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Abstract Avery common practicewhen extracting factors fromnon-stationarymulti-
variate time series is to differentiate each variable in the system. As a consequence, the
ratio between variances and the dynamic dependence of the common and idiosyncratic
differentiated components may change with respect to the original components. In this
paper, we analyze the effects of these changes on the finite sample properties of several
procedures to determine the number of factors. In particular, we consider the informa-
tion criteria of Bai and Ng (Econometrica 70(1):191–221, 2002), the edge distribution
of Onatski (Rev Econ Stat 92(4):1004–1016, 2010) and the ratios of eigenvalues
proposed by Ahn and Horenstein (Econometrica 81(3):1203–1227, 2013). The per-
formance of these procedures when implemented to differentiated variables depends
on both the ratios between variances and dependencies of the differentiated factor and
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idiosyncratic noises. Furthermore, we also analyze the role of the number of factors
in the original non-stationary system as well as of its temporal and cross-sectional
dimensions. Finally, we implement the different procedures to determine the number
of common factors in a system of inflation rates in 15 euro area countries.

Keywords Dynamic factor models · Principal components factor extraction ·
Information criteria · Edge distribution · Eigenvalue ratios

1 Introduction

In recent years, due to the availability of data on a vast number of macroeconomic
and financial variables, there has been an increasing interest in modeling large sys-
tems of economic time series. In order to reduce the dimensionality and extract the
underlying factors, one can use dynamic factor models (DFMs), originally introduced
in economics by Geweke (1977) and Sargent and Sims (1977). The aim of DFMs is
to represent the dynamics of the system through a small number of hidden common
factors which are mainly used for forecasting and macroeconomic policy-making; see
Stock and Watson (2011) and Breitung and Choi (2013), for recent reviews of the
existing literature. Kajal Lahiri has contributed to the DFMs literature with several
empirical works. For example, Lahiri and Yao (2004) implement a DFM to analyze
the business cycle features of the transportation sector and Lahiri and Sheng (2010) to
measure the forecast uncertainty by disagreement. Lahiri et al (2015) also implement
a DFM to a real-time jagged-edge data set of over 160 explanatory variables to re-
examine the role of consumer confidence surveys in forecasting personal consumption
expenditure. The properties of many popular factor extraction procedures rely on the
number of factors in the system being known. However, in practice, the number of
factors is unknown and needs to be determined. Among the most popular procedures
proposed with this purpose are the criteria proposed by Bai and Ng (2002), which
are now standard in the literature. These criteria are based on modifications of the
Akaike information criteria (AIC) and Bayesian information criteria (BIC) taking into
account the cross-sectional and temporal dimensions of the dataset as arguments of
the function penalizing overparametrization. Alternatively, Onatski (2010) proposes
an estimator of the number of factors based on using differences between adjacent
eigenvalues of the sample covariance matrix of the variables contained in the sys-
tem, arranged in descending order, while Ahn and Horenstein (2013) propose two
alternative estimators based on ratios of adjacent eigenvalues.

It is well known that macroeconomic time series are frequently non-stationary and
possibly cointegrated. Within the context of principal components (PC) factor extrac-
tion, and following Stock and Watson (2002), the most popular way of dealing with
large systems of non-stationary macroeconomic variables is by differencing the vari-
ables in a univariate fashion; see, for example, Breitung and Eickmeier (2011); Stock
andWatson (2012a, b); Barhoumi et al (2013); Buch et al (2014); Moench et al (2013);
Bräuning and Koopman (2014); Poncela et al (2014) and Jungbacker and Koopman
(2015) for recent references. The theoretical justification of this extended practice is
analyzed in Bai andNg (2004) who show that applying PC to first-differenced data and
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recovering the original factors by “recumulating” is consistent regardless of whether
the factors and/or idiosyncratic errors are I (0) or I (1)1. However, their theory pro-
ceeds assuming that the number of common factors in the system is known. On the
other hand, as mentioned above, macroeconomic variables are not only non-stationary
but can also be cointegrated. Differencing a cointegrated systemmay distort the deter-
mination of the number of factors due to the introduction of non-invertible moving
average (MA) components and/or the trade-off introduced between the variances of
the common and idiosyncratic components. Surprisingly, there has been little discus-
sion in the literature on whether differencing in a univariate fashion affects the correct
determination of the number of factors. As far as we know, only Bai (2004) analyzes
the performance of the information criteria proposed by Bai and Ng (2002) when
implemented to differenced data. In his Monte Carlo experiments, carried out for a
unique DFM with contemporaneously uncorrelated idiosyncratic noises following an
ARMA model and two random walk factors, he shows that the number of factors is
correctly determined.

The main objective of this paper is to fill this gap by analyzing the effects of
univariate stationary transformations of cointegrated systems when determining the
number of factors using the approaches proposed byBai andNg (2002);Onatski (2010)
and Ahn and Horenstein (2013). In the context of a DFM with mutually uncorrelated
and homoscedastic idiosyncratic noises, we first derive analytically the eigenvalues
of the covariance matrix and show how they are affected by univariate differentiation.
We also carry out Monte Carlo experiments considering several designs selected to
represent different situations that can be potentially encounteredwhen dealingwith the
empirical analysis of real macroeconomic variables. Finally, we illustrate the results
determining the number of factors in a system of prices of the euro area. It is important
to note that the procedures for determining the number of factors considered in this
paper are designed for what is known in the literature as static factors. Alternatively,
several factor determination procedures have been proposed in the context of dynamic
factors; see, for example Amengual and Watson (2007); Hallin and Liska (2007);
Bai and Ng (2007); Jacobs and Otter (2008) and Breitung and Pigorsch (2013). The
difference between static and dynamic factors is described by, for example, Bai and
Ng (2008). They argue that, although dynamic factors can be useful to establishing the
number of primitive shocks in the economy, the properties of estimated static factors
are better understood from a theoretical point of view. Furthermore, we focus the
analysis on procedures to detect the number of static factors as they are more popular
in empirical economics.

The rest of this paper is structured as follows. In Sect. 2, we briefly describe the
stationary DFM and the factor determination approaches considered. In Sect. 3, we
analyze the effects of transforming non-stationary systems by univariate stationary
transformations on these procedures. In Sect. 4, we report the results of the Monte
Carlo experiments carried out to illustrate their finite sample performance. In Sect. 5,
we carry out an empirical application. Finally, we conclude in Sect. 6.

1 Bai (2004) also has asymptotic results for the factors estimated from the original non-stationary data.
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2 The stationary dynamic factor model

In this section, we introduce notation and the stationary DFM and describe the factor
determination procedures considered.

2.1 The model

We consider a DFM with cross-sectional dimension N , where the unobserved
r < N common factors, Ft = (F1t , . . . , Frt )′, and the idiosyncratic noises, εt =
(ε1t , . . . , εNt )

′, follow VAR(1) processes. The factors explain the common evolution
of a vector of time series, Yt = (y1t , . . . , yNt )

′ observed from t = 1, . . . , T . The basic
DFM considered is given by

Yt = PFt + εt , (1)

Ft = ΦFt−1 + ηt , (2)

εt = Γ εt−1 + at , (3)

where the factor disturbances, ηt = (η1t , . . . , ηr t )
′, are r × 1 vectors, distributed

independently from the idiosyncratic noises for all leads and lags. Furthermore, ηt
and at are Gaussian white noises with positive definite covariance matrices Ση and
Σa , respectively, and P = (p′

1, . . . , p
′
N )′, is the N × r matrix of factor loadings,

where, pi = (pi1, . . . , pir ). Finally,Φ = diag(φ1, . . . , φr ) andΓ are r×r and N×N
matrices containing the autoregressive parameters of the factors and the idiosyncratic
components, respectively. These autoregressive matrices satisfy the usual stationarity
assumptions. Furthermore, we assume that the structure of the idiosyncratic noises is
such that they are weakly correlated. Following Bai and Ng (2002); Onatski (2012,
2015) and Ahn and Horenstein (2013), we consider the entries in P, Φ, Ση, Γ and
Σa as fixed parameters. Jungbacker and Koopman (2015) and Alvarez et al (2016)
implement the DFM in Eqs. (1) to (3) to the data set of Stock and Watson (2005).

The DFM in Eqs. (1) to (3) is not identified because, for any r × r nonsingular
matrix H , the system can be expressed in terms of a new loading matrix and a new set
of common factors. A normalization is necessary to solve this identification problem
and uniquely define the factors. In the context of PC factor extraction, it is common to
impose the restriction P ′P/N = Ir and FF ′ being diagonal,where F = (F1, . . . , FT )

is a r ×T matrix of common factors; see Stock andWatson (2002); Bai and Ng (2002,
2008, 2013); Connor and Korajczyk (2010) and Bai and Wang (2014) for papers
dealing with identification issues. Note that these are normalization restrictions, and
they may not have an economic interpretation.

2.2 Determining the number of factors

The DFM described above assumes that the number of factors, r , is known. However,
in practice, it needs to be estimated. Obtaining the correct value of r is crucial for an
adequate estimation of the space spanned by the factors. There are several alternative
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procedures designed to determine r inDFMs. In this paper,we consider the information
criteria proposed by Bai and Ng (2002) and the estimators proposed by Onatski (2010)
and Ahn and Horenstein (2013).2

2.2.1 The Bai and Ng (2002) information criteria

The most popular information criteria to select the number of factors in DFMs, pro-
posed by Bai and Ng (2002), are based on a consistent PC estimator of P and Ft which
is given by the solution to the following least squares problem

min
F1,...,FT ,P

Vr (P, F) (4)

subject to P ′P/N = Ir and FF′ being diagonal, where

Vr (P, F) = 1

NT

T∑

t=1

(Yt −PFt )
′(Yt −PFt ) = 1

NT

T∑

t=1

N∑

i=1

ε2i t = 1

NT
tr(εε′), (5)

where ε = (ε1, . . . , εT ) has dimension N×T . The solution to (4) is obtained by setting
P̂ equal to

√
N times the eigenvectors corresponding to the r largest eigenvalues of

YY ′ where Y = (Y1, . . . ,YT ). The corresponding PC estimator of F is given by
F̂ = N−1 P̂ ′Y.

PC factor extraction separates the common component, PFt , from the idiosyncratic
noises by averaging cross-sectionally the variables within Yt such that when N and
T tend simultaneously to infinity, the weighted averages of the idiosyncratic noises
converge to zero, remaining only the linear combinations of the factors. Therefore, it
requires that the cumulative effects of the common component increase proportionally
with N , while the eigenvalues of Σε = E(εtεt

′) remain bounded; see the review of
Breitung and Choi (2013) for a description of these conditions3. Bai (2003) proves that
the PC estimators of factors, factor loadings and common components are asymptoti-
cally equivalent to the maximum likelihood estimators and, consequently, consistent.
Also, he derives the rate of convergence and their corresponding limiting distributions
when N and T tend simultaneously to infinity.

2 Alternatively, based on the estimator proposed by Hallin and Liska (2007), Alessi et al (2010) propose
a refinement of Bai and Ng (2002) criteria based on multiplying the penalty function by a constant that
tunes the penalizing power of the function itself and estimating the number of factors using different
subsamples. Also, Kapetanios (2010) proposes determining the number of factors using resampling to
choose the normalizing constants to be used in order to have an asymptotic distribution for the eigenvalues
of the sample covariance matrix of Y . Given that these procedures are very intensive computationally,
we do not consider them further in this paper. Recently, Harding (2013) proposes a consistent procedure
with improved finite sample properties when compared with Bai and Ng (2002) and Onatski (2010) in
the presence of weak factors. Also Caner and Han (2014) propose a procedure based on a group bridge
estimator, while Han and Caner (2016) propose a modification of the penalty function of Bai and Ng (2002)
which is data dependent.
3 Onatski (2012) considers a DFM inwhich the explanatory power of the factors does not strongly dominate
the explanatory power of the idiosyncratic noises.
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In order to determine r , Bai and Ng (2002) propose minimizing the following
functions with respect to k, for k = 0, . . . , rmax,

IC1(k) = ln Vk(P̂, F̂) + k
N + T

NT
ln

NT

N + T
, (6a)

IC2(k) = ln Vk(P̂, F̂) + k
N + T

NT
lnm, (6b)

IC3(k) = ln Vk(P̂, F̂) + k
lnm

m
, (6c)

where Vk(P̂, F̂) is defined as in expression (5) with P and Ft substituted by their
respective PC estimates, m = min 〈N , T 〉 and rmax is a bounded integer such that
r ≤ rmax. The criteria in (6) are quite sensitive to the choice of rmax; see the Monte
Carlo results in Ahn and Horenstein (2013); Bai and Ng (2002) use rmax = 8 in their
Monte Carlo experiments. On the other hand, in the context of first-differenced data,
Bai and Ng (2004) use IC1(k), with rmax = 6. Under appropriate assumptions, Bai
and Ng (2002) prove the consistency of the information criteria above to determine
the number of common factors.

If ε̂t = Yt − P̂ F̂t are the residuals of the regression of the variables in Y on the
r first principal components of 1

NT YY
′, then tr(ε̂ε̂′) = tr(YY ′) − tr(P̂ F̂ F̂ ′ P̂ ′) =

T
∑m

i=1 λ̂i − T
∑r

i=1 λ̂i = T
∑m

i=r+1 λ̂i , where λ̂i , i = 1, . . . ,m are the eigenvalues

of Σ̂Y = 1
T YY

′, arranged in descending order. Therefore,

Vr (P̂, F̂) = 1

N

m∑

i=r+1

λ̂i . (7)

Using the expression of Vk(P̂, F̂) in (7), the functions in (6) can be written as

IC j (k) = ln

(
1

N

m∑

i=k+1

λ̂i

)
+ kg j (N , T ), (8)

where g j (N , T ) is defined accordingly to the criteria in (6) for j = 1, 2 and 3.

2.2.2 Differenced eigenvalues

Onatski (2010) proposes an alternative procedure to select r , called edge distribution
(ED), and shows that it outperforms the criteria proposed by Bai and Ng (2002)
when the proportion of the variance attributed to the factors is small relative to the
variance due to the idiosyncratic noises or when these are substantially correlated.
Furthermore, computationally, the procedure proposed by Onatski (2010) allows the
determination of the number of factors without previous estimation of the common
component. Finally, it relaxes the standard assumption of PC factor extraction about
the r eigenvalues of Σ̂Y growing proportionally to N . Instead of requiring that the
cumulative effect of factors grow as fast as N , Onatski (2010) imposes a structure on
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the idiosyncratic noises. Under the assumption of Normality, both cross-sectional and
temporal dependence are allowed. This procedure is based on determining a sharp
threshold, δ, which consistently separates the bounded and diverging eigenvalues of
Σ̂Y . For any j > r , the differences λ̂ j − λ̂ j+1 converge to 0 while the difference
λ̂r − λ̂r+1 diverges to infinity when both N and T tend to infinity. Assuming that
rmax/N → 0, Onatski (2010) proposes the following algorithm in order to calibrate δ

and determine the number of factors:

1. Obtain λ̂i , i = 1, ..., N and set j = rmax + 1.
2. Obtain β̂ as the ordinary least squares (OLS) estimator of the slope of a simple lin-

ear regression with constant, where the observations of the dependent variable are{
λ̂ j , . . . , λ̂ j+4

}
and the observations of the regressor variable are {( j−1)2/3, . . . ,

( j + 3)2/3}
3. Estimate r̂ = max{k ≤ rmax|λ̂k − λ̂k+1 ≥ δ̂} or r̂ = 0 if λ̂k − λ̂k+1 < δ̂.
4. Set j = r̂ + 1. Repeat steps 2 and 3 until r̂ converges.

Under suitable conditions, Onatski (2010) proves the consistency of r̂ for any fixed
δ > 0. He sets the number of iterations to four although the convergence of the above
algorithm is often achieved at the second iteration. Additionally, he sets rmax = 8
when r = 1, 2, 5 and rmax = 20 when r = 15.

2.2.3 Ratios of eigenvalues

Recently, Ahn and Horenstein (2013) propose two further estimators of the number
of factors based on the fact that the r largest eigenvalues of Σ̂Y grow unbounded
as N increases, while the other eigenvalues remain bounded. They show that these
estimators are less sensitive to the choice of rmax than those based on the Bai and Ng
(2002) information criteria. The two new estimators are defined as the value of k, for
k = 0, . . . , rmax, that maximizes the following ratios

ER(k) = λ̂k

λ̂k+1
, (9)

GR(k) =
ln

[
Vk−1(P̂, F̂)/Vk(P̂, F̂)

]

ln
[
Vk(P̂, F̂)/Vk+1(P̂, F̂)

] = ln(1 + λ̂∗
k)

ln(1 + λ̂∗
k+1)

, (10)

where λ̂0 = 1
m

∑m
k=1 λ̂k/ ln(m) and λ̂∗

k = λ̂k/
∑m

j=k+1 λ̂ j . The value of λ̂0 has been
chosen following the definition of Ahn and Horenstein (2013) according to which
λ̂0 → 0 and mλ̂0 → ∞ as m → ∞.4

Note that both the numerator and denominator of GR(k) are the growth rates of
sums of residual variances computed with j and j + 1 factors. Ahn and Horenstein
(2013) show that, contrary to the estimator proposed by Bai and Ng (2002), their esti-
mators are not dependent on rmax and suggest to chose it as min(r∗

max, 0.1m) where

4 Ideas similar to the ER estimator have also been considered by Luo et al (2009) and Wang (2012).
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r∗
max = #

{
k | N−1λ̂k ≥ V0/m, k ≥ 1

}
. Under the same assumptions of Bai and Ng

(2006) and Onatski (2010), and allowing for some variables in Y to be perfectly
multicollinear or with zero idiosyncratic variances, they establish consistency of the
ER(k) and GR(k) estimators. The results obtained in their Monte Carlo analysis show
that the two estimators outperform the Bai and Ng (2002) information criteria and
Onatski (2010) estimator mainly when the idiosyncratic components are simultane-
ously cross-sectionally and serially correlated. However, the estimator proposed by
Onatski (2010) outperforms the ER(k) and GR(k) ratios when the variance of the
idiosyncratic component is larger than that of the common component (weak factors).

2.3 A note on the convergence of eigenvalues

The procedures to determine the number of common factors described above are based
on the eigenvalues of the sample covariancematrix, Σ̂Y . One of themain contributions
of Bai and Ng (2002) is to show that the convergence of the eigenvalues of 1

T N YY
′

depends onm. Later, Kapetanios (2010) reviews the available literature about the topic
pointing out that the distribution of the largest eigenvalue depends in complicated
ways on the parameters of the model. It seems that serial correlation affects both the
parameters of the asymptotic limits and their functional form. Furthermore, he shows
that the first r eigenvalues of ΣY increase at rate N which follows from the fact that
the r largest eigenvalues of F ′F will grow at rate N as long as the loading matrix P
is not sparse and suggests that it is reasonable to expect a similar behavior from the
eigenvalues of the sample covariance matrix.

More recently, Onatski (2012, 2015) develops new asymptotics for the eigenvalues
of the sample covariance matrix by considering that both the weights and the factors
are fixed parameters.

3 Determining the number of factors after differencing

As mentioned in the Introduction, macroeconomic systems are often non-stationary.
In this section, we analyze the effects on the performance of the number of factors
determination procedures described above of transforming the data in a univariate
fashion in order to achieve stationarity. Note that differencing affects the ratio between
the variances of the factors and idiosyncratic components, the temporal dependence
structure and the cross-correlations among the idiosyncratic noises.

Consider the DFM given in Eqs. (1) to (3) in which Φ and Γ are diagonal matrices
which may have 1’s in the main diagonal. Consequently, both the factors and the
idiosyncratic noises can be either stationary or non-stationary random walks. Under
this specification, the system of first-differenced data satisfies all conditions of Bai
and Ng (2002); Onatski (2010) and Ahn and Horenstein (2013). After differencing the
data in a univariate fashion, the DFM takes the following form

ΔYt = PΔFt + Δεt , (11)

ΔFt = (Φ − I )Ft−1 + ηt , (12)
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Δεt = (Γ − I )εt−1 + at . (13)

Denote by φi the i-th element in the main diagonal of Φ. If |φi | < 1, then the
variance of the corresponding differenced factor is given by σ 2

fi
= 2σ 2

ηi
/(1 + φi )

where σ 2
ηi
is the variance of ηi . When φi = 0.5, the difference between the variances

of Ft and ΔFt is zero. Therefore, in this case, the variance of the factor is not changed
after differencing the data. However, if φi < 0.5, the variance of ΔFt is larger than
that of Ft while if φi > 0.5, it is smaller. The same relation can be established for the
variances of the elements in εt and Δεt with respect to γi , the i-th element in the main
diagonal ofΓ . Note that if εt is stationary, with autoregressive parameters smaller than
0.5 while Ft is non-stationary, then overdifferencing the idiosyncratic components
may introduce distortions on the determination of the number of factors given that
the relation between the variances of the common and idiosyncratic components is
modified with the variances of ΔFt being smaller and the variances of Δεt being
larger. The dynamic dependence of the idiosyncratic noises of the differenced model
are given by

Corr(Δεi t ,Δεi t−h) = 0.5γ h−1
i (γi − 1).

Finally, note that differencing also affects the cross-correlations of the idiosyncratic
noises. Consider, for example, that the correlation between εi t and ε j t is given by ρ.
If the idiosyncratic noises are stationary, then

Corr(Δεi t ,Δε j t ) = σ−1
Δεi

σ−1
Δε j

(
2 − γi − γ j

)
ρσεi σε j = 0.5

(
2 − γi − γ j

)
ρ

√
(1 − γi )(1 − γ j )

.

In order to simplify the analysis of the effects of univariate differentiation on the
determination of r , we consider Γ = γ I and Σa = σ 2

a I , so that the idiosyncratic
noises are homoscedastic and mutually uncorrelated and all of them are governed
by the same autoregressive parameter. Given that there is no correlation between
the factors and the idiosyncratic components, the covariance matrix of the first-
differenced data is given by ΣΔY = PΣ f P ′ + σ 2

e I , where Σ f is the covariance
matrix of ΔFt and σ 2

e = 2σ 2
a /(1 + γ ) is the variance of each element in Δεt . The

ordered eigenvalues of ΣΔY are equal to σ 2
e + μi for i = 1, . . . , N , where μi is

the i-th largest eigenvalue of PΣ f P ′. Furthermore, tr
(
PΣ f P ′) = tr

(
P ′PΣ f

) =∑r
j=1 σ 2

f j

∑N
i=1 p

2
i j = ∑r

j=1 μ j . Therefore, the sum of the r largest eigenvalues of

ΣΔY is given by
∑r

i=1 λi = rσ 2
e + ∑r

j=1 σ 2
f j

∑N
i=1 p

2
i j , while the rest N − r eigen-

values are given by λi = σ 2
e .

Consider the particular case of a unique randomwalk factor, i.e., r = 1 and φ1 = 1.
In this case, λ1 = σ 2

η

∑N
i=1 p

2
i1 + σ 2

e and λi = σ 2
e , for i = 2, . . . , N . Consequently,

the function to be minimized according to the Bai and Ng (2002) information criteria,
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is given by

IC(k) =
⎧
⎨

⎩
ln

(
N−1σ 2

η

∑N
i=1 p

2
i1 + σ 2

e

)
, k = 0

ln(N − k) − ln(N ) + ln(σ 2
e ) + kg(N , T ), k ≥ 1.

The procedure proposed by Onatski (2010) is based on the differences between
adjacent eigenvalues. Note that for j = 2, . . . , N , λ j − λ j+1 = 0. Therefore, the
procedure should work as far as the difference between λ1 and λ2 is large. This
difference is given by λ1 − λ2 = σ 2

η

∑N
i=1 p

2
i1 and does not depend on the value of

σ 2
e . Therefore, for given weights and cross-sectional dimension, the procedure should

work better when σ 2
η is large. Also, for a given value of σ 2

η , the procedure should work
better as N increases. Note that in the first step of the algorithm proposed by Onatski
(2010), δ̂ = 0 because for j = rmax + 1 eigenvalues λ j are always σ 2

e .
Consider the ER(k) criterion ofAhn andHorenstein (2013) given in (9)which looks

for a large difference between the ratio of λ1 and λ2 with respect to the ratios between
other adjacent eigenvalues. Note that, in the particular case we are considering, if

N < T , the mock eigenvalue is given by λ0 = ln(N )−1
(
σ 2
e + N−1σ 2

η

∑N
i=1 p

2
i1

)
,

and, consequently,

ER(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+N−1q
∑N

i=1 p2i1
ln(N )

(
1+q

∑N
i=1 p2i1

) , k = 0

1 + q
∑N

i=1 p
2
i1, k = 1

1, k ≥ 2,

where q = σ 2
η (1+γ )

2σ 2
a

. Note that if N is large enough, ER(0) should be close to 0.

Therefore, for given weights, the criteria should work better when q is larger.
Finally, consider the GR(k) criterion of Ahn and Horenstein (2013). In this case,

note that

λ∗
i =

⎧
⎪⎨

⎪⎩

(N ln(N ))−1, i = 0

(N − 1)−1(q
∑N

i=1 p
2
i1 + 1), i = 1

(N − i)−1, i ≥ 2.

Therefore,

ln(1 + λ∗
k)

ln(1 + λ∗
k+1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln(N ln N+1)−ln(N ln N )

ln(N+∑N
i=1 p2i1)−ln(N−1)

, k = 0

ln(N+∑N
i=1 p2i1)−ln(N−1)

ln(N−1)−ln(N−2) , k = 1

ln(N+1−k)−ln(N−k)
ln(N−k)−ln(N−k−1) , k ≥ 2.
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4 Finite sample performance

The results in the previous section are based on population covariance matrices and
their corresponding eigenvalues. However, in practice, when determining the number
of common factors in empirical applications, one should estimate the covariancematrix
by its sample version and obtain the corresponding estimated eigenvalues. As men-
tioned above, the asymptotic distribution of estimated eigenvalues is complicated and
not always known. The finite sample properties of the estimated eigenvalues depend
on the temporal sample size used for their estimation, T , the cross-sectional dimen-
sion, N , the ratio between the variances of the common and idiosyncratic components
and the structure of the temporal and cross-sectional dependencies of the idiosyncratic
noises. In this section, we carry out Monte Carlo experiments in order to analyze how
the determination of the number of factors is affected by univariate differentiation
of non-stationary data when implemented in finite samples. We should note that the
procedures considered have been developed for N and T going to infinity. However,
when the procedures are implemented in practice, both N and T are finite. Our interest
in this paper is to study the performance of the criteria under different combinations
of N and T similar to those often encountered when dealing with systems of macro-
economic and financial variables. Furthermore, we want to investigate how small N
and T can be for the procedures to be reliable under different structures of the factors
and idiosyncratic noises. In this way, our results can be of interest for practitioners in
empirical applications.

The experiments are based on R = 500 replications generated by the DFM in
Eqs. (1) to (3) with N = (12, 50, 100, 200) and T = (100, 500)5. Our simulations
are categorized into two parts. The first part is designed to investigate how the alterna-
tive estimators considered behave when detecting a unique random walk factor under
different temporal and cross-sectional structures of the idiosyncratic noises. The sec-
ond part is designed to analyze models with more than one factor.

Consider first a DFM defined as in Eqs. (1) to (3) with r = 1, Φ = 1 and σ 2
η = 1.

The factor loadings are generated by pi1 ∼ U [0, 1] with
∑N

i=1 p
2
i1 = 5.59, 18.70,

34.63 and 65.56 for N = 12, 50, 100 and 200, respectively; Bai and Ng (2006) and
Poncela and Ruiz (2016) also generate the factor loadings by the same distribution.We
consider several structures for the idiosyncratic noises. First, the idiosyncratic noises
are mutually uncorrelated and homoscedastic. In particular, the autoregressive coeffi-
cient matrix of the idiosyncratic components is diagonal, Γ = γ I, with γ = (−0.8,
1) and Σa = σ 2

a I with σ 2
a = 1 so that σ 2

e = 10 and 1 for the values of γ consid-
ered. Note that, differently from simulations carried out in related works, we consider
both positive and negative values for the autoregressive parameter of the idiosyncratic
noises; see, Pinheiro et al (2013) who estimate correlations for Δεt between -0.6 and
0.9 when dealing with the U.S. monthly macroeconomic data set of Stock andWatson
(2005). In order to separate the effects of the temporal dependence and the variance
of the differenced idiosyncratic noises on the results, we also consider the combina-

5 The time dimension of the multivariate system is generated with T ∗ = T + 100 observations. The factor
extraction is carried out after removing the first 100 observations.
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tions γ = −0.8 and σ 2
a = 0.1 (σ 2

e = 1) and γ = 1 and σ 2
a = 10 (σ 2

e = 10). We
introduce contemporaneous correlations among the idiosyncratic noises. Σa is gen-
erated with σ 2

a = 0.1, 1 and 10 in the main diagonal and, following Onatski (2012),
a Toeplitz structure with parameter b = 0.5. Finally, we consider models with het-
eroscedastic idiosyncratic noises. The variances are generated by σ 2

ai ∼ U [0.5, 1.5] ,
σ 2
ai ∼ U [0.05, 0.15] and σ 2

ai ∼ U [5, 15]; see Bai and Ng (2006) and Breitung and
Eickmeier (2011) for the same design to simulate heteroscedastic idiosyncratic noises.
In these two latter cases, we consider γ = −0.8 and 1.

For each replica, we generate observations Yt and differentiate the data in a univari-
ate fashion. Then, the eigenvalues of the sample covariance matrix of 1

T−1 (ΔY )(ΔY )′
are computed and r is determined using each of the procedures described above with
rmax = 4, 7 and 13 when N = 12, 50 and 200, respectively6. The number of factors
determined using the three criteria proposed by Bai and Ng (2002) are denoted by r̂IC1,
r̂IC2, r̂IC3, while the number of factors determined implementing the procedure due to
Onatski (2010) is denoted by r̂ED. Finally, the number of factors estimated using the
two ratios proposed by Ahn and Horenstein (2013) are denoted by r̂ER and r̂GR .

Figure 1 plots, for N = 12 and T = 100, theMonte Carlo averages and 95% confi-
dence intervals, for homoscedastic and contemporaneously uncorrelated idiosyncratic
noises7, of i) the sample ordered eigenvalues; ii) their differences; and iii) their ratios,
together with the corresponding population quantities, when γ = −0.8 and σ 2

a = 0.1,
γ = 1 and σ 2

a = 1, γ = −0.8 and σ 2
a = 1 and γ = 1 and σ 2

a = 10. When the
idiosyncratic noises are homoscedastic and white noise, according to the results in
previous section, the largest eigenvalue of the population covariance matrix of ΔY is
given by λ1 = σ 2

e + ∑N
i=1 p

2
i1 while all other eigenvalues are given by σ 2

e . Note that
in the first two cases, σ 2

e = 1 and the population eigenvalues are equal. In the two
latter cases, σ 2

e = 10. Figure 1 shows that, regardless of the value of σ 2
e , the eigenval-

ues are better estimated when γ = 1 than when γ = −0.8, with smaller biases and
standard deviations. Obviously, given γ, the eigenvalues are better estimated when σ 2

a
is smaller. Therefore, in order to estimate the eigenvalues of the covariance matrix of
ΔY,,important not only the relative variance of the differenced idiosyncratic noises
but also their temporal dependence is important.

In order to analyze the separate effect of the cross-sectional and temporal dimen-
sions of the systemon the estimation of the eigenvalues, Fig. 2 plots the same quantities
as in Fig. 1 for γ = −0.8 and σ 2

a = 1, when N = 12, 50 and 200, and T = 100
and 500. Note that when N increases, the first eigenvalue of the population covari-
ance matrix is different and is estimated with larger biases and standard deviations.
All other eigenvalues are also estimated with larger biases and standard deviations.
Therefore, given T , increasing N could lead to an even worse estimation of the sample

6 It is important to note that Ahn and Horenstein (2013) recommend double demeaned the data for their
estimators to have a better behavior. However, in ourMonte Carlo experiments, we observe a deterioration of
the performance of all criteria to determine the number of factors. Consequently, we compute the covariance
matrix using the original differenced observations.
7 The effect of heteroscedasticity and weak cross-correlation on the estimated eigenvalues is negligible.
The results are available upon request.
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Fig. 1 Eigenvalues of DFM with N = 12, T = 100, r = 1, φ = 1, with γ = −0.8 and σ 2
a = 0.1 (first

row), γ = 1 and σ 2
a = 1 (second row), γ = −0.8 and σ 2

a = 1 (third row) and γ = 1 and σ 2
a = 10 (fourth

row). The first column plots the eigenvalues while the second and third columns plot their differences and
ratios, respectively. The population eigenvalues are plotted in red, the Monte Carlo averages in black and
the corresponding 95% intervals in blue. (Color figure online)

eigenvalues. However, as expected, given N , an increase in T leads to smaller biases
and standard deviations of the estimated eigenvalues.

The finite sample properties of the estimated eigenvalues have effects on the prop-
erties of the procedures to detect the number of factors. Figure 3 plots, for each of the
procedures considered, the percentage of replicates in which the estimated number

123



364 F. Corona et al.

i

λ i

i

D
iff
er
en

ce

i

R
at
io

i

λ i

i
D
iff
er
en

ce
i

R
at
io

i

λ i

i

D
iff
er
en

ce

i

R
at
io

i

λ i

i

D
iff
er
en

ce

i
R
at
io

i

λ i

i

D
iff
er
en

ce

i

R
at
io

i

λ i

i

D
iff
er
en

ce

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

5
15

0
6

0.
8

1.
2

5
15

2
4

0
2

4
6

0.
8

1.
2

50
15

0

0
20

40

0.
8

1.
2

50
15

0

0
20

40

0.
8

1.
2

50
15

0

0
20

40

0.
8

1.
2

50
15

0

0
20

40

0.
8

1.
2

i

R
at
io

Fig. 2 Eigenvalues of DFM with r = 1, φ = 1 and σ 2
η = 1 when the idiosyncratic noises are AR(1)

process with γ = −0.8 and σ 2
a = 1. The first column plots the eigenvalues while the second and third

column plot their differences and ratios respectively. The population eigenvalues are plotted in red, the
Monte Carlo averages in black and the corresponding 95% intervals in blue. First row N = 12, T = 100;
second row N = 12, T = 500; third row N = 50, T = 100; fourth row N = 50, T = 500; fifth row
N = 200, T = 100 and sixth row N = 200, T = 500. (Color figure online)

of common factors is: (i) r̂ = 0; (ii) r̂ = r; (iii) r̂ = rmax; and (iv) r̂ > r , when
γ = −0.8 and σ 2

a = 0.1 (σ 2
e = 1), when N = 12, 50 and 200 and T = 100 and

500. We consider idiosyncratic noises being homoscedastic and uncorrelated; het-
eroscedastic and uncorrelated; and homoscedastic and cross-sectionally correlated.
We can observe that, regardless of the structure of the idiosyncratic noises and the
cross-sectional dimension, when T = 100, the three information estimators tend to
overestimate r and in most of the replicates r̂IC = rmax. However, when T = 500, the
percentage of r̂IC = r is close to 100% if the idiosyncratic errors are homoscedastic
and cross-sectionally uncorrelated even if N = 12. However, if there is cross-sectional
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Fig. 3 Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a
DFM with r = 1, φ = 1, σ 2

η = 1, γ = −0.8 and σ 2
a = 0.1. First row N = 12, T = 100; second row

N = 12, T = 500; third row N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100
and sixth row N = 200, T = 500. The first column has homoscedastic and uncorrelated idiosyncratic
noise; the second column the noises are heteroscedastic while in the third column they are cross-sectionally
correlated. (Color figure online)

correlation r̂IC = rmax. On the other hand, increasing N leads to a larger percentage
of r̂IC > r. The performance of the two estimators based on ratios of eigenvalues,
r̂ER and r̂GR, is very similar and always better than that of the estimator based on
differenced eigenvalues, r̂ED. The percentages of correct estimation of r when imple-
menting the r̂ER and r̂GR estimators are close to 90% when N = 12 and T = 100 and
increase to 100% when increasing either N or T . The results for heteroscedastic and
cross-correlated idiosyncratic noises are very similar.

Figure 4 plots the same quantities as in Fig. 3 when γ = 1 and σ 2
a = 1. Note that

this case is comparable to that in Fig. 3 in the sense that the variance of the differenced
idiosyncratic noises is the same, σ 2

e = 1, but the differentiated idiosyncratic noises
are cross-sectionally uncorrelated white noises. We can observe that the performance
of the alternative procedures to estimate r is rather different to that in Fig. 3. All
procedures have correct estimations close to 100% except the information criteria
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Fig. 4 Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a DFMwith
r = 1, φ = 1, σ 2

η = 1, γ = 1 and σ 2
a = 1. First row N = 12, T = 100; second row N = 12, T = 500;

third row N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row
N = 200, T = 500. The first column has homoscedastic and uncorrelated idiosyncratic noise; the second
column the noises are heteroscedastic, while in the third column they are cross-sectionally correlated. (Color
figure online)

when N = 12 and the idiosyncratic errors are cross-correlated. In this latter case,
r̂IC = rmax. Consequently, not only the variance of the differenced idiosyncratic
noises but also its dependence structure have effects on the procedures to detect the
number of factors. Only the r̂ER and r̂GR estimators seem to be robust to them.

Finally, Fig. 5 considers the case when γ = −0.8 and σ 2
a = 1 with σ 2

e = 10. In this
case, the information criteria behave very similarly than when σ 2

a = 0.1 and T = 100
with r̂IC = rmax. However, when N = (12, 50) and T = 500, the information criteria
procedures estimate r̂IC = 0. Therefore, it seems that they are more affected by the
temporal dependence of the differenced idiosyncratic noises than by their variance. On
the other hand, when looking at the performance of r̂ER and r̂GR , we can observe that
it clearly deteriorates when σ 2

e = 10. Therefore, their performance clearly depends
on σ 2

e . The behavior of r̂ED depends both on γ and σ 2
e with a rather large percentage

of cases in which r̂IC = 0.
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Fig. 5 Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a DFMwith
r = 1, φ = 1, σ 2

η = 1, γ = −0.8 and σ 2
a = 1. First row N = 12, T = 100; second row N = 12, T = 500;

third row N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row
N = 200, T = 500. The first column has homoscedastic and uncorrelated idiosyncratic noise; the second
column the noises are heteroscedastic while in the third column they are cross-sectionally correlated. (Color
figure online)

In the second part of theMonteCarlo experiments,we considermodels inwhich r =
2. First, we consider a second non-stationary common factor, i.e.,Φ = I andΣη = I .
Second, the covariance matrix of the factor disturbances is given by Ση = diag(1, 5).
Finally, the last model considered has a second stationary factor with Ση = I and
Φ = diag(1, 0.5).

For each of the threeDataGenerating Process (DGP) above, Fig. 6 plots the percent-
ages of (i) r̂ = 0; (ii) r̂ = 1; (iii) r̂ = r; (iv) r̂ = rmax; and (v) r̂ > r , when γ = −0.8
and σ 2

a = 0.1 (σ 2
e = 1) and for N = 12 with T = 100 and N = 200 with T = 5008.

First of all, observe that when N = 12 and T = 100, the information criteria chose
r̂ = rmax in all cases. Increasing the dimensions of the system helps for r̂ IC1 and r̂ IC2

8 Monte Carlo results on the estimated eigenvalues are available upon request. They are not included to
save space.

123



368 F. Corona et al.

r IC1 r IC2 r IC3 r ED r ER r GR

%

r IC1 r IC2 r IC3 r ED r ER r GR

%
r IC1 r IC2 r IC3 r ED r ER r GR

%

r IC1 r IC2 r IC3 r ED r ER r GR
%

r IC1 r IC2 r IC3 r ED r ER r GR

%

r IC1 r IC2 r IC3 r ED r ER r GR

%

0
20

40
60

80
10

0

0
20

40
60

80
10

0

0
20

40
60

80
10

0

0
20

40
60

80
10

0

0
20

40
60

80
10

0

0
20

40
60

80
10

0

Fig. 6 Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and r̂ = 0 (black)
in a DFM with r = 2, γ = −0.8 and σ 2

a = 0.1. System dimensions N = 12, T = 100 (first column);
N = 200, T = 500 (second column). The factors are two random walks with variance σ 2

η = 1 (first row);

two random walks with variances σ 2
η1

= 1 and σ 2
η2

= 5 (second row) and a random walk with variance

σ 2
η1

= 1 and a stationary factor with σ 2
η2

= 1. (Color figure online)

but not for r̂ IC3. When looking at the ED, ER and GR criteria, we can observe that,
regardless of the structure of the two factors, when N = 200 and T = 500, all of
them have percentages of determination of the true number of factors close to 100%.
However, when N = 12 and T = 100, there is a large percentage of replicates in
which r̂ = 1. In this case, the ED procedure is better than the two procedures based
on ratios. When the two common random walks in the original data have different
variances, the ED procedure has an acceptable proportion of cases in which r̂ = r.

5 Empirical analysis

In this section, we implement the procedures considered in this paper to deter-
mine the number of common factors in a system of inflation rates in 15 euro area
countries, namely, Austria (AUT), Belgium (BEL), Denmark (DEN), Finland (FIN),
France (FRA), Germany (GER), Greece (GRE), Ireland (IRL), Italy (ITA), Luxem-
burg (LUX), Netherlands (NED), Portugal (POR), Spain (SPA), Sweden (SWE) and
United Kingdom (UK). Prices, observed monthly from January 1996 to November
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Fig. 7 PC estimated factors (first row) and corresponding factor weights (second row) obtained assuming
r = 3 and using original inflation rates (first column) and differenced rates (second column)

2015, Pit , have been obtained from the OCDE data base9 and transformed into annual
inflation as yit = 100×Δ12 log(Pit ). When needed, the inflation rates have been cor-
rected by outliers using the software developed by the United States Census Bureau10.
Following Stock and Watson (2005), outliers are substituted by the median of the
5 previous observations. Furthermore, the inflation series have been deseasonalized
when appropriate.11

Then, as in Reis and Watson (2010) and Altissimo et al (2009), we carry out the
determination of the number of factors using both the inflation data in levels and
after differencing. All procedures are implemented with rmax = 5. Regardless of
whether the procedures are implemented using the original or differenced inflation
rates, the information criteria estimate r̂ = 5 and r̂ER = r̂GR = 1. However, after
differencing, the ED procedure detects just one factor while r̂ED = 3 in the original

9 http://stats.oecd.org/index.aspx?queryid=221.
10 https://cran.r-project.org/web/packages/seasonal.pdf.
11 Camacho et al (2015) show that the performance of deseasonalized data is comparable to using
non-seasonally adjusted data in the context of estimating factors with forecasting purposes. Previous desea-
sonalizing apparently provides the best of two worlds: not working with incorrect assumptions about
common seasonality while keeping a limited number of parameters to be estimated.

123

http://stats.oecd.org/index.aspx?queryid=221
https://cran.r-project.org/web/packages/seasonal.pdf


370 F. Corona et al.

inflation series. According to our Monte Carlo experiments, if the number of true
factors is r ≥ 2, then the ED, ER and GR procedures tend to detect r̂ < r when
implemented to differentiated data. Therefore, we could expect the true number of
factors to be larger than one. Consequently, we extract the factors assuming that r = 3
both from the original and differenced inflation series. In the latter case, the extracted
factors are reaccumulated as proposed by Bai andNg (2004). The extracted factors and
their corresponding weights are plotted in Fig. 7; compare with the factor extracted
by Delle Monache et al (2016) using quarterly inflation for a panel of 12 inflation
rates from a sample of EMU countries. In Fig. 7, there are not significant differences
between the factors estimated using the original and differenced inflation rates but for
the centering of the latter. This result could be expected since the variances of all the
idiosyncratic noises are rather small with values between 0.03 and 0.1. Consequently,
the differenced idiosyncratic noises are white noises with small variances.

Finally, we should point out that the main difference between extracting factors
assuming that r = 1 or r = 3 is the interpretability. Recall that PC consistently
estimates the space spanned by the factors. Therefore, assuming that r = 3 we can
obtain rotations that are not allowed when assuming that r = 1.

6 Conclusions

Differencing non-stationary cointegrated systems have effects on the properties of
factor determination procedures. We show that both the variance and the dependence
structure of the differenced idiosyncratic noises are important when measuring these
effects. If r = 1, the ER and GR procedures work well even in relatively small sizes
under all the structures of the idiosyncratic noises considered in this paper. Only when
the variance of the differenced idiosyncratic noises is very large with respect to the
variance of the differenced factor, the performance is worse although better than the
alternatives. However, the performance of all procedures deteriorates when r = 2. In
this case, the ED procedure seems to work better.
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