts for the US dollar/Great Britain pound
exchange rates (i.e., weights offered in Panel B of Table 7 for the case of h = 1) to
obtain forecasts for the 2013–2014 period (104 weekly observations). We also use the
in-sample choices made for the different forecast selection and combination models to
obtain forecasts for the 2013–2014 period. Table 10 presents the out-of-sample perfor-
mance results of the different forecast selection and combination models. At the 50th,
75th, and 95th percentiles of the error distribution, the out-of-sample performance of
the forecast combination obtainedwith SDE is better than those from the other forecast
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selection and combination models.18 In all cases, the forecast combination with SDE
has the highest number of forecasts that give errors that are less than a given threshold
error. To put it differently, the forecast combination with the SDEmethodology results
in the least number of forecasts with an error that is above a given threshold error level
when compared to the other methods. Overall, the SDE forecast combination not only
works well for in-sample but also better for out-of-sample forecasts.

5.2 Quadratic loss function

It has been well discussed in the literature that when the objective loss function is
altered, then the solutions to the optimal forecast combination also alter. In particular,
if the forecast error distribution is skewed, different weighted forecast combinations
would work better at different parts of the empirical distribution of the forecast errors
(Elliott and Timmermann 2004). For example, replacing the quadratic loss function
with the absolute loss function leads to quantile regression for the median, or in other
words, least absolute deviation regression (see Nowotarski et al. 2014). Hence, the
quantile regression is less sensitive to the outliers compared to the squared forecast
error distribution. However, both weights obtained through quantile regression and
minimizing squared forecast errors are aiming tominimize a singlemeasure (i.e., mean
absolute deviation and mean squared forecast error) and changing the loss function
(i.e., squaring the absolute forecast errors in this case) will alter the optimal forecast
combination since the magnitude of the loss is being altered. When the magnitude of
the loss is changed, then the forecast combination that minimizes the overall aggregate
measure (e.g., mean squared forecast errors vis-a-vismean absolute forecast error) will
be different. However, SDE methodology does not aim to minimize the overall loss
function, but tries to minimize the number of forecasts that give loss above a given
level, and the optimal forecast combination with either absolute or quadratic loss
function will be the same.

Let us expand our discussion on this. SDE approach’s objective is to minimize
the number of forecasts that give a loss level above a given loss level. In the pre-
vious section, SDE approach finds a weight allocation across the forecast models
(λ) that minimize the number of absolute forecast errors above a given loss level,
z, (i.e., given absolute forecast error level), which is obtained by the following loss

function:
∣∣∣yt+h − λ

′
ŷt+h,t

∣∣∣. For example, when equally weighted forecast combina-

tion (τ
′
ŷt+h,t ) is used, one already knows the distribution of the absolute forecast

errors obtained from
∣∣∣yt+h − τ

′
ŷt+h,t

∣∣∣ where absolute errors are given in ascending

order, 0 ≤ ε1 < ε2 . . . < εN . Given the threshold loss level (z), we can consider
that 50% of the forecasts give absolute forecast errors that is above this level with
the equally weighted forecast combination. If one were to change the loss function to

18 Note that we do not present the individual out-of-sample results of the univariate models, but all of the
univariate forecast models perform worse than the equally weighted forecast combination and therefore
worse than the forecast combination obtained with the SDE methodology at the 50th, 75th, and 95th
percentiles of the error distribution.
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Quantile forecast combination using stochastic dominance 1749

obtain the distribution of the squared forecast errors: (yt+h − τ
′
ŷt+h,t )

2, the ascend-
ing distribution of the squared errors will be the same but only squared this time, i.e.,
0 ≤ ε21 < ε22 . . . < ε2N . Now, given threshold loss level (z

2), 50% of the forecasts will
give squared forecast error above this threshold. The similar logic applies when one
were to find the optimal weight allocation through SDE. Hence, the optimal forecast
combination obtained with either loss function will offer the same result. Clearly, if
one were to minimize the absolute forecast deviation (and minimized squared forecast
deviation) for all the forecasts, loss function will alter the results as the magnitude of
the errors would have been different but not the order and distribution of the errors (or
squared errors) at a given quantile of the loss distribution.

In the previous section, we used the absolute forecast error distribution to find the
optimal forecast combination for given percentiles of the error distribution. In this
section, we use the squared forecast errors to obtain optimal weights with the SDE
approach for the samepercentiles.Weuse theweekly Japanese yen/USdollar exchange
rate forecasts for the financial crisis period of 2007/2009 (i.e., 2007:01 and 2009:52)
with the quadratic loss function where the 50th, 75th, and 95th percentiles of the
squared forecast errors for h = 1. To provide a similar distribution of squared forecast
errors when compared to the absolute forecast errors, we use higher decimal places to
identify the percentiles of the squared forecast errors. As expected, optimal weights
obtained with the SDE methodology are the same as the one found in Table 1 given
for h = 1. Similarly, we compare the performance of the SDE weights with different
forecast selection and combination methods at the 50th, 75th, and 95th percentiles
of the squared forecast errors and the results are presented in Table 11.19 Given the
squared forecast error level, for example, 0.000118, there is always a higher proportion
of forecasts that produce squared forecast errors above this thresholdwith the forecasts
obtained with forecast selection and combination methods compared with the one
obtained with the SDE weights.

Overall, our findings are robust to the choice of the loss function (i.e., either abso-
lute forecast error or squared forecast errors) as altering the loss function does not alter
the order of losses obtained with different forecast selection and combination meth-
ods. Changing the loss function will indeed change the optimal forecast combination
obtained by the mainstream methods used in the forecasting literature as these meth-
ods consider all forecasts and minimize the overall deviation or loss (e.g., quadratic
loss function gives more weight to the large forecast errors compared to least absolute
deviation). However, the SDE methodology minimizes the number of forecasts that
gives a loss above a given threshold level and changing the loss function do not alter
the position of the losses in the distribution and the results are robust to the choice of
the loss function.

19 We also obtained the results for different forecast horizons (h = 26 and h = 52) and the results obtained
with the SDE and its relative performance compared to other forecast selection and combination methods
remains the same at the 50th, 75th, and 95th percentile of the squared forecast error distribution.
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6 Conclusion

In this paper, we provide SDE properties to combine forecasts by which optimal
forecast combinations are obtained at different quantiles of the loss distribution when
compared with respect to all possible forecast combinations constructed from a set of
time-series model forecasts. The SDE approach differs from the mainstream forecast
combination approaches and complements them. In particular, mainstream forecast
combination methods minimize the total sum of losses (such as the sum of squared
forecast errors or absolute forecast errors), but the SDE methodology obtains the
forecast combinations that will minimize the number of forecasts that produce losses
above a given threshold rather than the aggregate measure of loss. In that respect,
the SDE approach complements the existing forecast selection and/or combination
methods when the forecasting priority is to minimize the number of forecasts that
produce loss levels above a given threshold. In that respect, the SDE methodology is
particularly well suited for the cases when a company (such as an insurance company)
promises to compensate its consumers if their losses (forecast errors) are above a
threshold error level rather than trying to minimize the overall loss.

We applied the SDEmethodology to construct the optimal forecast combination for
different forecast horizons at different percentiles of the loss distribution for weekly
Japanese yen/US dollar and US dollar/Great Britain pound foreign exchange rate fore-
casts during and after the financial crisis. During the financial crisis period, we find
that the optimal forecast combination in different areas of the loss distribution for dif-
ferent forecast horizons differs. However, the main contributor to the optimal forecast
combination is the ARmodel both during and after the financial crisis period. Overall,
there is also agreement that the SETAR, LSTAR, ARMA, and ARNN models con-
tribute more to the optimal forecast combination at some parts of the loss distribution
during the crisis period. However, after the crisis period, only SETAR (the second
main contributor to the optimal forecast) and LSTAR are the models that contribute to
the optimal forecast and contributions of ARMA and ARNN to the optimal forecast
combination after the crisis period is limited compared to the crisis period.

In summary, for the majority of the cases considered, forecast combinations with
SDE weights perform better than median forecasts, forecasts from the model that is
chosen with AIC , BIC , and PLS, and forecast combination with equal, Bates and
Granger, Granger and Ramanathan, AIC, BIC, and quantile regression weights at
different parts of the loss distribution. However, there are also few cases where some
other forecast selection and combination model may perform equally well at some
parts of the loss distribution. In particular, forecast combination obtained with the
quantile regression is the second best way of combining forecast in most of the cases.

To test the robustness of the SDE weights, we also used the quadratic loss function
in our analysis. Both the weights obtained with the SDE and the comparison results
with the other methods remained the same when we used the squared forecast error
distribution. In particular, the SDE methodology minimizes the number of forecasts
that gives a loss above a given threshold level and changing the loss function would
not alter the position of the forecast errors in the distribution and as such the results
are robust to the choice of the loss function.
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1752 M. Pinar et al.

Finally, we only applied the SDE analysis to two specific data sets with a given
number (seven) of time-series models and, as such, our results on the optimality of
the forecast combination at different quantiles of loss distribution do not generalize
beyond the scope of the applications at hand. However, the SDE methodology can
offer a useful way of assessing the optimality of forecast combinations by using infor-
mation available in the entire forecast error distribution and not merely in the first two
moments, as typically assumed in the literature.
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Appendix

Mathematical formulation of the test statistics

The test statistic Ŝ1 for first-order stochastic dominance efficiency is derived using
mixed integer programming formulations. The following is the full formulation of the
model:

max
λ

Ŝ1 = √
Nf

1

Nf

Nf∑

Nf =1

(WNf − KNf ) for a given z level (16)

s.t.M(KNf − 1) ≤ z − L(εewt+h,t ) ≤ MKNf , ∀ Nf (17)

M(WNf − 1) ≤ z − L(εw
t+h,t ) ≤ MWNf , ∀ Nf (18)

e′λ = 1, (19)

λ ≥ 0, (20)

WNf ∈ {0, 1}, KNf ∈ {0, 1}, ∀ Nf (21)

with M being a large constant.
The model is a mixed integer program maximizing the distance between the two

binary variables,
1

Nf

∑Nf

Nf =1
KNf and

1

Nf

∑Nf

Nf =1
WNf , which representG(z, τ ; F̂)

and G(z,λ; F̂), respectively (the empirical cdf of the loss functions with the forecast
combinations, τ

′
ŷt+h,t and λ

′
ŷt+h,t , respectively, at loss level of z). According to

inequality (18), KNf equals 1 for each scenario of realization factors Nf for which
z ≥ L(εewt+h,t ) and equals 0 otherwise. Analogously, inequality (19) ensures that WNf

equals 1 for each scenario for which z ≥ L(εw
t+h,t ). Equation (20) defines the sum

of all forecast combination weights to be unity, while inequality (21) disallows for
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negative weights. If the distance between two binary variables is positive, this means
that the number of forecast combinations producing error levels with the λ

′
ŷt+h,t up to

a given z level is greater than the τ
′
ŷt+h,t . Hence, the number of forecast combinations

producing error level above a given z level is lower with λ
′
ŷt+h,t than τ

′
ŷt+h,t .

This formulation allows us to test the SD of the equally weighted forecast combina-
tion, τ

′
ŷt+h,t , over any potential linear forecast combination, λ

′
ŷt+h,t , of the forecasts

based on time-series models. When some of the variables are binary, corresponding
to mixed integer programming, the problem becomes non-polynomial (NP)-complete
(i.e., formally intractable). The problem can be reformulated to reduce the solving
time and to obtain a tractable formulation (see Sect. 4.1 of ST, for the derivation of
this formulation and details on its practical implementation).
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