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Abstract
Existing methods can perform likelihood-based clustering on a multivariate data 
matrix of ordinal data, using finite mixtures to cluster the rows (observations) of 
the matrix. These models can incorporate the main effects of individual rows and 
columns, as well as cluster effects, to model the matrix of responses. However, many 
real-world applications also include available covariates, which provide insights into 
the main characteristics of the clusters and determine clustering structures based on 
both the individuals’ similar patterns of responses and the effects of the covariates 
on the individuals’ responses. In our research we have extended the mixture-based 
models to include covariates and test what effect this has on the resulting cluster-
ing structures. We focus on clustering the rows of the data matrix, using the pro-
portional odds cumulative logit model for ordinal data. We fit the models using the 
Expectation-Maximization algorithm and assess performance using a simulation 
study. We also illustrate an application of the models to the well-known arthritis 
clinical trial data set.
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1  Introduction

A well-known definition of an ordinal variable says it is one characterized by 
a categorical data scale, which describes an order showing differing degrees of 
dissimilarity (Agresti 2014). Thus, although ordinal variables are affected by 
the distances among their ordinal categories, those distances are not known. For 
example, in a questionnaire, the answers based on a Likert scale could be labelled 
as strongly disagree, disagree, neutral, agree, and strongly agree, and these are 
frequently coded as an equally-distanced 1–5 scale, but they could be coded using 
any other increasing sequence of numerical values. Ordinal scales are very com-
mon in a wide range of areas such as medical studies, ecology, and marketing.

Cluster analysis is the study of techniques to classify a set of related objects into 
the same cluster (Everitt et al. 2011) and can be applied to identify groups, patterns, 
or clusters in a data set. Clustering is used for a wide range of applications, in fields 
including business, biology, psychology, and medicine. A couple of recent exam-
ples of this are an application to gene microarray data proposed by Rocci and Vichi 
(2008) and an application in the analysis of genomic abnormality data, in which the 
developmental patterns of different types of tumours are used to identify clusters of 
tumours (Hoff 2005).

Many different approaches to clustering have been developed. The earliest 
approaches use partition optimization; the most common method is the k-means 
clustering (MacQueen 1967; Hartigan and Wong 1979). Several authors have 
proposed extensions to this approach [see e.g. Vichi (2001) and Rocci and Vichi 
(2008)]. Moreover, the objects can be clustered in a hierarchical way, gradually 
agglomerating objects into larger and larger clusters (Ward 1963; Johnson 1967). 
All approaches listed above are based on mathematical distance metrics and 
therefore statistical inferences, model selection procedures, and goodness-of-fit 
assessments cannot be easily applied due to the lack of an underlying probability 
model (Everitt et al. 2011; Fernández et al. 2016).

Cluster analysis based on finite mixture models (Peel and McLachlan 2000) 
assumes that variables in the data matrix arise from mixtures of statistical distribu-
tions, with each cluster corresponding to one component of the mixture. The esti-
mated parameters for those distributions are those that have the maximum likeli-
hood based on the observed data. Likelihood-based methods include those proposed 
by McLachlan and Basford (1988), Peel and McLachlan (2000), Böhning et  al. 
(2007), and Melnykov and Maitra (2010), among others. More recently, Govaert and 
Nadif (2010) and Pledger and Arnold (2014) proposed an approach via finite mix-
tures for binary and count data using Bernoulli or Poisson building blocks. Other 
authors have introduced clustering algorithms specifically for ordinal data: see 
e.g. Giordan and Diana (2011), Biernacki and Jacques (2016), Ranalli and Rocci 
(2016), Matechou et al. (2016), and Fernández et al. (2016, 2019). Matechou et al. 
(2016) proposed a mixture-based biclustering solution relying on the proportional 
odds assumption of the cumulative logit model (McCullagh 1980). Fernández et al. 
(2016) developed an equivalent model-based clustering approach using the ordered 
stereotype model (Anderson 1984), although this approach assumes that there are 
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no covariates available. Furthermore, methods that cluster observations using both 
ordinal and continuous variables simultaneously, such as the approach proposed by 
Ranalli and Rocci (2017), should also be mentioned and compared in the context of 
our proposed method.

Unlike distance-based methods, which only determine which objects should be 
clustered together, likelihood-based methods can additionally describe the properties 
of each cluster, based on the estimated parameters, and can also estimate the prob-
ability of each object being allocated to each cluster. Additionally, the mixture-based 
approaches for ordinal responses introduced above are focused on finding cluster 
structures based only on the matrix of ordinal responses, and assume that no associ-
ated covariates are available. Any available covariates can be analyzed alongside the 
clustering results, to assist with interpretation of the cluster structures, even though 
there has been no reference to the covariates during the clustering process, but actu-
ally incorporating covariates in the clustering process could lead to different estimated 
clustering structures, and a different estimate of the number of clusters. Generally 
speaking, if a model with covariates is estimated, subjects tend to be clustered accord-
ing to their responses and covariate effects. Therefore, it is desirable to make available 
covariates endogenous to the clustering process to improve interpretation of the main 
characteristics of the clusters (Murphy and Murphy 2020).

Other studies have investigated the associations between clustering structures and 
covariates. Gudicha and Vermunt (2013) described several methods for clustering 
categorical responses via a three-step approach: (1) estimate the mixture model; (2) 
assign subjects to clusters; (3) regress cluster assignments on the covariates. Another 
proposal, the cluster-weighted model (CWM) approach, fits the joint distribution of 
a random vector composed of a response variable and a set of covariates (Ingrassia 
et al. 2012; Lamont et al. 2016). Ingrassia et al. (2015) also introduced a version of the 
CWM for mixed-type covariates that assumes continuous covariates arise from Gauss-
ian distributions. Finally, several methods in the literature use the mixture of experts 
(MoE) paradigm in which the parameters of the mixture are modelled as functions of 
fixed, potentially mixed-type, covariates (Formann 1992; Jacobs et al. 1991; Murphy 
and Murphy 2020).

Our approach to mixture-based clustering involves constructing an additive linear 
model of parameters, connected to the response data via a link function. Additional 
terms such as covariates may easily be added to the linear predictor. To the best of 
our knowledge, Fernández et al. (2019) introduced this formulation of model-based 
clustering for ordinal data with covariates, but the performance of these covariate 
methods and, more importantly, their influence on the resulting clustering structures, 
have not been documented so far. The main purpose of this article is to extend such 
models to include covariates and allow them to affect the detection of cluster struc-
tures. Moreover, we are also interested in comparing how the resulting clustering 
structures compare to those obtained without covariates, and how these changes 
may affect the interpretation of the results.

We will focus on extending the one-dimensional clustering approach proposed in 
Matechou et  al. (2016). This approach models ordinal response data using the pro-
portional odds assumption of the cumulative logit model (hereafter referred to as the 
“proportional odds model”). We will include covariates directly in the linear predictor. 
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Our approach to clustering follows the constructivist approach described by Hennig 
(2015), but with an interest in realist clustering: we think there are many scenarios 
where patterns in the data can be simplified by identifying clusters of observations 
that follow similar patterns, but if there is a real structure in the data, then we wish to 
determine that structure. There are many real-world scenarios that we can model as a 
response variable being affected by predictor variables, and in some of those scenar-
ios, certain groups of observations may have different patterns of response to the pre-
dictors than other groups of observations. If those groups have already been identified, 
then we might attempt mixed model analysis or multilevel modelling; but if the groups 
have not already been identified, then the method we propose here provides a pathway 
to detecting these groupings of response patterns. So our approach could be seen as a 
bridge between regression modelling and cluster analysis.

The rest of the article is organised as follows. Section 2 introduces the one-dimen-
sional clustering models and their formulation. Section  3 describes the measures 
used to compare different clustering structures. Section  4 uses a simulation study 
to assess the performance of the method, and Sect. 5 applies the method to a real-
world application: the well-known arthritis clinical trial data. Section 6 describes 
our conclusions.

2 � The row clustering model

When the data are in matrix form, clustering of rows is called row clustering. In this 
section, we present the row clustering formulation for finite mixtures based on the pro-
portional odds model. This closely follows the model formulations in Matechou et al. 
(2016) and Fernández et  al. (2019). We decided to focus on row clustering because 
it is more common to have covariates linked to observations (rows) than to variables 
(columns).

2.1 � Model formulation

We consider a set of n subjects and m ordinal response variables, each with q possi-
ble ordinal response categories. Thus, data can be represented by an n × m matrix Y 
with ordinal entries yij . The row cluster index r ( r = 1,… ,R ) represents the number 
of the row cluster and the symbol i ∈ r indicates that row i is allocated to row cluster 
r. We shall assume that all rows belonging to the same row cluster r have ordinal 
responses driven by the same row cluster effect, i.e. that there are no individual row 
effects. In the case of the proportional odds model where the effect of rows on the 
response is considered, the probability that yij takes category k, when row i is in row 
cluster r, is defined by

where i = 1,… , n, j = 1,… ,m and k = 1,… , q with 
∑q

k=1
�ijrk = 1 for a given i,  j 

and r. This can be expressed using linear predictor terms as

P[yij = k|i ∈ r] = �ijrk,
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where the parameters {�k} are the cutpoints. {�r} and {�j} indicate the effects of row 
cluster r and column j, respectively, and {�rj} represent the associations between dif-
ferent row clusters and individual columns. Corner-point or sum-to-zero constraints 
on {�r} , {�j} and {�rj} must be included to avoid identifiability problems and the 
monotonically increasing constraint 𝜇1 < 𝜇2 < … < 𝜇q(= ∞) is included to capture 
the ordinal nature of the responses. The (unknown) proportion of rows in each row 
cluster r is defined as {�1,… ,�R} , with 

∑R

r=1
�r = 1.

In a simpler model with clustering of rows, the clustering is solely based on the pat-
terns of responses of the rows (observations/subjects) without considering the informa-
tion present in the covariates. For instance, let’s consider a hypothetical example of a 
matrix of subjects answering a set of 5-level Likert-scale questions from a self-report 
questionnaire, which intends to measure the degree of suffering in patients diagnosed 
with cancer. If the covariate information is not incorporated in the clustering process, 
resulting clusters would only be based on the patterns of responses of the patients. For 
example, the clusters may be categorized as low scores, middle scores, and high scores, 
based solely on the responses. However, when the covariate information, such as type 
of cancer, treatment dose, initial tumor burden, size of the tumor, gender, and age, is 
included in the clustering process, the resulting clusters may differ. This is because 
patients with equal or similar values in the covariates are assumed to be a priori more 
likely to co-cluster than others. For instance, patients with larger tumor sizes may tend 
to be clustered together, regardless of their responses to the questionnaire. This motiva-
tional example is based on the one given in Müller et al. (2011).

We now define the model formulation of row clustering using the proportional 
odds model, with additional covariates xi = (xi1,… , xip)

T , as follows,

where xi = (xi1,… , xip)
T are a set of p covariates associated with row i of the data 

matrix; these covariates can be categorical or continuous. The parameters {�r} rep-
resent the effects of the covariates; we assume these effects are the same for all rows 
in the same row cluster r. When fitting this model, the subjects will be clustered 
according to both their response patterns and the values of their covariates, which 
may lead to different estimates of cluster assignment.

Considering the simplest row clustering model, without column effects, the 
proportional odds model without covariates can be expressed as

where the number of parameters, including the R − 1 independent values of �r , is 
q + 2R − 3.

(1)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − (�r + �j + �rj),

(2)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − (�r + �j + �rj + x

T
i
�
r
),

(3)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − �r,
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Adding p covariates into model (3), we obtain

where there are now q + (p + 2)R − 3 parameters in the model.
The row clustering model with individual column effects can be expressed as

where the number of parameters, including �r , is q + 2R + m − 4.
Adding p covariates into model (5), we obtain the following model

where the number of parameters, including �r , is q + (p + 2)R + m − 4.
Models  (3) and (4) will be used in the simulation and application section to 

compare the clustering structure.

2.2 � Estimation of the parameters

The Expectation-Maximization (EM) algorithm (Dempster et  al. 1977; McLa-
chlan and Krishnan 1997) is a well-known iterative procedure to compute maxi-
mum likelihood estimates in the presence of missing or incomplete data. In the 
suite of models introduced in the previous section, the actual row cluster member-
ships, i.e. the allocation of rows into row clusters, are unknown or missing. Thus, 
the EM algorithm is a natural approach to fit these models. Previous examples of 
this approach include Bernoulli and Poisson distributions (Pledger and Arnold 
2014), the proportional odds model (Matechou et al. 2016), and the ordered ste-
reotype model (Fernández et al. 2016).

We have modified the EM algorithm used in Matechou et  al. (2016) and 
Fernández et al. (2016) to incorporate covariates. Assuming the local independ-
ence assumption, where variables within a row are conditionally independent of 
each other given the row’s cluster membership (Clogg 1988), the incomplete data 
likelihood function can be expressed as

which sums over all possible partitions of rows into R clusters. Y = {yij} is the data 
matrix corresponding to the observed responses, and X = (xT

1
,… , xT

n
)T is the matrix 

of p covariates for all n rows Θ contains all unknown parameters and �r is the a 
priori row membership probability of row i.

(4)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − (�r + x

T
i
�r),

(5)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − (�r + �j),

(6)logit

(
k∑

h=1

�ijrh

)
= �ijrk = �k − (�r + �j + x

T
i
�r),

(7)L
(
Θ|{yij}, {xi}

)
=

n∏

i=1

[
R∑

r=1

�r

m∏

j=1

q∏

k=1

(
�ijrk|{xi}

)I(yij=k)
]
,
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The incomplete data likelihood is difficult to optimize numerically because it 
does not have a simple form. Therefore, it is more natural to work with the complete 
data likelihood which we define below.

Let Z = {Zir} be a set of random vectors corresponding to the missing informa-
tion, i.e., the unknown row cluster memberships. Zir = 1 if row i is in row cluster r 
and 0 otherwise. Thus, 

∑R

r=1
Zir = 1 for all i. We can then suppose a complete data 

set exists, (Y,X,Z) and the complete data log-likelihood function can be defined as

Using the previous equation, we can now determine the E-step and M-steps of the 
EM algorithm. Given the latest estimates Θ̂(t−1) from the previous iteration, the 
expected value of the complete data log-likelihood over Zir , given the observed data 
{xi} and {yij} , becomes

In the E-step, we use the latest parameter estimates Θ to find the expected values of 
Zir . The expected value of Zir , a Bernoulli variable, is the posterior probability of 
individual i being in cluster r given the observed data. Therefore, using Bayes’ rule, 
we can compute it as

Then, we substitute this expected value of Zir in the complete data log-likelihood (9) 
at iteration t to complete the E-step,

(8)

�c(Θ|{yij}, {xi}, {Zir}) =
n∑

i=1

R∑

r=1

Zir log(�r) +

n∑

i=1

m∑

j=1

R∑

r=1

q∑

k=1

ZirI(yij = k) log
(
�ijrk|{xi}

)

(9)

Q(Θ|Θ̂(t−1)) =E
{Zir}|{yij},{xi},Θ̂(t−1) [�c(Θ|{yij}, {xi}, {Zir})]

=

n∑

i=1

R∑

r=1

log(�(t−1)
r

)E[Zir|{yij}, {xi}, Θ̂(t−1)]

+

n∑

i=1

m∑

j=1

R∑

r=1

q∑

k=1

I(yij = k) log
(
�̂
(t−1)

ijrk
|{xi}

)
E[Zir|{yij}, {xi}, Θ̂(t−1)].

(10)

Ẑ
(t)

ir
= P[Zir = 1�{yij}, {xi}, �Θ(t−1)]

=
P({yij}�Zir = 1, �Θ(t−1), {xi})P(Zir = 1)

∑R

�=1
P({yij}�Zi� = 1, �Θ(t−1), {xi})P(Zi� = 1)

=
𝜋̂(t−1)
r

∏m

j=1

∏q

k=1
(𝜃̂

(t−1)

ijrk
�{xi})I(yij=k)

∑R

�=1
{𝜋̂

(t−1)

�

∏m

j=1

∏q

k=1
(𝜃̂

(t−1)

ij�k
�{xi})I(yij=k)}

.

(11)

Q̂(Θ|Θ(t−1)) =

n∑

i=1

R∑

r=1

Ẑ
(t)

ir
log(𝜋(t−1)

r
) +

n∑

i=1

m∑

j=1

R∑

r=1

q∑

k=1

Ẑ
(t)

ir
I(yij = k) log

(
𝜃̂
(t−1)

ijrk
|{xi}

)
.
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At the M-step, we maximize equation (11) obtained in the E-step with respect to 
�r and Θ . The M-step estimates for finite mixture models can be calculated in two 
parts: the row-cluster proportions 𝜋̂1,… , 𝜋̂R and the parameters Θ̂ . To find the esti-
mates of �r , following Fernández et al. (2016), we replace the conditional expecta-
tion (10) in the following expression for the iteration t,

Similarly, to find the estimate of parameters Θ in the second part of (11), the deriva-
tive of the second term can be taken with respect to Θ . However, this has no simple 
analytical solution; we need to find the conditional expectation of the complete data 
log-likelihood of equation (9) using numerical maximization.

We then iterate the E-step and the M-step until we reach convergence. There are 
various convergence conditions that can be specified; we will use the convergence 
criterion based on the incomplete likelihood: we will iterate until the absolute differ-
ence between the incomplete log-likelihoods at two consecutive iterations, relative 
to the likelihood at the latest iteration, is close to zero. That is,

At the end of the process, we have estimates for the posterior probabilities of cluster 
membership for each row, and these may be between 0 and 1. We will assume each 
observation is assigned to the group having the highest posterior probability.

We implemented the EM algorithm described above for the proportional odds 
model including clustering via finite mixtures and set up the simulation study by 
using the statistical software R 4.0.2 (R Development Core Team, 2019). The 
numerical maximization part of the M-step was carried out using the quasi-Newton 
method L-BFGS-B provided as an option in the predefined R function optim(). 
We used the default settings for all other control parameters. Alternative functions 
for maximum likelihood estimation of the cumulative version of the proportional 
odds model, assuming �rj , could be explored and used to intend to simplify the 
implementation process.

We remark that an inherent drawback in mixture modelling is that the associated 
likelihood surface may be multimodal. We therefore tried different starting points, 
covering a comprehensive range of parameter values, to avoid being locked into a 
local maximum. We reran the EM algorithm 10 times with random starting points 
and kept the run with the highest log-likelihood. In preliminary tests, we ran experi-
ments testing up to 100 random starting points and found that 10 starting points 
were sufficient to avoid convergence to local optima. Finally, to ensure that this 
approach does not affect any final estimates, we used the resulting maximum likeli-
hood estimation of the complete data likelihood using the EM algorithm as start-
ing points (Fernández et  al. 2016) to numerically maximize the incomplete data 
log-likelihood (7).

(12)𝜋̂(t)
r

=
1

n

n∑

i=1

E[Zir|{yij}, {xi},Θ(t−1)] =
1

n

n∑

i=1

Ẑ
(t)

ir
.

(13)
‖L(Θ(t+1)�{yij}) − L(Θ(t)�{yij})‖

‖L(Θ(t)�{yij})‖
≈ 0.
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3 � Measures to compare clustering structures

This section discusses three popular measures for comparing clustering struc-
tures: the Adjusted Rand Index (ARI 1985), the variation of information (VI 
2005), and the normalised information distance (NID 2005). Comparing cluster-
ing structures can be challenging due to the “label-switching problem" where 
different labels can result in identical clusters. To address this issue, the meas-
ures used in this section do not rely on cluster labels, but instead consider pairs 
of rows that are clustered together. The Rand Index (RI 1971) measures similar-
ity between clustering structures based on how data points are assigned to clus-
ters, but it can have limitations in comparing replicability of different classifica-
tions. The ARI is an adjustment of the Rand index that corrects for chance with 
respect to the null hypothesis and ranges from 0 (totally independent structures) 
to 1 (identical structures). The VI measures the distance between partitions of 
the same dataset using concepts of entropy and information (Meila 2007), and 
the normalised VI (NVI 2005) is used to bound it between 0 and 1 for compara-
bility with the ARI. The NID is another information criterion bounded between 
0 and 1, and both the NVI and NID have values of 0 indicating identical clus-
tering structures and values of 1 indicating totally independent structures. To 
simplify interpretation, the unit complements of the NVI and NID (1-NVI and 
1-NID) are used in this section.

4 � Simulation study

We set up a small scale simulation study to test, in a diverse range of scenarios, how 
reliably we were able to estimate both the parameters of our proposed row clustering 
model  (4) and the cluster allocations, using the EM algorithm. We are not testing 
model selection here: we simulate data sets and then fit the correct model to those 
data. This study is closely related to the one in Fernández et al. (2016).

We simulated the simplest covariate model (4), with only a single covariate xi and 
no column effects. We designed two possible main scenarios for the true model by 
varying the values of covariate effect parameters for the different clusters, {�r} . Sce-
nario 1 is designed with both negative and positive covariate effects, which means 
that different clusters could have dramatically different covariate effects. Scenario 2, 
by contrast, has only positive covariate effects, which is likely to make it more dif-
ficult to fit the cluster parameters, because the different clusters are more likely to 
produce similar response data than they were in Scenario 1.

The simulation program was written in R, and we did not observe any issues with 
its convergence. For each scenario, we ran several cases varying the following features:

•	 Sample size: n = 100, 1000

•	 Number of response categories: q = 3, 4, 5, 6

•	 Number of columns: m = 3, 5, 10

•	 Number of row clusters: R = 3, 5
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•	 Distribution of covariates: Normal (N(0, 1), ), Binomial (Bin(1, 0.5))

In total, we ran 96 cases within each scenario. We generated 2000 replicate data-
sets for each combination of features using model  (4) and calculated maximum 
likelihood estimates (MLEs) of the model parameters and their standard errors for 
each replicate. We then compared the estimated parameter values with the true 
parameter values and assessed the agreement between the true and estimated clus-
tering structures using indices such as Adjusted Rand Index (ARI), 1-Normal-
ized Variation of Information (1-NVI), and 1-Normalized Information Distance 
(1-NID). To report the results, we computed the mean of both the estimated model 
parameters and their corresponding standard errors using the 2000 simulated 
datasets.

4.1 � Scenario 1

We simplified the study by using equal proportions of rows in each clus-
ter: (�1,… ,�R) = (1∕R,… , 1∕R) . The cutpoint values {�k} were cho-
sen from a quantile function for the logistic distribution. Therefore, 
the cutpoint values are {�1 = log(1∕2),�2 = log(2)} when q = 3 , and 
{�1 = log(1∕4),�2 = log(2∕3),�3 = log(3∕2),�4 = log(4)} when q = 5 . We used 
evenly distributed values for the row cluster effect parameters �r , with the corner-point 
constraint that �1 = 0.

Table  1 summarizes the average absolute bias and their corresponding standard 
errors for each parameter over 2000 simulations when the fitted models are model (3) 
and (4). In all cases, the estimated parameters of model (4) are close to the true values 
due to a small bias, and as expected, the variability decreases with increasing sample 
size n. We also remark that the value of the standard error decreases as the number 
of ordinal categories increases (see additional results in Tables 4 and 5, Figs. 4 and 
5, Appendix A). We believe this might be due to the fact that as the number of ordi-
nal categories increases, the response data becomes more continuous and the responses 
contain more information. On the other hand, the estimated parameters of model (3) 
perform poorly, i.e., they are very far from the true parameter values despite having 
modest standard errors (see additional results in Tables 6 and 7, Figs. 6 and 7, Appen-
dix A).

4.2 � Scenario 2

The setting of Scenario 2 is configured in the same way as the one from Scenario 1, 
apart from the specific values of the covariate effect parameters {�r} . Scenario 2 has 
covariate effects in the same direction for all the clusters.

Figures 1 and 2 provide a summary of the results of Scenario 2 for R = 3 for the 
models (4) and  (3). We observe that the performance is remarkably similar to that 
of Scenario 1. In other words, the estimates of parameters in Model (4) are closer 
to their true values than those in Model  (3), and the performance improves as the 
number of response categories, q increases. The results of our simulation study 
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indicate that the clustering procedure described in this article is able to recover the 
true parameter values in all tested instances. In addition, the other results for this 
scenario are shown in Tables 8, 9, 10, and 11 and Figs. 8, and 9 in Appendix A.

Finally, Fig. 3 shows the average ARI, 1-NVI, and 1-NID over all the replicates 
and different numbers of rows, by Scenario, R, and q. These measures compare the 
similarity of resulting row clustering structures in the true models with the fitted 
models. It can be seen that, for Scenario 1, the mean of similarity measures based on 
the ARI is 0.65 between the true clustering memberships and the predicted member-
ships when data were fitted by Model (4) with R = 3 , q = 3 . Similarly, the mean of 
similarity measures based on the ARI is 0.69 when R = 3 , q = 5 . Thus, the measure 

Table 1   Scenario 1: The average absolute bias and standard error obtained for each parameter over 2000 
simulations for models formulated in Eqs. (3) and (4)

True parameter q = 3 q = 4 q = 5 q = 6

Bias SE Bias SE Bias SE Bias SE

Model 3
�
2
= −1 0.52 0.05 0.54 0.04 0.55 0.03 0.58 0.03

n = 100 �
3
= −2 2.28 0.16 2.46 0.18 2.25 0.14 2.08 0.07

R = 5, m = 10 �
4
 = 1 0.65 0.05 0.64 0.03 0.69 0.03 0.72 0.02

�
5
 = 2 3.47 0.19 3.16 0.14 2.98 0.12 2.90 0.11

�
2
= −1 0.46 0.01 0.52 0.01 0.57 0.01 0.60 0.01

n = 1000 �
3
= −2 2.21 0.02 2.19 0.01 2.23 0.01 2.26 0.01

R = 5, m = 10 �
4
 = 1 0.49 0.01 0.58 0.01 0.65 0.01 0.68 0.01

�
5
 = 2 2.63 0.02 2.70 0.01 2.79 0.01 2.83 0.01

Model 4
�
2
= −1 0.26 0.03 0.26 0.03 0.27 0.03 0.25 0.03

n = 100 �
3
= −2 0.59 0.07 0.46 0.05 0.39 0.04 0.38 0.04

R = 5, m = 10 �
4
 = 1 0.37 0.04 0.30 0.03 0.30 0.03 0.29 0.03

�
5
 = 2 0.51 0.07 0.34 0.04 0.33 0.04 0.29 0.03

�
1
= −1 0.15 0.02 0.15 0.01 0.15 0.02 0.16 0.01

�
2
 = 2 0.21 0.02 0.18 0.02 0.17 0.02 0.14 0.01

�
3
= −3 0.69 0.08 0.58 0.07 0.47 0.06 0.38 0.05

�
4
 = 4 0.70 0.08 0.49 0.05 0.41 0.05 0.38 0.04

�
5
= −5 1.55 0.20 1.06 0.13 0.95 0.13 0.81 0.11

�
2
= −1 0.09 0.01 0.08 0.01 0.08 0.01 0.08 0.01

n = 1000 �
3
= −2 0.09 0.01 0.09 0.01 0.08 0.01 0.08 0.01

R = 5, m = 10 �
4
 = 1 0.11 0.01 0.10 0.01 0.10 0.01 0.09 0.01

�
5
 = 2 0.13 0.01 0.10 0.01 0.09 0.01 0.09 0.01

�
1
= −1 0.04 0.01 0.03 0.01 0.03 0.01 0.03 0.01

�
2
 = 2 0.09 0.01 0.07 0.01 0.06 0.01 0.06 0.01

�
3
= −3 0.12 0.01 0.10 0.01 0.09 0.01 0.08 0.01

�
4
= 4 0.19 0.01 0.16 0.01 0.16 0.01 0.13 0.01

�
5
= −5 0.25 0.01 0.19 0.01 0.18 0.01 0.16 0.01
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(a) α2 =−1

(b) α3 = 1

(c) δ1 = 1

(d) δ2 = 2

(e) δ3 = 3

Fig. 1   Boxplots for Scenario 2, representing the estimated distribution of each parameter when the fitted 
model is Model 4 and R = 3
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increases with increasing q, most likely because the data with q = 5 contain more 
information about the response. We observed equivalent results for the other two 
measures: 1-NVI and 1-NID. For Scenario 2, all three measures (ARI, 1-NVI and 
1-NID) show equivalent results to Scenario 1 but the indices are smaller. For exam-
ple, the ARI is 0.46 when R = 3 , q = 3 and the ARI is 0.49 when R = 3 , q = 5 . 
All three clustering measures have smaller values than the ones in Scenario 1. We 
conclude from this that if some covariate effects are positive and others are negative 
(Scenario 1), then it is easier to detect the correct clustering structure than if the 
covariate effects are all in the same direction (Scenario 2).

5 � Application

We applied the models proposed in this article to the arthritis clinical trial data set 
(Lipsitz et  al. 1996), which compares the drug auranofin and placebo therapy for 
the treatment of rheumatoid arthritis. The data set is obtained from the R package 
multgee (Touloumis 2015). The response variable is the patient’s self-assessment of 
arthritis, which is measured on a five-level ordinal response scale, from very poor 
(1) to very good (5). A total of 302 eligible patients were in the original data set 
but only 289 patients completed a rheumatoid self-assessment questionnaire at all 
three follow-up times (first, third and fifth month of treatment). We used those 289 
patients with completed questionnaires to analyze in our example. The data can be 
represented by a 289 × 3 matrix Y . The covariates we include in our model are gen-
der (1=female and 0=male), age (in years), and treatment (1=placebo and 0=drug). 
In this application, the covariate-dependent clustering could help to identify sub-
sets of patients with similar covariate information patterns. This insight would be 

(a) α2 =−1

(b) α3 = 1

Fig. 2   Boxplots for Scenario 2, representing the estimated distribution of each parameter when the fitted 
model is Model 3 and R = 3
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important because it would provide a flexible approach for identifying potential 
heterogeneous gender, age, and auranofin treatment effects on the arthritis scores. 
For instance, if the elderly experience more symptoms and, consequently, tend to 
be more pessimistic about their arthritis status, our proposed model would allow 
us to distinguish subsets of older people that tend to report higher/lower arthritis 
scores. However, we note that this is only an example and we do not advocate the 
clinical relevance of the covariate-dependent clustering model. In real settings, cli-
nicians and the statisticians together should decide which model, i.e. no cluster-
ing, clustering with covariates, or clustering without covariates, is more relevant to 
answer their research questions. After fitting the models without covariates (3) and 
with covariates (4), with different number of row clusters, we compared them using 
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Fig. 3   Boxplot: Clustering structure comparison for simulations between Scenario 1 and Scenario 2 
using ARI, 1-NVI and 1-NID. Values in the vertical axis indicate averages across 2000 simulations. The 
labels in y-axis are in the format “Sx.Ry.qz" being x the number of scenario (1, 2), y the number of clus-
ters ( R = 3.5 ), and z the number of ordinal categories ( q = 3, 4, 5, 6)
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the information criteria AIC (Akaike 1973) and BIC (Schwarz 1978) (see results in 
Table 2). AIC indicates that the best model is the version of the row clustering model 
including age and treatment covariates ( �k − (�r + xi1�1r + xi2�2r) ) with R = 4 row 
clusters (AIC = 2136.78), which is better than its counterpart in the model without 
covariates (AIC=2154.40). However, BIC shows that the model without covariates 
( �k − �r ) and R = 4 is the best model (BIC=2202.05). A possible reason is that BIC 
penalizes higher numbers of parameters more strongly than AIC does, leading to a 
preference for more parsimonious models. On the other hand, based on our experi-
ence working with practitioners and researchers from other areas, we have chosen to 
use AIC as a standard measure for model selection. Nevertheless, we also acknowl-
edge the importance of BIC in providing more parsimonious models, and we have 
included the results from BIC in our analyses to ensure a comprehensive evaluation 
of model performance.

Table  3 shows the estimated parameters of the two models. The row cluster-
ing model without covariates  (3) separates the patients into four clusters (sorted 
by the best to the worst self-assessment scores). The first cluster has the strong-
est patient feelings effect, ( �1 = 4.20 ), followed by cluster 2 ( �2 = 1.26 ), cluster 3 
( �3 = −1.41 ), and cluster 4 ( �4 = −4.04 ), suggesting that patients in cluster 1 have 
the best feeling about their current state of arthritis among all the clusters. When we 
add the age and treatment covariates into the clustering model, the parameters {�1r} 
and {�2r} indicate the age and treatment effects within the clusters. For instance, the 
auranofin treatment did not show improvement for patients in cluster 1 ( �21 = 0.23 ), 
but the treatment did show improvement, to differing degrees, for patients in clus-
ters 2, 3, and 4 ( �22 = −0.84 , �23 = −0.82 and �24 = −2.00 ). Moreover, the older 
patients in cluster 3 ( �13 = −0.22 ) were likely to have a worse feeling about their 
current arthritis status than older patients in other clusters. Therefore, the cluster-
ing model without covariates (3) allows us to describe the overall patterns of patient 
feelings and once we add the covariates (4), we could also identify the subgroups of 
patients with similar covariate patterns.

Additionally, Table 12 (see results in Appendix A) shows the results of the com-
parison of clustering structure agreement of the selected models with and without 
covariates by using the information theoretic criteria ARI, 1-NVI and 1-NID. The 
results assume each patient has been allocated to the cluster for which they have the 
highest posterior probability of membership.

Table 3   Estimated parameters 
of two models, the first with no 
covariates and the second with 
the covariates age and treatment

Model without 
covariates (3)

Model with covariates (4)

R �r �r �
1r (age) �

2r (treatment)

1 4.20 (0.17) 3.64 (0.12) 0.56 (0.15) 0.23 (0.14)
2 1.26 (0.25) 1.20 (0.15) 0.02 (0.25) −0.84 (0.22)
3 −1.41(0.14) −1.50 (0.24) −0.22 (0.12) −0.82 (0.25)
4 −4.04 (0.13) −3.34 (0.18) 0.58 (0.13) −2.00 (0.17)
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The comparison of clustering structure agreement (measured by ARI, 1-NVI, 
and 1-NDI) between the best model (Model (4) with R = 4 , including age and treat-
ment covariates) and its counterpart without covariates (Model (3)) revealed distinct 
differences. The values of the three measures were 0.66 (ARI), 0.47 (1-NVI), and 
0.64 (1-NDI), indicating that Model  (3) and Model  (4) resulted in different clus-
tering structures. This was further confirmed by examining the detailed estimated 
memberships for individuals in Table 13 (see results in Appendix A). For example, 
when data were fitted by Model (4), nine patients (1, 62, 119, 124, 131, 223, 239, 
243, and 266) originally assigned to cluster 1 were re-allocated to cluster 2. Simi-
larly, two patients (79 and 238) from cluster 2 were re-allocated to cluster 3, and ten 
patients (63, 125, 153, 192, 215, 217, 219, 245, 267, and 285) from cluster 3 were 
re-allocated to cluster 4. These findings highlight the substantial impact of including 
covariates in Model (4) on the clustering structures, underscoring the importance of 
considering covariate effects in the analysis.

Finally, Table 14 in Appendix C presents a comparison of the average age for dif-
ferent combinations of clusters and treatment (placebo or drug) using two models: 
one without covariates ( �k − �r ) with R = 4 clusters, and the other incorporating the 
covariates age and treatment ( �k − (�r + xi1�1r + xi2�2r) , where x1 represents age and 
x2 represents treatment) also with R = 4 clusters. Notable differences in mean age 
were observed within specific groups. For instance, individuals in group 1 receiving 
the drug treatment exhibited an increase in mean age from 35 to 41 when covariates 
were incorporated. Conversely, a similar discrepancy in mean age, but in the oppo-
site direction, was observed for individuals in group 2 receiving the placebo (54.5 vs 
50.8). This comparison highlights the added insights provided by including covari-
ates, shedding light on the relationship between variables and their impact on mean 
age within specific groups and treatment categories. These findings underscore the 
importance of considering covariates in understanding population characteristics 
and their potential influence on outcomes.

6 � Discussion

This paper uses finite mixture models to model the case of ordinal data using the 
proportional odds model, including covariates in the linear predictor of the model. 
We used the proportional odds model to capture the inherent natural order of the 
responses.

We set up a simulation study to explore the reliability of the models with covari-
ates across a range of cases. We considered two scenarios by varying the covariate 
effects from mixed directions to all in the same direction. For all cases, the esti-
mates of the parameters are close to their true values and we observed that the value 
of the standard errors decreases as the number of ordinal categories increases. The 
standard errors also decrease with increasing sample size n. Moreover, we compared 
the similarity of the true model and the fitted model for both scenarios based on 
ARI, 1-NVI, and 1-NID indices. The row clustering structure with mixed direction 
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covariate effects showed better performance than the one with all positive covariate 
effects.

We also illustrated our approach with the well-known “arthritis clinical trial" 
data set. The results of this application indicated that the best model according to 
AIC was the row clustering model with R = 4 including age and treatment covari-
ates. However, we remark that AIC is a standard procedure and we consider that 
subject-matter experts in the matter and statisticians together should decide which 
model (adding covariates or not) is more relevant to answer the research questions. 
The patients were clustered according to their similar pattern of responses and the 
effect of the covariates. That is, all four clusters have different age and treatment 
effects, which changes the interpretation of the clustering structure when the covari-
ates were not taken into account. In this case, we could identify individuals in each 
of the four groups based on their self-assessment scales and how the age and treat-
ment are associated with these groups.

It is important to note that our proposed model is based on the cumulative ver-
sion of the proportional odds model, which applies the proportional odds assump-
tion. This assumption must be assessed in different ways: (1) examining graphical 
diagnostics, e.g. plotting the cumulative logit probabilities against the covariates can 
reveal any systematic departures from parallelism, which is an indication of viola-
tions of the proportional odds assumption; (2) performing formal statistical tests, 
e.g. the Brant Wald test (1990); and (3) performing model diagnostics, e.g. examin-
ing the residuals for patterns, such as non-linearity or heteroscedasticity, which can 
provide evidence of violations of the assumptions. Additionally, we acknowledge 
that this represents a simplified approach that assumes a uniform covariate effect, 
which may not always be valid in all cases and may not capture the true complex-
ity of the relationship between covariates and response variables in all cases. Fur-
ther research is needed to explore more flexible models that can account for varying 
covariate effects on different response variables in different situations.

Deciding whether a variable should be considered a response or a covariate 
is a crucial step in statistical analyses, including mixture-based clustering. By 
necessity, statistical analyses distinguish between response (dependent) variables 
and explanatory (independent) variables (Agresti 2014). In making this decision, 
it is essential to consider the research questions, theoretical considerations, and 
subject-matter knowledge about the variables under study. Researchers need to 
carefully assess whether a variable is of primary interest in the study to answer 
the research questions, or if it plays a supporting role because of its association 
with the variable of interest. Additionally, exploratory data analysis techniques, 
such as visualizations and correlation analyses, can provide valuable insights 
into the relationships between variables. By considering these factors and utiliz-
ing appropriate statistical techniques, researchers can make informed decisions 
regarding the allocation of variables as responses or covariates. In this study, 
we follow the general convention of treating variables as responses or covariates 
based on research interest. For instance, in our application, the main interest is 
the effect of a drug on the arthritis status. However, if a researcher is investigat-
ing the potential average age of the patient according to their arthritis status, the 
age variable would likely be considered a response variable. We acknowledge that 
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this allocation of variables may vary depending on the specific research context, 
and researchers should adapt their approach accordingly.

Our approach assumes that all available variables are used in the modeling 
procedure. However, in many situations, considering all the variables unneces-
sarily increases the model complexity. Moreover, some variables may not possess 
any clustering information and are of no use in the detection of the group struc-
ture. Rather, they could be detrimental to the clustering. Likewise, the case where 
all the variables contain clustering information can also be problematic. Along 
with the increasing number of dimensions comes the curse of dimensionality, 
and including superfluous variables in the model leads to identifiability problems 
and over-parameterization (Bouveyron and Brunet-Saumard 2014). Therefore, 
resorting to variable selection techniques can facilitate model fitting, ease the 
interpretation of the results and lead to data classification of better quality. Even 
in  situations of moderate or low dimensionality, reducing the set of variables 
employed in the clustering process can be beneficial (Fowlkes et al. 1988; Raft-
ery and Dean 2006; Andrews and McNicholas 2014). How the variable selection 
algorithm interacts with the model fitting process defines the overall approach to 
the problem. For a general learning task, the principal distinction is in whether 
the selection is carried out separately or jointly to the learning procedure (John 
et al. 1994; Dash and Liu 1997; Dy and Brodley 2004). Thus, the application of 
information criteria such as AIC or BIC would be a direct way to perform vari-
able selection in our approach. There would be other alternatives as model-based 
selection methods, such as stepwise selection and LASSO. Additionally, domain 
knowledge or subject-matter expertise can also guide the variable selection pro-
cess by considering the relevance of covariates based on their theoretical impor-
tance or prior knowledge.

We performed a robustness analysis to assess the impact of outliers by introduc-
ing 3% outliers in the numerical variable age and re-fitting the models incorporat-
ing this covariate. We have included these results in Table 5 of Appendix E. Inter-
estingly, our analysis consistently revealed the emergence of an additional group, 
according to AIC, resulting in a total of five groups, in contrast to the framework 
without outliers. Importantly, this newly identified group aligned with the rows 
containing the artificially introduced outliers. These findings demonstrate the sen-
sitivity of our proposed method to outliers and its ability to capture their influence 
on the clustering structure. However, it is essential to note that this analysis serves 
as an illustrative example, and a more comprehensive robustness analysis is war-
ranted in future research. Therefore, we view this as a potential avenue for future 
investigations.

We compared the best model according to AIC with the Partitioning Around 
Medoids (PAM) method using the Gower dissimilarity measure to assess the equiva-
lence in terms of the number of clusters and the cluster structure of covariate values. 
The results of this comparison can be found in Table 15 of Appendix D. Interest-
ingly, this comparison revealed consistent results in the number of groups ( R = 4 ), 
while exhibiting slight differences in both the cluster structures and covariate 
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values. Notably, the incorporation of covariates age and treatment in the model 
( �k − (�r + xi1�1r + xi2�2r) ) resulted in a lower mean age for individuals in group 1 
receiving drug treatment, compared to the results obtained with the PAM method. 
A more comprehensive comparison of clustering methods would be an intriguing 
avenue for future research.

This article demonstrated that including available covariates in the fitting pro-
cess of the mixture-based approaches for ordinal responses improves insights into 
the main characteristics of the clusters. The same idea could be implemented for 
different types of models focused on ordinal responses, such as the ordered stere-
otype and the adjacent-categories logit models. For future research, we will plan 
to extend the model shown in this article in order to cluster rows and columns 
simultaneously (a.k.a. co-clustering or biclustering), which is a natural extension 
and can give more insights of the clustering structure of the data sets. Addition-
ally, another natural and challenging extension to consider would be to incorpo-
rate rows and columns covariates to our current approach, capturing their poten-
tial interactions. One potential approach might be using a multi-level modeling 
framework or fitting two separate mixture models. Another interesting avenue to 
explore would be the potential application of our proposed procedure for data 
imputation in case of missing data. It could be extended to impute both ordinal 
responses and covariate values simultaneously, leveraging the estimated mixture 
models and capturing non-linear relationships and interactions between variables. 
The uncertainty-aware imputation approach using the EM algorithm could pro-
vide more realistic and robust imputed values. However, further research and val-
idation would be needed to evaluate the performance of our proposed procedure 
as a data imputation method, in comparison to existing techniques, in various 
settings and data scenarios. Additionally, as a future work, we plan to conduct 
additional comparisons with other existing methods to further evaluate the per-
formance of our proposed method and provide a more comprehensive analysis. 
Finally, this research has considered the case where responses in each column 
have the same number of ordinal response levels. This could be varied but may 
require a separate set of parameters {�jk} and {�jk} . The simulation and model fit-
ting code in R is available on Github at https://​github.​com/​vuw-​clust​ering/​clust​
ering-​covar​iates.

Appendices

A Simulation results

See Figs. 4, 5, 6, 7, 8, and 9 and Tables 4, 5, 6, 7, 8, 9, 10, and 11.

https://github.com/vuw-clustering/clustering-covariates
https://github.com/vuw-clustering/clustering-covariates
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(a) α2 =−1

(b) α3 = 1

(c) δ1 =−1

(d) δ2 = 2

(e) δ3 =−3

Fig. 4   Boxplots for Scenario 1 representing the estimated distribution of each parameter when the fitted 
model is Model 4 and R = 3
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(a) α2 =−1

(b) α3 =−2

(c) α4 = 1

(d) α5 = 2

(e) δ1 =−1

Fig. 5   Boxplots for Scenario 1, representing the estimated distribution of each parameter when the fitted 
model is Model 4 and R = 5
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(f) δ2 = 2

(g) δ3 =−3

(h) δ4 = 4

(i) δ5 =−5

Fig. 5   (continued)
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(a) α2 =−1

(b) α3 = 1

Fig. 6   Boxplots for Scenario 1, representing the estimated distribution of each parameter when the fitted 
model is Model 4 and R = 5
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(a) α2 =−1

(b) α3 =−2

(c) α4 = 1

(d) α5 = 2

Fig. 7   Boxplots for Scenario 1, representing the estimated distribution of each parameter when the fitted 
model is Model 3 and R = 5
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(a) α2 =−1

(b) α3 =−2

(c) α4 = 1

(d) α5 = 2

(e) δ1 = 1

Fig. 8   Boxplots for Scenario 2, representing the estimated distribution of each parameter when the fitted 
model is Model 4 and R = 5
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(f) δ2 = 2

(g) δ3 = 3

(h) δ4 = 4

(i) δ5 = 5

Fig. 8   (continued)
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(a) α2 =−1

(b) α3 =−2

(c) α4 = 1

(d) α5 = 2

Fig. 9   Boxplots for Scenario 2, representing the estimated distribution of each parameter when the fitted 
model is Model 3 and R = 5
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Table 4   Scenario 1: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 4 (n = 100)

 n = 100

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

m = 3

3 �
2
= −1 0.63 0.09 0.48 0.07 0.44 0.06 0.40 0.05

�
3
 = 1 1.40 0.23 1.02 0.18 0.67 0.08 0.71 0.10

�
1
= −1 0.46 0.06 0.39 0.04 0.36 0.04 0.36 0.04

�
2
 = 2 0.48 0.07 0.29 0.03 0.25 0.03 0.26 0.03

�
3
= −3 2.11 0.62 1.33 0.22 0.98 0.17 0.88 0.14

5 �
2
= −1 0.96 0.13 0.86 0.12 0.65 0.08 0.63 0.08

�
3
= −2 11.68 8.49 11.80 4.61 7.17 3.42 4.43 2.75

�
4
 = 1 1.12 0.18 0.96 0.13 0.82 0.10 0.74 0.09

�
5
 = 2 10.22 4.20 5.09 2.68 4.45 2.98 5.31 3.99

�
1
= −1 0.54 0.07 0.62 0.15 0.38 0.04 0.40 0.05

�
2
 = 2 0.59 0.09 0.47 0.06 0.46 0.06 0.42 0.05

�
3
= −3 15.22 5.95 8.31 3.24 5.19 2.35 3.66 1.92

�
4
 = 4 1.80 0.40 1.30 0.19 1.24 0.16 1.06 0.13

�
5
= −5 13.87 4.41 8.27 3.00 5.01 1.63 5.49 2.35

m = 5

 3 �
2
= −1 0.34 0.04 0.31 0.04 0.26 0.03 0.25 0.03

�
3
= 1 0.50 0.05 0.50 0.06 0.36 0.04 0.33 0.04

�
1
= −1 0.25 0.03 0.22 0.02 0.21 0.03 0.20 0.03

�
2
 = 2 0.24 0.03 0.18 0.02 0.16 0.02 0.16 0.02

�
3
= −3 0.84 0.12 0.69 0.10 0.49 0.07 0.49 0.06

 5 �
2
= −1 0.55 0.07 0.50 0.07 0.50 0.07 0.42 0.05

�
3
= −2 5.42 1.73 1.65 0.69 2.00 1.14 0.73 0.10

�
4
 = 1 0.69 0.09 0.60 0.09 0.55 0.07 0.46 0.06

�
5
 = 2 0.96 0.12 0.97 0.13 0.72 0.08 0.63 0.08

�
1
= −1 0.35 0.04 0.29 0.04 0.25 0.04 0.23 0.03

�
2
 = 2 0.40 0.05 0.34 0.04 0.27 0.03 0.26 0.03

�
3
= −3 4.16 1.19 1.82 0.50 1.86 0.83 1.01 0.12

�
4
 = 4 1.56 0.23 1.07 0.13 0.90 0.12 0.73 0.10

�
5
= −5 2.99 0.40 2.40 0.29 1.68 0.20 1.49 0.18

m = 10
 3 �

2
= −1 0.18 0.02 0.16 0.02 0.14 0.01 0.14 0.02

�
3
 = 1 0.21 0.02 0.16 0.02 0.17 0.02 0.17 0.02

�
1
= −1 0.15 0.01 0.12 0.01 0.11 0.01 0.10 0.01

�
2
 = 2 0.13 0.02 0.11 0.01 0.10 0.01 0.09 0.01

�
3
= −3 0.38 0.05 0.27 0.04 0.24 0.03 0.21 0.01
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Table 4   (continued)

 n = 100

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

5 �
2
= −1 0.26 0.03 0.26 0.03 0.27 0.03 0.25 0.03

�
3
= −2 0.59 0.07 0.46 0.05 0.39 0.04 0.38 0.04

�
4
 = 1 0.37 0.04 0.30 0.03 0.30 0.03 0.29 0.03

�
5
 = 2 0.51 0.07 0.34 0.04 0.33 0.04 0.29 0.03

�
1
= −1 0.15 0.02 0.15 0.01 0.15 0.02 0.16 0.01

�
2
 = 2 0.21 0.02 0.18 0.02 0.17 0.02 0.14 0.01

�
3
= −3 0.69 0.08 0.58 0.07 0.47 0.06 0.38 0.05

�
4
 = 4 0.70 0.08 0.49 0.05 0.41 0.05 0.38 0.04

�
5
= −5 1.55 0.20 1.06 0.13 0.95 0.13 0.81 0.11

Table 5   Scenario 1: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 4 (n = 1000)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

m = 3
3 �

2
= −1 0.19 0.02 0.14 0.01 0.14 0.01 0.13 0.01

�
3
= 1 0.23 0.01 0.15 0.01 0.13 0.01 0.13 0.01

�
1
= −1 0.13 0.01 0.08 0.01 0.08 0.01 0.07 0.01

�
2
 = 2 0.16 0.01 0.12 0.01 0.10 0.01 0.09 0.01

�
3
= −3 0.53 0.02 0.35 0.01 0.28 0.02 0.23 0.01

 5 �
2
= −1 0.40 0.02 0.31 0.01 0.24 0.01 0.23 0.01

�
3
= −2 0.72 0.04 0.43 0.03 0.30 0.01 0.21 0.01

�
4
 = 1 0.55 0.02 0.37 0.01 0.29 0.01 0.26 0.01

�
5
 =2 0.60 0.02 0.35 0.01 0.28 0.01 0.24 0.01

�
1
= −1 0.18 0.01 0.14 0.01 0.11 0.01 0.10 0.01

�
2
 = 2 0.32 0.01 0.23 0.01 0.20 0.01 0.20 0.01

�
3
= −3 1.70 0.01 0.78 0.04 0.50 0.03 0.33 0.01

�
4
 = 4 0.77 0.05 0.50 0.02 0.41 0.03 0.39 0.01

�
5
= −5 1.11 0.03 0.72 0.03 0.60 0.02 0.53 0.02

m = 5
3 �

2
= −1 0.09 0.01 0.07 0.01 0.06 0.01 0.06 0.01

�
3
= 1 0.12 0.01 0.09 0.01 0.08 0.01 0.07 0.01

�
1
= −1 0.06 0.01 0.05 0.01 0.05 0.01 0.04 0.01

�
2
 = 2 0.09 0.01 0.08 0.01 0.07 0.01 0.06 0.01

�
3
= −3 0.22 0.01 0.14 0.01 0.14 0.01 0.13 0.01



	 K. Preedalikit et al.

1 3

Table 5   (continued)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

 5 �
2
= −1 0.16 0.01 0.13 0.01 0.12 0.01 0.12 0.01

�
3
= −2 0.19 0.01 0.15 0.01 0.13 0.01 0.13 0.01

�
4
 = 1 0.23 0.01 0.21 0.01 0.17 0.01 0.16 0.01

�
5
 = 2 0.21 0.01 0.18 0.01 0.16 0.01 0.15 0.01

�
1
= −1 0.08 0.01 0.06 0.01 0.06 0.01 0.05 0.01

�
2
 = 2 0.17 0.01 0.14 0.01 0.13 0.01 0.12 0.01

�
3
= −3 0.36 0.02 0.20 0.01 0.18 0.01 0.16 0.01

�
4
 = 4 0.38 0.01 0.31 0.01 0.28 0.01 0.26 0.01

�
5
= −5 0.46 0.02 0.43 0.01 0.35 0.01 0.33 0.01

m = 10
3 �

2
= −1 0.06 0.01 0.05 0.01 0.05 0.01 0.05 0.01

�
3
= 1 0.07 0.01 0.06 0.01 0.06 0.01 0.05 0.01

�
1
= −1 0.03 0.01 0.03 0.01 0.02 0.01 0.02 0.01

�
2
 = 2 0.05 0.01 0.04 0.01 0.04 0.01 0.03 0.01

�
3
= −3 0.09 0.01 0.08 0.01 0.07 0.01 0.06 0.01

 5 �
2
= −1 0.09 0.01 0.08 0.01 0.08 0.01 0.08 0.01

�
3
= −2 0.09 0.01 0.09 0.01 0.08 0.01 0.08 0.01

�
4
 = 1 0.11 0.01 0.10 0.01 0.10 0.01 0.09 0.01

�
5
 = 2 0.13 0.01 0.10 0.01 0.09 0.01 0.09 0.01

�
1
= −1 0.04 0.01 0.03 0.01 0.03 0.01 0.03 0.01

�
2
 = 2 0.09 0.01 0.07 0.01 0.06 0.01 0.06 0.01

�
3
= −3 0.12 0.01 0.10 0.01 0.09 0.01 0.08 0.01

�
4
 = 4 0.19 0.01 0.16 0.01 0.16 0.01 0.13 0.01

�
5
= −5 0.25 0.01 0.19 0.01 0.18 0.01 0.16 0.01
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Table 6   Scenario 1: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 3 (n = 100)

 n = 100

R True parameter  q = 3  q = 4  q = 5  q = 6

Mean SE Mean SE Mean SE Mean SE

m = 3
3 �

2
= −1 2.23 0.19 2.08 0.15 2.01 0.14 1.86 0.09

�
3
= 1 2.55 0.19 2.27 0.15 2.20 0.13 1.95 0.08

5 �
2
= −1 1.16 0.12 1.08 0.11 0.99 0.10 0.99 0.10

�
3
= −2 2.53 0.20 2.67 0.23 2.55 0.24 2.55 0.25

�
4
 = 1 1.27 0.14 1.24 0.13 1.13 0.12 1.13 0.11

�
5
 = 2 3.24 0.22 3.46 0.25 3.48 0.24 3.48 0.23

m = 5
3 �

2
= −1 1.64 0.11 1.51 0.09 1.40 0.04 1.51 0.06

�
3
= 1 1.72 0.09 1.57 0.01 1.58 0.03 1.60 0.03

5 �
2
= −1 0.93 0.09 0.83 0.08 0.79 0.08 0.78 0.07

�
3
= −2 2.48 0.24 2.92 0.23 2.65 0.23 2.76 0.19

�
4
 = 1 0.95 0.10 0.87 0.09 0.92 0.09 0.88 0.08

�
5
 = 2 3.79 0.25 3.79 0.23 3.68 0.22 3.58 0.21

m = 10
3 �

2
= −1 1.17 0.04 1.16 0.02 1.19 0.02 1.23 0.02

�
3
= 1 1.32 0.02 1.38 0.02 1.38 0.01 1.42 0.01

5 �
2
= −1 0.52 0.05 0.54 0.04 0.55 0.03 0.58 0.03

�
3
= −2 2.28 0.16 2.46 0.18 2.25 0.14 2.08 0.07

�
4
 = 1 0.65 0.05 0.64 0.03 0.69 0.03 0.72 0.02

�
5
 = 2 3.47 0.19 3.16 0.14 2.98 0.12 2.90 0.11
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Table 7   Scenario 1: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 3 (n = 1000)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE B ias SE

m = 3
3 �

2
= −1 1.38 0.01 1.43 0.01 1.46 0.00 1.49 0.01

�
3
= 1 1.72 0.01 1.68 0.01 1.73 0.01 1.80 0.01

5 �
2
= −1 0.55 0.02 0.51 0.02 0.53 0.02 0.49 0.02

�
3
= −2 1.55 0.02 2.01 0.03 1.99 0.04 2.07 0.03

�
4
 = 1 0.55 0.02 0.50 0.02 0.60 0.02 0.59 0.02

�
5
 = 2 2.20 0.02 2.50 0.04 2.83 0.04 2.89 0.04

m = 5
3 �

2
= −1 1.30 0.01 1.34 0.01 1.38 0.01 1.41 0.01

�
3
= 1 1.59 0.01 1.65 0.01 1.70 0.01 1.74 0.01

5 �
2
= −1 0.44 0.02 0.54 0.01 0.60 0.01 0.70 0.01

�
3
= −2 2.12 0.04 2.47 0.03 2.56 0.02 2.58 0.02

�
4
 = 1 0.48 0.02 0.57 0.01 0.64 0.01 0.73 0.01

�
5
 = 2 2.63 0.04 2.89 0.03 3.05 0.03 3.22 0.02

m = 10
3 �

2
= −1 1.19 0.01 1.24 0.01 1.27 0.01 1.29 0.01

�
3
= 1 1.42 0.01 1.50 0.01 1.55 0.01 1.59 0.01

 5 �
2
= −1 0.46 0.01 0.52 0.01 0.57 0.01 0.60 0.01

�
3
= −2 2.21 0.02 2.19 0.01 2.23 0.01 2.26 0.01

�
4
 = 1 0.49 0.01 0.58 0.01 0.65 0.01 0.68 0.01

�
5
 = 2 2.63 0.02 2.70 0.01 2.79 0.01 2.83 0.01
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Table 8   Scenario 2: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 4 (n = 100)

 n = 100

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

m = 3
3 �

2
= −1 1.60 0.24 1.01 0.15 0.95 0.12 1.01 0.12

�
3
= 1 2.17 0.49 1.74 0.40 1.32 0.29 1.30 0.31

�
1
 = 1 2.23 0.14 2.11 0.05 2.06 0.05 2.06 0.05

�
2
 = 2 1.45 0.24 1.15 0.22 1.04 0.17 0.91 0.14

�
3
 = 3 10.66 2.21 8.71 1.12 7.55 0.56 7.28 0.36

5 �
2
= −1 1.37 0.34 1.53 0.56 1.03 0.12 1.06 0.16

�
3
= −2 7.02 2.33 3.98 1.07 2.58 0.67 3.20 0.99

�
4
 = 1 1.68 0.21 1.62 0.32 1.20 0.14 1.21 0.20

�
5
 = 2 3.33 0.85 1.55 0.28 1.43 0.31 1.51 0.26

�
1
 = 1 2.15 0.06 2.12 0.06 2.14 0.05 2.17 0.07

�
2
 = 2 0.88 0.40 0.93 0.42 0.53 0.09 0.45 0.07

�
3
 = 3 22.75 10.46 8.43 0.72 8.01 0.77 14.04 6.13

�
4
 = 4 6.55 1.42 4.11 0.86 3.36 0.80 3.03 1.46

�
5
 = 5 23.72 4.44 14.65 1.25 12.32 0.45 13.75 1.03

m = 5
3 �

2
= −1 1.04 0.33 0.60 0.07 0.52 0.06 0.49 0.06

�
3
= 1 1.31 0.31 6.66 5.92 0.63 0.09 0.52 0.06

�
1
 = 1 2.14 0.05 2.08 0.04 2.05 0.04 2.02 0.03

�
2
 = 2 1.19 0.29 0.72 0.14 0.51 0.08 0.42 0.07

�
3
 = 3 7.84 0.70 34.25 27.85 6.39 0.09 6.21 0.08

 5 �
2
= −1 2.02 0.83 0.98 0.21 0.76 0.09 0.63 0.08

�
3
= −2 4.45 1.69 2.61 0.88 1.75 0.54 1.65 0.51

�
4
 = 1 1.08 0.17 0.81 0.10 0.74 0.08 0.72 0.09

�
5
 = 2 1.94 0.45 1.18 0.26 0.87 0.11 0.85 0.12

�
1
 = 1 2.26 0.10 2.14 0.05 2.09 0.04 2.03 0.04

�
2
 = 2 5.95 5.13 0.89 0.44 0.37 0.05 0.31 0.03

�
3
 = 3 13.04 3.37 9.65 2.09 7.15 0.65 6.98 0.65

�
4
 = 4 3.82 0.82 2.00 0.30 1.49 0.23 1.21 0.24

�
5
 = 5 15.70 1.58 12.32 0.50 11.64 0.39 11.97 0.33

m = 10
 3 �

2
= −1 0.55 0.27 0.25 0.03 0.21 0.02 0.20 0.02

�
3
= 1 0.43 0.05 0.31 0.04 0.25 0.03 0.26 0.03

�
1
 = 1 2.09 0.02 2.07 0.02 2.06 0.02 2.05 0.02

�
2
 = 2 0.82 0.31 0.31 0.05 0.25 0.03 0.20 0.02

�
3
 = 3 6.29 0.07 6.09 0.05 6.02 0.04 6.02 0.04
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Table 8   (continued)

 n = 100

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

5 �
2
= −1 0.46 0.05 0.40 0.05 0.39 0.05 0.31 0.04

�
3
= −2 0.93 0.14 1.45 0.80 0.50 0.06 0.54 0.11

�
4
 = 1 0.50 0.05 0.48 0.05 0.49 0.05 0.41 0.04

�
5
 = 2 0.83 0.12 0.60 0.09 0.48 0.07 0.47 0.06

�
1
 = 1 2.12 0.03 2.08 0.02 2.09 0.02 2.06 0.02

�
2
 = 2 0.36 0.04 0.26 0.03 0.25 0.03 0.25 0.03

�
3
 = 3 6.75 0.32 7.47 1.25 6.07 0.09 6.10 0.10

�
4
 = 4 1.09 0.15 0.85 0.11 0.69 0.09 0.60 0.07

�
5
 = 5 7.26 0.22 6.86 0.15 6.59 0.10 5.76 0.14
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Table 9   Scenario 2: The average absolute bias and standard error obtained for each parameter over 2000 
simulations when the fitted model is Model 4 (n=1000)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

m = 3
3 �

2
= −1 0.35 0.02 0.28 0.01 0.20 0.01 0.19 0.01

�
3
= 1 0.40 0.02 0.30 0.01 0.27 0.01 0.25 0.01

�
1
 = 1 1.99 0.01 2.00 0.01 2.00 0.01 2.00 0.01

�
2
 = 2 0.46 0.02 0.50 0.02 0.42 0.01 0.31 0.01

�
3
 = 3 0.53 0.04 0.51 0.01 0.59 0.03 0.52 0.01

 5 �
2
= −1 0.43 0.02 0.37 0.01 0.32 0.02 0.32 0.01

�
3
= −2 0.59 0.04 0.44 0.02 0.50 0.05 0.50 0.02

�
4
 = 1 0.57 0.02 0.49 0.01 0.45 0.02 0.44 0.01

�
5
 = 2 0.94 0.04 0.63 0.03 0.59 0.03 0.45 0.02

�
1
 = 1 0.92 0.01 0.94 0.01 0.92 0.01 0.96 0.01

�
2
 = 2 0.36 0.01 0.35 0.01 0.37 0.01 0.33 0.01

�
3
 = 3 0.37 0.05 0.31 0.03 0.33 0.04 0.46 0.03

�
4
 = 4 0.73 0.07 0.54 0.03 0.77 0.05 0.48 0.02

�
5
 = 5 0.73 0.10 0.92 0.05 0.62 0.08 0.61 0.04

m = 5
 3 �

2
= −1 0.16 0.01 0.13 0.01 0.14 0.01 0.12 0.01

�
3
= 1 0.18 0.01 0.16 0.01 0.14 0.01 0.14 0.01

�
1
 = 1 0.98 0.01 0.98 0.01 0.99 0.01 0.99 0.01

�
2
 = 2 0.26 0.01 0.20 0.01 0.17 0.01 0.15 0.01

�
3
 = 3 0.36 0.01 0.34 0.01 0.34 0.03 0.33 0.01

 5 �
2
= −1 0.30 0.01 0.28 0.01 0.24 0.01 0.25 0.01

�
3
= −2 0.93 0.13 0.40 0.02 0.38 0.02 0.41 0.02

�
4
 = 1 0.43 0.02 0.45 0.02 0.42 0.02 0.39 0.01

�
5
 = 2 0.86 0.09 0.58 0.03 0.53 0.03 0.47 0.02

�
1
 = 1 0.97 0.01 0.94 0.01 0.94 0.01 0.95 0.01

�
2
 = 2 0.37 0.01 0.26 0.01 0.25 0.01 0.25 0.01

�
3
 = 3 0.63 0.12 0.32 0.02 0.32 0.02 0.43 0.03

�
4
 = 4 0.82 0.04 0.59 0.02 0.48 0.02 0.49 0.02

�
5
 = 5 0.38 0.16 0.86 0.07 0.84 0.07 0.68 0.04

m = 10
 3 �

2
= −1 0.07 0.01 0.06 0.01 0.05 0.01 0.05 0.01

�
3
= 1 0.08 0.01 0.07 0.01 0.06 0.01 0.06 0.01

�
1
 = 1 0.97 0.01 0.98 0.01 0.98 0.01 0.98 0.01

�
2
 = 2 0.09 0.01 0.08 0.01 0.06 0.01 0.06 0.01

�
3
 = 3 0.31 0.01 0.31 0.01 0.34 0.01 0.33 0.01
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Table 9   (continued)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

 5 �
2
= −1 0.22 0.01 0.18 0.01 0.15 0.01 0.14 0.01

�
3
= −2 0.38 0.01 0.23 0.01 0.16 0.01 0.14 0.01

�
4
 = 1 0.34 0.01 0.34 0.01 0.30 0.01 0.27 0.01

�
5
 = 2 0.50 0.03 0.26 0.01 0.21 0.01 0.17 0.01

�
1
 = 1 0.96 0.01 0.97 0.01 0.97 0.01 0.98 0.01

�
2
 = 2 0.24 0.01 0.18 0.01 0.14 0.01 0.27 0.01

�
3
 = 3 0.38 0.02 0.23 0.02 0.31 0.01 0.14 0.01

�
4
 = 4 0.13 0.02 0.33 0.01 0.34 0.01 0.23 0.01

�
5
 = 5 0.11 0.14 0.32 0.03 0.19 0.01 0.13 0.01

Table 10   Scenario 2: The average absolute bias and standard error obtained for each parameter over 
2000 simulations when the fitted model is Model 3 (n = 100)

 n = 100

 R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE Bias SE

m = 3
3 �

2
= −1 2.62 0.19 2.10 0.15 1.93 0.10 1.91 0.10

�
3
= 1 2.74 0.18 2.21 0.14 2.20 0.12 2.47 0.14

5 �
2
= −1 1.33 0.14 1.17 0.12 1.16 0.12 1.07 0.11

�
3
= −2 2.31 0.18 2.72 0.24 2.74 0.24 3.25 0.24

�
4
 = 1 1.29 0.14 1.25 0.13 1.09 0.11 1.07 0.11

�
5
 = 2 3.41 0.21 3.31 0.24 2.86 0.22 3.20 0.22

m = 5
3 �

2
= −1 1.55 0.05 1.42 0.02 1.48 0.03 1.55 0.05

�
3
= 1 2.20 0.15 1.92 0.05 1.93 0.07 1.97 0.06

 5 �
2
= −1 0.97 0.10 0.90 0.09 0.91 0.09 0.87 0.08

�
3
= −2 2.88 0.25 2.08 0.19 2.62 0.24 2.52 0.19

�
4
 = 1 0.93 0.10 0.87 0.09 0.87 0.08 0.86 0.07

�
5
 = 2 3.43 0.25 3.48 0.23 3.13 0.19 3.46 0.21

m = 10
 3 �

2
= −1 1.26 0.02 1.29 0.01 1.32 0.01 1.33 0.02

�
3
= 1 1.59 0.02 1.61 0.02 1.62 0.02 1.66 0.02

 5 �
2
= −1 0.65 0.05 0.69 0.05 0.72 0.03 0.74 0.03

�
3
= −2 2.33 0.17 2.16 0.12 2.14 0.11 2.12 0.11

�
4
 = 1 0.64 0.06 0.65 0.04 0.65 0.04 0.77 0.03

�
5
 = 2 2.81 0.17 2.63 0.12 2.56 0.10 2.62 0.11



1 3

Row mixture‑based clustering with covariates for ordinal…

B Application: comparison of clustering structures

See Tables 12 and 13. 

Table 11   Scenario 2: The average absolute bias and standard error obtained for each parameter over 
2000 simulations when the fitted model is Model 3 (n = 1000)

 n = 1000

R True parameter  q = 3  q = 4  q = 5  q = 6

Bias SE Bias SE Bias SE bias SE

m = 3
3 �

2
= −1 1.50 0.01 1.47 0.01 1.53 0.01 1.56 0.01

�
3
= 1 1.70 0.02 1.68 0.01 1.76 0.02 1.83 0.01

5 �
2
= −1 0.61 0.02 0.55 0.02 0.57 0.02 0.59 0.02

�
3
= −2 1.61 0.02 1.89 0.03 2.17 0.03 2.39 0.03

�
4
 = 1 0.49 0.02 0.56 0.02 0.62 0.02 0.61 0.02

�
5
 = 2 2.03 0.03 2.71 0.04 2.72 0.04 2.77 0.03

m = 5
 3 �

2
= −1 1.36 0.01 1.41 0.01 1.45 0.01 1.49 0.01

�
3
= 1 1.53 0.01 1.58 0.01 1.63 0.01 1.69 0.01

5 �
2
= −1 0.52 0.01 0.61 0.01 0.68 0.01 0.72 0.01

�
3
= −2 2.21 0.04 2.46 0.02 2.48 0.05 2.40 0.02

�
4
 = 1 0.46 0.02 0.57 0.02 0.66 0.02 0.76 0.01

�
5
 = 2 2.39 0.04 2.69 0.03 3.11 0.03 3.12 0.02

m = 10
3 �

2
= −1 1.26 0.01 1.30 0.01 1.34 0.01 1.37 0.01

�
3
= 1 1.37 0.01 1.44 0.01 1.52 0.01 1.56 0.01

 5 �
2
= −1 0.50 0.01 0.57 0.01 0.64 0.01 0.69 0.01

�
3
= −2 2.08 0.01 2.12 0.01 2.20 0.01 2.22 0.01

�
4
 = 1 0.45 0.01 0.54 0.01 0.59 0.01 0.65 0.01

�
5
 = 2 2.54 0.01 2.61 0.01 2.66 0.01 2.73 0.01
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Table 12   Arthritis data set: Comparison of clustering structure agreement between models without 
covariates (3) (left) versus with covariates (4) (right)

R Clustering comparison ARI 1-NVI 1-NID

2 No covariate versus age 0.86 0.69 0.81
No covariate versus treatment 0.74 0.51 0.68
No covariate versus gender 0.87 0.70 0.82
No covariate versus age, treatment 0.69 0.45 0.61
No covariate versus age, gender 0.87 0.70 0.82
No covariate versus treatment, gender 0.75 0.55 0.70
No covariate versus age, treatment, gender 0.70 0.46 0.62

3 No covariate versus age 0.43 0.37 0.52
No covariate versus treatment 0.14 0.12 0.21
No covariate versus gender 0.33 0.32 0.47
No covariate versus age, treatment 0.58 0.25 0.38
No covariate versus age, gender 0.70 0.61 0.74
No covariate versus treatment,gender 0.27 0.23 0.36
No covariate versus age, treatment, gender 0.14 0.17 0.27

4 No covariate versus age 0.44 0.34 0.48
No covariate versus treatment 0.85 0.68 0.80
No covariate versus gender 1.00 1.00 1.00
No covariate versus age, treatment 0.66 0.47 0.64
No covariate versus age, gender 0.76 0.57 0.71
No covariate versus treatment, gender 0.84 0.67 0.80
No covariate versus age, treatment, gender 0.58 0.39 0.55
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C Application: comparison among models with R=4 clusters

See Table 14. 

Table 13   The row clustering structure of models without covariates  (3) and with covariates  (4), when 
R = 4 , x

1
∶ age and x

2
∶ treatments. The differences between models in clustering structure are high-

lighted in boldface

Cluster �k − �r �k − (�r + xi1�1r + xi2�2r)

1 1 14 24 54 61 62 67 100 119 124 131 14 24 54 61 67 100 134 137 141
134 137 141 223 239 243 266

2 2 3 4 5 11 12 17 23 26 27 29 30 32 33 1 2 3 4 5 11 12 17 23 26 27 29 30 32 33
35 37 38 42 43 46 47 50 52 58 59 65 68 35 37 38 42 43 46 47 50 52 58 59 62 65
69 70 71 79 81 82 83 85 90 92 94 101 102 68 69 70 71 81 82 83 85 90 92 94 101 102
104 106 107 109 113 116 117 120 121 126 104 106 107 109 113 116 117 119 120 121
133 140 143 150 157 161 163 168 170 172 124 126 131 133 140 143 150 157 161 163
173 180 183 185 186 187 191 193 199 200 168 170 172 173 180 183 185 186 187 191
201 205 206 207 208 211 212 213 214 222 193 199 200 201 205 206 207 208 211 212
225 226 227 229 234 237 238 248 255 257 213 214 222 223 225 226 227 229 234 237
258 263 269 272 273 281 239 243 248 255 257 258 263 266 269 272

273 281
3 6 7 8 10 13 15 16 19 20 21 25 28 31 34 36 6 7 8 10 13 15 16 19 20 21 25 28 31 34 36

39 40 41 44 45 48 49 51 53 56 57 63 64 66 39 40 41 44 45 48 49 51 53 56 57 64 66 73
73 74 75 76 78 80 84 86 87 88 89 91 93 96 74 75 76 78 79 80 84 86 87 88 89 91 93 96
97 98 99 103 105 108 110 111 112 114 115 97 98 99 103 105 108 110 111 112 114 115
118 122 123 125 127 128 129 130 135 136 118 122 123 127 128 129 130 135 136 138
138 139 142 144 145 146 147 148 149 151 139 142 144 145 146 147 148 149 151 152
152 153 154 155 156 158 160 162 164 165 154 155 156 158 160 162 164 165 166 167
166 167 169 174 176 177 178 179 181 184 169 174 176 177 178 179 181 184 189 190
189 190 192 194 195 196 197 198 204 209 194 195 196 197 198 204 209 210 218 220
210 215 217 218 219 220 221 224 228 230 221 224 228 230 231 232 233 235 236 238
231 232 233 235 236 240 242 244 245 247 240 242 244 247 251 252 253 254 256 259
251 252 253 254 256 259 260 261 262 264 260 261 262 264 270 271 274 275 276 277
267 270 271 274 275 276 277 278 279 280 278 279 280 282 283 284 289
282 283 284 285 289

4 9 18 22 55 60 72 77 95 132 159 171 175 9 18 22 55 60 63 72 77 95 125 132 153 159
182 188 202 203 216 241 246 249 250 265 171 175 182 188 192 202 203 215 216 217
268 286 287 288 219 241 245 246 249 250 265 267 268 285

286 287 288
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D Application: comparison with Partitioning Around Medoids (PAM)

See Table 15.

E Application: robustness analysis

To evaluate the robustness of our proposal, we artificially and randomly introduced 
3% outliers in the numerical variable “age" and assessed the model fitting and its 
performance in capturing the underlying clustering structure (Table 16).

Table 14   Average age for each cluster (R = 4) and for each level of treatment (placebo or drug), for 
the model with covariates age and treatment ( �

k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
) , x

1
 = age & x

2
= treatment) and 

without covariates ( �
k
− �

r
)

Treatment R1 R2 R3 R4

Placebo Drug Placebo Drug Placebo Drug Placebo Drug

�
k
− �

r
45.5 35.0 54.5 50.2 53.5 53.6 57.4 52.5

�k − (�r + xi1�1r
+ xi2�2r)

46.5 41.0 50.8 49.2 50.5 51.1 53.4 50.1

Table 15   Average age for each cluster (R = 4) and for each level of treatment (placebo or drug), for the 
model with covariates age and treatment ( �

k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
) , x

1
 = age & x

2
= treatment) and the 

Partitioning Around Medoids (PAM)

Treatment R1 R2 R3 R4

Pla-
cebo

Drug Placebo Drug Placebo Drug Placebo Drug

�
k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
)

�
k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
)

46.5 41.0 50.8 49.2 50.5 51.1 53.4 50.1

PAM 45.8 46.0 51.4 49.9 51.1 51.7 51.3 50.1
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Table 16   Results of row clustering models fitted to the arthritis data set with outliers The best model in 
each group of models (one, two, or three covariates), based on AIC and BIC, is shown in bold

Model R Number of 
parameter

Log-like AIC BIC

�
k
− (�

r
+ x

i
�
r
) x = age 2 8 −1128.95 2273.89 2312.01

3 11 −1095.13 2212.26 2264.68
4 14 −1095.90 2219.81 2286.52
5 17 −1079.59 2193.18 2274.19

�
k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
) x

1
 = age 2 10 −1105.94 2231.87 2279.52

x
2
= treatment 3 14 −1078.26 2184.51 2251.22

4 18 −1080.34 2196.67 2282.44
5 22 −1064.40 2172.79 2277.62

x
1
 = age 2 10 −1138.75 2297.49 2345.14

x
2
= gender 3 14 −1095.96 2219.92 2286.63

4 18 −1088.36 2212.72 2298.49
5 22 −1083.55 2211.10 2315.93

�
k
− (�

r
+ x

i1
�
1r
+ x

i2
�
2r
+ x

i3
�
3r
) x

1
 = age 2 12 −1108.36 2240.72 2297.90

x
2
=  treatment 3 17 −1080.82 2195.64 2276.64

x
3
= gender 4 22 −1097.13 2238.26 2343.09

5 27 −1063.01 2180.02 2308.68

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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