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Abstract
This paper aims at targeting some relevant issues for clustering tennis players and 
tournaments: (i) it considers players, tournaments and the relation between them; 
(ii) the relation is taken into account in the fuzzy clustering model based on the 
Partitioning Around Medoids (PAM) algorithm through spatial constraints; (iii) the 
attributes of the players and of the tournaments are of different nature, qualitative 
and quantitative. The proposal is novel for the methodology used, a spatial Fuzzy 
clustering model for players and for tournaments (based on related attributes), where 
the spatial penalty term in each clustering model depends on the relation between 
players and tournaments described in the adjacency matrix. The proposed model is 
compared with a bipartite players-tournament complex network model (the Degree-
Corrected Stochastic Blockmodel) that considers only the relation between players 
and tournaments, described in the adjacency matrix, to obtain communities on each 
side of the bipartite network. An application on data taken from the ATP official 
website with regards to the draws of the tournaments, and from the sport statistics 
website Wheelo ratings for the performance data of players and tournaments, shows 
the performances of the proposed clustering model.
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1 � Introduction and literature review

Data is now extensively gathered and scrutinized in the field of sports through 
the amalgamation of physical and digital sources. This integration is significantly 
augmenting the understanding of professional sports for all stakeholders. The 
statistical analysis of sports data has the potential to refine decision-making 
processes concerning player and team performance, player health and safety, fan 
engagement, marketing strategies, revenue generation, sports economics, practice, 
and overall well-being. Data sources encompass both private and public institutions, 
the Internet of Things, and social networks. The application of distinct statistical 
learning methods varies based on the sport, the nature of the data, and the specific 
objectives of the analysis. Data is systematically collected during both training 
sessions and matches to extract valuable insights into factors influencing the success 
of players and teams. These factors encompass the fairness of competition, player 
assessment, scheduling, tactics, identification of key performance indicators, 
drafting, rule-making, and ranking. The availability and analysis of data contribute 
significantly to enhancing the accuracy of forecasting the outcomes (winner) in 
matches, and understanding the underlying factors influencing these outcomes. The 
playing characteristics of players are important both from a technical and economic 
point of view. From the technical point of view, they allow to evaluate the playing 
characteristics that lead the player and the team to achieve winning results; from the 
economic point of view, they allow to establish the value of a player.

In the literature, empirical studies and methodological proposals based on data 
science and data-driven approaches have been carried out on many sports disciplines 
to analyze the large mass of sport data both in the field of performance and in the 
medical, social or economic fields. Recent contributions can be found in the special 
issues “Statistical Modelling for Sports Analytics” by Groll et al. (2018) and “Big 
data and data science in sport” by D’Urso et al. (2023).

Clustering of sport data has been proposed based on traditional clustering 
approaches and on the theory of networks, either based on modularity (Fortunato 
2010; de Arruda et  al. 2012) or on a mixture model and the expectation-
maximization technique (Snijders and Nowicki 1997). See Ribeiro et  al. (2017), 
Ramos et al. (2018) for the use of network-based approaches in sport.

Papers specifically on clustering of sports data in football are Lu and Tan (2003), 
Gates et al. (2017), Narizuka and Yamazaki (2019), Zachary et al. (2020), D’Urso 
et al. (2023), Carpita et al. (2023) and in basketball, Behravan and Razavi (2021), 
Zuccolotto et al. (2018), Ulas (2021), Chessa et al. (2023). In Lu and Tan (2003) an 
unsupervised clustering of dominant scenes in sports video is presented, in which 
data are preprocessed by Principal Components and Linear Discriminant Analysis. 
Gates et al. (2017) propose an unsupervised classification method that defines sub-
groups of individuals that have similar dynamic models. They apply this method on 
functional MRI from a sample of former American football players. Narizuka and 
Yamazaki (2019) develop a clustering algorithm to extract transition patterns of the 
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formation of a given team during the game. Zachary et al. (2020) use K-means Clus-
tering to Create Training Groups for Elite American Football Student-athletes Based 
on Game Demands. In D’Urso et al. (2023) the authors develop a robust fuzzy clus-
tering model for mixed data. For each variable, or attribute, a dissimilarity measure 
is proposed, and the clustering procedure combines the dissimilarity matrices with 
weights objectively computed during the optimization process. The weights reflect 
the relevance of each attribute type in the clustering results. The model is used to 
cluster football players with respect to mixed data on performances. In Carpita et al. 
(2023) the authors investigate the ability of various composite indicators to define 
a measurement structure for global football performance. The theoretical football 
performance dimensions are based on a set of 29 players’ attributes periodically pro-
duced by Electronics Arts (EA) Sports experts. The players’ performance attributes 
or variables are considered and processed with three different techniques: the Clus-
ter of variables around Latent Variables (CLV), the Principal Covariates Regression 
(PCovR) and Bayesian Model-Based Clustering (B-MBC), and the resulting clus-
ters have been embedded into structural equation models with Partial Least Squares 
(PLS-SEMs) with a Higher-Order Component (that is, the overall football perfor-
mance). Results show the validity of composite indicators.

In Zuccolotto et  al. (2018) the authors use random forests and extremely rand-
omized trees to represent maps of the court visualizing areas with different levels of 
scoring probability of the analysed player or team. The approaches are demonstrated 
by the analysis of data from the NBA regular season 2020/2021. In Ulas (2021) 
NBA teams’ characteristics and similarities were assessed firstly with Machine 
Learning techniques (K-means and Hierarchical clustering) and secondly with Ordi-
nary Linear Regression (OLS) to investigate the factors that affect the NBA team 
values. In Chessa et al. (2023) the authors propose the use of a weighted complex 
network to detect communities of basketball players on the basis of their perfor-
mances. A sparsification procedure to remove weak edges is also applied, confirmed 
by the normalized mutual information, so that not only the best distribution of nodes 
into communities is found, but also the ideal number of communities as well. An 
application to community detection of basketball players for the NBA regular season 
2020–2021 is presented.

Tennis is an individual sport, besides the premier international team event in 
men’s tennis, the Davis Cup. A review of methods of data collection in tennis can 
be found in Takahashi et al. (2023). A review of models of data analysis in tennis 
is given in Kovalchik (2021). Kovalchik observes that despite the extensive histori-
cal application of statistical methods to tennis, the current state of analytical work in 
the sport appears to be trailing behind most professional sports, and delves into the 
reasons why data-driven methods in tennis have struggled to gain popularity. Unlike 
baseball, where statistical tabulation has been a staple since the introduction of the 
first box score in 1845, organizers of tennis competitions have historically neglected 
to quantify their sport. This oversight stems directly from the decentralized structure 
and fragmentation among multiple promoters of tennis events, including the Interna-
tional Tennis Federation, the Grand Slam Board, the ATP Tour, and the WTA.

Probabilistic models in tennis were starting to be utilized to assess strategy, 
with an early example being the examination of optimal service strategy by 
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George (1973). This work demonstrated that the expected point value of a stand-
ard two-service strategy could be formalized as the weighted sum of winning a 
point on a strong serve and a weak serve, each weighted by the probability that 
the serve was played and was good.

Two decades after the initial mathematical studies in the 1970s, tennis 
experienced a significant surge in statistical research. Leading this wave were 
Franc Klaassen, a former national junior player for the Netherlands who entered 
the economics doctoral program at the University of Tilburg in 1995, and Jan 
Magnus, a Tilburg professor. Their enduring research partnership began with the 
application of quantitative analysis to various "tennis myths" that had never been 
scientifically tested (Magnus and Klaassen 1996). In the process, they delved into 
the independent identically distributed model more extensively than any study 
before. By 2001, Klaassen and Magnus had validated the model against outcomes 
from 90,000 points played at Wimbledon, marking the first instance of large-scale 
statistical analysis in tennis (Klaassen and Magnus 2001).

Throughout two decades of research into the statistical aspects of tennis, 
prediction emerged as a predominant theme. Using a paired comparison 
framework, Klaassen and Magnus pioneered model-based approaches to predict 
the most likely winner of points in tennis matches and explore contextual factors 
influencing a player’s win probability (Klaassen and Magnus 2003). Their work 
propelled tennis prediction beyond the mathematical models of the 1970s, 
establishing the fitting of statistical models to large competitive datasets as the 
new standard. Subsequent researchers built on this foundation, measuring and 
testing predictors of tennis outcomes and creating more sophisticated models of 
tennis performance (Kovalchik 2016).

By the 2000s, there was a growing body of statistical research on tennis, 
highlighting a prevalent data problem in the sport. The introduction of the Hawk-
Eye player challenge system at the 2006 U.S. Open marked a pivotal moment. 
This multi-camera tracking system for line-call review not only addressed the 
data problem but also positioned tennis at the forefront of officiating innovations, 
being among the first to adopt a positional tracking system presented tennis with an 
opportunity to compete in the big data race in sports, aligning it with major leagues 
in terms of technological advancements.

In the recent literature aimed at predicting the outcomes of sporting events, tennis 
still plays a prominent role with a variety of methods. Arcagni et al. (2023) extend 
the class of paired comparison approaches models by using indicators derived 
from the theory of complex networks for the predictions. They propose a measure 
based on eigenvector centrality. Unlike what happens for the standard paired 
comparisons class (where the rates or latent abilities only change at time t for those 
players involved in the matches at time t), the use of a centrality measure allows 
the ratings of the whole set of players to vary every time there is a new match. The 
resulting ratings are then used as a covariate in a simple predictive logit model. 
In Tea and Swartz (2023) the authors investigate intended serve direction with 
Bayesian hierarchical models applied on an extensive data source of professional 
tennis players at Roland Garros. They find discernible differences between men’s 
and women’s tennis, and between individual players. General serve tendencies such 
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as the preference of serving towards the body on second serve and on high pressure 
points are revealed.

The presented literature has shown the importance of partitioning and clustering 
of players on the basis of performance, position, competitions attended and other 
variables. This paper proposes a clustering model in tennis. The model aims at 
targeting some relevant issues for clustering tennis players and tournaments: (i) it 
considers players, tournaments and the relation between them; (ii) the relation is 
taken into account in the fuzzy clustering model based on the Partitioning Around 
Medoids (PAM) algorithm through spatial constraints; (iii) the attributes of the 
players and of the tournaments are of different nature, qualitative and quantitative.

The proposal is novel for the methodology used, a spatial fuzzy clustering model 
(cfr Coppi et al. 2010) for players and for tournaments (based on related attributes), 
where the spatial penalty term in each clustering model depends on the relation 
between players and tournaments described in the adjacency matrix. The proposed 
model is compared with a clustering model based on fitting a bipartite players-
tournament complex network model (the Degree-Corrected Stochastic Blockmodel) 
to the adjacency matrix that considers only the relation between players and 
tournaments, described in the adjacency matrix, to obtain communities on each side 
of the bipartite network.

Even though communities form around nodes that have common edges and 
common attributes, typically, algorithms have only focused on one of these two data 
modalities: community detection algorithms traditionally focus only on the network 
structure, while clustering algorithms mostly consider only node attributes.

The paper is structured as follows. In Sect.  2 the data and models used are 
presented. Section 3 reports the results of the application of the models to clustering 
of tennis players and tournaments. Section  4 concludes the paper and provides 
directions for future work.

2 � The models

In this section, we give an overview of the data used in the paper in Sect. 2.1 and 
then define and explain the two clustering algorithms we are going to apply to these 
data: the Spatially-corrected fuzzy Partition Around Medoids (Sect.  2.2) and the 
Degree-Corrected Stochastic Blockmodel (Sect. 2.3).

2.1 � The data

For the analysis in this paper, we use data taken from the ATP official website ATP 
(2023) with regards to the draws of the tournaments, and from the sport statistics 
website Wheelo Ratings Wheelo (2023) for the performance data of players and 
tournaments.

The data is organized as follows:
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•	 Matrix X = {xni, n ≤ N, i ≤ I} of player data, recording I = 21 attributes for each 
of the N = 136 players that played at least 10 matches on the ATP Tour.

•	 Matrix Y = {ysj, s ≤ S, j ≤ J} of tournament data, recording J = 18 attributes for 
each of the M = 64 individual tournaments of the ATP tour, after excluding the 
ATP finals and the team competitions.

•	 Adjacency matrix A , in which the rows correspond to players and columns 
to tournaments. Here, an,s = 1 if player n participated to the main draw of 
tournament s and an,s = 0 otherwise.1 The matrix A is visualized in Fig. 1.

2.2 � Spatially‑corrected fuzzy partition around medoids

The first analysis we perform is based on the application of two distinct versions 
of Fuzzy Partition around Medoids (PAM) with Spatial Penalty using different 
distances for player and tournament attributes due to the different nature of the data. 
Note that we use the term spatial to refer to the correction to the model due to the 
network structure as this is the standard term used in the literature, but, as can be 
deduced by the nature of the data, it is not to be intended as adjacency in a physical 
space but on in an abstract sense in the bipartite network. The goal is to find an 
optimal fuzzy partition of the sets that clusters together units that are similar both 
with regards to the attributes in the matrices X and Y and the adjacency structure in 
the matrix A . We follow an approach similar to the one outlined in Pham (2001), but 
with some modifications necessary to take into account the bipartite structure of the 
adjacency matrix A . Here, in the data there is no direct measure of adjacency among 
players or among tournaments, but only between players and tournaments, based on 
participation, as encoded in A.

Fig. 1   Visual representation of the adjacency matrix A . Black squares corresponds to 1s

1  Here, as it is presented in the official draws available on the ATP website, if a player withdraws before 
the start of his first match, and is replaced by a lucky loser, he is not considered as a participant.
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To compute the similarity in the adjacency relations between units on the same 
side, from the adjacency matrix A , we create two distinct similarity matrices �(�) for 
players and �(�) for tournaments, applying the cosine similarity (see Wael and Aly 
2013) respectively to the rows and columns of the matrix A.

That is, we have for every two players h and l

By definition b(p)
hl

∈ [0, 1] , and b(p)
hl

= 1 if both player have played exactly the same 
tournaments and b(p)

hl
= 0 if the tournaments they played have no overlap.

Similarly, for every two tournaments h and l we have

Also here, b(t)
hl

= 1 means that the draws of tournaments h and l contained exactly the 
same players and b(t)

hl
= 0 means that no player competed in both tournaments h and 

l. The reasons why the cosine similarity is viable as a metric for the proximity of 
units is that the resulting matrices �(�) and �(�) are symmetric, and, since the original 
matrix A is non-negative, all the entries in �(�) and �(�) will be non-negative too.

We then apply fuzzy spatial partition-around-medoids algorithms on the matrices 
X and �(�) on one side, and Y and �(�) on the other.

In practice, we want to find two different matrices of membership degree U and 
W

where unc represents the degree of membership of player n to cluster c and wse the 
degree of membership of tournament s to cluster e. Furthermore, for each of the two 
partition matrices, are provided C and E prototypes, called medoids, i.e. the subsets 
(x1,… , xc,… , xC) and (y1,… , ye,… , yE) , whose generic xc , for c ≤ C , is chosen 
among the N observed units xn = (xn1,… , xnI) , with n ≤ N , and the S observed units 
ys = (ys1,… , ysJ) , with s ≤ S , respectively, by solving the following minimization 
problems.

To cluster the players we optimize

Here the parameter m1 ≥ 1 tunes the fuzziness of the partition and the parameter 
�1 ≥ 0 the importance of the spatial regularization based on the cosine similarity 
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matrix �(�) . In this case d(xn, xc) is the Euclidean distance in ℝI between the attrib-
utes of the unit n and the medoid of the cluster c.

Similarly, to cluster the tournaments we optimize

Here the parameter m2 ≥ 1 tunes the fuzziness of the partition and the parameter 
�2 ≥ 0 the importance of the spatial regularization based on the cosine similarity 
matrix �(�) . Here, dG(ys, ye) is the Gower’s distance (see Gower 1971) in the space 
of attributes between the attributes of the unit n and the medoid of the cluster e. 
Gower’s distance is chosen as the matrix Y contains some columns with qualitative 
attributes.

Here, we have to note that the cosine similarity matrices �(�) and �(�) are dense 
matrices, i.e., they have few 0 entries. This puts limits on the admissible values of 
�1 , �2 , as the spatial penalty term punishes a partition that separates units with high 
similarity values but does not punish a partition that puts together units with low 
similarity values. Consequently, if the weight given to the spatial term is too high, 
the penalty for separating clusters becomes too high, and the entire output partition 
collapses in one single cluster.

2.3 � Degree‑corrected stochastic blockmodel

We next want to analyse the adjacency structure between players and tournaments 
as a bipartite network. To better understand the underlying structure of the bipartite 
player-tournament network, before the extraction of the cosine similarity matrices 
and the addition of attributes we fit to them a Degree-Corrected Stochastic 
Blockmodel (DCSBM) using the R package greed. The DCSBM was defined in 
Karrer and Newman (2011) for the goal of community detection, that is, of finding 
denser subgraphs inside a large network.

In a DCSBM every vertex is assigned an expected degree and the membership to 
a cluster. Note that when, as in this paper, we deal with bipartite networks, clusters 
are defined separately on the left and right side of the network. Nodes of the same 
cluster are expected to have similar patterns in which neighbours they connect to, 
while also having the prescribe expected value of the degree. We assign two (crisp) 
membership matrices Ũ ∶= {ũnc, n ≤ N, c ≤ C} and W̃ ∶= {w̃se, s ≤ S, e ≤ E} , such 
that ũnc ∈ {0, 1} , 

∑

c ũnc = 1 for all n,  c and similarly w̃se ∈ {0, 1} , 
∑

e w̃se = 1 for 
all s, e. We further define a C × E matrix Ω = {�ce}c≤C,e≤E of expected connection 
intensities between clusters, such that �ce ≥ 0 for all c, e, and a vector representing 
the expected degrees of the vertices on both sides d ∶= {dl, l ≤ N + S} . Given two 
vertices n ∈ [N], s ∈ [S] , the number of edges between them is represented by the 
variable Xns with

(5)
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We fit the parameters (both weights and cluster memberships) of this model to the 
empirical data using the R package greed (Côme and Jouvin 2022). This is done 
by a variational extension of the expectation-maximization (EM) algorithm. The 
variational EM algorithm alternates between the optimization of a lower bound on 
the Integrated Complete-data Likelihood (ICL) of the observed network over the 
membership matrices Ũ, W̃ for fixed values of the model parameters Ω, d (E-step), 
and over the parameter for fixed values of the membership matrices (M-step). Here 
we note that using a Poisson distribution for the number of edges between two 
vertices instead of a Bernoulli distribution, we allow for multi-edges even if the 
original matrix A is a binary matrix. This choice is made in order to make it feasible 
to estimate the parameters of the model during the M-step. Indeed, to estimate the 
distribution of the number of edges between two clusters c and e in the model, we 
can exploit the fact that Poisson random variables have a simple additive structure 
such that

The distribution of the sum of a large number of Bernoulli variables with different 
parameters has instead no tractable representation. Given that in the model studied 
𝜆ns < 1.5 uniformly, and its average 𝜆 < 0.3 , we expect the Poisson approximation 
not to distort heavily the results.

3 � Results

In this section, we provide a more detailed overview of the data in Sect. 3.1, and 
then present the outputs of the classification algorithms in Sect.  3.2. Finally, in 
Sect. 3.3 we analyse the properties of the clusters obtained, both with respect to the 
attributes and the network, and compare the results of the two models.

3.1 � Descriptive analysis

In this subsection we present in Tables 1 and 2 the descriptive statistics for all the 
numeric attributes of players and tournaments, respectively. For the players we 
extracted a total of 21 numeric attributes from the Wheelo rating website. For the 
tournaments, we got 13 numeric attributes from the Wheelo rating website, which 
we supplemented with 5 more attributes, 2 numeric and 3 qualitative (Surface, 
In.Outdoor and Nation), from the ATP website. We report the names of the 
attributes from the Wheelo rating website as they were shown there, even if some 
names might be misleading. Several attributes are referred to as “percentage" which 
would suggest that they are normalized between 0 e 100, instead for all of them the 

(6)Xns ∼ ���(𝜆ns), 𝜆ns ∶=
∑

c≤C,e≤E

ũncw̃se𝜔cednds.

(7)
N
∑

n=1

S
∑

s=1

���
(

ũncw̃se𝜔cednds
)

∼ ���

(

N
∑

n=1

S
∑

s=1

ũncw̃se𝜔cednds

)

.
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normalization is between 0 and 1. As we standardize anyway all numeric variables 
to have mean 0 and variance 1, this has no impact on the outcome of the analysis.

3.2 � Output of the partition algorithms

In this section we show the outputs of the partition algorithms. We use numbers to 
identify the PAM clusters, and letters to identify the DCSBM clusters. We start ana-
lysing the Fuzzy Spatial Partition Around Medoids. We set the spatial parameters 
�1 = 1∕10 and �2 = 1∕150 so that they would be low enough not cause the partition 
to collapse into only one cluster. Indeed, the spatial term is defined in the objective 
function in (4) and (5) so that there is a penalty for assigning adjacent units to different 
clusters, but not for assigning non-adjacent units to the same cluster. Choosing higher 
values of �1 and �2 would result in the spatial penalty becoming more important than 
the contribution from the attributes, and make the optimal solution one in which all 
units are assigned to the same cluster. We limited ourselves to values of m1,m2 ≤ 1.2 
to prevent the output of too many fuzzy units and make it more natural the comparison 
with the partition coming from the DCSBM, which are crisp by nature. We used the 

Table 1   Mean, Standard Deviation, Maximum and Minimum for each player attribute over all the 136 
players considered

Attributes with * can only take values in [0, 1] by definition

Mean StDev Max Min

WinPercentage* 0.480 0.128 0.902 0.167
PointsWonPercentage* 0.497 0.016 0.549 0.447
GamesWonPercentage* 0.494 0.033 0.596 0.399
SetsWonPercentage* 0.484 0.100 0.825 0.241
TieBreaksWonPercentage* 0.494 0.142 1.000 0.000
ServiceGamesWonPercentage* 0.788 0.060 0.918 0.638
ReturnGamesWonPercentage* 0.200 0.044 0.309 0.074
FirstServePercentage* 0.623 0.035 0.720 0.545
FirstServeWonPercentage* 0.713 0.044 0.802 0.613
SecondServeWonPercentage* 0.506 0.029 0.573 0.411
AcesPerServiceGame 0.477 0.218 1.399 0.100
AcePercentage* 0.075 0.036 0.229 0.014
DoubleFaultPercentage* 0.036 0.015 0.131 0.017
BreakPointsFacedPerServiceGame 0.541 0.117 0.845 0.274
BreakPointsSavedPercentage* 0.612 0.042 0.703 0.508
FirstServeReturnPointsWonPercentage* 0.282 0.026 0.349 0.211
SecondServeReturnPointsWonPercentage* 0.488 0.030 0.551 0.392
ReturnPointsWonPercentage* 0.360 0.025 0.420 0.282
AceAgainstPercentage* 0.078 0.020 0.130 0.037
BreakPointChancesPerReturnGame 0.518 0.088 0.772 0.305
BreakPointsConvertedPercentage* 0.385 0.045 0.522 0.236
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Fuzzy Silhouette validity index to identify the optimal values of m1,m2 and C, E for 
the fuzzy clustering, obtaining the optimal values of m1 = 1.15 , C = 3 (see Table 3) 
for the players and m2 = 1.05 , E = 2 (see Table  4) for the tournaments. The parti-
tion obtained using the optimal choices for the number of clusters and the fuzziness 
parameter are shown in Table  5. In the analysis we consider a unit a member of a 
cluster if its fuzzy membership to said cluster is above 0.6 for players, or 0.7 for tour-
naments (cfr Maharaj and D’Urso 2011). Player and tournaments that do not reach 
these thresholds for any cluster are considered as fuzzy units. The full tables of the 
fuzzy memberships are presented in the supplementary material. For the players the 
optimal clustering produces 3 clusters: cluster 1 (medoid Ruusuvuori) is the largest, 
containing more than half of the players (74 out of 136), with cluster 2 (medoid Albot) 
and cluster 3 (medoid Popyrin) containing 27 and 29 players respectively. 6 players 
are classified as fuzzy units. It is interesting to note that we have fuzzy units with all 
possible combinations of shared memberships: Thiem and Purcell between clusters 1 
and 3, Shang and Gasquet between clusters 1 and 2, Kovacevic between clusters 2 and 
3 and Bergs among all of the 3 clusters (see the supplementary material). Tournament 
clustering instead outputs cluster 1 (medoid Adelaide 2) with 37 units and cluster 2 
(medoid Gstaad) with 23 units. 4 units (Delray Beach, Houston, Beijing and Stock-
holm) are considered fuzzy.

The Degree-corrected Stochastic Blockmodel outputs instead 6 clusters, 2 for the 
player side of the network, and 4 on the tournament side, as shown in Fig. 2. Here 
there is no external validation index for the clustering, the optimization of the ICL 
is done over the number of clusters together with the optimization of memberships 
and parameters. On the player side we have cluster A with 100 players and cluster 

Table 2   Mean, Standard Deviation, Maximum and Minimum for each numerical tournament attribute 
over all the 64 tournaments considered

Attributes with * can by definition only take values in [0, 1]

Mean StDev Max Min

FirstServePercentage* 0.624 0.017 0.658 0.583
FirstServeWonPercentage* 0.715 0.027 0.781 0.639
SecondServeWonPercentage* 0.509 0.016 0.555 0.477
ServicePointsWonPercentage* 0.638 0.022 0.682 0.587
ServiceGamesWonPercentage* 0.794 0.040 0.874 0.695
Aces 511.234 507.885 2597.000 131.000
AcePercentage* 0.076 0.023 0.133 0.032
AcesPerServiceGame 0.486 0.141 0.849 0.214
DoubleFaultPercentage* 0.035 0.007 0.052 0.022
DoubleFaultsPerServiceGame 0.227 0.045 0.331 0.140
AcesPerDoubleFault 2.241 0.881 5.817 0.812
BreakPointsFacedPerServiceGame 0.530 0.072 0.693 0.376
BreakPointsSavedPercentage* 0.615 0.033 0.694 0.543
Category 515.625 464.781 2000.000 250.000
Draw Size 43.000 29.072 128.000 28.000
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B with 36. On the tournament side we have the majority of tournaments (42 out of 
64) in cluster B, with cluster A counting 15 units, and cluster C and D only 3 and 4, 
respectively.

Fig. 2   Edge densities (number of present edges divided by maximum possible number of edges) between 
clusters in the DCSBM

Table 3   Fuzzy silhouette of the 
player clustering for different 
choices of C and m

1

Bold values indicate the optimal values of C and m
1
 , and the corre-

sponding Fuzzy silhouette

C \ m
1

1.05 1.10  1.15 0.365

2 0.335 0.346 0.356 1.20
3 0.342 0.357 0.370 0.362
4 0.252 0.218 0.252 0.279
5 0.142 0.100 0.212 0.215

Table 4   Fuzzy silhouette of 
the tournament clustering for 
different choices of E and m

2

Bold values indicate the optimal values of E and m
2
 , and the 

corresponding Fuzzy silhouette

E \ m
2

1.05 1.10 1.15 1.20

2 0.293 0.262 0.277 0.284
3 0.218 0.055 0.066 0.075
4 0.104 0.166 0.189 0.198
5 0.211 0.167 0.190 0.246
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Table 5   Cluster membership for players and tournaments using Degree-Corrected Stochastic Block-
model (BM) and Fuzzy Partition Around Medoids (PAM)

Players Tournaments

Name BM PAM Name BM PAM

SRB DJOKOVIC A 1 01_Adelaide1 A 1
ESP ALCARAZ B 1 02_Pune B 1
ITA SINNER A 1 03_Auckland B 1
RUS MEDVEDEV A 1 04_Adelaide2 A 1
RUS RUBLEV A 1 S1_Australian_Open B 1
GER ZVEREV A 1 05_Dallas A 1
BUL DIMITROV A 1 06_Cordoba D 2
DEN RUNE A 1 07_Montpellier A 1
POL HURKACZ A 3 08_Rotterdam A 1
GRE TSITSIPAS A 1 09_Delray_Beach A Fuzzy
USA FRITZ A 1 10_Buenos_Aires D 2
AUS DE MINAUR​ A 1 11_Rio_de_Janeiro D 2
CHI JARRY​ B 3 12_Doha A 1
GBR DRAPER A 1 13_Marseille A 1
RUS KHACHANOV A 1 14_Dubai A 1
USA SHELTON A 3 15_Acapulco A 2
FRA HUMBERT A 1 16_Santiago D 2
NOR RUUD A 1 17_Indian_Wells B 1
RUS SAFIULLIN A 1 18_Miami B 1
ITA BERRETTINI A 3 19_Houston B Fuzzy
ARG CERUNDOLO B 1 20_Marrakech B 2
CAN AUGER-ALIASSIME A 3 21_Estoril B 2
USA TIAFOE A 1 22_MonteCarlo B 2
USA KORDA A 1 23_Barcelona B 2
USA PAUL A 1 24_Munich B 2
ITA ARNALDI A 1 25_BanjaLuka B 2
NED GRIEKSPOOR A 3 26_Madrid B 1
FRA MANNARINO A 1 27_Roma B 2
FRA MONFILS A 1 28_Geneva B 2
ESP DAVIDOVICH FOKINA A 1 29_Lyon B 2
GBR NORRIE B 1 S2_Roland_Garros B 2
CZE LEHECKA A 1 30_Stuttgart A 1
ITA MUSETTI B 1 31_s’Hertogenbosch A 1
FRA FILS A 1 32_Queen’s B 1
SRB DJERE B 1 33_Halle B 1
SUI STRICKER A 3 34_Mallorca B 1
ARG BAEZ B 1 35_Eastbourne B 2
RUS KARATSEV A 1 S3_Wimbledon B 1
GER STRUFF A 3 36_Newport A 2
JPN NISHIOKA A 1 37_Gstaad B 2
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Table 5   (continued)

Players Tournaments

Name BM PAM Name BM PAM

KAZ BUBLIK A 3 38_Bastad C 2
CRO GOJO A 3 39_Hamburg C 2
CAN SHAPOVALOV A 1 40_Atlanta A 1
RUS SHEVCHENKO A 1 41_Umag B 2
FIN RUUSUVUORI A 1 42_Washington A 1
USA EUBANKS A 3 43_Los_Cabos B 2
CHI GARIN B 1 44_Kitzbuhel C 2
NED VAN DE ZANDSCHULP A 1 45_Toronto B 1
USA WOLF A 1 46_Cincinnati B 1
USA MCDONALD A 1 47_Winston-Salem B 1
CRO CORIC A 1 S4_US_Open B 1
CZE MACHAC A 1 48_Chengdu B 1
AUS KOKKINAKIS A 3 49_Zhuhai B 1
HUN FUCSOVICS A 1 50_Astana B 1
HUN MAROZSAN A 1 51_Beijing B Fuzzy
USA GIRON A 1 52_Shanghai B 1
CHN ZHANG A 1 53_Tokyo B 1
ITA SONEGO A 1 54_Stockholm B Fuzzy
ARG ETCHEVERRY​ B 1 55_Antwerp B 1
CHN WU A 1 56_Vienna B 1
RUS KOTOV A 1 57_Basel B 1
AUT OFNER B 1 58_Paris_Bercy B 1
SVK MOLCAN B 1 59_Metz B 1
GER HANFMANN B 1 60_Sofia B 1
ESP BAUTISTA AGUT​ A 1
SWE YMER A 2
GBR EVANS A 1
JPN WATANUKI A 3
SUI WAWRINKA A 1
AUS POPYRIN A 3
AUS THOMPSON A 3
GBR MURRAY​ A 1
AUT THIEM B Fuzzy
ARG SCHWARTZMAN B 2
GER MARTERER B 3
SRB LAJOVIC B 1
USA MICHELSEN A 1
USA NAKASHIMA A 3
AUS O’CONNELL A 3
FRA BARRERE A 1
SRB MEDJEDOVIC B 1
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Table 5   (continued)

Players Tournaments

Name BM PAM Name BM PAM

SRB KECMANOVIC A 1
AUS VUKIC A 3
USA ISNER A 3
AUS KUBLER A 1
USA MMOH A 1
KOR KWON A 1
ESP CARBALLES BAENA B 1
PER VARILLAS B 1
FRA BONZI A 1
BEL GOFFIN A 1
FRA HALYS A 3
JPN DANIEL A 2
AUS HIJIKATA​ A 2
CHN SHANG A Fuzzy
RSA HARRIS A 3
GBR BROADY A 1
GER KOEPFER A 1
ITA FOGNINI B 2
ESP MUNAR B 2
MDA ALBOT A 2
ARG CACHIN B 1
FRA RINDERKNECH A 3
SRB KRAJINOVIC A 2
BLR IVASHKA A 2
AUS PURCELL A Fuzzy
POR BORGES A 2
ESP ZAPATA MIRALLES B 2
ESP RAMOS-VINOLAS B 2
FRA MULLER A 2
GER ALTMAIER A 1
FRA MOUTET A 2
FRA GASQUET A Fuzzy
ARG PELLA B 1
GER OTTE A 3
ARG BAGNIS B 2
AUT RODIONOV A 3
BOL DELLIEN B 2
SWE YMER E A 2
FRA GASTON B 2
ITA CECCHINATO B 2
BRA MONTEIRO B 3
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3.3 � Labeling of the clusters and comparison of the models

Next, we go deeper into the analysis of the properties of the clusters identified 
by the algorithms. To understand the intrinsic properties of the clusters found 
by the Partition Around Medoids (PAM) algorithm we look at the values of 
the attributes of the medoid players and tournaments. In Fig.  3, we see the 
normalized values of all attributes for the 3 player medoids, Ruusuvuori (cluster 
1), Albot (cluster 2) and Popyrin (cluster 3). We see that cluster 1, which is the 
largest of the 3 represents some sort of “default” cluster, with its medoid never 
deviating drastically from the global average in almost all the statistics. Given 
that the cluster contains almost all the top players, the overall results statistics, 
(WinPercentage, PointsWonPercentage, GamesWonPercentage, 
SetsWonPercentage) are above average. Cluster 2 mostly represents clay court 
specialists and/or lower level players, with serve statistics and overall results below 
average. Finally, cluster 3 mostly represents big servers, with statistics related to 
serve games (AcesPerServiceGame, FirstServiceWonPecentage, 
BreakPointsSavedPercentage, etc...) having much higher values than the 
global average.

Similarly, in the tournament clustering we observe that cluster 1, with medoid 
Adelaide2 contains mostly hardcourt and grass tournaments, while cluster 2, with 
medoid Gstaad contains mostly clay court tournaments. As expected, the statistics 
in cluster 1 are much more favourable towards the serving players (see Fig. 4). It 
has to be noted that for the variables Draw.Size and Category, the value of 
both medoids is greatly below the global average. This might look surprising, but it 

Table 5   (continued)

Players Tournaments

Name BM PAM Name BM PAM

SUI HUESLER A 3
FRA VAN ASSCHE A 2
ARG CORIA B 2
BRA SEYBOTH WILD B 1
ARG CERUNDOLO J.M B 2
COL GALAN B 2
ESP MARTINEZ B 2
NED BROUWER A 3
FRA LESTIENNE A 2
USA CRESSY A 3
USA KOVACEVIC A Fuzzy
BEL BERGS A Fuzzy
POR SOUSA B 2
ECU GOMEZ A 2

Units in bold characters are the medoids of their fuzzy cluster. Players follow the order given by Wheelo 
Ratings, tournaments follow the chronological order of the 2023 season
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is due to the fact that ATP 250 tournaments with 28 player draws, the lowest values 
possible, are by far the most common (36 out of 64) and thus the typical values in 
both clusters.

We also look at how these clusters behave when we investigate their adjacency 
structure in the matrix A . In Table 6 we observe the edge densities (number of pre-
sent edges over maximum number of edges possible) between each of the 3 player 
clusters and each of the 2 tournament clusters found by PAM. here we do not count 

Fig. 3   Normalized values of the attributes of the player medoids
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the contribution from fuzzy units. As expected, the player from cluster 2, which con-
tains most of the clay court players, compete preferentially in the tournaments from 
cluster 2 which contains most of the clay court tournaments. On the other hand play-
ers from cluster 1 and particularly from cluster 3 compete mostly in tournaments 
from cluster 1.

If we look at the partitions created by the DCSBM we observe in particular on the 
tournament side that the partition identifies the periods in which the tennis season 
splits into different groups of tournaments which differ both for geographic location 
and playing surface. This happens in particular in February (South American clay 
court tournaments, US hard court tournaments and European indoor tournaments) 
and July (European clay court tournaments and US hard court tournaments). We see 
that clusters C and D are made by clay court tournaments in these periods, while 
cluster A contains mostly alternative hard court (both indoor and outdoor) tourna-
ments that happen in the same weeks. Cluster B contains the other tournaments of 
the season and in particular all the mandatory tournaments (1000 and Slam). The 
two clusters of players are identified based on whether they participated to the tour-
naments in cluster A or to those in clusters C and D, with both group competing at 
the same rate in the tournaments from cluster B. If we look at the average values of 
the attributes over the clusters found by the DCSBM, we observe that, even if said 
attributes were not used in the clustering algorithms, their values differ significantly 
across the different clusters. For what concerns the tournament clusters, we see from 
Fig.  5 that most statistics are more favourable to the serving players in cluster A, 
more favourable to the returning player in clusters C and D and close to the average 

Fig. 4   Normalized values of the attributes of the tournaments medoids
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in cluster B. This is not surprising, given the surfaces on which the tournaments in 
different clusters are played, and the fact that cluster B is by far the most numer-
ous. For measures of importance (Category, Draw.Size), instead cluster B 
is above average, and the others are all below and close to each others. This is due 
to the fact that cluster B includes all the tournaments of category 1000 and Slam, 

Fig. 5   Means of the normalized values of the attributes over the different clusters of tournaments found 
by the DCSBM
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Fig. 6   Means of the normalized values of the attributes over the different clusters of players found by the 
DCSBM

Table 6   Edge densities (number of present edges divided by maximum possible number of edges) in A 
between the PAM clusters for players (columns) and tournaments (rows)

1 2 3

1 0.339 0.207 0.329
2 0.243 0.283 0.177

Table 7   Contingency table 
between Tournament Clustering 
by spatial fuzzy PAM (columns) 
and DCSBM (rows)

1 2 Fuzzy Tot

A 12 2 1 15
B 25 14 3 42
C 0 3 0 3
D 0 4 0 4
Tot 37 23 4 64

Table 8   Contingency table 
between Player Clustering by 
spatial fuzzy PAM (columns) 
and DCSBM (rows)

1 2 3 Fuzzy Tot

A 56 13 26 5 100
B 18 14 3 1 36
Tot 74 27 29 6 136
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where participation is mandatory for all those who have high enough ranking to get 
into the main draw, and thus players of both clusters A and B participate to them 
equally. If we look at player cluster, we see that in general players from cluster 1 
have on average better serve statistics and worse return statistics as seen in Fig. 6. 
This is not surprising, given that they played preferentially in hard-court tourna-
ments, where serve on average has a bigger impact.

If we compare instead the memberships of players and tournaments respectively 
given by the two algorithms, we observe that they differ significantly, but exhibit 
some correlations, as shown in Tables  7 and 8. As far as players go, we see that 
cluster B (players who participate to the clay-court seasons in South America and 
Europe) is made mostly of players from clusters 1 and 2. This is unsurprising, as big 
servers are unlikely yo choose clay-court tournaments. This reflects on the averages 
of different player attributes over the blockmodel clusters, with most serve statistics 
being lower for players in cluster B. We see that out of the 3 players which are in 
cluster 3 in the fuzzy PAM and in cluster B in the DCSBM, 2 of them, Monteiro 
and Jarry, are South American and thus likely picked the clay court tournaments 
in February to play in front of their home crowds in Rio de Janeiro and Santiago 
(tournament which Jarry won), respectively. On the tournament side instead we 
observe how clusters C and D are completely contained in cluster 2, being made 
only of clay-court tournaments, while, as expected, the majority of the tournaments 
in cluster A are also in cluster 1

4 � Conclusions

The clustering model proposed in the paper aims at targeting some relevant issues 
for clustering tennis players and tournaments: (i) it considers players, tournaments 
and the relation between them; (ii) the relation is taken into account in the Partitiong 
Around Medoid (PAM) algorithm; (iii) the attributes of the players and of the tour-
naments are of different nature, qualitative and quantitative.

The paper fills a gap in the use of clustering in tennis. The proposal is novel 
for the methodology used, a spatial PAM Fuzzy clustering model for players 
and for tournaments (based on related attributes), where the model is optimized 
independently to find players and tournaments partitions and the spatial penalty 
term in each clustering model depends on the relation between players and 
tournaments described in the adjacency matrix. The proposed model is compared 
with a clustering model based on a bipartite players-tournament complex network 
that considers only the relation between players and tournaments, described in the 
adjacency matrix, to obtain communities on each side of the bipartite network by 
fitting a Degree-Corrected Stochastic Blockmodel (DCSBM) to the data.

An application on data taken from the ATP official website with regards to the 
draws of the tournaments, and from the sport statistics website Wheelo ratings for 
the performance data of players and tournaments shows the performances of the 
proposed clustering model.

The two models differ substantially both on the form in which the data are fed to them 
and the way in which the optimization is carried out. The PAM uses data both about the 
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attributes and the adjacency structure, processes the data separately for players and tour-
naments and finds the optimal number of fuzzy clusters via an a posteriori validity index. 
The DCSBM only uses adjacency data, optimizes a joint partition of players and tourna-
ments and finds the optimal number of crisp clusters at the same time as the memberships 
and parameters of the model. For these reasons the two algorithms shed light on different 
aspects of the data, sometimes confirming each other’s outputs and sometimes highlight-
ing something the other algorithm could not capture.

Future developments involve integrating the adjacency matrix more directly into 
the optimization procedure of the Fuzzy PAM and not as a spatial penalty term, in 
comparison with recent proposals in the field of detecting communities in complex 
networks that use the two possible sources of information one can use: the network 
structure, and the features and attributes of nodes.
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