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Abstract
Kernel density estimations of circular data are an effective type of nonparamet
ric estimation. The performance of these estimations depends significantly on a 
smoothing parameter referred to as bandwidth. Selecting suitable bandwidths for 
these types of estimation pose fundamental challenges, therefore fixed bandwidth 
selectors are often the initial choice. The study investigates common bandwidth 
selection methods and proposes novel methods which adopt the idea from the linear 
case. The attention is also paid to variable bandwidth selection. Using simulations 
which incorporate a range of circular distributions that exhibit multimodality, pea
kedness and skewness, the proposed methods were evaluated and then compared 
with other bandwidth selectors to determine their potential advantages. Two real 
datasets, one containing animal movements and the other wind direction data, were 
applied to illustrate the utility of the proposed methods.

Keywords Circular density · Bandwidth selector · Adaptive kernel estimator · Von 
Mises density · Smoothed cross validation

1 Introduction

Circular observations are data considered as points on a circle, measured in degrees 
or radians. The term ‘circular data’ is used to distinguish them from the data with 
the real line as their support, which are then referred to as ‘linear data’. Circular data 
are often encountered in field such as biology, bioinformatics, meteorology, geo
logy and environmetrics. Examples of studies in these fields include the analysis 
of patterns in animal navigation, wind direction and circadian rhythms. Circular 
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data are essentially different from linear data. Not only is there no true zero, but any  
designation of low or high values is arbitrary. Furthermore, the periodic nature of the 
circular data complicates their analysis, since standard methods for observations in 
Euclidean space are inappropriate for descriptive and inferential analysis of such data 
(instead of differences between observations, the angle between two vectors has to be 
considered when using data on the circle).

Statistical methods for describing and analysing circular data are relatively new 
and are still undergoing development. Authors such as Batschelet (1981), Fisher 
(1995), Mardia and Jupp (2009) have systematically analysed the theory and  
methodology of circular statistics. Monographs by Jammalamadaka and SenGupta 
(2001), Ley and Verdebout (2017), Ley and Verdebout (2018) and reviews by 
Pewsey (2000) and Mardia (2021) also contain valuable bibliographies.

Kernel density estimation is a type of nonparametric estimation which is fre
quently applied and depends on a kernel as a weight function and on bandwidth as a 
smoothing parameter. Although bandwidth has an important task in kernel smooth
ing, selection of the optimal bandwidth is not straightforward. The literature on this 
subject for linear data is quite extensive and includes monographs authored by Wand 
and Jones (1994), Härdle et  al. (2012), Silverman (1986), Scott (1992), Simonoff 
(2012), Horová et al. (2012) and other studies by Marron and Ruppert (1994), Park 
and Marron (1990), Scott and Terrell (1987), Jones and Kappenman (1992), Cao 
et al. (1994).

Considerable attention has been paid to methods of kernel estimation on the 
circle. Similarly to the linear case, the choice of the bandwidth plays a key role. 
Some useful concepts behind bandwidth selection methods for linear kernel den
sity estimation can be applied to circular densities, but a straightforward conversion 
from a linear to a circular case is often not possible because of the inherent charac
teristics of circular data. Practical rules for selecting the degree of smoothing were 
investigated. These were based on a crossvalidation method, bootstrap and plugin 
rule ideas. Hall et  al. (1987) described data driven bandwidth selectors based on 
crossvalidation methods. They developed least square crossvalidation and likeli
hood crossvalidation bandwidth selectors. Taylor (2008) proposed a rule of thumb 
for bandwidth selection. Oliveira et al. (2012) devised a novel plugin rule. Oliveira 
et al. (2013) demonstrated that robustifying the Taylor estimation of the concentra
tion parameter improved the estimate of the smoothing parameter. The error crite
ria for the bandwidth selection are often based on minimising the asymptotic mean  
integrated squared error (AMISE); however, GarcíaPortugués et  al. (2013) deter
mined that the AMISE and mean integrated squared error (MISE) can differ signifi
cantly for moderate and even large sample sizes. GarcíaPortugués (2013) proposed 
new bandwidth selectors for kernel density estimation with directional data. Tsu
ruta and Sagae (2017) also tackled bandwidth selection and employed higher order 
kernels. Tenreiro (2022) proposed a direct plugin approach based on an alterna
tive Fourier series to select the smoothing parameter. Variable bandwidth selection 
methods for linear data have also been modified and applied to circular data. Pham 
Ngoc (2019) proposed a “spherical penalized comparison to overfitting” procedure 
and analysed its performance in a numerical study with spherical data (i.e., three
dimensional data).
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The aim of this paper is to introduce new bandwidth selection methods for select
ing the smoothing parameter in circular kernel density estimation. We propose a 
novel bandwidth selection method based on an alternative to the crossvalidation 
method. We follow the concept applied by Hall et al. (1992) for linear densities. We 
also suggest modified adaptive bandwidth selection methods based on the concepts 
applied by Breiman et al. (1977) and Silverman (1986) and the procedure described 
by Demir (2018).

The paper is organized as follows. Section  2 introduces the subject of circular 
kernel density estimation and reviews the respective literature and methods; Sec
tion 3 details current bandwidth selection methods and presents a novel smoothed 
crossvalidation (SCV) method adapted from the linear case. Section  4 explores 
adaptive bandwidth selection methods that have not been studied extensively in cir
cular statistics and proposes new adaptive methods. Section 5 compares the perfor
mance of these methods through a simulation; Sect. 6 shows the application of these 
methods to real world data. Section 7 discuss findings and concludes the paper.

2  Preliminaries

Let �1,… , �n ∈ [0, 2�) be a sample of angles coming from an unknown circular 
density f (�) . Estimating the function f is a natural part of exploratory data analysis. 
The circular kernel density estimator f̂  of f is defined as

where K�(⋅) is a circular kernel function, � is a parameter such that � → ∞ , 
√

�n−1 → 0 for n → ∞ (Di Marzio et al. 2011). This parameter takes the role of the 
smoothing parameter, called the bandwidth. As the kernel function, we consider the 
von Mises density (VM)

where � ∈ [0, 2�) is the mean direction, � is a concentration parameter and Ir(⋅) is 
the modified Bessel function of order r (see Appendix 8). In this case, the density 
estimator of f is given by

Although the selected circular kernel function is important, the estimate quality cru
cially depends on the choice of bandwidth � , which determines the smoothness of 
the estimate. From an exploratory point of view, every bandwidth choice delivers a 
useful density estimate. Small values illustrate the global structure in un unknown 
density whereas large bandwidth values reveal local structure which may or may not 
be present in the actual density.

(2.1)f̂ (𝜃, 𝜈) =
1

n

n
∑

i=1

K𝜈(𝜃 − 𝜃i), 𝜃 ∈ [0, 2𝜋).

(2.2)g(�,�, �) =
1

2�I0(�)
e� cos(�−�),

(2.3)f̂ (𝜃, 𝜈) =
1

2𝜋nI0(𝜈)

n
∑

i=1

e𝜈 cos(𝜃−𝜃i), 𝜃 ∈ [0, 2𝜋).
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Bandwidth selection methods are generally based on an appropriate error crite
rion, a suitable candidate being the MISE, where

As this expression is not mathematically tractable, the asymptotic expression for the 
MISE (AMISE) derived by Di Marzio et al. (2019) is given by

where, using (2.3) and under the conditions � → ∞,
√

�n−1 → 0 for n → ∞ and 
assuming that the density f is such that its second derivative f ′′ is continuous and 
square integrable, the AMISE can be written as

The optimal bandwidth value which minimizes (2.4) is obtained from

However, a significant problem exists since �opt depends on an unknown density f.
To obtain an approximate computation of �opt , several common methods can be 

applied, for example rule of thumb (RT), plugin (PI), least square crossvalidation 
(LSCV), likelihood crossvalidation (LCV) and bootstrap (BT). However, no univer
sally applicable method exists for kernel estimation of circular densities. The follow
ing section discusses this in greater detail.

3  Choice of bandwidth – fixed bandwidth methods

3.1  Known methods

Taylor (2008) proposed an RT method based on an approach described by Silverman 
(1986). RT uses the von Mises density (2.2) as a reference density f to overcome the 
problem with unknown density in (2.4). The AMISE consequently takes the form

The bandwidth �RT = �opt , which minimizes AMISE (3.1), is estimated as

MISE(𝜈) = E∫
2𝜋

0

(f̂ (𝜃, 𝜈) − f (𝜃))2d 𝜃.

MISE(�) = AMISE(�) + o(1),

(2.4)AMISE(�) =
1

16

(

1 −
I2(�)

I0(�)

)

∫
2�

0

(

f ��(�)
)2
d � +

I0(2�)

2n�(I0(�))2
.

�opt =

(

2�1∕2n∫
2�

0

(

f ��(�)
)2
d�

)2∕5

.

(3.1)AMISE(�) =
3�I2(2�)

32��2(I0(�))2
+

�1∕2

2n�1∕2
.

(3.2)�̂�RT =

(

3n�̂�2I2(2�̂�)

4𝜋1∕2(I0(�̂�))2

)2∕5

,
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where �̂� is the estimate of the concentration parameter � obtained using the maxi
mum likelihood method.

Oliveira et  al. (2012) suggested an alternative method by plugging in a more  
flexible distribution family as a reference density in the AMISE formula 
(2.4). To obtain the bandwidth selector �̂�PI , the threestep procedure described 
below begins with applying a finite mixture of M von Mises densities, i.e., 
f (�) =

∑M

i=1
wigi(�,�i, �i) , 

∑M

i=1
wi = 1 and gi is defined by (2.2): 

1. Select the number of mixture components M for the reference distribution.
2. Estimate the AMISE (2.4) as follows: 

 2.1. Estimate the parameters in the von Mises mixture of M densities.
 2.2. Calculate the integral ∫ 2�

0

(

f ��(�)
)2
d �.

 2.3. Plugin the quantity above in (2.4) to obtain ÂMISE(�).

3. Minimize ÂMISE with respect to � and obtain selector �̂�PI.

The integral in step 2.2 is computed numerically using the composite trapezoidal 
rule.

The earliest, fully automated fixed bandwidth selection methods for linear data 
are those based on crossvalidation. The LSCV for circular data proposed by Taylor 
(2008) targets the MISE and employs an objective function

where f̂−i denotes the circular kernel density estimator (2.3) without the ith 
observation

Minimizing objective function (3.3), we obtain the bandwidth �̂�LSCV.
Another popular approach crossvalidation method is LCV (e.g., Di Marzio et al. 

(2011), Oliveira et al. (2012)). The optimal bandwidth �̂�LCV is obtained by maximiz
ing the likelihood function

where f̂−i represents the same as above.
Di Marzio et al. (2011) introduced a BT method for bandwidth selection proce

dure inspired by the method applied to linear data by Taylor (2008). Using the von 
Mises kernel, the MISE of the BT has a closed expression, and �̂�BT provides the 
value for minimizing the expression

(3.3)LSCV(𝜈) = ∫
2𝜋

0

f̂ 2(𝜃, 𝜈)d 𝜃 −
2

n

n
∑

i=1

f̂−i(𝜃i, 𝜈),

f̂−i(𝜃i, 𝜈) =
1

n − 1

n
∑

j = 1

j ≠ i

K𝜈(𝜃i − 𝜃j), i = 1,… , n.

(3.4)LCV(𝜈) =
n

∏

i=1

f̂−i(𝜃i, 𝜈),
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where EBT denotes the bootstrap expectation with respect to random samples 
�1,… , �n generated from density f (�, �).

3.2  Proposed method

An alternative to the methods described above is the SCV method originally 
introduced by Hall et al. (1992) for linear densities. Here, we propose an adapta
tion of this method for circular densities. It resembles RT selection by applying 
a kernel estimator to estimate an integrated squared bias component (ISB) of the 
MISE

where IV is an integrated variance and ∗ is a convolution operator. The SCV meth
od’s difference is that it estimates an exact formula of ISB rather than its asymptotic 
approximation, as in the case of RT. An appealing feature of this method is less 
dependency on asymptotic approximation.

The SCV’s objective function is obtained by replacing the unknown function f in 
(3.6) with its estimate f̂  (2.3) and selecting the von Mises density (2.2) as the kernel 
function:

where

and

(3.5)BT(𝜈) = ∫
2𝜋

0

EBT

[

f̂ ∗(𝜃, 𝜈) − f̂ (𝜃, 𝜈)
]2
d𝜃,

(3.6)

MISE(f̂ (𝜃, 𝜈)) =
1

n ∫
2𝜋

0

(K2

𝜈 ∗ f )(𝜃) − (K𝜈 ∗ f )2(𝜃)d𝜃

�������������������������������������������������
IV

+ ∫
2𝜋

0

((K𝜈 ∗ f )(𝜃) − f (𝜃))2d𝜃

���������������������������������������
ISB

(3.7)SCV(�) = ÎSB(�) + ÎV(�),

(3.8)

ÎSB(�) =
1

n(n − 1)

n
�

i, j = 1

i ≠ j

�

1

4�2I4
0
(�) �

2�

0

I0
�

�
√

2(1 + cos(� − �i))
�

× I0
�

�
�

2(1 + cos(� − �j))
�

d� −
1

2�2I3
0
(�) �

2�

0

I0
�

�
√

2(1 + cos(� − �i))
�

× e� cos(�−�j)d� +
1

2�I2
0
(�)

I0
�

�
�

2(1 + cos(�i − �j))
�

�
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which is a good estimate of the integrated variance based on its asymptotic counter
partner. Minimization of the above function results in �̂�SCV.

4  Choice of bandwidth – adaptive bandwidth methods

Generally, in the linear case, the problem with fixed bandwidth kernel density esti
mators arises when a true distribution has longtails or multiple modes. Such a band
width performs well near the peak of the distribution, but poorly at its tails. Breiman 
et  al. (1977) proposed an efficient solution that varies the bandwidth at each data 
point:

where h(Xi) is the variable bandwidth at data point Xi . Silverman (1986) followed 
up on this work, suggesting that h(Xi) has to be proportional to g∕f̂ (Xi)

1∕2 , where 
g is a geometric mean, and proposed a threestep procedure: Step 1 – obtain a pilot 
estimate, Step 2 – define a local bandwidth factor, Step 3 − evaluate the adaptive 
estimator.

A similar problem occurs with directional data: this method can be easily adapted 
by applying the von Mises density as the kernel function K(⋅) to define a variable 
bandwidth estimator

and the corresponding threestep procedure: 

1. Obtain a pilot estimate f̂ (𝜃i) using the fixed bandwidth method (see Sect. 3).
2. Define the local bandwidth factors �i (i = 1,… , n) according to the equation 

where � ∈ [0, 1] is a sensitivity parameter, typically preferred with an optimal 
value of 1/2.

3. Evaluate the new adaptive estimator, where �(�i) = �i� in (4.1), and thus obtain 

To calculate �i , factors other than the geometric mean g may be considered, for 
example the arithmetic mean (denoted a). Applying a procedure similar to Demir 
(2018), multiple adaptive estimators can be defined:

ÎV(�) ≃
�1∕2

2n�1∕2
,

f̂ (x) =

n
∑

i=1

1

nh(Xi)
K

(

x − Xi

h(Xi)

)

,

(4.1)f̂ (𝜃, 𝜈) =
1

2n𝜋

n
∑

i=1

1

I0(𝜈(𝜃i))
e𝜈(𝜃i) cos(𝜃−𝜃i)

𝜆i =
{

g∕f̂ (𝜃i)
}𝛼

,

(4.2)f̂ (𝜃) =
1

2n𝜋

n
∑

i=1

1

I0(𝜆i𝜈)
e𝜆i𝜈 cos(𝜃−𝜃i).
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• For estimators with a factor � based on the geometric mean, the optimal band
width is denoted �g

B
;

• For estimators with a factor � based on the arithmetic mean, the optimal band
width is denoted �a

B
;

where B stands for the bandwidth selection method (i.e., RT, LSCV, LCV, PI, BT or 
SCV).

5  Simulation study

Using Monte Carlo simulations, this section of the current study compares the effi
ciency of the proposed SCV method and proposed adaptive methods with the exist
ing methods presented above, namely RT, LSCV, LCV, PI and BT methods.

Various circular distributions – von Mises, cardioid, wrapped normal, wrapped 
Cauchy and their mixtures with different skewness, kurtosis and multimodality – are 
used (see Appendix 8.2 for details). 

The simulation comprised two parts 

1. A performance comparison of the proposed SCV method (see (3.6)) with common 
methods on simple models which include typical circular distributions, i.e., von 
Mises (M1), wrapped normal (M2), wrapped Cauchy (M3) and cardioid (M4).

2. A performance comparison of the proposed adaptive methods (see (4.2)) on mix-
ture models: mixture of two von Mises distributions (M5–M12). It should be 
noted that mixture models consider a diverse range of von Mises distributions 
with different concentration parameters, for example antipodal, symmetric and 
asymmetric distributions.

For each distribution, 100 random samples of size n = 100 and n = 250 were gener
ated. Tables 2, 3 and 4 compare the integrated squared errors (ISE), where ISE = 
∫ (f − f̂ )2 , of the circular kernel density estimator (2.3) for various bandwidth selec
tors (using 500 points for numerical calculation of the integrals).

The performance of these commonly used methods is compared to the bandwidth 
selector obtained with the proposed SCV method; the notations for the respective 
methods are listed in Table 1.

Table 1  Bandwidth selection 
methods compared in the 
simulations

�̂�
RT

Rule of thumb Eq. (3.2)
�̂�
LSCV

Least square crossvalidation Eq. (3.3)
�̂�
LCV

Likelihood crossvalidation Eq. (3.4)
�̂�
PI

Plugin procedure on p. 5
�̂�
BT

Bootstrap Eq. (3.5)
�̂�
SCV

Smoothed crossvalidation Eq. (3.7)
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Performance is also compared to the selectors (based on the geometric and arith
metic means) obtained from the adaptive bandwidth methods. Figures  1, 2 and 3 
graph the behaviour of the average of ISE values. The simulations were performed 
in statistical software R version 4.2.2 (R Core Team 2022), using our code for the 
proposed SCV kernel density estimator and existing codes from R packages NPCirc 
and circular.

Table 2  Average ISE for models M1–M4

M1 M2 M3 M4

Estimator 100 250 100 250 100 250 100 250

�̂�
RT

0.7568 0.3746 0.5393 0.2938 1.9390 1.1269 0.4736 0.2496
�̂�
LSCV

0.9100 0.4292 0.6763 0.3365 1.4215 0.6717 0.5698 0.2996
�̂�
LCV

0.8755 0.4245 0.6135 0.3154 1.6238 0.7558 0.5888 0.3067
�̂�
PI

0.9103 0.3998 0.7497 0.3143 1.3573 0.6606 0.8476 0.3398
�̂�
BT

0.8871 0.4053 0.6604 0.2948 3.4518 0.8587 0.7276 0.2495
�̂�
SCV

1.2078 0.4331 0.6929 0.2996 8.1770 1.0710 0.6305 0.2614

Table 3  Average ISE for models M5–M8

Estimator M5 M6 M7 M8

100 250 100 250 100 250 100 250

�̂�
RT

0.4520 0.4571 2.8653 2.8875 0.9247 0.8051 0.6519 0.3607
�̂�a
RT

0.4539 0.4709 2.8603 2.8873 0.9431 0.8474 0.7280 0.4571
�̂�g
RT

0.4539 0.4707 2.8602 2.8873 0.9426 0.8463 0.7257 0.4520
�̂�
LSCV

0.6051 0.3133 0.9639 0.4081 0.6663 0.3382 0.5285 0.2592
�̂�a
LSCV

0.5189 0.2853 1.0003 0.4233 0.6287 0.3398 0.5232 0.2588
�̂�g
LSCV

0.5272 0.2873 1.0024 0.4245 0.6357 0.3410 0.5274 0.2595
�̂�
LCV

0.5821 0.2930 0.9537 0.3953 0.6351 0.3258 0.4942 0.2444
�̂�a
LCV

0.5058 0.2694 1.0025 0.4115 0.6119 0.3283 0.5029 0.2441
�̂�g
LCV

0.5131 0.2711 1.0030 0.4127 0.6167 0.3294 0.5055 0.2449
�̂�
PI

0.8316 0.3050 0.9981 0.3774 0.7390 0.3393 0.9016 0.3361
�̂�a
PI

0.7296 0.2829 0.9885 0.3813 0.6740 0.3284 0.8553 0.3409
�̂�g
PI

0.7416 0.2845 0.9968 0.3833 0.6839 0.3304 0.8641 0.3416
�̂�
BT

0.6543 0.6572 2.9163 1.7077 1.3028 1.3034 1.8030 0.8697
�̂�a
BT

0.6544 0.6574 2.9163 1.7290 1.3030 1.3036 1.7953 0.8804
�̂�g
BT

0.6544 0.6574 2.9163 1.7266 1.3030 1.3036 1.7964 0.8787
�̂�
SCV

0.6396 0.6379 2.8760 0.8510 1.2500 1.2362 1.6320 0.3039
�̂�a
SCV

0.6403 0.6381 2.8760 0.9112 1.2523 1.2384 1.6282 0.3360
�̂�g
SCV

0.6403 0.6381 2.8760 0.9057 1.2523 1.2384 1.6292 0.3332
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5.1  Simple models

An advantage of the proposed novel method is its direct derivation from the exact 
formula of the ISB. The method does not require the selection of hyperparameters, 
and thus it is a simple and efficient process. For a sample size n = 100 , the SCV 
selector is competitive with other selectors for models M2 and M4. However, it does 
not perform as satisfactorily for models M1 and M3. By contrast, for sample sizes 
n = 250 , the SCV selector provides the best results for all the models (M1–M4). It is 
important to note that even though the SCV selector is based on an exact formula, it 
still exhibits a certain level of dependence on the sample size. The graphs for mod
els M1 and M3 clearly indicate that the number of observations in the sample have 
an effect on the SCV selector. In summary, the SCV selector does not demonstrate 
any consistent tendency to outperform other methods, but it achieves very respect
able results in models M2 and M4 and is comparable with the common selectors for 
all of the models at n = 250.

5.2  Mixture models

One of the steps in the adaptive method is selection of the sensitivity parameter � 
and function �(⋅) for variability in the kernel window. Note that when � = 0 , the 

Table 4  Average ISE for models M9–M12

Estimator M9 M10 M11 M12

100 250 100 250 100 250 100 250

�̂�
RT

0.3816 0.3641 0.9669 0.7185 0.8591 0.8651 0.9613 0.5494
�̂�a
RT

0.3743 0.3636 1.0115 0.8016 0.8610 0.8721 1.0425 0.6381
�̂�g
RT

0.3744 0.3636 1.0099 0.7987 0.8609 0.8720 1.0268 0.6223
�̂�
LSCV

0.6122 0.2702 0.6784 0.3328 0.7351 0.3470 0.7786 0.3938
�̂�a
LSCV

0.5200 0.2538 0.6553 0.3320 0.6774 0.3502 0.7501 0.4019
�̂�g
LSCV

0.5265 0.2547 0.6608 0.3334 0.6852 0.3512 0.7534 0.4016
�̂�
LCV

0.6080 0.2660 0.6087 0.3246 0.7395 0.3381 0.7307 0.3659
�̂�a
LCV

0.5197 0.2508 0.6051 0.3271 0.6883 0.3474 0.7146 0.3783
�̂�g
LCV

0.5259 0.2517 0.6072 0.3284 0.6956 0.3480 0.7174 0.3778
�̂�
PI

0.8389 0.2678 0.8025 0.3347 0.9218 0.3274 0.9361 0.3593
�̂�a
PI

0.7232 0.2464 0.7422 0.3281 0.8383 0.3269 0.8665 0.3604
�̂�g
PI

0.7334 0.2474 0.7516 0.3298 0.8503 0.3280 0.8822 0.3617
�̂�
BT

0.3653 0.3652 1.6663 1.5989 0.9539 0.9547 3.0033 0.6187
�̂�a
BT

0.3653 0.3652 1.6667 1.5994 0.9540 0.9548 3.0067 0.6943
�̂�g
BT

0.3653 0.3652 1.6667 1.5992 0.9540 0.9548 3.0067 0.6805
�̂�
SCV

0.3632 0.3549 1.5497 1.2418 0.9437 0.9185 2.9350 0.6298
�̂�a
SCV

0.3629 0.3545 1.5546 1.2558 0.9440 0.9189 2.9419 0.7067
�̂�g
SCV

0.3629 0.3545 1.5546 1.2550 0.9440 0.9190 2.9347 0.6922
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Fig. 1  Average ISE for models M1–M4 in the simulation

Fig. 2  Average ISE for models M5–M8 in the simulation
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Fig. 3  Average ISE for models M9–M12 in the simulation

Fig. 4  Comparison of classic and adaptive methods using the dragonfly orientations dataset
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adaptive method is reduced to a fixed method, while higher values result in greater 
sensitivity in the pilot estimate. Using either the geometric or arithmetic mean, the 
simulation tests different cases for �(⋅) . Different values for � are also used, but the 
findings are the same as those observed by Wand and Jones (1994): no biased dif
ference could be seen with the selected weight functions applied in every case. This 
finding is highlighted in Tables 3 and 4 and in Figs. 2 and 3, which compare the 
average ISEs.

For a sample size n = 100, both �g
B
 and �a

B
 are very competitive. The LSCV, LCV 

and PI methods especially produce significant differences in performance; adap
tive types tend to outperform their fixed bandwidth counterparts and are therefore a  
preferable choice. Improvements are obtained in mixture models with varying loca
tion and distances between modes (see average ISEs for M5–M7 and M9–M11). It is 
not surprising that if the pilot estimate is poor, in most cases the adaptive method is 
not able to significantly improve the performance. This behaviour is observed with 
the BT and SCV methods in most models, indicating a consequence of these meth
ods performing poorly with multimodal data. For a sample size n = 250 , the results 
show improvement, but not as significantly as in the previous case. Notably, the 
best improvement is observed in models with similar concentration parameters and 

Fig. 5  Comparison of classic and adaptive methods using the wind direction dataset
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longdistance modes (i.e., models M5 and M9, see their respective ISEs). Although 
the pilot estimates by themselves are satisfactory in most cases, there is no much 
room for significant improvement.

In summary, the adaptive procedures significantly improve errors in the LSCV, 
LCV and PI methods with models M5, M9, M10 and M11 at both n = 100 and 
n = 250 . More satisfactory behaviour is achieved with smaller sample size; it is 
therefore recommended that these methods are applied to small to midsized data
sets. Selection of the weight function does not appear to be crucial, and � = 1∕2 
proves to be the optimal sensitivity parameter.

6  Application to real data

The proposed methods are applied to two real datasets: the first contains data on the 
orientations of dragonflies with respect to solar azimuth, the second contains the wind 
direction data. Each represents an example of a dataset with different numbers of 
modes.

Fig. 6  Graphs of distributions in the simulation for models M1–M12, in order from left to right, top to 
bottom
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All the methods presented in this study, i.e., fixed bandwidths (RT, LSCV, LCV, 
PI, BT and SCV) and their adaptive counterparts with the geometric mean (g) and 
arithmetic mean (a) as factors for variable bandwidth, are applied to two datasets.

Example 1 Dragonfly orientation. This dataset introduced by Batschelet (1981) con
tains data for dragonfly behaviour and the tendency of these insects to sit in a direc
tion perpendicular to the sun; the data describe 214 such orientations (in degrees of 
arc) measured in relation to solar azimuth. Figure 4 clearly indicates bimodality in 
the dataset.

In this example, almost all of the methods exhibit similar performance, see Fig. 4. 
The exceptions are RT, which produces an estimate that approximates uniform dis
tribution, and PI, which handles bimodality better than RT, but produces an overs
moothed estimate. Methods based on crossvalidation and BT handle bimodality 
relatively well, and their performance can be considered as adequate. The adaptive 
counterparts of the fixedbandwidth methods tend to slightly oversmooth the esti
mate. The proposed SCV method, however, produces a very good resulting estimate 
compared with the LSCV and LCV methods, whose estimates are partly unders
moothed (see respective estimates near points 0, � and 2�).

Example 2 Wind directions. Collected by the Czech Hydrometeorological Institute 
(CHMI), the dataset contains wind direction measurement performed over approxi
mately ten years (at 10minute intervals for a total 144 recordings per day) at the 
BrnoTuřany airport. For the aims of the current study, the first days of May, July, 
September and December from the year 2011 were selected for analysis (Fig. 5).

Nearly all of the methods exhibit similar performance. As with the previous 
example, the adaptive methods produce slightly better estimates and resulting curves 
which are not excessively undersmoothed, especially around the modes.

Although the RT method produces a flatter estimate with the May data than the 
other methods, it is still able to discover both modes for wind direction. Using the 
July data, the SCV method is smoother near the modes than other methods. Using 
the data for September, a month with changing wind conditions, the estimated den
sities indicate two groups, one for the RT, PI and SCV methods and the other for the 
LSCV and LCV methods, which are slightly oversmoothed. Using the December 
data, RT and PI undersmooth the resulting estimate; the other estimated densities 
are not as obviously bimodal, although a trace of two modes is still observable.

The selected examples describe two typical instances: the dataset for the first 
example above is frequently used and ideal for testing purposes; the dataset for the 
second example was produced in cooperation with the CHMI. Hydrometeorologists 
study these measurement outputs in a limited, wind rose format only, with a slice arc 
of 22.5 degrees (i.e., circles with 16 sections). More accurate than the rose diagram, 
kernel estimates and the resulting densities provide a more detailed view at a resolu
tion of one degree. Consultation with CHMI scientists confirmed that the resulting 
estimates (the SCV method for July, September and December and the RT method 
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for May), while being slightly oversmoothed from a statistical point of view, are 
sufficient for their needs. The kernel density estimates could be used instead of the 
wind roses to check measurement accuracy at individual measuring stations.

6.1  Additional comments regarding computation time

Compared to the commonly used methods, the proposed SCV method for bandwidth 
selection in circular density estimation produced comparable, and in many cases, 
even significantly improved results on real datasets and on simulated datasets as 
well, albeit at a higher computational cost. Computation of SCV bandwidth using 
the wind direction dataset required 9.57 s on average, whereas with other methods, it 
was less than 1 s (e.g., BT required 0.91 s to run the code multiple times in a loop). 
This difference was probably due to the necessity for numerical integration when 
evaluating the ISB formula (3.8) (application of a simple trapezoidal rule with parti
tions of 100 equally spaced intervals). To minimize the objective function (3.6) and 
also the objective functions of other methods (maximization was applied to LCV), 
the optimize function available in R was used. The computational cost for SCV in 
the simulations was 9 s for n = 100 (similar size as the above mentioned dataset), 
45 s for n = 250 on average, which was a clear yet unsurprising indication that com
putational time increases with larger sample sizes. By contrast, comparable results 
in terms of average ISE were achieved with lower failure rates during the optimiza
tion process: with model M1, SCV did not fail in any sample, whereas LSCV failed 
in 7 of total 200 samples, and BT failed in 12. Similar results were obtained also 
with the other simple models, with the exception of model M3, in which SCV some
times failed and overall exhibited poor performance.

The adaptive methods for bandwidth selection discussed in the second part of 
Sect.  5 behaved satisfactorily in each simulation case and in both real datasets at 
a computational cost comparable to fixed bandwidth methods. Compared to fixed 
bandwidth methods, Steps 2 and 3 of the algorithm (see p. 7) for adaptive methods 
are supplemental but should not be computationally too expensive, at least on paper. 
For example, model M5 required 5.4 s with the (fixed) RT method at n = 250 (0.83 s 
at n = 100 ); the adaptive method with the RT selector required 8.32  s (1.52  s at 
n = 100 ). The failure rates of the adaptive methods equalled the failure rates of their 
fixed bandwidth counterparts, as both depended on the same optimization process 
(Step 1 of the adaptive algorithm).

7  Conclusion

The current study presented a novel smoothed crossvalidation SCV (3.7) method 
for circular kernel density estimation and investigated common methods based 
on crossvalidation. The study also presented a method to transform adaptive  
methods, typically used with linear data, for use with circular data (see (4.1)) and 
discussed the potential to improve on the results produced by their fixedbandwidth 
counterparts.
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Simulations of the presented methods using real datasets yielded competitive 
results in relation to the common estimators applied in the field. In some cases, 
the simulations which used small samples produced unsatisfactory results, but 
with larger samples, the distance from the true density in the resulting estimators 
decreased. The simulation results also demonstrated that the proposed adaptive 
method which applied an arithmetic mean often outperformed existing methods. 
The SCV method performed well with larger datasets, although with small data
sets, a dependence on the sample size and the shape of the true density was evident. 
Small to midsized datasets are therefore recommended for mixture models; for sim
ple models and real datasets, the SCV method produced more satisfactory results 
with larger datasets.

Future research directions include extending the proposed methods for applica
tion in the multivariate settings, i.e., for spherical data. Other research paths would 
be closer collaboration with CHMI, combining the circular and linear approaches, 
and investigating methods for the socalled directionallinear data, which are useful 
in hydrometeorological studies.

8  Appendix

8.1  Properties of Bessel functions

The properties of Bessel functions are useful in deriving the methods introduced in 
this study.

The modified Bessel function of the first kind and order r, 

especially for r = 0 , provides a normalizing constant for the von Mises distribution 
(2.2). Substituting a = � cos � , b = � sin � into the following integral and using the 
relationship (8.1), we obtain

Other useful properties of modified Bessel function are:

(8.1)Ir(�) =
1

2� ∫
2�

0

e� cos � cos(r�)d�,

(8.2)

1

2� ∫
2�

0

ea cos �+b sin �d�

=
1

2� ∫
2�

0

e� cos(�−�)d�

= I0(�) = I0(
√

a2 + b2).
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where I�
r
(�) is the derivative of the Bessel function.

Let us suppose that �1 ∼ VM(�1, �1) and �2 ∼ VM(�2, �2) . Using (8.2), the convo
lution of two von Mises densities is

(Jammalamadaka and SenGupta 2001).

8.2  Models

The models applied in the simulation discussed in Sect. 5 are described below. The 
corresponding graph for each model is given in Fig. 6. The simulation used a com
bination of simple models M1–M4 and twocomponent mixture models M5–M12.

Von Mises distribution VM(�, �) is a symmetric and unimodal distribution char
acterized by two parameters: � describes the mean direction and � is a concentration 
parameter (Mardia and Jupp 2009, Section 3.5.4). Model M1 used VM(�, 2) , but the 
compositions of two von Mises distributions were also considered, i.e.,

M5: 1
2
VM(0.5, 1) +

1

2
VM(�, 1),

M6: 1
2
VM(0.5, 1) +

1

2
VM(�, 2),

M7: 1
2
VM(0.5, 1) +

1

2
VM(�, 1.5),

M8: 1
2
VM(2, 1) +

1

2
VM(4, 1),

M9: 1
2
VM(�∕2, 1) + 1

2
VM(3�∕2, 1),

M10: 1
2
VM(�∕2, 1) + 1

2
VM(3�∕2, 1.5),

M11: 1
2
VM(�∕2, 1) + 1

2
VM(4, 1.5),

M12: 1
2
VM(2, 2) +

1

2
VM(4, 2).

I−r(�) = Ir(�),

Ir−1(�) + Ir+1(�) = 2I�
r
(�),

Ir−1(�) − Ir+1(�) =
2r

�
Ir(�),

d

d�
I0(�) = I�

0
(�) = I1(�),

g(�) =
1

4�2I0(�1)I0(�2)

× ∫
2�

0

exp{�1 cos(� − �1) + �2 cos(� − � − �2)}d�

=
1

4�2I0(�1)I0(�2) ∫
2�

0

exp{[�1 cos�1 + �2 cos(� − �2)] cos �

+ [�1 sin�1 + �2 sin(� − �2)] sin �}d�

=
1

2�I0(�1)I0(�2)
I0

(

√

�2
1
+ �2

2
+ 2�1�2 cos(� − (�1 − �2))

)
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Wrapped normal distribution WN(�, �) is obtained by wrapping the normal 
distribution N(�, �2) onto a circle, where � = e�

2∕2 ( Mardia and Jupp 2009, Sec
tion  3.5.7). It is unimodal and symmetric around its mean �. Model M2 used 
WN(�∕2, 0.5).

Wrapped Cauchy distribution WC(�, �) is unimodal and symmetric around � 
(Mardia and Jupp 2009, Section 3.5.7). Model M3 used WC(�, 0.6).

Cardioid distribution C(�, �) is produced as a perturbation of the uniform density 
by a cosine function. It is a symmetric and unimodal distribution with mode at � 
(Mardia and Jupp 2009, Section 3.5.5). Model M4 used C(�∕2, 0.5).

Acknowledgements The research was funded by Grant Agency of Masaryk University under project 
MUNI/A/1418/2022 “Mathematical and statistical modelling 4 (MaStaMo4)”, and by the University of 
Defence as a part of the internal research project LANDOPS “Conduct of land operations”, and partially 
by longterm strategic development financing of the Institute of Computer Science (RVO:67985807). We 
gratefully acknowledge the Czech Hydrometeorological Institute of Brno for providing the wind direction 
dataset.

Funding Open access publishing supported by the National Technical Library in Prague.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Batschelet E (1981) Circular statistics in biology, mathematics in biology. Academic Press, London
Breiman L, Meisel W, Purcell E (1977) Variable kernel estimates of multivariate densities. Technomet

rics 19(2):135–144. https:// doi. org/ 10. 2307/ 12686 23
Cao R, Cuevas A, González Manteiga W (1994) A comparative study of several smoothing methods in 

density estimation. Comput Stat Data Anal 17(2):153–176. https:// doi. org/ 10. 1016/ 0167 9473(92) 
00066Z

Demir S (2018) Adaptive Kernel density estimation with generalized least square crossvalidation. Hac
ettepe J Math Stat 48:616–625. https:// doi. org/ 10. 15672/ HJMS. 2018. 623

Di Marzio M, Fensore S, Panzera A, Taylor CC (2019) Kernel density classification for spherical data. 
Stat Probab Lett 144:23–29. https:// doi. org/ 10. 1016/j. spl. 2018. 07. 018

Di Marzio M, Panzera A, Taylor CC (2011) Density estimation on the torus. J Statist Plann Inference 
141:2156–2173. https:// doi. org/ 10. 1016/j. jspi. 2011. 01. 002

Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, Cambridge
GarcíaPortugués E (2013) Exact risk improvement of bandwidth selectors for kernel density estimation 

with directional data. Electron J Stat 7:1655–1685. https:// doi. org/ 10. 1214/ 13 EJS821
GarcíaPortugués E, Crujeiras RM, Wenceslao GM (2013) Kernel density estimation for directionallin

ear data. J Multivar Anal 121:152–175. https:// doi. org/ 10. 1016/j. jmva. 2013. 06. 009
Hall P, Marron J, Park BU (1992) Smoothed crossvalidation. Probab Theory Relat Fields 92(1):1–20. 

https:// doi. org/ 10. 1007/ BF012 05233
Hall P, Watson G, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74(4):751–

762. https:// doi. org/ 10. 1093/ biomet/ 74.4. 751

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/1268623
https://doi.org/10.1016/0167-9473(92)00066-Z
https://doi.org/10.1016/0167-9473(92)00066-Z
https://doi.org/10.15672/HJMS.2018.623
https://doi.org/10.1016/j.spl.2018.07.018
https://doi.org/10.1016/j.jspi.2011.01.002
https://doi.org/10.1214/13-EJS821
https://doi.org/10.1016/j.jmva.2013.06.009
https://doi.org/10.1007/BF01205233
https://doi.org/10.1093/biomet/74.4.751


 S. Zámečník et al.

1 3

Härdle WK, Müller M, Sperlich S, Werwatz A (2012) Nonparametric and semiparametric models. 
Springer, Heidelberg

Horová I, Koláček J, Zelinka J (2012) Kernel smoothing in MATLAB: theory and practice of Kernel 
smoothing. World Scientific, Singapore

Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics, of series on multivariate analysis, 
vol 5. World Scientific, Singapore

Jones M, Kappenman R (1992) On a class of Kernel density estimate bandwidth selectors. Scand J Stat 
19:337–349

Ley C, Verdebout T (2017) Modern directional statistics. Chapman and Hall, New York
Ley C, Verdebout T (2018) Applied directional statistics: modern methods and case studies. Chapman 

and Hall, New York
Mardia K (2021) Comments on: recent advances in directional statistics. TEST 30:1–5. https:// doi. org/ 10. 

1007/ s11749 021 007604
Mardia KV, Jupp PE (2009) Directional statistics, of Wiley Series in Probability and Statistics. Wiley, 

Chichester
Marron JS, Ruppert D (1994) Transformations to reduce boundary bias in kernel density estimation. J R 

Stat Soc Series B (Methodological) 56(4):653–671. https:// doi. org/ 10. 2307/ 23461 89
Oliveira M, Crujeiras RM, RodríguezCasal A (2012) A plugin rule for bandwidth selection in circular 

density estimation. Comput Stat Data Anal 56(12):3898–3908. https:// doi. org/ 10. 1016/j. csda. 2012. 
05. 021

Oliveira M, Crujeiras RM, RodríguezCasal A (2013) Nonparametric circular methods for exploring 
environmental data. Environ Ecol Stat 20:1–17. https:// doi. org/ 10. 1007/ s10651 012 02036

Park BU, Marron JS (1990) Comparison of datadriven bandwidth selectors. J Am Stat Assoc 
85(409):66–72. https:// doi. org/ 10. 2307/ 22895 26

Pewsey A (2000) The wrapped skewnormal distribution on the circle. Commun StatTheory Methods 
29(11):2459–2472. https:// doi. org/ 10. 1080/ 03610 92000 88326 16

Pham Ngoc TM (2019) Adaptive optimal Kernel density estimation for directional data. J Multivar Anal 
173:248–267. https:// doi. org/ 10. 1016/j. jmva. 2019. 02. 009

R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statisti
cal Computing, Vienna

Scott DW (1992) Multivariate density estimation: Theory, practice, and visualization. Wiley, New York
Scott DW, Terrell GR (1987) Biased and unbiased crossvalidation in density estimation. J Am Stat 

Assoc 82(400):1131–1146. https:// doi. org/ 10. 2307/ 22893 91
Silverman BW (1986) Density estimation for statistics and data analysis, of monographs on statistics and 

applied probability, vol 26. Chapman and Hall, London
Simonoff JS (2012) Smoothing methods in statistics. Springer, New York
Taylor CC (2008) Automatic bandwidth selection for circular density estimation. Comput Stat Data Anal 

52(7):3493–3500. https:// doi. org/ 10. 1016/j. csda. 2007. 11. 003
Tenreiro C (2022) Kernel density estimation for circular data: a Fourier seriesbased plugin approach for 

bandwidth selection. J Nonparametric Stat 34(2):377–406. https:// doi. org/ 10. 1080/ 10485 252. 2022. 
20579 74

Tsuruta Y, Sagae M (2017) Higher order kernel density estimation on the circle. Stat Probab Lett 131:46–
50. https:// doi. org/ 10. 1016/j. spl. 2017. 08. 003

Wand MP, Jones MC (1994) Kernel smoothing. Chapman and Hall, London

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1007/s11749-021-00760-4
https://doi.org/10.1007/s11749-021-00760-4
https://doi.org/10.2307/2346189
https://doi.org/10.1016/j.csda.2012.05.021
https://doi.org/10.1016/j.csda.2012.05.021
https://doi.org/10.1007/s10651-012-0203-6
https://doi.org/10.2307/2289526
https://doi.org/10.1080/03610920008832616
https://doi.org/10.1016/j.jmva.2019.02.009
https://doi.org/10.2307/2289391
https://doi.org/10.1016/j.csda.2007.11.003
https://doi.org/10.1080/10485252.2022.2057974
https://doi.org/10.1080/10485252.2022.2057974
https://doi.org/10.1016/j.spl.2017.08.003

	An adaptive method for bandwidth selection in circular kernel density estimation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Choice of bandwidth – fixed bandwidth methods
	3.1 Known methods
	3.2 Proposed method

	4 Choice of bandwidth – adaptive bandwidth methods
	5 Simulation study
	5.1 Simple models
	5.2 Mixture models

	6 Application to real data
	6.1 Additional comments regarding computation time

	7 Conclusion
	8 Appendix
	8.1 Properties of Bessel functions
	8.2 Models

	Acknowledgements 
	References


