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Abstract
The prior plays a central role in Bayesian inference but specifying a prior is often 
difficult and a prior considered appropriate by a modeler may be significantly biased. 
We propose multi-pass Bayesian estimation (MBE), a robust Bayesian method capa-
ble of adjusting the prior’s influence on the inference result based on the prior’s 
quality. MBE adjusts the relative importance of the prior and the data by iteratively 
performing approximate Bayesian updates on the given data, with the number of 
updates determined using a cross-validation method. The repeated use of the data 
resembles the data cloning method, but data cloning performs maximum likelihood 
estimation (MLE), while MBE interpolates between standard Bayesian inference 
and MLE; there are also algorithmic differences in how MBE and data cloning make 
repeated use of the data. Alternatively, MBE can be considered a method for con-
structing a new prior from the given initial prior and the data. We additionally pro-
vide a new non-asymptotic bound on the convergence of data cloning, and provide 
an MBE-like iterative heuristic approach which achieves faster convergence speed 
by boosting posterior variance. In numerical simulations on several simulated and 
real-world datasets, MBE provides robust inference results as compared to standard 
Bayesian inference and MLE.
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1 Introduction

Bayesian analysis has diverse applications (Punt and Hilborn 1997; Corander et al 
2008; Monnahan et al 2017; Brown and Hund 2018), partly due to its ability to 
incorporate useful information through the prior. However, specifying a prior is 
often a difficult decision process involving many subtleties. In general, the prior 
is often constructed by collating relevant pieces of information, assessing their 
veracity, and translating them into a mathematical form. There is a considerable 
ongoing debate on how this should be done, with no consensus on what informa-
tion should be incorporated, and how the information should be incorporated. For 
example, when little information is available, we may use a flat or diffuse prior, 
but there is no universally accepted good flat prior. The uniform distribution is a 
natural choice but is not invariant to reparametrization. Objective priors (Yang 
and Berger 1996; Kass and Wasserman 1996; Ghosh 2011), including Jeffrey’s 
priors (Jeffreys 1946) and reference priors (Bernardo 1979; Berger and Bernardo 
1992), are often used as alternatives to uniform priors. These priors are consid-
ered to make the analysis less subjective by the advocates, but this is a point of 
dispute among Bayesians (Lindley 1983). As another example, many Bayesians 
advocate eliciting subjective knowledge of the domain experts and converting the 
elicited knowledge into an informative prior, but there is no universally accepted 
method on how this should be done (Mikkola et al 2021).

Various forms of bias may be present even in a prior obtained from a very care-
ful analysis, leading to undesirable decisions. First, the bias may stem from math-
ematical subtleties. For example, while various diffuse priors are commonly used 
when there is little external information, they are not necessarily non-informative 
(Lemoine 2019). Second, a researcher may have a strong prior belief that could 
be incorrect, which can produce an unreasonable posterior (Bolstad and Curran 
2016, Section 16.1) and (Yang and Berger 1996). For example, when developing 
priors for data-poor fish stocks using knowledge of data-rich fish stocks, biased 
informative priors may be used due to systematic differences in stock status and 
characteristics. This is because well studied stocks are typically large, high-yield-
ing and well-managed stocks, while data-poor stocks usually have little manage-
ment (Punt and Hilborn 1997).

In this paper, we introduce a Bayesian technique that is more robust with 
respect to the bias in the chosen prior. Specifically, if the prior is well-specified, 
we want to exploit the prior. On the other hand, if the prior is misspecified or 
biased, we want to reduce the prior’s influence. Our proposed method, referred to 
as multi-pass Bayesian estimation (MBE), adjusts the prior’s influence by itera-
tively performing approximate Bayesian updates on the given data. This gradu-
ally reduces the importance of the prior. A cross-validation method is used to 
determine the number of Bayesian updates so that the relative importance of the 
prior is commensurate with its quality.

Our work is closely related to the data cloning method and the empirical Bayes 
method. Data cloning creates multiple copies of the dataset and uses Markov 
chain Monte Carlo (MCMC) methods to estimate the model parameters. When 



1 3

Multi-pass Bayesian estimation: a robust Bayesian method  

the number of copies is large, the mean of the posterior distribution converges 
to the maximum likelihood estimate. This provides an elegant method for com-
puting the maximum likelihood estimates (MLEs) for complex models through 
Bayesian framework (Lele et  al 2007, 2010). Similarly to data cloning, MBE 
makes repeated use of the data. However, data cloning computes the MLE, while 
MBE interpolates between standard Bayesian inference and MLE. In addition, 
data cloning performs Bayesian inference on a single dataset consisting of mul-
tiple clones of the original dataset using MCMC, and the time complexity grows 
quickly in the number of clones. However, MBE performs approximate incremen-
tal Bayesian updates and the time complexity grows linearly in the number of 
repetitions. Empirical Bayes optimizes the hyperparameters of the prior by max-
imizing the likelihood (Carlin and Louis 2000) which can be viewed as learn-
ing a data-dependent prior. Similarly, MBE can also be viewed as an alternative 
method for learning a data-dependent prior. However, MBE avoids the difficult 
problem of computing the maximum likelihood estimates.

We previously performed a preliminary investigation on the benefits of adjusting 
the relative importance of the prior and the data for estimating fishery models, by 
performing a fixed number of Bayesian updates (Lei et al 2021). This paper provides 
a general framework with a cross-validation procedure for automatically adjusting 
the relative importance of the prior and the data, and a MBE-like heuristic approach 
for computing MLEs. We further provided some theoretical analysis and performed 
extensive experiments to demonstrate the effectiveness of both procedures across 
several inference problems.

The remainder of this paper is organized as follows. Section 2 describes MBE, 
and introduces an MBE-like heuristic iterative approach that has a faster conver-
gence rate than data cloning for computing MLE by boosting posterior variance. 
Section 3 provides a new non-asymptotic theoretical analysis of the convergence of 
data cloning. Section 4 demonstrates that MBE provides robust inference results as 
compared to standard Bayesian inference and maximum likelihood estimation on 
several simulated and real-world datasets. In addition, our MBE-like approach with 
variance boosting achieves a faster convergence speed for computing the MLE com-
pared to data cloning and similar MBE-like approaches. Section  5 concludes the 
paper.

2  Multi‑pass Bayesian estimation

MBE is a robust Bayesian method that alleviates the bias in the prior: it aims to 
maximize the use of both the information from the prior and the information from 
the data, while minimizing the influence of potential bias in the prior. To this end, 
it combines the prior and the data in a way that automatically adjusts the relative 
importance of the prior and the data to produce a distribution that interpolates 
between standard Bayesian inference and MLE. MBE produces the standard Bayes-
ian posterior on one extreme, and the MLE on the other extreme.

It is instructive to first briefly review how the prior and the data are used in 
standard Bayesian inference, MLE, and data cloning. Formally, we are given a 
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prior p0(�) and a likelihood model p(D ∣ �) , where � denotes an element from the 
parameter space Θ , and D denotes a dataset. Standard Bayesian inference com-
bines the prior and the data using the Bayes’ rule by computing a posterior that is 
proportional to the product of the prior p0(�) and the likelihood �(�) = p(D ∣ �):

MLE seeks to maximize the likelihood �(�) only and is thus not using the prior 
at all. Data cloning computes the MLE using MCMC, which provides a nice link 
between standard Bayesian inference and MLE. Specifically, given a large number 
of j clones of D, say D1 = D2 = … = Dj = D , data cloning first computes the poste-
rior using the dataset consisting of these clones:

then it uses the posterior mean as an MLE. Intuitively, this works because, as j 
becomes larger, the maximum likelihood estimator �ML ∈ argmax� �(�) acquires 
larger and larger density in the posterior.

The distributions p0, p1, p2,… form a spectrum of distributions as j increases, 
the prior becomes less important while the data becomes more important in pj . 
In particular, p0 is the initial prior, p1 is the standard Bayesian posterior, and p∞ 
is the MLE. Figure 1 provides a schematic illustration of this spectrum. Naively, 
we can try to select the best distribution in the spectrum for performing inference, 
but using MCMC to compute pj exactly becomes too expensive as j increases. 
Our MBE algorithm provides a general framework for efficiently generating such 
a spectrum of distributions, and choosing the best one among them for inference.

Specifically, MBE uses the data and the prior to incrementally construct a 
sequence of distributions where the relative importance of the prior and the data 
varies and chooses the one that is most suitable for inference. This is done based 
on two key components: an update operator U(p,D) and a validation score S(p,D) . 
The update operator U(p,D) takes in a distribution p on Θ and a dataset D, and 
then outputs a distribution on Θ where the data is relatively more important. This 
allows incremental construction of a spectrum of distributions on Θ where the 
relative importance of the prior and the data varies. The validation score S(p,D) 
evaluates whether a posterior distribution p has good predictive power on D. We 
provide details on the update operator U  and the validation score S in Sects. 2.1 
and 2.2. Examples of how the update operators and the validation score are 
implemented on some problems are provided in Sect. 4.5.

(1)p1(�) = P(� ∣ D) ∝ p0(�)�(�).

(2)pj(�) = P(� ∣ D1,… ,Dj) ∝ p0(�)�(�)
j,

Fig. 1  A spectrum of distributions where the relative importance of the prior and the data varies
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Algorithm  1 displays the pseudocode for 2-fold cross-validation MBE, which 
consists of two phases. The first phase (line 1) determines the optimal relative 
importance using cross-validation by the SelectImportance function (line 5 to line 
15). To determine the optimal relative importance, we use a 2-fold cross-validation 
method. We first partition the dataset D into two subsets D1 and D2 (line 6). MBE 
then iteratively constructs a sequence of distributions p1,1, p2,1,… using the update 
operator U , a prior p0,1 = p0 and the dataset D1 (lines 9 to line 11). For each pj,1 , we 
compute its validation score S(pj,1,D2) on D2 (first part of line 13). Similarly, we 
reverse the role of D1 and D2 , and compute a sequence of distributions p1,2, p2,2,… . 
The validation score for j is then computed as log(S(pj,1,D2)) + log(S(pj,2,D1)) . The 
construction stops when a certain termination criterion is met. Finally, we choose 
the j value leading to the largest validation score as the optimal relative importance.

The second phase (lines 2–3) computes the posterior for inference using the entire 
dataset D and the optimal relative importance is determined in the first phase.

We make a few comments on the cross-validation procedure used in the first 
phase. First, we used 2 fold cross-validation for computational efficiency in the first 
phase, but more than 2 folds could be used. We provide the pseudocode for N-fold 
cross-validation MBE in Appendix A and show that 2-fold cross-validation perform 
similarly as 5-fold cross-validation on our benchmark problems. Second, we fol-
lowed the practice of using equal-sized subsets as in the standard cross-validation 
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procedure. In fact, we tried the alternative splits of 30/70 and 40/60 on the simple 
Gaussian estimation problem described in Sect. 4.1.1, and did not observe signifi-
cant difference in MBE’s performance, thus we only consider equal-sized splits in 
this paper. Third, for time series data, the importance score is calculated in a slightly 
different way, as discussed in Sect. 2.2.

Our MBE-like approach for computing the MLE is the same as MBE, but 
replaces the first phase with setting j∗ → ∞ . We provide a theoretical discussion on 
this approach in Sect. 3.

Details of the update operator, the validation score, and the termination criterion 
are described below.

2.1  The update operator

There are various choices for the update operator. We describe three update opera-
tors below.

The first one is the exact Bayesian update operator B defined by

The exact Bayesian update operator is conceptually simple and, in some cases, a 
closed-form formula can be given for it. When using the exact Bayesian update 
operator, the distributions p1, p2,… are the same as those defined by Eq. 2, and are 
equivalent to the posteriors obtained by running the Bayesian filter with identical 
observations at different time steps. However, in general, there is no closed-form 
formula for the exact Bayesian update operator and it is not possible to compute the 
exact Bayesian update.

The second update operator is what we call the moment matching Bayesian 
update operator M(p,D) , which is the default update operator that we use in this 
paper. The operator first runs an MCMC algorithm to calculate a set of particles 
representing the posterior q(�) ∝ p(�)p(D ∣ �) and then fits a distribution p̃ on the set 
of particles using moment matching. The particular form of p̃ can be user-specified 
and must be a distribution that can be used as input to the chosen MCMC algorithm. 
When there are multiple parameters to be estimated, we choose p̃ as a product of 
univariate distributions and learn the parameters of the univariate distributions using 
moment matching. In general, we do not have to use moment matching for estimat-
ing the parameters of p̃ , and we can use alternative parameter estimation methods 
such as maximum likelihood estimation. We choose moment matching because this 
often leads to simple estimates that can be efficiently computed. For the MCMC 
algorithm, we used Gibbs sampling implemented in R2jags (Su et  al 2015), an R 
package to the JAGS (Plummer et al 2003) library. R2jags supports the use of the 
Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992; Brooks and Gel-
man 1998) to detect convergence, which can allow terminating the simulation of 
Markov chains once convergence has occurred, instead of simulating the Markov 
chains for the maximum number of allowed steps.

B(p,D)(�) = p(�)p(D ∣ �)

/

∫ p(��)p(D ∣ ��)d��.
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The third update operator is what we call the variance-boosted Bayesian update 
operator V . The operator first runs MCMC as in the moment-matching Bayesian 
update, and then performs moment matching to fit a distribution p̃ with the variance of 
each univariate distribution equal to max{�2, �} , where �2 is the variance of the consid-
ered univariate variable in the particles and � is a user-specified constant. The variance-
boosted Bayesian update is motivated by our observation that the moment-matching 
Bayesian update operator M sometimes leads to only slightly different updated dis-
tributions in a single step. Thus we “boost” the variance of the updated distribution 
whenever it falls below a threshold, so that the posterior can move faster towards the 
MLE. In this paper, we set the � value for each parameter separately so that the coeffi-
cient of variation of each parameter is at most 0.1, i.e., � = 0.12�2 , where � is the mean 
value of the parameter. The threshold value 0.1 was chosen on the basis that it is neither 
too small nor too large. This offered some speed-up for computing MLE in our experi-
ments (see Sect. 4.4). 1 includes a sensitivity study on the threshold value. The results 
indicate that a larger threshold may lead to faster convergence to the MLE in terms of 
the number of iterations for the variance-boosted update. However, for the Bayesian 
update at each iteration, MCMC sometimes converges very slowly for a large threshold, 
and even fail to converge for a very large threshold.

2.2  The validation score

To determine the posterior pj that is optimal for inference, we develop a validation 
score to measure the quality of the relative importance index j.

When the dataset D consists of i.i.d. examples, we randomly split the dataset into 
two disjoint sets D1 and D2 , and then compute the posterior pj,1 = U(pj−1,1,D1) and 
pj,2 = U(pj−1,2,D2) on D1 and D2 respectively using the same initial prior. The cross-
validation score of the relative importance index j is calculated as

where S(p,D) = ∫ p(D ∣ �)p(�)d� measures on average how well a random model � 
distributed according to p(�) can predict D. The exact computation of the validation 
score is hard. A natural idea is to use the Monte Carlo approximation to compute the 
validation scores. For example,

where the �(1)
i

 ’s are independently sampled from posterior pj,1 . When using MCMC 
to compute pj,1 , these �(1)

i
 ’s values can be taken as a random subset of the parti-

cles representing pj,1 . However, the Monte Carlo approximation is too expensive on 
some datasets. A more efficient approximation is

(3)sj = log(S(pj,1,D2)) + log(S(pj,2,D1)),

(4)S(pj,1,D2) ≈
1

N

N∑

i=1

p(D2 ∣ �
(1)

i
),

(5)S(pj,1,D2) ≈ p(D2 ∣ �
(1)

j,med
),
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where the �(1)
j,med

 is the parameter vector where each component takes its median 
value according to its marginal distribution given by pj,1 . We used the median 
approximation to calculate S(pj,1,D2) and S(pj,2,D1) in this paper, even though the 
Monte Carlo approximation is unbiased but the median approximation is generally 
not. This is because the Monte Carlo approximation yields highly variable estimates 
— for example, for the simple problem of estimating a Gaussian in Sect.  4, even 
using N = 10, 000 models from the posterior gives estimates of the validation score 
that are too variable to be useful for selecting a good relative importance index. In 
fact, our empirical results suggest that the median approximation is effective (see 
Sect. 4). This is likely because the median approximation ranks the relative impor-
tance indices similarly as the exact validation score.

It is possible to use an alternative validation score, such as 
log(S(pj,1,D2) + S(pj,2,D1)) . In 1, we compared this alternative validation score to 
the one used in this paper and found that they produced similar results. We used the 
sum of log-likelihood values as our validation score in this paper for the simplicity 
of its implementation. This is because in S(pj,1,D2) + S(pj,2,D1) , the two scores can 
be very small and a straightforward implementation may often yield 0 as the output 
due to numerical underflow. On the other hand, the log-likelihood values do not suf-
fer from numerical underflow.

When the dataset is a time series, we use a slightly different procedure to calcu-
late the validation score of each importance index j. We first take D1 as the first half 
of the time series, and D2 as the second half. The validation score of j is then com-
puted as

However, there is a subtlety in this case: evaluating p(D2 ∣ �) may be computa-
tionally quite expensive due to the presence of latent variables. For some models, 
it helps to consider the posterior distribution p(�, �aux) of � and some of the latent 
variables �aux instead of the posterior distribution p(�) . In MCMC, such distribu-
tion is already computed, and thus there is no additional cost of obtaining it. How-
ever, it can be more efficient to compute p(D2 ∣ �, �aux) as compared to computing 
p(D2 ∣ �) , and thus we can use the following approximation:

where �(1)
j,aux,med

 is the parameter vector where each component takes its median value 
according to pj,1(�aux) . We illustrate the above idea using a fishery dynamics model 
in Sect. 4.1.2.

2.3  Termination criterion

The simplest termination criterion is to run the updates for a fixed number of J 
iterations. In our experiments, we used J = 100 updates, but we noticed that the 
convergence of the posterior median parameter values often occurs before that. 
Thus the algorithm may be more efficient if it stops further updates once such 

(6)sj = S(pj,1,D2)

(7)S(pj,1,D2) ≈ p(D2 ∣ �
(1)

j,med
, �

(1)

j,aux,med
),
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convergence happens. An empirical investigation of the effectiveness of early 
stopping will be an interesting question for further study.

3  Theoretical analysis

We provide some theoretical analysis on the posterior spectrum p0, p1, p2,… 
defined by pj = U(pj−1,D) for j ≥ 1.

We first consider the case when the update operator is the exact Bayesian 
update operator B . The data cloning paper (Lele et al 2007) showed that the mean 
value of the data-cloned posterior converges to the maximum likelihood estimates 
as the number of data clones increases. We provide a more refined convergence 
result: under mild conditions, the posterior distribution in Eq. 2 essentially con-
verges to a distribution over the maximum likelihood estimates. Note that in the 
data cloning paper, the authors (Lele et al 2007) assumed that there was a unique 
MLE, while we make no such assumption in our proof.

Theorem  1 Let ΘML = argmax� �(�) be the set of maximum likelihood estimates, 
and �∗ be the maximum likelihood value. Let pj = B(pj−1,D) . Assume that there 
exists 𝜖 > 0, 𝛿 > 0, 𝜈 > 𝜁 > 0 such that 

(a) for any � at a distance of at least � away from ΘML , �(�) ≤ �
∗ − � , and

(b) for any � within a distance of � away from ΘML , the largest eigenvalue of the 
Hessian ∇ 2

�(�) is at most −� and at least −�.

Then for any r > 0 , pj(d(�,ΘML) ≤ r) → 1 as j → ∞ , where d(�,ΘML) = inf��∈ΘML
‖� − ��‖ . 

That is, as j becomes larger, the probability of � lying within an arbitrarily small distance 
from maximum likelihood estimates tends to 1.
Proof Note that if for some r, pj(d(�,ΘML) ≤ r) → 1 as j → ∞ , then the result holds 
for any larger r too. Thus it suffices to show that the result holds for r values smaller 
than some fixed value. In particular, we consider r ∈ (0, r0] , where r0 is the largest 
number such that r0 ≤ � , and �r2

0
≤ 2�.

We first bound the likelihood of parameters that are at a distance of at most � 
away from ΘML . Consider any � such that d(𝜃,ΘML) < 𝜖 , then there exists �0 ∈ ΘML 
such that d = � − �0 has a norm less than � . From Taylor’s theorem, we have

for some c ∈ [0, 1] . Since �0 maximizes the likelihood, we have ∇�(�0) = 0 . In 
addition, by assumption (b), we have −𝜈‖d‖2 ≤ d⊤ ∇ 2

�(𝜃0 + cd)d ≤ −𝜁‖d‖2 . Thus 
we have

(8)�(𝜃) = �(𝜃0 + d) = �(𝜃0) + d⊤ ∇�(𝜃0) +
1

2
d⊤ ∇ 2

�(𝜃0 + cd)d,

(9)�
∗ −

�

2
‖d‖2 ≤ �(�0 + d) ≤ �

∗ −
�

2
‖d‖2.
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Now choose any r′ < r such that �r�2 ≤ �r2∕2 . We partition the parameter space into 
the following three sets:

and we use pj(Θi) to denote the probability that � ∈ Θi according to pj.
Using the likelihood bound above, we have

It follows that pj(Θ1)

pj(Θ3)
>

�
∗−𝜁r2∕4

�∗−𝜁r2∕2

pj−1(Θ1)

pj−1(Θ3)
>

(
�
∗−𝜁r2∕4

�∗−𝜁r2∕2

)j
p0(Θ1)

p0(Θ3)
which tends to ∞ as 

j → ∞ , as the ratio �
∗−�r2∕4

�∗−�r2∕2
 is larger than 1.

This implies that pj(Θ1)+pj(Θ2)

pj(Θ3)
→ ∞ , thus the probability 

pj(d(�,ΘML) ≤ r) = pj(Θ1 ∪ Θ2) → 1 .   ◻

As a corollary of the above proof, we can show that the convergence occurs at an 
exponential rate.

Corollary 1 Under the assumptions of Theorem 1, there exists constants a > 0 , such 
that for any r > 0 , there exists s ∈ (0, 1) satisfying

Proof From the proof of Theorem  1, we have pj(Θ1)

pj(Θ3)
>

(
�
∗−𝜁r2∕4

�∗−𝜁r2∕2

)j
p0(Θ1)

p0(Θ3)
 . Thus we 

have

where a =
p0(Θ3)

p0(Θ1)
 , and s = �

∗−𝜁r2∕2

�∗−𝜁r2∕4
< 1 . Therefore, pj(d(�,ΘML) ≤ r) = pj(Θ1 ∪ Θ2)

= 1 − pj(Θ3) ≥ 1 − asj .   ◻

Note that any distribution p∗ on the MLEs is a fixed point of B in the sense of

Thus from Theorem 1, we can view the repeated application of the exact Bayesian 
update operator as a fixed-point iteration for computing a fixed point of the operator, 
that is the sequence of distributions computed converges to a fixed-point p∗ of B.

Θ1 = {𝜃 ∶ d(𝜃,ΘML) < r�},

Θ2 = {𝜃 ∶ d(𝜃,ΘML) ∈ [r�, r]},

Θ3 = {𝜃 ∶ d(𝜃,ΘML) > r},

𝜃 ∈ Θ1 ⇒ �(𝜃) > �
∗ −

𝜁r2

4
,

𝜃 ∈ Θ3 ⇒ �(𝜃) < �
∗ −

𝜁r2

2
.

pj(d(�,ΘML) ≤ r) ≥ 1 − asj.

pj(Θ3) ≤ pj(Θ3)

pj(Θ1)
<

(
�
∗ − 𝜁r2∕2

�∗ − 𝜁r2∕4

)j
p0(Θ3)

p0(Θ1)
= asj,

(10)p∗ = B(p∗,D).
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For the moment-matching Bayesian update operator M and the variance-boosted 
Bayesian update operator V , we conjecture that the limiting distributions computed 
by repeated applications of these operators also converge to fixed points of these 
operators in general, and such fixed points depend mostly on data. While we do not 
have a formal result, we believe that further investigation of this conjecture is impor-
tant, considering how the variance-boosted Bayesian update operator can be used to 
efficiently compute MLEs, as demonstrated in Sect. 4.4.

4  Numerical experiments

We perform three sets of experiments in this section. First, we compare MBE with 
the standard Bayesian method and MLE on how they perform under different priors 
on several inference problems, so as to investigate their robustness against biased 
priors and their ability to exploit information in the prior. Second, we investigate the 
performance of the different update operators used in MBE, so as to identify the best 
variant of MBE. Third, we demonstrate the use of variance boosting for efficiently 
computing MLEs.

We describe the details of the inference problems and the experimental settings 
used in Sect. 4.1, then we present results for the three sets of experiments in the fol-
lowing subsections.

4.1  Inference problems and experimental settings

We consider estimating the parameters of three different models: the Gaussian dis-
tribution, a fishery stock assessment model known as the Schaefer model, and logis-
tic regression. For standard Bayesian and MBE, we use the posterior median as the 
estimated parameter. We generate synthetic data for estimating Gaussians and the 
Schaefer model, thus we know the ground truth model for these two cases, and we 
can evaluate the accuracy of the estimated parameters. For logistic regression, we 
use several real-world binary classification datasets. We do not know the ground 
truth model in this case, thus we split a dataset into a training set and a test set, and 
we are interested in the test accuracy of the learned logistic regression model.

For each of the three models, we consider three different prior settings: misspeci-
fied prior, non-informative or weak prior, and well-specified prior. A weak prior is 
chosen to be flat or uniform so that it does not favour any particular values. For 
the Gaussian and the Schaefer model, we know the true parameters generating the 
synthetic data, thus a well-specified prior is chosen to be a probability distribution 
centered around the true value, and a misspecified prior’s probability distribution 
is chosen to center around a value sufficiently different from the ground truth. For 
logistic regression, we take the MLE computed on the test set as the ground truth 
when specifying the well-specified prior and the misspecified prior.
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4.1.1  Gaussian model

We consider inferring the mean � and standard deviation � of a Gaussian distribution 
N(�, �2) using an i.i.d. sample x1,… , xn drawn from the distribution. We are interested 
in two different settings: only � is unknown, and both � and � are unknown. The prior 
of the mean � is chosen to be a Gaussian N(�0, �

2
0
) . In the case that � is unknown, its 

prior is chosen to be a lognormal distribution LN(��
0, �

�2

0
) . The ground truth values of 

� and � and their priors used in our experiments are given in Table 1.
We compared the inference methods on 100 datasets, each consisting of n = 50 

observations. The quality of inference is measured in terms of the absolute errors of the 
estimates, that is the absolute values of the differences between the estimates and the 
true values.

4.1.2  Schaefer model

The Schaefer model is a popular fishery stock assessment model which can produce 
estimates of maximum sustainable yield and other associated fisheries reference points 
(e.g., see (Winker et al 2018)). It belongs to the class of Surplus Production Models, 
which describe how the fishery biomass evolves according to the generic difference 
equation

where Bt is the biomass in year t, Ct is the catch in year t, and the surplus production 
term SPt aggregates the effects of recruitment, growth, and natural mortality.

We consider the following stochastic version of the Schaefer model

where r is the intrinsic growth rate of population, and K is the carrying capacity 
which can be interpreted as the maximum biomass that can be sustained by the envi-
ronment, and �B ∼ N(0, �2

B
) is a random process error. In addition, we assume that 

the catch Ct is related to the fishing effort Et and the biomass Bt via

(11)Bt+1 = Bt + SPt − Ct,

(12)Bt+1 =

[
Bt + rBt

(
1 −

Bt

K

)
− Ct

]
e�B .

(13)Ct = qEtBte
�C ,

Table 1  Ground truth values and priors for the parameters of the Gaussian distribution

Parameter Ground truth Misspecified prior Weak prior Well-specified prior

� 0 N(−1, 0.12) N(−1, 22) N(0, 0.12)

� 1 LN(0.1, 0.12) LN(0.1, 22) LN(1, 0.12)
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where q is known as the catchability constant, and �C ∼ N(0, �2
C
) models the random 

variation in the catch process. Finally, we assume that the observed catch per unit 
effort (CPUE) It at time t is

where Et is the effort value, �I ∼ N(0, �2
I
) is used to model measurement errors, and 

�IC ∼ N(0, �2
IC
) with �2

IC
= �2

I
+ �2

C
.

Our inference problem is to estimate the parameters (K, q, r,� , �2
B
, �2

IC
) from 

the catch time series {Ct} and the CPUE time series {It} generated according to 
Eqs.  12,13 and 14, where � = B0∕K is known as the initial biomass depletion. 
In our experiments, we used K = 2000 , r = 0.4 , � = 0.8 , q = 0.004 , �B = 0.1 , 
�C = 0.1 , �I = 0.1 , and a dataset includes 30 years of catch and CPUE values.

Log-normal (LN) priors are used for K, r, � and q, because these parameters 
should be non-negative. We used the same coefficient of variation (CV) for all 
the parameters in each prior setting. The priors used are listed in Table 2. Note 
that we used weak priors for those Gaussian noises for all prior settings, by 
assuming that the variances �2

B
 and �2

IC
 follow an inverse gamma distribution, 

invgamma(� = 4, � = 0.01) , which is commonly used in fisheries research (Millar 
and Meyer 2000; Winker et al 2018).

As in the case of the Gaussian distribution, we also compared the inference 
methods on 100 randomly generated datasets. The quality of the inference is 
measured using the absolute relative error |�med −�true|∕�true , where �med is the 
posterior median and �true is ground truth. Relative errors are used because the 
parameters are of very different scales.

We make three remarks on the implementation of MBE on the Schaefer model. 
First, since we are dealing with time series data, we compute the validation score 
as in Eq.  6. That is, we only consider how well the posterior pj,1(�) computed 
using the first part of data can predict the second part of data D2 . Second, com-
puting the likelihood for the Schaefer model is hard due to the presence of latent 
variables, thus approximation is needed. Given a dataset D consisting of the 
observed catches C1∶n and abundance indices I1∶n , the likelihood of the param-
eters � = (K,B1, r, q,m, �

2
B
, �2

C
, �2

I
) is given by

(14)It =
Ct

Et

e�I = qBte
�C+�I = qBte

�IC ,

Table 2  Ground truth values and priors for the parameters of the Schaefer model

True value Misspecified prior Weak prior Well-specified prior

K 2000 LN(8000,CV = 0.1) LN(8000,CV = 2) LN(2000,CV = 0.1)

r 0.4 LN1,CV = 0.1) LN(1,CV = 2) LN(0.4,CV = 0.1)

� 0.8 LN(1,CV = 0.1) LN(1,CV = 2) LN(0.8,CV = 0.1)

q 0.004 LN(0.01,CV = 0.1) LN(0.01,CV = 2) LN(0.004,CV = 0.1)
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where fLN(x ∣ �, �2) is the probability density function of the log-normal distribu-
tion LN(�, �2) . We approximate L(� ∣ D) using a simple Monte Carlo estimate:

where each B(i)

2∶n
 is independently sampled using the parameters θ according to Eqs 

(11) and (13). Third, as mentioned in Sect. 2.2, the validation score in Eq. 6 is com-
puted via Eq. 7. The auxiliary variable �aux,med is simply chosen to be the median of 
the last biomass in the first part of the time series. This then allows us to calculate 
each summand in Eq. 7 using the Monte Carlo estimate in Eq. 16. In this paper, we 
used M = 100000 to approximate the L(� ∣ D) in Eq. 16.

4.1.3  Logistic regression

The logistic regression model is a commonly used classification model. We consider 
estimating the parameters of a binary logistic regression model

where x ∈ ℝ
d+1 is the input vector (including a dummy variable with value 

1 for modeling the bias), Y is the class label which takes either value 0 or 1, and 
� = (�0, �1,… , �d) consists of the model parameters.

We used six real binary classification datasets from the LIBSVM datasets (Chang 
and Lin 2011), which cover diverse domains: breast-cancer, diabetes, german.
numer, heart, svmguide1, and svmguide3. Note that we only used the training sets 
for svmguide1 and svmguide3. Tabel 3 shows the datasets and their sizes.

(15)

L(� ∣ D) =p (I1∶n ∣ �,C1∶n)

=∫ p(I1∶n,B2∶n ∣ �,C1∶n)dB2∶n

=∫ p(B2∶n ∣ �,C1∶n)p(I1∶n ∣ �,C1∶n,B2∶n)dB2∶n

=∫
[

n−1∏

t=1

p(Bt+1 ∣ Bt,Ct,K, r,m)

n∏

t=1

p(It ∣ Bt, q)

]
dB2∶n

=∫
[ n−1∏

t=1

fLN(Bt+1 ∣ � = ln[Bt + SP(Bt,K, r,m) − Ct], �
2 = �2

B
)×

n∏

t=1

fLN(It ∣ � = ln(qBt), �
2 = �2

C
+ �2

I
)

]
dB2∶n,

(16)L(� ∣ D) ≈
1

M

M∑

i=1

p(I1∶n ∣ �,C1∶n,B
(i)

2∶n
),

(17)p(Y ∣ x, �) =
1

1 + e−x
⊤�
,
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For each dataset, we consider inferring the model parameters using a random 
50% of the full dataset as the training set, and evaluating the inferred model’s pre-
dictive accuracy using the other 50% of the data as the test set.

We used a Gaussian prior for each �i with the same coefficient of variation (CV) 
applied to account for the varying scales of the parameters since these parameters 
are on very different scales, the same �2 in N(�, �2) would represent very different 
degrees of uncertainties for the parameters. The misspecified prior and well-specified 
prior are chosen to be N(−�∗

i
,CV = 0.1) and N(�∗

i
,CV = 0.1) respectively, where 

(�∗
0
, �∗

1
,… , �∗

d
) is the MLE on the test set. For the weak prior, we used the Gauss-

ian distribution with mean 0 and large variance of �2 = 100 . The priors are given in 
Table 4.

We compared the inference methods on 100 random train-test splits on each data-
set. The quality of inference is measured using the test set accuracy of the estimated 
method.

4.2  Robustness of MBE

We compared MBE using moment matching Bayesian update operator against standard 
Bayesian and MLE in this section. We consider this operator because as we shall see in 
Sect. 4.3, it has better or comparable performance than the other updater operators. For 
the computation of MLE, we used the best possible method available for each model. 
For the Gaussian model, the MLEs can be computed exactly. For the Schaefer model, 
computing the MLEs is hard, therefore we used our MBE-like approach to approximate 
the MLEs. This involved applying 100 Bayesian updates using the variance-boosted 
update operator on three different priors. The estimates with the highest likelihood were 
chosen as the approximate MLEs. We used variance-boosted Bayesian update operator 
to approximate MLEs because as we shall see in Sect. 4.4 it computes the MLEs more 
efficiently than alternative methods. For logistic regression, the MLEs can be easily 

Table 3  The binary 
classification datasets and their 
sizes

Dataset Numbers of examples Num-
bers of 
features

Breast-cancer 683 10
Diabetes 768 8
German.numer 1000 24
Heart 270 13
svmguide1 3089 4
svmguide3 1243 21

Table 4  Priors used in the logistic regression model, where �∗ is the MLE on the test set

Parameter Misspecified prior Weak prior Well-specified prior

�i N(−�∗
i
,CV = 0.1) N(0, �2 = 100) N(�∗

i
,CV = 0.1)
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computed using optimization algorithms implemented in various standard libraries — 
we used the glm function in R to compute the MLEs. In the remainder of this section, 
we shall first present the results on the three inference problems separately, and then 
discuss the overall performance of the inference methods.

4.2.1  Gaussian model

We conducted a comparison of standard Bayesian, MBE, and MLE on 100 randomly 
generated datasets, each consisting of 50 observations, by measuring the absolute 
errors of the estimates, which are the absolute differences between the estimates and 
the true values.

When only the mean needs to be estimated, we present the boxplots and averages 
of the absolute errors are shown in Fig. 2 and Tabel 5 respectively. When both the 
mean and the standard deviation need to be estimated, we show the the boxplots and 
averages of the absolute errors in Fig. 3 and Table 6.

In cases where the prior is misspecified, the MBE method performs similarly to 
MLE and outperforms the standard Bayesian. When the prior is weak, MBE and 
standard Bayesian have similar performance to MLE. With a well-specified prior, 
MBE and standard Bayesian perform similarly and both outperform MLE. Over-
all, the performance of MBE is comparable to the best-performing method (either 
standard Bayesian or MLE) in all three scenarios, while standard Bayesian’s perfor-
mance degrades significantly with a misspecified prior, and MLE is unable to take 
advantage of a well-specified prior. In addition, MBE outperforms standard Bayes-
ian and MLE in terms of the average performance across the three prior settings. 

Fig. 2  Absolute errors of MBE, standard Bayesian and MLE for estimating the mean � only for a Gauss-
ian distribution. A boxplot shows the absolute errors on 100 datasets with 50 observations each

Table 5  Average absolute errors 
of MBE, standard Bayesian and 
MLE for estimating the mean � 
for a Gaussian distribution. The 
average is computed over 100 
datasets with 50 observations 
each

MBE Bayesian MLE

Misspecified prior 0.121 0.671 0.117
Weak prior 0.117 0.117 0.117
Well-specified prior 0.075 0.039 0.117
Average 0.104 0.276 0.117
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The results suggest that MBE is capable of appropriately balancing the influence of 
the prior and data, regardless of whether the prior is useful or misleading.

To gain a deeper understanding of the MBE method, we illustrate in Fig. 4 how 
the posterior evolves as the number of iterations increases, for the problem of esti-
mating the mean only. As the number of Bayesian updates increases, the posterior 
moves away from the misspecified prior (shown in light green) towards MLE (which 
is centered around 0 in this case).

Fig. 3  Absolute errors of MBE, standard Bayesian and MLE for estimating the mean � and the standard 
deviation � for a Gaussian distribution. A boxplot shows the absolute errors on 100 datasets with 50 
observations each

Table 6  Average absolute errors of MBE, standard Bayesian and MLE for estimating both the mean � 
and the standard deviation � for a Gaussian distribution. The average is computed over 100 datasets with 
50 observations each

� �

MBE Bayesian MLE MBE Bayesian MLE

Misspecified prior 0.129 0.345 0.117 0.075 0.494 0.074
Weak prior 0.117 0.117 0.117 0.074 0.073 0.074
Well-specified prior 0.059 0.040 0.117 0.051 0.036 0.074
Average 0.102 0.167 0.117 0.067 0.201 0.074
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Fig. 4  An illustration of how the posterior evolves when applying MBE to a Gaussian distribution. The 
posterior for the mean � (shown in grey with lighter color corresponding to more updates) moves away 
from the misspecified prior (shown in light green) along the direction of the arrow towards the MLE as 
the number of iterations increases

Fig. 5  Absolute relative errors of MBE, standard Bayesian and MLE for estimating the Schaefer model. 
Each boxplot shows the absolute relative errors for an estimated parameter on 100 datasets with 30 
observations each
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4.2.2  Schaefer model

We compare the inference methods in terms of their absolute relative errors on 100 
randomly generated datasets. Figure 5 and Tabel 7 show the boxplots and averages 
of the absolute relative errors of the four key parameters (K, q, r,�).

Overall, our results for the fisheries data are similar to those for the Gaussian 
examples, in that MBE is more robust to the priors when compared with standard 
Bayesian and MLE. It is noteworthy that when using a misspecified prior, MBE has 
better performance than both the standard Bayesian and MLE methods.

Table 7  Average absolute 
relative errors of MBE, 
standard Bayesian and MLE 
for estimating the Schaefer 
model. The average is computed 
over 100 datasets with 30 
observations each

MBE Bayesian MLE

Misspecified prior 0.118 1.209 0.258
Weak prior 0.354 0.360 0.258
Well-specified prior 0.068 0.040 0.258
Average 0.180 0.537 0.258

Table 8  Accuracies of standard Bayesian, MBE, and MLE on six classification datasets. The largest 
average accuracies for the three prior settings are highlighted in bold

Breast-cancer Diabetes

 Prior MBE Bayesian MLE MBE Bayesian MLE

Misspecified prior 0.968 0.817 0.957 0.770 0.322 0.766
Weak prior 0.960 0.960 0.957 0.769 0.768 0.766
Well-specified prior 0.973 0.973 0.957 0.782 0.782 0.766
Average  0.967 0.917 0.957 0.774 0.624 0.766

German.numer Heart
Prior MBE Bayesian MLE MBE Bayesian MLE
Misspecified prior 0.752 0.349 0.749 0.834 0.161 0.824
Weak prior 0.755 0.753 0.749 0.821 0.819 0.824
Well-specified prior 0.789 0.789 0.749 0.868 0.870 0.824
Average 0.765 0.630 0.749 0.841 0.617 0.824

Svmguide1 Svmguide3
Prior MBE Bayesian MLE MBE Bayesian MLE
Misspecified prior 0.951 0.924 0.948 0.797 0.546 0.812
Weak prior 0.952 0.952 0.948 0.818 0.816 0.812
Well-specified prior 0.953 0.953 0.948 0.829 0.830 0.812
Average 0.952 0.943 0.948 0.815 0.731 0.812
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4.2.3  Logistic regression

We compared the test set accuracy of the logistic models estimated using standard 
Bayesian, MBE, and MLE. Table 8 shows the average test set accuracy of standard 
Bayesian, MBE, and MLE on different datasets, where for each dataset, the aver-
age is computed over 100 random train-test splits of the dataset. If a misspecified 
prior is used, the standard Bayesian method will have the lowest accuracy, while the 
MBE and MLE methods will have similar accuracy. It is worth noting that for some 
datasets, e.g. breast-cancer, diabetes, german.numer, heart, and svmguide1, MBE 
outperforms the standard Bayesian and MLE on the misspecified prior at the same 
time. This is probably because MBE uses cross-validation to select the optimal num-
ber of updates, which allows it to choose a model with better generalization perfor-
mance. In cases where the prior is weak, the three methods perform similarly. When 
a well-specified prior is used, the standard Bayesian method and MBE tend to have 
higher accuracy than MLE on all datasets. Overall, the accuracy of the MBE method 
demonstrates a higher level of accuracy, tending to be closer to the best-performing 
method or highest when different priors are used. Note that on svmguide1 and svm-
guide3, MBE and MLE perform very similarly. This is likely because the two data-
sets are the largest ones, thus allowing MLE to learn a very good model.

4.2.4  Overall performance

We briefly discuss the average performance of the inference methods across the 
three prior settings. On the Gaussian datasets, MBE and MLE perform similarly and 
they are substantially better than standard Bayesian. On the Schaefer datasets, MBE 
and standard Bayesian perform similarly and they are substantially better than MLE. 
On the logistic regression datasets, MBE is generally slightly better than MLE, 
which is in turn substantially better than standard Bayesian. Taking these results 
together, we can see that MBE demonstrates robustness against bias in the prior and 
the capability to exploit the information in a prior. In contrast, standard Bayesian 
can fail poorly due to the bias in the prior, and MLE is not able to exploit any useful 
information in the prior.

4.3  Comparison of MBE variants

In this section, we compared the performance of the variants of MBE on estimat-
ing the Gaussian and Shaefer parameters. We also included a variant that performs 
a fixed number of updates to demonstrate the need to select a suitable number of 
updates. To make it easier to follow, we use the following acronyms to refer to 
different variants of the MBE method: E-MBE for MBE using an exact Bayesian 
update, MM-MBE for MBE using a moment-matching update, VB-MBE for MBE 
using a variance-boosted Bayesian update, and FIX-MBE for MM-MBE with a fixed 
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number of 25 updates. Note that 25 was used in our previous preliminary study (Lei 
et al 2021), but in general using other constants did not seem to perform well across 
different prior settings in our ad hoc experiments. This is expected because for well-
specified priors, we should only perform a small number of updates to fully exploit 
the prior information, while for misspecified priors, we should perform a larger 
number of updates to reduce the influence of the prior.

Fig. 6  Absolute errors of MM-MBE, VB-MBE, E-MBE and FIX-MBE for estimating the mean � only 
for a Gaussian distribution. Each boxplot shows the absolute errors on 100 datasets with 50 observations 
each

Fig. 7  Absolute errors of MM-MBE, VB-MBE, and FIX-MBE for estimating both the mean � and the 
standard deviation � for a Gaussian distribution. A boxplot shows the absolute errors on 100 datasets 
with 50 observations each
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In Fig. 6, we compare the absolute errors of three MBE variants (E-MBE, MM-
MBE, and VB-MBE) with MM-MBE with fixed numbers of iterations when only 
the mean of the Gaussian needs to be estimated. When estimating both the mean 
and standard deviation of the Gaussian and the parameters of the Schaefer model, it 
is not feasible to perform exact Bayesian update, thus we only compare the absolute 
errors of MM-MBE, VB-MBE, and FIX-MBE in Figs. 7 and 8.

In the Gaussian experiments, all four MBE variants show similar results. E-MBE 
performs slightly better in well-specified prior settings compared to VB-MBE and 
MM-MBE, and FIX-MBE has the largest absolute errors. For the Schaefer model, 
MM-MBE outperforms VB-MBE and FIX-MBE for the misspecified and the well-
specified prior, and the three methods perform similarly for the weak prior with 
FIX-MBE to be slightly worse. Overall, MM-MBE has better or comparable perfor-
mance than the other variants of MBE.

4.4  Approximating MLE

In this section, we evaluate the effectiveness of our MBE-like approach for comput-
ing the MLE when using different update operators. The exact Bayesian update is 
not always possible because we often do not have a closed form for the posterior. 

Fig. 8  Absolute errors of MM-MBE, VB-MBE, and FIX-MBE for estimating a Schaefer model. Each 
boxplot shows the absolute errors on 100 datasets with 30 observations each



1 3

Multi-pass Bayesian estimation: a robust Bayesian method  

We thus use data cloning (DC) to approximate multiple exact Bayesian updates, that 
is, we approximate pj obtained using j exact Bayesian updates by the posterior com-
puted using MCMC on a dataset consisting of j copies of the data. We used the pos-
terior medians as parameter estimates for our MBE-like methods. We shall simply 
use the MBE names to refer to the corresponding MBE-like methods for computing 
the MLE below. We compared the performance of VB-MBE, MM-MBE and DC 
on the three models in Sect. 4.1 by plotting the negative log-likelihood (NLL) value 
against the iteration.

We make two remarks on our experimental setup. First, the MLE for the 
Gaussian distribution can be exactly computed using a closed-form formula, and 
the MLE for logistic regression can be accurately and efficiently computed using 
the glm function in R. The experiments are mainly conducted to better understand 
how the estimation methods perform in general. Experiments on these two mod-
els additionally allow us to study whether the estimation methods converge to the 
true MLE. Second, DC’s computation time increases rapidly with the number of 
copies of data used, thus we only run it for 10 iterations on the Schaefer model 
and 20 iterations on the logistic regression models.

Fig. 9  Plots of NLL against iteration for VB-MBE, MM-MBE, DC, and true MLE on Gaussian data. 
Note that the y axis ranges for the weak prior and well-specified prior are the same, but these are differ-
ent from the y axis range for the misspecified prior

Fig. 10  Plots of NLL against iteration for VB-MBE, MM-MBE, and DC on the Schaefer model. Note 
that the y-axis ranges for the weak prior and well-specified prior are the same, but these are different 
from the y-axis range for the misspecified prior
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For the Gaussian distribution, we consider estimating both the mean � and 
the standard deviation � . Figure 9 plots the average NLL values on 100 random 
datasets against the number of iterations for different priors. The results indicate 
that, for the Gaussian experiments, VB-MBE has a faster convergence rate than 
DC and MM-MBE when misspecified priors and well-specified priors are used. 
However, when weak priors are used, all three methods quickly converged to the 
MLE.

For the Schaefer model, Fig. 10 plots the average NLL values on 100 random 
datasets against the number of iterations. VB-MBE shows faster convergence rate 
and lower final NLL than MM-MBE and DC in all three prior settings. All three 
methods seem to converge to different values for different priors. For example, 
VB-MBE converges to 235.5, 37.8, and 37.2 respectively for misspecified, weak, 
and well-specified prior. This is possibly because the convergence rates are too 
slow for the misspecified priors, or the convergence theory does not apply for the 
Schaefer model.

For the logistic regression model, we are interested in computing the MLE of the 
test set instead of the entire dataset, because the quality of the priors in Table 4 are 
set with respect to the test set MLE. Instead of computing the average NLL values 
over 100 random datasets as for the Gaussian distribution and the Schaefer model, 
we compute the averages over 10 random datasets, because the experiments are very 
time consuming. However, the performances of the inference methods are quite 
similar on the individual datasets, thus we expect the observations below to hold in 
general.

Figure 11 plots the average NLL values against the number of iterations. For mis-
specified priors, VB-MBE converges to the MLE faster than MM-MBE and DC 
for all datasets. For weak priors, DC generally performs better than VB-MBE and 
MM-MBE. However, note that the differences between these methods are actually 
quite small in general (much less than 1). They appear to be large because the y-axis 
ranges are very small — much smaller than the y-axis range for the misspecified 
case. For well-specified priors, all three methods perform similarly. Besides, when 
using the weak prior or well-specified prior, the inferences of the three methods at 
the first iteration are already very close to the MLE.

Overall, VB-MBE has a faster or competitive convergence rate to a lower or simi-
lar NLL value than MM-MBE and DC in most cases. This is particularly so for the 
most challenging case of computing the MLE for the Schaefer model. It should be 
noted that for all methods, the estimates may be sensitive to the prior for a complex 
model. We recommend running VB-MBE with both weak and informative priors 
and selecting the inference result with the highest likelihood.

4.5  Implementation details

We provide some details on how the Bayesian update operators and the validation 
scores are implemented on our benchmark problems.
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Fig. 11  Plots of NLL against iteration for MM-MBE, VB-MBE, and DC on the logistic regression 
model. Note that the y-axis ranges for the weak prior and well-specified prior are the same, but these are 
different from the y-axis range for the misspecified prior
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4.5.1  Exact Bayesian update

The exact Bayesian update has a closed-form formula when estimating the mean of 
a Gaussian distribution with a known � . Specifically, when estimating the mean � of 
a Gaussian with a known � from a dataset x1,… , xn and a prior N(�0, �

2
0
) for � , the 

posterior at the j-th iteration for E-MBE is given by

where x̄ = 1

n

∑n

i=1
xi is the sample mean, and � = �−2 and �0 = �−2

0
 are the precision 

parameters.
For our other benchmark problems, there is no closed-form formula for the exact 

Bayesian update.

4.5.2  Moment‑matching update

Moment-matching updates in MBE admit simple and efficient implementations, 
because a posterior is computed using MCMC and thus represented using a set of 
particles. To illustrate, consider estimating a single parameter � . Assume that we 
have a posterior q(�) approximately represented by a sample �(1), �(2),… , �(n) . If we 
want to choose a log-normal distribution p̃ = lognormal(𝜇, 𝜎2) to approximate the 
posterior, one possible way to do this is to match the mean and the variance with the 
sample for the posterior, that is,

where e�+�2∕2 and (e�2

− 1)e2�+�
2 are the expectation and variance of p̃ , and 

�̄� =
∑

i 𝜃
(i)

n
 and S2 =

∑
i (𝜃(i)−�̄�)

2

n
 are the sample mean and the variance of the sample for 

q(�) . Solving the above two equations, we have

Similar calculations can often be easily done for other distributions used in our 
benchmark problems.

When � has multiple parameters, we can perform moment matching for multi-
variate distributions. However, in this paper, as pointed out in Sect. 2.1, we choose 
p̃ as a product of univariate distributions and learn the parameters of the univariate 
distributions using moment matching.

4.5.3  Variance‑boosted Bayesian update

Variance-boosted Bayesian update adds an additional variance boosting step to 
moment-matching Bayesian update: it increases the variance of the distribution 

(18)pj(𝜇) = N

(
𝜇;

jn𝜏 x̄ + 𝜏0𝜇0

jn𝜏 + 𝜏0
,

1

jn𝜏 + 𝜏0

)
,

(19)e𝜇+𝜎
2∕2 = �̄�, (e𝜎

2

− 1)e2𝜇+𝜎
2

= S2,

(20).𝜇 = log

�
�̄�2

√
S2 + �̄�2

�
, 𝜎2 = log

�
S2

�̄�2
+ 1

�
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from moment matching if it falls below a certain user-specified threshold � . This is 
straightforward to implement. For example, the variance-boosted Bayesian update 
for the log-normal distribution example above is given by

4.5.4  Validation score

As discussed in Sect.  2.2, exact computation of the validation score 
S(p,D) = ∫ p(D ∣ �)p(�)d� is generally not possible, and we use the median approx-
imation S(p,D) ≈ p(D ∣ �med) , where �med is the parameter vector where each com-
ponent takes its median value according to its marginal distribution given by p.

For Gaussians and logistic regression, computing the median approximation can 
be done exactly using closed-form likelihood formulas. For the Schaefer model, a 
Monte Carlo estimate of the likelihood is used as discussed at the end of Sect. 4.1.2.

5  Conclusion

In this paper, we proposed a new Bayesian technique called MBE that is robust 
against bias in the prior. MBE performs iterative approximate Bayesian updates and 
aims to optimally adjust the relative importance between the prior and data. When 
the prior is biased, MBE essentially ignores the prior; and when the prior is informa-
tive, MBE is able to exploit the information from the prior. This allows MBE to 
achieve better overall performance across different prior settings than both standard 
Bayesian and MLE.

We also introduce an MBE-like approach to estimate the MLE. We present a the-
oretical analysis for our approach, which contains a new convergence result that is 
applicable to data cloning. Our MBE-like approach using variance boosting is effi-
cient and demonstrates fast convergence rate as compared to data cloning, particu-
larly on a complex model and on misspecified priors.

Appendix A. N‑fold Cross‑Validation MBE

Algorithm 2 shows an N-fold cross-validation version of the MBE algorithm. This is 
a direct generalization of the 2-fold cross-validation MBE algorithm shown in Algo-
rithm 1 where the 2-fold cross-validation procedure is replaced by an N-fold one.

5-fold cross-validation and 2-fold cross-validation perform similarly on the 
Gaussian dataset (Fig.  12) and the logistic regression datasets (Table  9) — note 
that we did not do the experiments on the Schaefer model due to the high compu-
tational cost of computing the validation score. However, for some datasets, 2-fold 

(21)𝜇 = log

�
�̄�2

√
S2 + �̄�2

�
, 𝜎2 = max

�
log

�
S2

�̄�2
+ 1

�
, 𝜈

�
.
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Fig. 12  Absolute errors of MBE with 2-fold and 5-fold cross-validation, standard Bayesian and MLE for 
estimating the mean � and the standard deviation � for a Gaussian distribution

Table 9  Accuracy of MBE with 2-fold and 5-fold cross-validation, standard Bayesian, and MLE on six 
classification datasets. The largest average accuracies  across the three prior settings are highlighted in 
bold

Breast-cancer Diabetes

Prior 2-fold 5-fold Bayes MLE 2-fold 5-fold Bayes MLE
Misspecified 0.968 0.968 0.817 0.957 0.770 0.772 0.322 0.766
Weak 0.960 0.964 0.960 0.957 0.769 0.771 0.768 0.766
Well-specified 0.973 0.969 0.973 0.957 0.782 0.779 0.782 0.766
Average  0.967  0.967 0.917 0.957 0.774 0.774 0.624 0.766

German.numer Heart
Prior 2-fold 5-fold Bayes MLE 2-fold 5-fold Bayes MLE
Misspecified 0.752 0.748 0.349 0.749 0.834 0.834 0.161 0.824
Weak 0.755 0.751 0.753 0.749 0.821 0.815 0.819 0.824
Well-specified 0.789 0.779 0.789 0.749 0.868 0.861 0.870 0.824
Average 0.765 0.759 0.630 0.749 0.841 0.837 0.617 0.824

Svmguide1 Svmguide3
Prior 2-fold 5-fold Bayes MLE 2-fold 5-fold Bayes MLE
Misspecified 0.951 0.951 0.924 0.948 0.797 0.793 0.546 0.812
Weak 0.952 0.953 0.952 0.948 0.818 0.813 0.816 0.812
Well-specified 0.953 0.951 0.953 0.948 0.829 0.822 0.830 0.812
Average 0.952 0.952 0.943 0.948 0.815 0.809 0.731 0.812
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cross-validation is slightly better, possibly because the validation sets in 5-fold 
cross-validation are small and do not provide reliable estimates on the quality of a 
relative importance index. Additionally, 2-fold cross-validation is significantly faster 
than 5-fold cross-validation.

Appendix B. Sensitivity of Variance Boosting to the Variance 
Threshold

We used a threshold of 0.1 for the coefficient of variation in variance boosting for 
the experiments in Sect. 4. We provide additional results on how VB-MBE’s NLL 
changes in the number of iterations for different threshold values in this appendix. 
Specifically, we considered the thresholds 0.05, 0.1, 0.2, 0.4 and 1. The results for 
the Gaussian distribution, the Schaefer model, and logistic regression are shown in 
Figs.  13, 14 and 15 respectively. In general, as the threshold increases, VB-MBE 
converges faster in terms of the number of iterations, but may result in slower 
convergence and thus longer computational time for MCMC in each iteration. In 
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addition, we observed that MCMC failed to converge in some cases for a large 
threshold value such as 100, even with a larger number of MCMC iterations. Over-
all, these results suggest that an alternative threshold on the coefficient of variation 
may make VB-MBE more efficient for approximate maximum likelihood estima-
tion. Note that a fast convergence of VB-MBE implies that the spectrum of posterior 
distribution is likely to lack diversity.

Appendix C. Alternative validation score of relative importance 
indices

We used sj = log(S(pj,1,D2)) + log(S(pj,2,D1)) as the validation score for the rela-
tive importance index j in Sect. 4. In this appendix, we compared this default vali-
dation score with an alternative validation score sj = log(S(pj,1,D2) + S(pj,2,D1)) . 
These two scores will be called MBE_1 and MBE_2 respectively below. The results 
on the Gaussian distribution (Fig. 16) and logistic regression (Table 10) show that 
the two validation scores yield similar results, thus even though their values are 
generally different, they may provide similar rankings for the relative importance 

Fig. 13  Plots of NLL against iteration for VB-MBE with different threshold values on Gaussian data. 
Note that the y-axis ranges for the weak prior and well-specified prior are the same, but these are differ-
ent from the y-axis range for the misspecified prior

Fig. 14  Plots of NLL against iteration for VB-MBE with different threshold values on the Schaefer 
model. Note that the y-axis ranges for the weak prior and well-specified prior are the same, but these are 
different from the y-axis range for the misspecified prior
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Fig. 15  Plots of NLL against iteration for VB-MBE with different threshold values on the logistic regres-
sion model. Note that the y-axis ranges for the weak prior and well-specified prior are the same, but these 
are different from the y-axis range for the misspecified prior
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Fig. 16  Absolute errors of MBE with different validation scores, standard Bayesian, and MLE for esti-
mating the mean � and the standard deviation � for a Gaussian distribution. A boxplot shows the absolute 
errors on 100 datasets with 50 observations each

Table 10  Accuracies of MBE with different validation scores, standard Bayesian, and MLE on six clas-
sification datasets. The largest average accuracies across the three prior settings are highlighted in bold

Breast-cancer Diabetes

Prior MBE_1 MBE_2 Bayes MLE MBE_1 MBE_2 Bayes MLE

Misspecified 0.968 0.967 0.817 0.957 0.772 0.772 0.322 0.766
Weak 0.964 0.964 0.960 0.957 0.771 0.770 0.768 0.766
Well-specified 0.969 0.971 0.973 0.957 0.779 0.779 0.782 0.766
Average  0.967  0.967 0.917 0.957 0.774 0.774 0.624 0.766

German.numer Heart
Prior MBE_1 MBE_2 Bayes MLE MBE_1 MBE_2 Bayes MLE
Misspecified 0.748 0.748 0.349 0.749 0.834 0.834 0.161 0.824
Weak 0.751 0.752 0.753 0.749 0.815 0.814 0.819 0.824
Well-specified 0.779 0.782 0.789 0.749 0.861 0.867 0.870 0.824
Average 0.759 0.761 0.630 0.749 0.837 0.838 0.617 0.824

Svmguide1 Svmguide3
Prior MBE_1 MBE_2 Bayes MLE MBE_1 MBE_2 Bayes MLE
Misspecified 0.951 0.951 0.924 0.948 0.793 0.793 0.546 0.812
Weak 0.953 0.953 0.952 0.948 0.813 0.814 0.816 0.812
Well-specified 0.951 0.952 0.953 0.948 0.822 0.820 0.830 0.812
Average 0.952 0.952 0.943 0.948 0.809 0.809 0.731 0.812



1 3

Multi-pass Bayesian estimation: a robust Bayesian method  

indices. Note that we did not do the experiments on the Schaefer model due to the 
high computational cost of calculating the validation score.
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