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Abstract
A significant challenge in statistical process monitoring (SPM) is to find exact and 
closed-form expressions (CFEs) (i.e. formed with constants, variables and a finite 
set of essential functions connected by arithmetic operations and function composi-
tion) for the run-length properties such as the average run-length ( ARL ), the stand-
ard deviation of the run-length ( SDRL ), and the percentiles of the run-length ( PRL ) 
of nonparametric monitoring schemes. Most of the properties of these schemes are 
usually evaluated using simulation techniques. Although simulation techniques are 
helpful when the expression for the run-length is complicated, their shortfall is that 
they require a high number of replications to reach reasonably accurate answers. 
Consequently, they take too much computational time compared to other methods, 
such as the Markov chain method or integration techniques, and even with many 
replications, the results are always affected by simulation error and may result in 
an inaccurate estimation. In this paper, closed-form expressions of the run-length 
properties for the nonparametric double sampling precedence monitoring scheme 
are derived and used to evaluate its ability to detect shifts in the location parameter. 
The computational times of the run-length properties for the CFE and the simula-
tion approach are compared under different scenarios. It is found that the proposed 
approach requires less computational time compared to the simulation approach. 
Moreover, once derived, CFEs have the added advantage of ease of implementa-
tion, cutting off on complex convergence techniques. CFE’s can also easily be built 
into mathematical software for ease of computation and may be recalled for further 
work.
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1 Introduction

Monitoring schemes are evaluated using metrics based on the number of samples 
required to detect abnormalities in the process; see, e.g., Montgomery (2020). 
The distribution of the number of samples before detecting the first out-of-control 
(OOC) signal is called the run-length distribution. Many researchers have pro-
posed different methods for the computation of the properties of the run-length 
distribution; see, e.g., Chakraborti et al. (2009) and Teoh et al. (2016). When it is 
difficult to find the run-length distribution (as is the case with some nonparamet-
ric schemes such as the Mann–Whitney, or the Wilcoxon rank sum monitoring 
scheme, the cumulative sum (CUSUM), exponentially weighted moving average 
(EWMA), generally weighted moving average (GWMA), and homogeneously 
weighted moving average (HWMA) types monitoring schemes), researchers have 
suggested the use of simulation techniques; see, e.g., Letshedi et al. (2021) and 
Qiu (2018). For some early use of simulations in statistical process monitoring 
(SPM), readers are referred to Pignatiello and Runger (1990) and Fu and Hu 
(1999) to cite a few. The advantage of simulation techniques is that regardless 
of the complexity of the run-length distribution, there is always a way to com-
pute the properties of the run-length distribution using Monte Carlo simulation; 
see, e.g., Qiu (2018). However, the drawback of simulation techniques is that, 
in general, they require many iterations (i.e. simulation runs) and it takes a long 
time to compute the run-length properties of a monitoring scheme; see, e.g., Sil-
berschatz et  al. (2009). Moreover, regardless of the number of replications, the 
results are negatively affected by the simulation error, which is dependent on the 
number of simulations; see, e.g., Oberkampf et al. (2002). However, closed-form 
computational methods such as Markov chain approaches have the advantage of 
reducing the computational time and error. The Markov chain approach has often 
been used to study or derive closed-form expressions of the run-length distribu-
tion of many proposed monitoring schemes, including the CUSUM and EWMA 
schemes. However, for the Markov chain, the point of departure is approximat-
ing the problem, thereafter obtaining an exact solution to the problem; see, e.g., 
Champ and Rigdon (1991), Areepong and Sukparungsee (2013), and Sukpa-
rungsee and Areepong (2016). Weiß (2011) advocates for the extension of the 
use of the Markov chain approach for calculating other performance measures 
like the expected conditional delay, the steady-state ARL, or the worst-case ARL. 
Chakraborti et al. (2004) further studied the median monitoring scheme by Jan-
acek and Meikle (1997) and derived closed-form expressions for the run-length 
distribution. Chakraborti et al. (2009) derived the exact run-length distributions 
of the precedence scheme with runs-rules using conditioning and some results 
from the theory of runs and scans; see Balakrishnan and Koutras (2011). Malela-
Majika et al. (2021, 2022) used the Markov chain approach to derive closed-form 
expressions of the run-length characteristics of the precedence schemes to inves-
tigate their abilities to detect shifts in the location process parameter. The percen-
tiles of the run-length distribution for both the optimal average run-length (ARL)-
based and median run-length (MRL)-based for the double sampling X schemes 
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with estimated process parameters were investigated by Teoh et  al. (2016). The 
authors reported that the percentiles of their monitoring scheme changes with 
the Phase I and II sample sizes and optimal shift, even though the same value 
of the nominal in-control ARL (ARL0) and in-control MRL (MRL0) is attained. 
Apart from simulation and exact closed-form expressions, authors have also used 
numerical procedures using integral equations (see, e.g., Crowder (1987)), run-
length generating functions (see, e.g., Shmueli and Cohen (2003)), and discrete-
time Markov chains (see, e.g., Zantek (2008) and Li et  al. (2014)) to study the 
run-length properties.

It is important to note that for simplicity, this paper focuses on the double sam-
pling precedence scheme for the median as it has a symmetric distribution and hence 
symmetric control limits. However, the precedence scheme belongs to a general 
class of distribution-free schemes where any order statistics (including the sample 
median) can be used as a charting statistic. A key advantage of distribution-free 
charts is that one does not need to assume any particular underlying process distri-
bution and the in-control probability calculations remain valid for all continuous dis-
tributions; see Chakraborti et al. (2004). Thus, distribution-free charts are said to be 
in-control robust, where the term "robustness" highlights the ability of any statistical 
procedure under ideal and non-ideal condition; see e.g., Balakrishnan et al. (2006, p. 
7299) and Human et al. (2011). To facilitate the investigation of the performance of 
the double sampling precedence scheme introduced by Malela-Majika et al. (2021), 
this paper introduces closed-form expressions for the run-length properties and the 
average sample size ( ASS ) using calculus. The expression of the Stage 2 probabil-
ity of the in-control process is derived using mathematical statistics techniques. The 
implementation is simplified by making use of already existing integral functions 
(like the incomplete Beta function) in mathematical software like Mathcad, Matlab, 
R, etc. The computational times of the run-length properties of the double sampling 
scheme using the proposed method and simulation techniques are also compared.

The remainder of this paper is organised as follows: Sect. 2 presents a brief back-
ground of the double sampling precedence scheme as well as its operation. Section 3 
introduces the different closed-form expressions of the run-length properties and the 
ASS ; these expressions are the key contribution of this paper. The in-control and 
out-of-control performances of the double sampling precedence scheme are inves-
tigated in Sect. 4. Moreover, a comparative study of the computational time is pre-
sented in Sect. 4. The application and implementation of the double sampling (DS) 
precedence monitoring scheme are given in Sect. 5 through an example. Section 6 
gives the concluding remarks and suggested future research ideas.

2  Double sampling precedence scheme

2.1  Preliminaries and notations

The DS precedence scheme was first introduced by Malela-Majika et  al. (2021). 
Let Xi , i = 1,2, … m , where m > 1 be a sequence of m Phase I observations from 
the in-control (IC) process with an unknown cumulative distribution function 
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(c.d.f.) denoted as FX(x) and let Ytk, t = 1,2, …; k = 1,2, …, n , where n > 1 be 
a tth Phase II test sample of size n with c.d.f. GY (y) . Assume that when the pro-
cess is IC, FX(x) = GY (x) . Otherwise, the process is said to be out-of-control then 
FX(x) = GY (x + �) where � ∈ ℝ∕{0} is the change or shift in the location parameter. 
Note that the test samples Ytk are assumed to be independent and identically distrib-
uted (i.i.d.) of one another and of the reference sample X . Then, the proposed DS 
precedence monitoring scheme is a two-stage precedence scheme that is divided into 
five charting regions defined as follows and illustrated in Fig. 1:

• Charting regions in Stage 1
  A = (−∞,X(a2∶m)

] ∪ [X(b2∶m)
,+∞) , B = (X(a2∶m)

,X(a1∶m)
] ∪ [X(b1∶m)

,X(b2∶m)
) 

and C = (X(a1∶m)
,X(b1∶m)

),
• Charting regions in Stage 2
  D = (−∞,X(c1∶m)

] ∪ [X(c2∶m)
,+∞) and E = (X(c1∶m)

,X(c2∶m)
),

 where X(�∶m) represents the �th, where � ∈ {a2, a1, b1, b2, c1, c2} , order statistic of 
the Phase I reference sample of size m , and � represents the position of the order 
statistic in the reference sample and it is also referred to as the charting constant(s).

The choices of the charting constants i.e., 1 ≤ a2 < a1 < b1 < b2 ≤ m and 
1 ≤ c1 < c2 ≤ m , of the DS precedence scheme are selected such that in Stage 1, 
a2 = m − b2 + 1 , a1 = m − b1 + 1 and in Stage 2, c1 = m − c2 + 1 . This relationship 
between the aforementioned parameters is a result of symmetrically placed control 
limits. Note that the Stage 1 charting constants i.e., a2 , a1 , b1 and b2 , must be selected 
such that the attained IC ASS value is equal to some specific values denoted as ASS0 
in this paper; while the Stage 2 charting constants i.e., c1 and c2 , are selected such 
that the attained IC ARL is equal to some pre-specified nominal ARL values denoted 
as ARL0 . Thus, Stage 1’s outer lower and upper control limits (denoted as OLCL and 
OUCL ) and inner lower and upper control limits (denoted as ILCL and IUCL ) as 
well as the Stage 2’s LCL and UCL of the DS precedence scheme are estimated from 
the IC Phase I reference sample of size m as follows:

Stage 1 Stage 2

First sample (size ) Combined sample (size )

Fig. 1  Charting regions of the Phase II DS precedence scheme
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ÔLCL = X(a2∶m)
 , ÎLCL = X(a1∶m)

 , ÎUCL = X(b1∶m)
 , ÔUCL = X(b2∶m)

 , L̂CL = X(c1∶m)
 

and ÛCL = X(c2∶m)
.

In Phase II, at each sampling time, a sample of size n is collected i.e. Ytk ( k = 
1, 2, …, n ), and split into two subsamples, i.e. Y1tp and Y2tq ( p = 1, 2, …, n1 and 
q = 1, 2, …, n2 ), of sizes n1 and n2 , respectively. Note that, n2 + n1 = n and we 
assume that n2 > n1.
There are practical advantages to using a two-stage or a sequential sampling 
approach, and they include the following:

• Early detection: Sequential sampling allows for the early detection of issues or 
anomalies in a process. By taking smaller samples at each point and continu-
ously evaluating the data, one can identify problems as soon as they emerge 
rather than waiting until the end of a large batch.

• Cost efficiency: It can be more cost-effective to take smaller sequential samples 
rather than one large sample at each point. Large samples can be expensive and 
time-consuming to collect and analyse, whereas smaller samples reduce resource 
requirements.

• Resource allocation: Sequential sampling allows one to allocate resources more 
efficiently. If one identifies a problem early, one can focus resources on investi-
gating and addressing that specific issue rather than collecting and analysing a 
full large sample.

• Reduced waste: If a process is going out-of-control or is producing non-con-
forming products, taking a large sample at each point may result in a significant 
amount of waste. Sequential sampling helps minimise waste by detecting issues 
promptly.

• Real-time control: It enables real-time process control and adjustment. With 
sequential sampling, one can make immediate adjustments to the process if devi-
ations are detected, ensuring product quality and process stability.

• Improved productivity: Continuous monitoring through sequential sampling can 
lead to improved productivity as it reduces the chances of producing defective 
products or processes.

2.2  Phase II operation of the DS precedence scheme

Assume the Phase I analysis is completed, and the estimated control limits for Phase 
II (based on the Phase I sample) are available. Thus, the Phase II operation proce-
dure of the DS precedence scheme is as follows:

1. Take a sample of size n1 and compute Y(j∶n1) at the tth sampling time point of 
the first sample. For simplicity, in this paper, it is assumed that n1 is odd i.e., 
n1 = 2r + 1 (where r is a positive integer) so that j = r + 1 corresponds to the 
unique test sample median of the Y1tp sample in Stage 1.

2. If Y(j∶n1) ∈ C , the process is considered to be IC.
3. If Y(j∶n1) ∈ A , the process is said to be OOC.
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4. If Y(j∶n1) ∈ B , take a second sample of size n2.
5. At the tth sampling timepoint, compute the plotting statistic of the combined 

sample, Y(h∶n) . We assume that n2 is even so that n = n1 + n2 gives an odd number 
i.e., n = 2s + 1 where s is a positive integer, so that h = s + 1 corresponds to the 
unique test sample median.

6. The process is declared OOC at Stage 2, if Y(h∶n) ∈ D , i.e. Y(h∶n) ≥ UCL or 
Y(h∶n) ≤ LCL . Otherwise, the process is said to be IC.

3  Run‑length properties of the double sampling precedence 
monitoring scheme

First, we focus on the Stage 1 and Stage 2 conditional probabilities. The conditional 
probabilities that at Stage 1 the statistic Y(j∶n1) plots in region A , B and C are defined 
by

and

respectively, where I(., ., .) denotes the incomplete beta function and GF−1(.) is the 
conversion function (see Malela-Majika (2022)), and U(a1∶m) and U(a2∶m) represent 
the ath

1
 and ath

2
 order statistics of a sample of size m from the Uniform (0,1) 

distribution.
The conditional probability that the process is IC is given by

where p01 and p02 are the conditional probabilities that the process is IC at Stage 1 
and Stage 2, respectively, with

and

(1a)pA = 2I
(

1 − GF−1
(

U(a2∶m)

)

, j, n1 − j + 1

)

,

(1b)
pB = 2

[

I
(

GF−1
(

U(a1∶m)

)

, j, n1 − j + 1

)

− I
(

GF−1
(

U(a2∶m)

)

, j, n1 − j + 1

)]

(1c)
pC = I

(

GF−1
(

U(m−a1+1∶m)

)

, j, n1 − j + 1

)

− I
(

GF−1
(

U(a1∶m)

)

, j, n1 − j + 1

)

,

(2)p0 = p01 + p02,

(3a)p01 = P
(

Y(j∶n1) ∈ C|X(a1∶m) = x(a1∶m),X(m−a1+1∶m) = x(m−a1+1∶m)

)

= pC

(3b)
p02 = P

(

Y(j:n1) ∈ B and Y(h:n) ∈ E|X(a1:m) = x(a1:m),X(a2:m)

= x(a2:m),X(c1:m) = x(c1:m),X(m−c1+1:m) = x(m−c1+1:m)
)

.
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These probabilities are conditional with regard to the Phase I order statistics. The 
derivations of the expression of p02 is provided in the Appendix. Then, the expres-
sions of the unconditional ARL , standard deviation of the run-length ( SDRL ) and 
ASS values at each sampling time are given by

and

where fab(s, t) =
m!

(a−1)!(b−a−1)!(m−b)!
ta−1(t − s)b−a−1(1 − t)m−b is the joint probability 

density function (pdf) of the ath and bth order statistics in a random sample of size m 
from the Uniform (0,1) distribution.

The average number of observations to signal (ANOS) is given by

Let R be the conditional run-length of a scheme. Then, the (100�)th percentile 
(with 0 < 𝜌 < 1 ) of the run-length distribution (denoted as �� ) is given by

Hence, the conditional and unconditional c.d.f. of the DS precedence monitoring 
scheme are defined by

where � ∈{1, 2, …} and p0 is defined in Eq.  (2). Henceforth, in this paper, the 
(100�)th percentile of the unconditional run-length distribution will be denoted as 
P� . For instance, the 50th percentile (i.e. the median) of the run-length distribution 
is denoted as P0.5.

Note that when the process is IC, the conversion function GF−1(q) = q (where 
q represents values u and s taken by the uniform random variable U and S ). How-
ever, when the process is out-of-control, GF−1(q) ≠ q . For more details on how to 

(4a)ARL = ∫
1

0∫
t

0

(

1

1 − p0

)

fab(s, t)ds dt,

(4b)SDRL = ∫
1

0∫
t

0

�
√

p0

1 − p0

�

fab(s, t)ds dt

(4c)ASS = ∫
1

0∫
t

0

(

n1 + n2pB
)

fab(s, t)ds dt,

(5)ANOS = ∫
1

0∫
t

0

(

n1 + n2pB

1 − p0

)

fab(s, t)ds dt.

(6)P
(

R ≤ �𝜌 − 1
) ≤ 𝜌 and P

(

R ≤ �𝜌

)

> 𝜌.

(7a)FR(�) = P(R ≤ �) = 1 − p�
0
,

(7b)FR(�) = ∫
+∞

−∞∫
+∞

0

(

1 − p�
0

)

fab(s, t)ds dt,
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derive the out-of-control expressions of GF−1(q) for different distributions, readers 
are referred to Malela-Majika et al. (2021).

Remark It is important to note that conditional performance measures are condi-
tional on the IC Phase I dataset and, more specifically, the order statistics used to 
estimate the Phase II control limits. Because the actual underlying distribution is 
assumed to be unknown, the Phase II control limits are then estimated as shown 
in Sect.  2. The ‘hat-notation’ indicates point estimators. These point estimates of 
the control limits introduce additional uncertainty and variability, which must be 
accounted for. Therefore, the average performance over all possible values of the 
order statistics is obtained by calculating the unconditional performance measures.

4  Performance analysis of the double sampling precedence 
monitoring scheme

4.1  IC performances

In this subsection, we study the behaviour of the DS precedence scheme when the 
process is assumed to be IC. Balakrishnan et  al. (2006, p. 7299) defined a robust 
statistical procedure as a procedure that performs well under ideal conditions (i.e., 
the condition under which it is designed and proposed) and under departures from 
the ideal. However, the terms robust and distribution-free are often confused in the 
literature. Distribution-free schemes have the same IC run-length distribution for all 
continuous distributions and, in some cases, only for all symmetric continuous dis-
tributions (e.g., schemes based on the signed-rank statistic). Thus, by definition, a 
distribution-free statistic or monitoring scheme is robust, but a robust monitoring 
scheme, like the EWMA scheme for small values of the smoothing parameter (see 
Randles and Wolfe (1979) and Human et al. (2011)), is not distribution-free. One of 
the advantages of a distribution-free (or nonparametric) scheme is that the IC prop-
erties like the IC ARL do not depend on the underlying process distribution. The 
expectation in this paper is that for all continuous distributions, the proposed scheme 
will yield the same IC run-length characteristics. In this paper, to check the IC 
robustness of the DS precedence scheme we investigated its IC run-length proper-
ties under the normal, Student’s t, gamma, double exponential and Weibull distribu-
tions. These distributions were chosen to check the effects of symmetry, skewness, 
light and heavy tails on the performance of the DS precedence monitoring scheme. 
Table 1 presents the charting constants along with the corresponding attained ASS , 
ARL and SDRL values when � = 0, m ∈{50,100,500}, n1 ∈{5,7} and n2 ∈{6,8,12} 
for pre-specified ASS0 = 6 and 10, and nominal ARL0 = 250 and 300. Note that the 
Stage 1 charting constants a2, a1, b1 and b2 are determined such that the attained IC 
ASS is satisfactorily close to the pre-specified ASS0 value, and the Stage 2 charting 
constants c1 and c2 are determined such that the attained IC ARL is close or equal 
to the nominal ARL0 value. Since Eq. (4c) can be expressed in terms of two chart-
ing constants through the relationship a2 = m − b2 + 1 and a1 = m − b1 + 1 , one can 
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use numerical integration and root finding programs in software such as Mathcad to 
determine the charting constants. For instance, for m = 100, ( n1 , n2) = (5,6) so that 
j = 3 and h = 6, and for a pre-specified ASS0 = 6 and a nominal ARL0 = 250, using 
Eq. (4c) and the constraint IC ASS = ASS0 , it is found that b1 = 58 and b2 = 64, and 
a2 = m − b2 + 1 = 37 and a1 = m − b1 + 1 = 43, is the only combination of Stage 
1 charting constants that satisfies the constraint IC ASS = 6. Then, at Stage 2, it is 
found that c1 = 15 (with c2 = m − c1 + 1 = 86) so that the DS precedence scheme 
with charting constants ( a2, a1, b1, b2, c1, c2) = (37,43,58,64,15,86) yields an attained 
IC ARL = 271.2.

From the results displayed in Table 1, we can observe that an increase in m (i.e. 
Phase I sample size), results in smaller SDRL values. However, the IC ARL values 
converge toward the desired nominal ARL0 value. This implies a stable performance 
of the proposed DS precedence scheme for large Phase I sample sizes. In terms of 
the 50th percentile (i.e. P0.5 ), when m = 100, ( n1, n2) = (5,6) and ASS0 = 6, there is 
50% chance that the proposed DS precedence scheme gives a signal on the 113th 
sample in the prospective phase when � = 0 for ARL0 = 321.9. The results tabulated 
below are thus indicating that the IC run-length properties of the DS precedence 
scheme are the same for all continuous distributions considered in this paper, and 

Table 1  Charting constants and attained ASS , ARL , SDRL and P0.5 values when � = 0, m ∈{50,100,500} 
and n1 ∈{5,7}, n2 ∈{6,8,12} and ASS0 ∈ {6,10} under the N(0,1), t(5), G(3,1), DE(0,1) and WE(2,1) dis-
tributions when ARL0 = 250 and 300

m n1 n2 Stage 1 Stage 2 ASS ARL SDRL P0.5

a2 a1 b1 b2 c1 c2

50 5 6 11 15 36 40 8 43 6 321.9 2027.0 86
5 8 11 15 36 40 9 42 6 327.8 1233.9 83
5 6 7 24 27 44 8 43 10 281.1 1080.2 71
5 8 12 23 28 39 9 42 10 280.5 1191.1 67

100 5 6 37 43 58 64 15 86 6 271.2 566.2 113
5 8 27 32 69 74 15 84 6 309.5 676.7 127
5 6 16 48 53 85 15 86 10 249.3 534.1 106
5 8 12 41 60 89 17 84 10 271.5 604.8 112

500 5 6 21 115 386 480 73 428 6 309.3 355.7 194
5 8 31 104 397 470 84 417 6 308.5 354.1 189
5 6 46 230 271 455 70 431 10 290.7 337.8 184
5 8 21 199 302 480 80 421 10 307.5 360.0 193

50 7 8 10 24 27 41 10 41 10 248.6 1019.1 58
7 12 8 15 36 43 12 39 10 239.9 2473.3 49

100 7 8 14 35 66 87 19 82 10 255.8 578.8 103
7 12 18 31 69 82 22 79 10 263.2 678.6 97

500 7 8 117 188 313 384 88 413 10 300.9 354.1 202
7 12 107 165 336 394 104 397 10 301.8 356.9 184
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the DS precedence scheme is then considered to be IC robust. In the next subsec-
tion, the OOC performance is investigated across the distributions considered in this 
paper.

4.2  OOC performance

Since the DS precedence scheme is IC robust, we can now proceed to investigate 
its sensitivity under different probability distributions. Tables  2 and 3 present the 
OOC performance of the proposed DS precedence scheme when m ∈{50,100,500}, 
n1 = 5, n2 ∈{6,8} and ASS0 ∈{6,10} under the N(0, 1) , t(5) , G(3, 1) , DE(0, 1) and 
WE(2, 1) distributions. The findings in Tables 2 and 3 can be summarised as follows:

• For large values of m , the DS precedence scheme performs better under symmet-
ric distributions regardless of the magnitude of the shift and the Phase I sample 
sizes. in the location parameter. This is highlighted across all combinations of ( n1, 
n2 , ASS0).

• An increase in the value of ASS0 keeping n1and n2 fixed will improve the perfor-
mance of the DS precedence scheme.

• An increase in the Stage 1 sample size, n1 , keeping ASS0andn2 fixed does not 
improve the sensitivity of the DS precedence scheme. However, an increase in 
the Stage 2 sample size, n2 , results in a better OOC performance as it is expected 
based on the design. Thus, the larger n1 and/or n2 , the better the performance of 
the DS precedence scheme.

• Under the t(5) distribution, the DS precedence scheme performs better across 
all combinations of ( n1,n2 , ASS0) compared to the other distributions consid-
ered except for small shifts. Following the t(5) distribution, the DS precedence 
scheme performs better under the symmetric distributions and, under heavy-
tailed distributions, it performs relatively worse. That is, the DS precedence 
scheme performs better under the N(0, 1) , DE(0, 1) and WE(2, 1) distributions, 
and in this order.

• The DS precedence scheme performs worse, especially for small shifts under 
positively skewed distributions, see for instance the G(3, 1) results in both 
Table 2 and 3. In addition, the proposed scheme is ARL− biased under the G(3,1) 
distribution for small Phase I sample sizes. As the Phase I sample size increases, 
the DS precedence scheme becomes ARL− unbiased.

4.3  Comparative analysis

4.3.1  Attained ARL values using simulation and closed‑form expression

In this subsection, the results found using simulation and closed-form expres-
sion (CFE) approaches are compared in terms of the ARL profile when ASS0 = 
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5, 
(

n1, n2
)

= (5,6), m ∈ {100, 500} for ARL0 = 360. In this comparison, we used 
 105 replications to implement the simulation approach. To quantify the differ-
ence between the two approaches the absolute percentage difference, denoted as 
%Diff ARL , is computed as follows:

where ARLsim and ARLCFE represent the attained ARL value computed using simula-
tion and CFE, respectively.

From Table 4, the difference between the results found using the two approaches 
varies between 0 and 4.15% which is considerably small. The smaller the shifts, the 
larger the difference between the two approaches. In addition, the percentage differ-
ence between the two approaches under the N(0,1) distribution is smaller than the 
ones under non-normal distributions. This is due to the fact that the DS precedence 
scheme performs better under symmetric distributions than it does under heavy-
tailed distributions. The larger the Phase I sample size, the smaller the difference 
between the results found using the two approaches.

4.3.2  Simulation versus closed‑form expression computational time comparison

In this subsection, we present a head-to-head comparison between the time (in sec-
onds) taken to compute the ARL value for a specific shift using simulation and the 
proposed CFE approaches when ASS0 = 5, (n1, n2) = (5,6), m ∈ {50, 100, 500} 
under the N(0,1), t(5), G(3,1), DE(0,1) and WE(2,1) distributions for ARL0 = 320 
using SAS®9.4 and Mathcad 8 prime, respectively. Note that when the process is 
IC, the computational time, denoted as �c , depends on the time required to deter-
mine the six charting constants and the computation of the IC ARL value. However, 
when the process is OOC ( � ≠ 0), the charting constants found when the process 
was deemed to be IC, are used to compute the OOC ARL.

In addition, to quantify the difference between the time taken to compute the ARL 
value using simulation and the proposed CFE, we define the absolute percentage dif-
ference in computational time, %Diff �c

 , of the two approaches as follows:

where � (sim)
c

 and � (CFE)
c

 represent the amount of time taken to compute the ARL value 
for a specific shift using simulation and CFE, respectively. Note that the absolute 
percentage difference for the amount of time taken to compute other run-length 
characteristics can be defined and computed in a similar way.

Using Mathcad 8 prime, it can be noticed that the computational time of the IC 
ARL values using CFE varies between 47 and 56 sec depending on the sample sizes. 
The results from Table 5 reveals that the percentage difference between the com-
putational time of the two approaches varies between 0 and 92.56% with the CFE 

(8)%Diff ARL =
|

|

|

|

ARLsim − ARLCFE

ARLsim

|

|

|

|

× 100,

(9)%Diff �c
=
|

|

|

|

|

� (sim)
c

− � (CFE)
c

� (sim)c

|

|

|

|

|

× 100,
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approach having an upper hand i.e. it requires less time to compute the ARL value 
as compared to the simulation approach. This means one can save up to 92.56% of 
the time spent computing the ARL when using the proposed CFE instead of simula-
tion. As the magnitude of the shift increases, �c decreases. The %Diff �c

 values are 
smaller under the normal distribution compared to non-normal distributions. This is 
because the simulation under the normal distribution takes less time as compared to 
the simulations under non-normal distributions. Astivia (2020) highlights how simu-
lating from non-normal distributions may come with issues of estimation and math-
ematical tractability, and many more. However, the computational time, if it were 
to be studied for rnorm (i.e., the R function that generates random variates having 
a specified normal distribution), would outperform other non-normal distributions, 
especially for large simulations.

Note that for a large Phase I sample size, for both simulation and CFE approaches, 
the amount of time taken to compute the ARL value for a specific shift is larger 
than the one for small Phase I sample sizes (see Fig. 2a-d). Figure 3 compares the 

a) N(0,1) distribution with m=100 b) N(0,1) distribution with m=500

c) t(5) distribution with m= 100 d) t(5) distribution with m=500
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Fig. 2  Amount of time taken to compute the ARL value for different shift when m ∈{100,500} under the 
N(0,1) and t(5) distributions
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a) N(0,1) distribution with m=100 b) N(0,1) distribution with m=500

c) t(5) distribution with m= 100 d) t(5) distribution with m=500
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Fig. 3  Amount of time taken to compute the 95th percentile ( P0.95 ) for different shift when m ∈

{100,500} under the N(0,1) and t(5) distributions
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computational times between the Monte Carlo simulation approach and the use of 
the CFE in the computation of the 95th percentile points (e.g. P0.95 ) of the run-length 
distribution. Before we discuss the results displayed in this figure, one should know 
that all the characteristics of the run-length distribution can be computed using one 
specific procedure (e.g., PROC UNIVARIATE in SAS®IML9.4). In other words, 
the amount of time taken to compute the ARL will then be the same as that of com-
puting the percentiles. Note that P0.95 is computed using the CFE defined in Eq. (7b). 
Figure 3a–d show that for small shifts, the high percentile points are computed faster 
using CFE as compared to simulations. However, for moderate and large shifts, the 
computational time is almost the same for both methods. Figure 4a–b show that for 
small shifts the required amount of time is significantly reduced for small Phase I 
sample sizes. However, for moderate and large shifts the amount of time is signifi-
cantly reduced for large Phase I sample sizes.

5  Illustrative example

In this section, real-world data from iron ore mining are used to illustrate the appli-
cation and implementation of the DS precedence scheme in a froth flotation pro-
cess (see Mukherjee et al. (2019)). Froth flotation is often used to improve the iron 
concentration of low-grade iron ores. Low-grade iron ores contain high concentra-
tion of impurities such as silicon dioxide (known as silica), phosphorus and alumina 
containing minerals, which are undesired. Froth flotation helps to remove the main 
impurity.

This example is implemented in two phases, namely Phase I and Phase II. The 
Phase I regime is used to estimate the control limits of the IC process. In Phase II, 
the control limits found in Phase I are used to monitor the percentage of silica that is 
present on each iron ore sample at the end of the flotation process.

5.1  Phase I analysis

The data from the flotation plant were collected between 01 June 2017 and 31 
July 2017. In this example, 67 master samples, each of size n = 9 (i.e. 603 obser-
vations) were considered and the null hypothesis of the Shapiro–Wilk test for 
normality was rejected with p − value = 2 × 10−16 , which implies that the data 
are clearly not normally distributed. Each master sample was divided into two 
samples of sizes n1 = 3 and n2 = 6 to be used in Stages 1 and 2, respectively. 
The first step in the implementation of the DS precedence scheme is to find the 
charting constants that yield an attained ARL0 closer to 370. Thus, it was found 
that when m = 603, 

(

n1, n2
)

= (3, 6) and ASS0 = 5, the combination of the chart-
ing constants 

(

a2, a1, b1, b2, c1, c2
)

= (162, 238, 366, 442, 24, 580) correspond-
ing to the control limits OLCL = 1.38, ILCL = 1.58, IUCL = 1.90, OUCL = 2.20, 
LCL = 1.05 and UCL = 4.55, respectively, so that the DS precedence monitoring 
scheme yields an attained ARL0 = 354.88. The second step is to construct the DS 
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precedence scheme using the control limits found in Step 1 and plot the charting 
statistics. This Phase I analysis detected 31 samples that plotted OOC which were 
subsequently removed from the process (this plot is not shown in this paper to 
conserve space). Since the Phase I sample is not IC, then the control limits must 
be revised using the reduced Phase I sample. Thus, after removing the 31 sam-
ples (i.e. 279 observations), the remaining data were analysed again. It was found 
that when m = 324, 

(

n1, n2
)

= (3, 6) and ASS0 = 5, the combination of the chart-
ing constants 

(

a2, a1, b1, b2, c1, c2
)

= (43, 97, 228, 282, 15, 310) corresponding to 
the control limits OLCL = 1.35, ILCL = 1.57, IUCL = 2.11, OUCL = 2.71, LCL = 
1.22 and UCL = 4.04, respectively, so that the DS precedence scheme yields an 
attained ARL0 = 341.98. Figure 5 shows that the revised Phase I sample is now 
IC as in Stage 1 the charting statistics plot either in region B or C, and in Stage 2 
they all plot IC (see Fig. 5). Since the Phase I sample is now considered to be IC, 
the percentage of the silica can be monitored continuously in Phase II.

(a) Stage 1 (b) Stage 2
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5.2  Phase II analysis

In Phase II, the revised control limits found in Phase I are used to monitor the per-
centage of silica. The Phase II data contain 43 master samples of size 9 divided 
such that n1 = 3 and n2 = 6. Figure 6 shows that the charting statistic of the fifth 
sample plotted beyond the OUCL . Therefore, the DS precedence scheme will give 
a signal on the fifth sample (see Fig. 6).

In practice, the advantage of the proposed approach over the simulation 
approach is due to the computation of the control limits in Phase I. It takes a 
smaller amount of time to compute the control limits of the DS precedence 
scheme using CFE than using simulations. However, when it comes to monitor 
the process in Phase II both approaches take the same amount of time.

6  Conclusion

This paper introduced a new closed-form expression (CFE) approach to compute 
the characteristics of the run-length distribution of the DS precedence scheme. It is 
found that the CFE approach considerably reduces the amount of time taken to com-
pute the run-length properties of the DS precedence monitoring scheme. Moreover, 
the run-length characteristics found using the proposed CFE approach are notice-
ably closer to the ones found using simulation. However, quality operators who are 
willing to use order statistics monitoring schemes are recommended to use the pro-
posed approach instead of simulations. The reason behind this is that to reach more 
accurate results, one must use a very large number of replications which will conse-
quently increase the amount of time needed to compute the properties of the moni-
toring scheme. In future, researchers are recommended to derive more CFE for other 
types of schemes such as nonparametric EWMA and CUSUM schemes using other 
order statistics such as the exceedance, minimum, and maximum statistics.

Appendix

This Appendix provides the derivations of the in-control probability at Stage 2 
denoted as p02 . It is known that

where

p02 = Prob
(

Y(j:n1) ∈ B and Y(h:n) ∈ E
)

= Prob
(

Y(j:n1) ∈ B1 and Y(h:n) ∈ E
)

+ Prob
(

Y(j:n1) ∈ B2 and Y(h:n) ∈ E
)

,

B1 =
{

X(a2:m) < Y(j:n1) ≤ X(a1:m)
}

,B2 =
{

X(b1:m) ≤ Y(j:n1) < X(b2:m)
}

and

E =
{

X(c1:m) ≤ Y(h:n) < X(c2:m)
}
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Then, because of symmetry:

Therefore,

Now 

Define 

Then 

Let 
{

Y11, Y12,… , Y1n1

}

 be the random variables obtained at the first sample. Let 
{

Y21, Y22,… , Y2n2

}

 be the random variables obtained at the second sample. Finally, 
let 

{

Y1, Y2,… , Yn
}

 be the n = n1 + n2 random variables obtained through combining 
the first Stage of n1 observations and the second Stage of n2 observations.

Then, we can consider three scenarios:

1. When l3 < l4 , we have:

Prob
(

Y(j∶n1) ∈ B1 and Y(h∶n) ∈ E
)

= Prob
(

Y(j∶n1) ∈ B2andY(h∶n) ∈ E
)

.

(A1)p02 = 2Prob
(

Y(j∶n1) ∈ B1 and Y(h∶n) ∈ E
)

Prob
(

Y(j:n1) ∈ B1 and Y(h:n) ∈ E
)

= Prob
(

X(a2:m) < Y(j:n1) ≤ X(a1:m) and X(c1:m) ≤ Y(h:n) < X(c2:m)
)

= Prob
(

Y(j:n1) ≤ X(a1:m), Y(h:n) < X(c2:m)
)

− Prob
(

Y(j:n1) ≤ X(a1:m), Y(h:n) < X(c1:m)
)

− Prob
(

Y(j:n1) ≤ X(a2:m), Y(h:n) < X(c2:m)
)

+ Prob
(

Y(j:n1) ≤ X(a2:m), Y(h:n) < X(c1:m)
)

L
(

l1, l2, l3, l4
)

= Prob
(

Y(l1∶n1) ≤ X(l3∶m), Y(l2∶n) < X(l4∶m)

)

Prob
(

Y(j:n1) ∈ B1 and Y(h:n) ∈ E
)

= L
(

j, h, a1, c2
)

− L
(

j, h, a1, c1
)

− L
(

j, h, a2, c2
)

+ L
(

j, h, a2, c1
)

L
(

l1, l2, l3, l4
)

= Prob
(

Y(l1:n1) ≤ X(l3:m),Y(l2:n) ≤ X(l4:m)
)

= ∫

∞

−∞∫

∞

x1
Prob

(

Y(l1:n1) ≤ x1, Y(l2:n) ≤ x2
) m!
(

l3 − 1
)

!
(

l4 − l3 − 1
)

!
(

m − l4
)

!
F(x1)

l3−1

× (F
(

x2
)

− F(x1))
l4−l3−1(1 − F

(

x2
)

)m−l4 f
(

x1
)

f
(

x2
)

dx1dx2.



 Z. Magagula et al.

1 3

  For a given i1
(

l1≤ i1 ≤ n1
)

 , let Y∗
11
, Y∗

12
,… , Y∗

1(n1−i1)
 represent the random vari-

ables among Y11, Y12,… , Y1n1 which are obtained after deleting the i1 observations. 
Then:

Now

(A2)

Prob
(

Y(l1:n1) ≤ x1,Y(l2:n) ≤ x2
)

= Prob
(

atleastl1ofY11, Y12,… , Y1n1 ≤ x1, Y(l2:n) < x2
)

=
n1
∑

i1=l1

Prob
(

exactlyi1ofY11, Y12,… , Y1n1 ≤ x1, Y(l2:n) < x2
)

=
n1
∑

i1=l1

Prob
(

Y(l2:n) < x2|exactlyi1ofY11, Y12,… , Y1n1 ≤ x1
)

× Prob
(

exactlyi1ofY11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

Prob
(

atleastl2ofY1, Y2,… , Yn ≤ x2|exactlyi1ofY11, Y12,… , Y1n1 ≤ x1
)

× Prob
(

exactlyi1ofY11,Y12,… ,Y1n1 ≤ x1
)

.

Prob
(

Y(l1:n1) ≤ x1,Y(l2:n) ≤ x2
)

=
n1
∑

i1=l1

Prob
(

atleastl∗2amongY∗
11, Y

∗
12,… , Y∗

1(n1−i1)andY21, Y22,… , Y2n2 ≤ x2
)

× Prob
(

exactlyi1ofY11, Y12,… , Y1n1 ≤ x1
)

,
(

l∗2 = max
{

0,
(

l2 − i1
)})

=
n1
∑

i1=l1

n−i1
∑

i=l∗2

Prob
(

exactlyiamongY∗
11, Y

∗
12,… , Y∗

1(n1−i1)andY21, Y22,… , Y2n2 ≤ x2
)

× Prob
(

exactlyi1ofY11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

n−i1
∑

i=l∗2

min{n1−i1,i−i1}
∑

i∗1=max{0,i−n2}
Prob(exactlyi∗1amongY∗

11, Y
∗
12,… , Y∗

1(n1−i1)

≤ x2andexactly
(

i − i∗1
)

amongY21, Y22,… , Y2n2
≤ x2) × Prob

(

exactlyi1ofY11,Y12,… ,Y1n1 ≤ x1
)
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2. When l3 = l4 , it follows that 

  Now,

=
n1
∑

i1=l1

n−i1
∑

i=l∗2

min {n1−i1,i−i1}
∑

i∗1= max {0,i−n2}
Prob

(

exactly i∗1 among Y∗
11, Y

∗
12,… , Y∗

1(n1−i1) ≤ x2
)

× Prob(exactly
(

i − i∗1
)

among Y21, Y22,… , Y2n2 ≤ x2)

× Prob
(

exactly i1 of Y11,Y12,… ,Y1n1 ≤ x1
)

=
n1
∑

i1=l1

n−i1
∑

i=l∗2

min{n1−i1,i−i1}
∑

i∗1=max{0,i−n2}

{(

n1 − i1
i∗1

)

F
(

x2
)i∗1

(

1 − F
(

x2
))n1−i1−i∗1

}

×
{(

n2
i − i∗1

)

F
(

x2
)i−i∗1

(

1 − F
(

x2
))n2−i1−i∗1

}

×
{(

n1
i1

)

F
(

x1
)i1(1 − F

(

x1
)

)n1−i1
}

=
n1
∑

i1=l1

n−i1
∑

i=l∗2

min{n1−i1,i−i1}
∑

i∗1=max{0,i−n2}

{(

n1 − i1
i∗1

)(

n2
i − i∗1

)

F
(

x2
)i(1 − F

(

x2
))n−i−i1

}

×
{(

n1
i1

)

F
(

x1
)i1(1 − F

(

x1
)

)n1−i1
}

.

L
(

l1, l2, l3, l4
)

= L
(

l1, l2, l3, l3
)

= Prob
(

Y(l1:n1) ≤ X(l3:m),Y(l2:n) ≤ X(l3:m)
)

= ∫

∞

−∞
Prob

(

Y(l1:n1) ≤ x1, Y(l2:n) ≤ x1
) m!
(

l3 − 1
)

!
(

m − l3
)

!

F
(

x1
)l3−1(1 − F

(

x1
)

)
m−l3 f

(

x1
)

dx1.
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3. When l3 > l4 , From ( A.2 ) we have

  From (A2) it follows that,

Prob
(

Y(l1:n1) ≤ x1,Y(l2:n) ≤ x1
)

= Prob
(

at least l1 of Y11, Y12,… , Y1n1 ≤ x1, Y(l2:n) < x1
)

=
n1
∑

i1=l1

Prob
(

exactlyi1ofY11, Y12,… , Y1n1 ≤ x1, Y(l2:n) < x1
)

=
n1
∑

i1=l1

Prob
(

Y(l2:n) < x1|exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

Prob
(

atleastl2 of Y1, Y2,… , Yn ≤ x1| exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

n2
∑

i2=l∗2

Prob
(

exactly i2 of Y21, Y22,… , Y1n2 ≤ x2
)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

n2
∑

i2=l∗2

{(

n2
i

)

F
(

x2
)i2(1 − F

(

x2
))n2−i2

}

×
{(

n1
i1

)

F
(

x1
)i1(1 − F

(

x1
)

)n1−i1
}

.

L
(

l1, l2, l3, l4
)

Prob
(

Y(l1∶n1) ≤ X(l3∶m), Y(l2∶n) ≤ X(l4∶m)

)

= ∫

∞

−∞∫

∞

x1
Prob

(

Y(l1:n1) ≤ x1, Y(l2:n) ≤ x2
) m!
(

l3 − 1
)

!
(

l4 − l3 − 1
)

!
(

m − l4
)

!
F(x1)

l3−1

× (F
(

x2
)

− F(x1))
l4−l3−1(1 − F

(

x2
)

)m−l4 f
(

x1
)

f
(

x2
)

dx1dx2.

Prob
(

Y(l1:n1) ≤ x1,Y(l2:n) ≤ x2
)

=
n1
∑

i1=l1

Prob
(

atleastl2ofY1, Y2,… , Yn ≤ x2| exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)
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  For a given i1
(

l1≤ i1 ≤ n1
)

 , let Y∗
11
, Y∗

12
,… , Y∗

1i1
 represent the random variables 

among Y11, Y12,… , Y1n1 which are ≤ x1 . Then:
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Prob
(

Y(l1:n1) ≤ x1,Y(l2:n) ≤ x2
)

=
n1
∑

i1=l1

i1
∑

i∗1=0
Prob

(

at least i∗1 among Y∗
11, Y

∗
12,… , Y∗

1i∗1
and at least i∗2 among Y21, Y22,… , Y2n2 ≤ x2

)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

,
(

l∗2 = max
{

0,
(

l2 − i∗1
)})

=
n1
∑

i1=l1

i1
∑

i∗1=0

n2
∑

i∗2=l2

Prob
(

at least i∗1 among Y∗
11, Y

∗
12,… , Y∗

1i∗1
and at least i∗2 among Y21, Y22,… , Y2n2 ≤ x2

)

× Prob
(

exactly i1 of Y11, Y12,… , Y1n1 ≤ x1
)

=
n1
∑

i1=l1

i1
∑

i∗1=0

n2
∑

i∗2=l2

{(

i1
i∗1

)

F
(

x2
)i∗1

(

1 − F
(

x2
))i1−i∗1

}

×

{(

n2
i*2

)

F
(

x2
)i*2(1 - F

(

x2
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