Skip to main content
Log in

Estimation and testing of kink regression model with endogenous regressors

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Kink regression model which assumes continuity at the threshold point has wide applications in statistics and economics. Existing estimation methods are obtained under a rather important assumption that the errors are mean independent of the threshold variable, namely, it is exogenous. However, endogeneity can arise as a result of omitted variables, lagged dependent variable, measurement error and many other sources. In this paper, we consider the estimation and testing for the kink regression model with endogenous threshold variable and possible other endogenous regressors. We find that the conventional form of 2SLS estimator is inconsistent as the expectation of a nonlinear function is not generally the function of expectations. The continuity feature of the regression prompts us to try method based on the GMM principle using nonlinear instruments. We derive the asymptotic properties using a different way from the usual GMM estimators as the objective function is not smooth with respect to the threshold parameter. A sup-Wald test for the presence of kink effect is established and a bootstrap procedure to gain the p value is introduced. Monte Carlo simulations show that the proposed estimator and testing procedure perform well. The proposed procedures is also illustrated using an empirical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya T (1974) The nonlinear two-stage least-squares estimator. J Econom 2:105–110

    Article  MATH  Google Scholar 

  • Andrews DWK (1994) Empirical process methods in econometrics. In: Engle RF, MacFadden DL (eds) Handbook of econometrics (Vol IV). Elsevier, New York, pp 2247–2294

    Chapter  Google Scholar 

  • Belloni A, Chen D, Chernozhukov V, Hansen C (2012) Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80(6):2369–2431

    Article  MathSciNet  MATH  Google Scholar 

  • Boamah NA (2020) Investment, financial sector development and the degree of emerging markets integration. J Financ Econ Policy 12:45–64

    Article  Google Scholar 

  • Caner M, Hansen BE (2004) Instrumental variable estimation of a threshold model. Economet Theor 20:813–834

    Article  MathSciNet  MATH  Google Scholar 

  • Card D, Lee D, Pei Z, Weber W (2012) Nonlinear policy rules and the identification and estimation of causal effects in a generalized regression kink design. NBER Working paper 18564

  • Chan KS (1993) Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann Stat 21:520–533

    Article  MathSciNet  MATH  Google Scholar 

  • Chan KS, Tong H (1990) On the likelihood ratio tests for threshold autoregressive. J Royal Stat Soc Ser B 52:469–476

    MATH  Google Scholar 

  • Chan KS, Tsay RS (1998) Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika 45:413–426

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X (2007) Large sample sieve estimation of semi-nonparametric models. In: Heckman JJ, Leamer EE (eds). Hand- book of Econometrics VI, Chapter 76. North- Holland, Amsterdam, pp 5549-5632

  • Chen Y (2021) Jump or kink: on super-efficiency in segmented linear regression breakpoint estimation. Biometrika 108:215–222

    Article  MathSciNet  MATH  Google Scholar 

  • Chen KC, Wu LF, Wen J (2013) The relationship between finance and growth in China. Glob Financ J 24:1–12

    Article  Google Scholar 

  • Davies RB (1977) Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 64:247–254

    Article  MathSciNet  MATH  Google Scholar 

  • Deidda L, Fattouh B (2002) Non-linearity between finance and growth. Econ Lett 74:339–345

    Article  MathSciNet  MATH  Google Scholar 

  • Engle RF, Hendry DF, Richard JF (1983) Exogeneity. Econometrica 51:277–304

    Article  MathSciNet  MATH  Google Scholar 

  • Fan JQ, Yao QW (2005) Nonlinear time series: nonparametric and parametric methods. Springer, Berlin

    MATH  Google Scholar 

  • Fan J, Liao Y (2014) Endogeneity in high dimensions. Ann Stat 12:872–917

    MathSciNet  MATH  Google Scholar 

  • Hall AR, Han S, Boldea O (2012) Inference regarding multiple structural changes in linear models with endogenous regressors. J Econom 170:281–302

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Horowitz JL (2005) Nonparametric methods for inference in the presence of instrumental variables. Ann Stat 33:2904–2929

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (1996) Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64:413–430

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (2000) Sample splitting and threshold estimation. Econometrica 68:575–603

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (2017) Regression kink with an unknown threshold. J Bus Econom Stat 35:228–240

    Article  MathSciNet  Google Scholar 

  • Hayashi F (2000) Econometics. Princeton University Press, Princeton

    Google Scholar 

  • Hidalgo J, Lee J, Seo MH (2019) Robust inference for threshold regression models. J Econom 210:291–309

    Article  MathSciNet  MATH  Google Scholar 

  • Kelejian H (1971) Two-stage least squares and econometric systems Linear in parameters and nonlinear in endogenous variables. J Am Stat Assoc 66:373–374

    Article  Google Scholar 

  • Landais C (2015) Assessing the welfare effects of unemployment benefits using the regression kink design. Am Econom Rev: Econom Policy 7:243–278

    Google Scholar 

  • Lee S, Seo MH, Shin Y (2011) Testing for threshold effects in regression models. J Am Stat Assoc 106:220–231

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Wei Y, Chappell R, He X (2011) Bent line quantile regression with application to an allometric study of land mammals’ speed and mass. Biometrics 67:242–249

    Article  MathSciNet  MATH  Google Scholar 

  • Liao Z (2013) Adaptive GMM shrinkage estimation with consistent moment selection. Economet Theor 29:857–904

    Article  MathSciNet  MATH  Google Scholar 

  • Newey WK (1990) Semiparametric efficiency bound. J Appl Economet 5:99–125

    Article  MATH  Google Scholar 

  • Newey WK, West KD (1987) A simple, positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708

    Article  MathSciNet  MATH  Google Scholar 

  • Parsley DC, Wei SJ (2001) Explaining the border effect: the role of exchange rate variability, shipping costs, and geography. J Int Econ 55:87–105

    Article  Google Scholar 

  • Seo MH, Linton O (2007) A smoothed least squares estimator for threshold regression models. J Econom, 704-735

  • Su L (2007) Advance mathematical analysis (in Chinese). Peking University Press, Beijing

    Google Scholar 

  • Tauchen G (1985) Diagnostic testing and evaluation of maximum likelihood models. J Econom 30:415–443

    Article  MathSciNet  MATH  Google Scholar 

  • Tong H (1983) Threshold models in nonlinear time series analysis: lecture notes in statistics, 21. Springer, Berlin, pp 59–121

    Google Scholar 

  • Tong H (1990) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Tsay RS (1998) Testing and modeling threshold autoregressive processes. J Am Stat Assoc 84:231–240

    Article  MathSciNet  MATH  Google Scholar 

  • Wooldridge JM (2002) Econometric analysis of cross section and panel data. Massachusetts Institute of Technology, Cambridge

    MATH  Google Scholar 

  • Yu P, Phillips PCB (2018) Threshold regression with endogeneity. J Econom 203:50–68

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and two referees for their valuable comments and suggestions. We thank the support from National Natural Science Foundation of China (Grant Numbers 71873085, 71833004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

This supplementary material contains detailed proof of Theorem 1.

Let \(\varvec{{\xi }}=(\varvec{{\beta }}^{'}, \gamma )^{'}\), \(\varvec{{\xi }}_0=(\varvec{{\beta }}_0^{'}, \gamma _0)^{'}\), \(\textbf{m}_t(\varvec{{\xi }})=\varPsi (\textbf{z}_t)[y_t - \textbf{x}_t^{'}(\gamma )\varvec{{\beta }}]\), \(\bar{\textbf{m}}_n(\varvec{{\xi }})=\frac{1}{n}\sum \limits _{t=1}^n \textbf{m}_t(\varvec{{\xi }})\), \(\textbf{m}(\varvec{{\xi }})= E[\textbf{m}_t(\varvec{{\xi }})]\), \(Q_n(\varvec{{\xi }})=\bar{\textbf{m}}_n^{'}(\varvec{{\xi }}) W_n \bar{\textbf{m}}_n(\varvec{{\xi }})\), \(Q_0(\varvec{{\xi }})=\textbf{m}^{'}(\varvec{{\xi }}) W \textbf{m}(\varvec{{\xi }})\).

Proof of Theorem 1

To establish consistency, we first show that

$$\begin{aligned} \sup _{\varvec{{\xi }}}| \bar{\textbf{m}}_n(\varvec{{\xi }})- \textbf{m}(\varvec{{\xi }})|{\mathop {\rightarrow }\limits ^{P}} 0. \end{aligned}$$
(A.1)

Since \(\textbf{x}_t(\gamma )\) is continuous in \(\gamma \), \(\textbf{m}_t(\varvec{{\xi }})\) is continuous in \(\varvec{{\xi }}\). Noting that \(\Vert \textbf{x}_t(\gamma )\Vert \le \{(x_{1t}-\gamma )^2 + \Vert \textbf{x}_{2t}\Vert ^2 \}^{1/2} \le |x_{1t}- \gamma | + \Vert \textbf{x}_{2t}\Vert \le |x_{1t}| + |\gamma | + \Vert \textbf{x}_{2t}\Vert \), it follows

$$\begin{aligned} \sup _{\varvec{{\xi }}}\Vert \textbf{m}_t(\varvec{{\xi }})\Vert\le & {} \Vert \varPsi (\textbf{z}_t)\Vert \cdot \sup _{\varvec{{\xi }}} |y_t - \textbf{x}_t^{'}(\gamma )\varvec{{\beta }}|\\\le & {} \Vert \varPsi (\textbf{z}_t)\Vert \{|y_t| + \sup _{\varvec{{\beta }}}\Vert \varvec{{\beta }}\Vert \sup _{\gamma } \Vert \textbf{x}_t(\gamma )\Vert \} \\\le & {} \Vert \varPsi (\textbf{z}_t)\Vert \{|y_t| + \sup _{\varvec{{\beta }}}\Vert \varvec{{\beta }}\Vert \cdot ( |x_{1t}| + \sup _{\gamma }|\gamma |+ \Vert \textbf{x}_{2t}\Vert ) \} \\\le & {} \Vert \varPsi (\textbf{z}_t)\Vert \ \{|y_t| + C_{\beta } ( |x_{1t}| + C_{\gamma } + \Vert \textbf{x}_{2t}\Vert ) \} \end{aligned}$$

where \(C_{\beta }=\sup _{\varvec{{\beta }}}\Vert \varvec{{\beta }}\Vert \) and \(C_{\gamma }= \sup _{\gamma }|\gamma |\). Hence, we obtain

$$\begin{aligned}{} & E[\Vert \varPsi (\textbf{z}_t)\Vert \ \{|y_t| + C_{\beta } ( |x_{1t}| + C_{\gamma } + \Vert \textbf{x}_{2t}\Vert ) \}] \\ & \quad \le \{E\Vert \varPsi (\textbf{z}_t)\Vert ^2\}^{1/2}\cdot \{E [ |y_t| + C_{\beta } ( |x_{1t}| + C_{\gamma } + \Vert \textbf{x}_{2t}\Vert ) ]^2\}^{1/2} \\{} & \quad \le \{E\Vert \varPsi (\textbf{z}_t)\Vert ^2\}^{1/2}\cdot \{ (Ey_t^2)^{1/2} + C_{\beta } (Ex_{1t}^2)^{1/2} + C_{\beta }C_{\gamma } \\ & \qquad + C_{\beta }(E\Vert \textbf{x}_{2t}\Vert ^2)^{1/2}\} <\infty \end{aligned}$$

by the Schwartz inequality, the Minkowski inequality and the moment assumption 2. Next it is guaranteed by Proposition 2.8 of Fan and Yao (2005) that \(\bar{\textbf{m}}_n(\varvec{{\xi }})\) converges almost surely to \(\textbf{m}(\varvec{{\xi }})\) for each fixed \(\varvec{{\xi }}\). Therefore, we have \(\sup _{\varvec{{\xi }}}\Vert \bar{\textbf{m}}_n(\varvec{{\xi }})- \textbf{m}(\varvec{{\xi }})\Vert {\mathop {\rightarrow }\limits ^{P}} 0\) based on Lemma 1 of Tauchen (1985). It implies that \(\textbf{m}(\varvec{{\xi }})\) is also continuous in \(\varvec{{\xi }}\).

Therefore, we have by straightforward calculations, (A.1) and Assumption 2 that

$$\begin{aligned}{} & {} \sup _{\varvec{{\xi }}}| Q_n(\varvec{{\xi }})- Q_0(\varvec{{\xi }})| \le \sup _{\varvec{{\xi }}} |\{\bar{\textbf{m}}_n(\varvec{{\xi }})- \textbf{m}(\varvec{{\xi }})\}^{'}W_n \{\bar{\textbf{m}}_n(\varvec{{\xi }})- \textbf{m}(\varvec{{\xi }})\}| \\{} & {} \ \ \ + 2 \sup _{\varvec{{\xi }}} |\textbf{m}^{'}(\varvec{{\xi }}) W_n \{\bar{\textbf{m}}_n(\varvec{{\xi }})- \textbf{m}(\varvec{{\xi }})\}| + \sup _{\varvec{{\xi }}}| \textbf{m}^{'}(\varvec{{\xi }}) ( W_n - W) \textbf{m}(\varvec{{\xi }})| {\mathop {\rightarrow }\limits ^{P}} 0. \end{aligned}$$

Next, we will show that \(Q_0(\varvec{{\xi }})\) is uniquely minimized at \(\varvec{{\xi }}=\varvec{{\xi }}_0\). We show that for any \(\varvec{{\xi }}\ne \varvec{{\xi }}_0\), \(Q_0(\varvec{{\xi }})>0=Q_0(\varvec{{\xi }}_0)\). Denote \(g_t(\varvec{{\xi }})=\varPsi (\textbf{z}_t)\{\beta _{10}(x_{1t}-\gamma _0)_{-} - \beta _1 (x_{1t} - \gamma )_{-} + \beta _{20}(x_{1t}-\gamma _0)_{+} - \beta _2 (x_{1t} - \gamma )_{+} + (\varvec{{\beta }}_{30} - \varvec{{\beta }}_3)^{'}\textbf{x}_{2t}\} \), \(A_1=\{ \gamma< x_{1t} \le \gamma _0\} \cup \{ \gamma _0 < x_{1t} \le \gamma \}\), \(A_2=\{ x_{1t}> \gamma , \ x_{1t} >\gamma _0\}\), \( A_3 = \{ x_{1t} \le \gamma , \ x_{1t} \le \gamma _0\}\). It implies by Assumption 3 that the sets \(A_l\ (l=1,2,3)\) all have positive probabilities. Then

$$\begin{aligned} Q_0(\varvec{{\xi }})= & {} \sum \limits _{l=1}^3 E[g_t(\varvec{{\xi }})\textbf{1}(A_l)]^{'} W E[g_t(\varvec{{\xi }})\textbf{1}(A_l)] \\\ge & \,{} E[g_t(\varvec{{\xi }})\textbf{1}(A_2)]^{'} W E[g_t(\varvec{{\xi }})\textbf{1}(A_2)] + E[g_t(\varvec{{\xi }})\textbf{1}(A_3)]^{'} W E[g_t(\varvec{{\xi }})\textbf{1}(A_3)] \end{aligned}$$

First, suppose \((\beta _1, \beta _2, \varvec{{\beta }}_3)=(\beta _{10}, \beta _{20}, \varvec{{\beta }}_{30})\) and \(\gamma \ne \gamma _0\), then the right hand side of the above equation equals

$$\begin{aligned}{} & {} (\gamma -\gamma _0)^2 \{\beta _{20}^2 E[\varPsi ^{'} ({\textbf{z}}_t){\textbf{1}}(A_2)] W E[\varPsi ({\textbf{z}}_t){\textbf{1}}(A_2)] \\{} & \qquad + \beta _{10}^2 E[\varPsi ^{'} ({\textbf{z}}_t){\textbf{1}}(A_3)] W E[\varPsi ({\textbf{z}}_t){\textbf{1}}(A_3)]\} \\ & \quad = (\gamma -\gamma _0)^2 \{\beta _{20}^2 E[ E\{\varPsi ^{'} ({\textbf{z}}_t)|A_2\}] W E[E\{\varPsi ^{'} ({\textbf{z}}_t)|A_2\}] \\ & \qquad + \beta _{10}^2 E[E\{\varPsi ^{'} ({\textbf{z}}_t)| A_3\} ] W E[E\{\varPsi ^{'} ({\textbf{z}}_t)| A_3\}]\}>0. \end{aligned}$$

by Assumptions 3, 4 and 5.

Next, suppose \((\beta _1, \beta _2, \varvec{{\beta }}_3)\ne (\beta _{10}, \beta _{20}, \varvec{{\beta }}_{30})\). Then

$$\begin{aligned} Q_0(\varvec{{\xi }}) &\ge \,E[g_t(\varvec{{\xi }})\textbf{1}(A_2)]^{'} W E[g_t(\varvec{{\xi }})\textbf{1}(A_2)] \\ &=\, (\varvec{{\delta }}_0 - \varvec{{\delta }})^{'} E[E\{\textbf{x}_t \varPsi ^{'}(\textbf{z}_t) | A_2\}] W E[E\{\varPsi (\textbf{z}_t)\textbf{x}_t^{'}|A_2\}] (\varvec{{\delta }}_0 - \varvec{{\delta }})>0 \end{aligned}$$

by Assumption 4 and 5 where \(\varvec{{\delta }}= (\beta _{2}, \beta _{2}\gamma (1, \textbf{0}_{1\times (p-1)}) + \varvec{{\beta }}_{3}^{'})^{'}\) with redefined intercept, as the first component of \(\textbf{x}_2\) is a constant regressor, and \(\varvec{{\delta }}_0 = (\beta _{20}, \beta _{20}\gamma (1, \textbf{0}_{1\times (p-1)}) + \varvec{{\beta }}_{30}^{'})^{'}\).

All the above results together with Theorem 5.6 of Su (2007) lead to \(\hat{\varvec{{\xi }}}{\mathop {\rightarrow }\limits ^{P}} \varvec{{\xi }}_0\).

Next we will use the idea of Andrews (1994), Section 3.2 to obtain the asymptotic distribution. It is clear that \( S_t(\varvec{{\xi }})\) is linear in \(\varvec{{\beta }}\), and continuous in \(\gamma \) except at \(x_{1t}=\gamma \). Note that all the terms in \(S_t(\varvec{{\xi }})\) can be expressed as \(\varPsi (\textbf{z}_t)(x_{1t}-\gamma )\textbf{1}(x_{1t}<\gamma )\), \(\varPsi (\textbf{z}_t)(x_{1t}-\gamma )\textbf{1}(x_{1t}\ge \gamma )\), \(\beta _1\varPsi (\textbf{z}_t)\textbf{1}(x_{1t}<\gamma )\), \(\beta _2\varPsi (\textbf{z}_t)\textbf{1}(x_{1t}\ge \gamma )\), and \(\varPsi (\textbf{z}_t)\textbf{x}_{2t}\). Then, it can be shown

$$\begin{aligned} \sup _{\varvec{{\xi }}} \Vert \frac{1}{n}\sum \limits _{t=1}^n S_t(\varvec{{\xi }}) - E[S_t(\varvec{{\xi }})]\Vert {\mathop {\rightarrow }\limits ^{P}} 0 \end{aligned}$$

based on Lemma 1 of Tauchen (1985) using the same strategy as establishing (A.1).

Further, as for any \(\gamma _1> \gamma _2\)

$$\begin{aligned}{} & {} \Vert E[\varPsi (\textbf{z}_t)(x_{1t}-\gamma _1)\textbf{1}(x_{1t}<\gamma _1)]- E[\varPsi (\textbf{z}_t)(x_{1t}-\gamma _2)\textbf{1}(x_{1t}<\gamma _2)]\Vert \\{} & {} \quad = \Vert E[\varPsi (\textbf{z}_t)x_{1t}\textbf{1}(\gamma _2\le x_{1t}<\gamma _1)] \\{} & {} \qquad + E\{\varPsi (\textbf{z}_t)[\gamma _1\textbf{1}(x_{1t}<\gamma _1)- \gamma _2\textbf{1}(x_{1t}<\gamma _2)]\}\Vert \\{} & {} \quad \le (E\Vert \varPsi (\textbf{z}_t)x_{1t}\Vert ^2)^{1/2}( E|\textbf{1}(\gamma _2\le x_{1t}<\gamma _1)|^2)^{1/2} \\{} & {} \qquad + (E\Vert \varPsi (\textbf{z}_t)\Vert ^2)^{1/2}( E|\gamma _1\textbf{1}(x_{1t}<\gamma _1)- \gamma _2\textbf{1}(x_{1t}<\gamma _2)|^2)^{1/2} \\{} & {} \quad \le (E\Vert \varPsi (\textbf{z}_t)\Vert ^4 Ex_{1t}^4)^{1/4} [ F(\gamma _1)- F(\gamma _2)]^{1/2} \\{} & {} \qquad + 2 (E\Vert \varPsi (\textbf{z}_t)\Vert ^2)^{1/2}( E|\gamma _1\textbf{1}(\gamma _2\le x_{1t}<\gamma _1)|^2)^{1/2}\\{} & {} \qquad + 2 (E\Vert \varPsi (\textbf{z}_t)\Vert ^2)^{1/2} (E| (\gamma _1 - \gamma _2)\textbf{1}(x_{1t}<\gamma _2)|^2)^{1/2} \\{} & {} \quad \le C_1( F(\gamma _1)- F(\gamma _2)]^{1/2} + C_2 |\gamma _1 -\gamma _2| \end{aligned}$$

using the triangular inequality, the Schwartz inequality and the Minkowski inequality where \(C_1\) and \(C_2\) are some positive constants, it follows that \(E[S_t(\varvec{{\xi }})]\) is continuous in \(\varvec{{\xi }}\).

We have by \(Q_0(\varvec{{\xi }}_0)=0\) and Assumption 6 that \(\textbf{m}(\varvec{{\xi }}_0)=0\). Then it follows by the mean value expansion of \(\textbf{m}(\xi _0)\) at \(\hat{\varvec{{\xi }}}\) that

$$\begin{aligned} \textbf{0}= \textbf{m}(\varvec{{\xi }}_0)= \textbf{m}(\hat{\varvec{{\xi }}}) + \frac{\partial \textbf{m}(\tilde{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}(\hat{\varvec{{\xi }}}- \varvec{{\xi }}_0) \end{aligned}$$

where \(\tilde{\varvec{{\xi }}}\) lies between \(\hat{\varvec{{\xi }}}\) and \(\varvec{{\xi }}_0\) which implies \(\tilde{\varvec{{\xi }}}{\mathop {\rightarrow }\limits ^{P}} \varvec{{\xi }}_0\). Therefore,

$$\begin{aligned} \textbf{0}= & {} \sqrt{n}\left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \textbf{m}(\varvec{{\xi }}_0) =\left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \sqrt{n}\textbf{m}(\hat{\varvec{{\xi }}}) \nonumber \\{} & {} \ \ + \left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \frac{\partial \textbf{m}(\tilde{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}} \sqrt{n}(\hat{\varvec{{\xi }}}- \varvec{{\xi }}_0)\nonumber \\= & {} - \left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \{ \sqrt{n}\bar{\textbf{m}}_n (\hat{\varvec{{\xi }}}) -\sqrt{n}\textbf{m}(\hat{\varvec{{\xi }}}) - \sqrt{n}\bar{\textbf{m}}_n(\hat{\varvec{{\xi }}}) \} \nonumber \\{} & {} + \left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \frac{\partial \textbf{m}(\tilde{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}} \sqrt{n}(\hat{\varvec{{\xi }}}- \varvec{{\xi }}_0) \nonumber \\= & {} - \left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \{ \sqrt{n}\bar{\textbf{m}}_n(\hat{\varvec{{\xi }}}) - \sqrt{n}\textbf{m}(\hat{\varvec{{\xi }}}) \} \nonumber \\{} & {} + \left( \frac{\partial \bar{\textbf{m}}_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}}\right) ^{'}W_n \frac{\partial \textbf{m}(\tilde{\varvec{{\xi }}})}{\partial \varvec{{\xi }}^{'}} \sqrt{n}(\hat{\varvec{{\xi }}}- \varvec{{\xi }}_0) \end{aligned}$$
(A.2)

where the last second equality follows by \(\frac{\partial Q_n(\hat{\varvec{{\xi }}})}{\partial \varvec{{\xi }}} =0\) using the first order condition.

Denote \(\textbf{v}_n(\varvec{{\xi }})= \sqrt{n}\{\bar{\textbf{m}}_n(\varvec{{\xi }}) - \textbf{m}(\varvec{{\xi }})\} = \frac{1}{\sqrt{n}}\sum \nolimits _{t=1}^n \{\textbf{m}_t(\varvec{{\xi }}) - E[\textbf{m}_t(\varvec{{\xi }})]\}\). We have by Theorem 2.21 of Fan and Yao (2005) that \(\textbf{v}_n(\varvec{{\xi }}_0){\mathop {\rightarrow }\limits ^{D}} \textbf{N}(\textbf{0}, \varOmega )\). Then we have

$$\begin{aligned} \textbf{v}_n(\hat{\varvec{{\xi }}}) = \textbf{v}_n(\hat{\varvec{{\xi }}}) - \textbf{v}_n(\varvec{{\xi }}_0) + \textbf{v}_n(\varvec{{\xi }}_0) {\mathop {\rightarrow }\limits ^{d}} \textbf{N}(\textbf{0}, \varOmega ) \end{aligned}$$
(A.3)

provided that \(\textbf{v}_n(\varvec{{\xi }})\) is stochastically equicontinuous by Theorem 5.7 of Su (2007) and \(\hat{\varvec{{\xi }}}{\mathop {\rightarrow }\limits ^{P}} \varvec{{\xi }}_0\).

Combing the above results, it follows by (A.2), (A.3), assumptions 5-6 and Slutsky Theorem that

$$\begin{aligned} \sqrt{n}(\hat{\varvec{{\xi }}}- \varvec{{\xi }}_0)&= \left( \Big \{\frac{1}{n}\sum \limits _{t=1}^n S_t(\hat{\varvec{{\xi }}})\Big \}^{'} W_n \Big \{\frac{1}{n} \sum \limits _{t=1}^nS_t(\hat{\varvec{{\xi }}})\Big \}\right) ^{-1} \Big \{\frac{1}{n}\sum \limits _{t=1}^n S_t(\hat{\varvec{{\xi }}})\Big \}^{'} W_n \textbf{v}_n(\hat{\varvec{{\xi }}})\\&{\mathop {\rightarrow }\limits ^{d}} \textbf{N}\Big ( \textbf{0}, \ (G^{'}WG)^{-1}G^{'}W\varOmega W G (G^{'}WG)^{-1} \Big ). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, W. Estimation and testing of kink regression model with endogenous regressors. Comput Stat (2023). https://doi.org/10.1007/s00180-023-01429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-023-01429-2

Keywords

Navigation