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Abstract
Choosing a shrinkage method can be done by selecting a penalty from a list of pre-
specified penalties or by constructing a penalty based on the data. If a list of penal-
ties for a class of linear models is given, we introduce a predictive stability criterion 
based on data perturbation to select a shrinkage method from the list. Simulation 
studies show that our predictive method identifies shrinkage methods that usually 
agree with existing literature and help explain heuristically when a given shrinkage 
method can be expected to perform well. If the preference is to construct a penalty 
customized for a given problem, then we propose a technique based on genetic algo-
rithms, again using a predictive criterion. We find that, in general, a custom penalty 
never performs worse than any commonly used penalties and there are cases the cus-
tom penalty reduces to a recognizable penalty. Since penalty selection is mathemati-
cally equivalent to prior selection, our method also constructs priors. Our methodol-
ogy allows us to observe that the oracle property typically holds for penalties that 
satisfy basic regularity conditions and therefore is not restrictive enough to play a 
direct role in penalty selection. In addition, our methodology, can be immediately 
applied to real data problems, and permits us to take model mis-specification into 
account.
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1  Shrinkage and prediction

In the context of linear models, inference problems in which the number of param-
eters p is bigger than the sample size n, i.e., with p > n , are ill-posed and require 
some form of regularization to be solved. The earliest form of this is called Tik-
honov regularization and was used initially for matrix inversion. In Statistics, ridge 
regression (RR) is probably the first occurrence of Tikhonov regularization, see 
Hoerl (1962). By the early 1990s, L2 regularization was common in neural networks 
contexts, see Sjöburg and Ljung (1992), not only to ensure that a solution existed 
but also to reduce variance. An important step forward was replacing the L2 penalty 
with an L1 penalty, see Tibshirani (1996). This shrinkage method is called the least 
absolute shrinkage and selection operator (LASSO). It provides a form of regulari-
zation that does variable selection as well as variance reduction while ensuring solu-
tions exist. The elastic net (EN), Zou and Hastie (2005), was introduced as a com-
promise between RR and LASSO. It uses both an L1 penalty and an L2 penalty; RR 
and LASSO are special cases of EN. Another insight was the concept of an ‘oracle 
property’ (OP) first proved for a penalty called the smoothly clipped absolute devia-
tion (SCAD) in the context of linear models; see Fan and Li (2001). The OP meant 
that, as n → ∞ , the parameter estimates from the SCAD penalty behaves as if the 
correct regression parameters were known, i.e., the parameter estimates either were 
consistent, asymptotically normal, and efficient or went to zero according to whether 
the variables they multiplied were or were not in the true model.

Over the last two decades, numerous shrinkage methods have been proposed and 
studied as individual methods, representing individual penalties or priors, for the 
purposes of parameter inference. Chief amongst these is Wang et al. (2020a) who 
focused exclusively on the “high sparsity” case; see also Bühlmann and Mandozzi 
(2014). High sparsity describes the situation where the number of true parameters, 
p0 , is small relative to p. Formally high sparsity means p0

p
= o(1) . Within this case, 

Wang et al. (2020a) generated over 2300 specific scenarios and examined how well 
various shrinkage methods performed in three senses, including root mean square 
predictive error (RMSPE) on a hold out set. RMSPE is the closest of their criteria to 
the predictive stability evaluation we advocate here. The benefit of RMSPE over the 
other performance metrics is that it does not require knowledge of the true model. In 
short, their main recommendations under RMSPE were to use LASSO, or poten-
tially SCAD, and to avoid using adaptive LASSO in “easy” scenarios. For “harder” 
scenarios they recommend LASSO, RR, or EN. Our closest results below recom-
mend RR and EN in “easy” scenarios1 but we note LASSO is nearly as good. For 
“harder” scenarios, e.g., tridiagonal covariance structure and 90% sparsity, we iden-
tify RR and EN again with LASSO nearly as good. Overall, we find reasonable 
agreement for sufficiently comparable scenarios. Differences in recommendations 
can be explained partially by the fact that Wang et al. (2020a) uses RR to estimate 
adaptive weights and we use 

√
n-consistent estimators. In addition, we are using 

1 See Table A1 in Appendix A, the line labeled (Ind, Li).
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empirical predictive stability only, and this differs mathematically and conceptually 
from RMSPE. Throughout this paper we have emphasized giving the clearest rec-
ommendations possible and and usage of our techniques for data analysis rather than 
simply exploring the performance of shrinkage methods via simulations.

More recent work examining the performance of shrinkage techniques includes 
Hastie et  al. (2020) who argue in favor of their “relaxed LASSO” that combines 
LASSO with OLS estimates and in some scenarios performs well compared to best 
subsets regression. In Celeux et al. (2012), the authors noted that although purely 
Bayesian methods appear to be more parsimonious than shrinkage methods in terms 
of variable selection, there is little difference predictively between them. They also 
state that shrinkage methods can be expected to perform better than purely Bayes-
ian methods predictively because shrinkage methods usually minimize cross-vali-
dation predictive error in their implementation. Most recently, Wang et al. (2020b) 
compares variable selection techniques such as shrinkage methods in an economic 
setting with various dependence structures. Unlike earlier work, they, too, adopt 
a predictive criterion. Then they argue that shrinkage methods generally perform 
better than other methods such as factor analysis, which is commonly used in 
econometrics.

Like other authors, our goal is to choose a penalty (or prior) from a class of pen-
alties (or priors). One way to do this is to consider a list of shrinkage methods, find 
a method for comparing them, and choose the best. Alternatively, one can take a 
‘build-your-own’ approach, construct a shrinkage method from part of the data and 
use it on the rest of the data. Here, we provide both a comparison of ‘off the shelf’ 
methods and a build-your-own technique (based on genetic algorithms) under a pre-
dictive optimality criterion. The build-your-own shrinkage methods never perform 
worse that the off-the-shelf methods, but may return an off-the shelf method as opti-
mal. We give an example of each case.

More formally, write a linear model (LM) of the form

where Y = (Y1,… , Yn)
T , X is an n × p design matrix, � = (�1,… , �p)

T is a p-dimen-
sional parameter, and � = (�1,… , �n)

T is random error �i ∼ N(0, �2) for some 𝜎 > 0 
and assume we have a data set

A nonadaptive shrinkage method gives parameter estimates

where L1 and L2 are loss functions, xi is the i-th row of X, and λ is the decay parame-
ter. The term shrinkage arises from the fact that as λ → ∞ , each �j → 0 . Sometimes 
the first term on the right hand side of (1.1) is replaced by a log-likelihood; for the 
normal likelihood, L1 corresponds to squared error. In addition, taking L2(�j) = �2

j
 

error leads to RR.

Y = X� + �

Dn = {(yi, xi) ∣ i = 1,… , n}.

(1.1)𝛽 = argmin
λ,𝛽

n∑

i=1

L1(yi − xi𝛽) + λ

p∑

j=1

L2(𝛽j)
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In (1.1) all coordinates of � are penalized by a single factor λ . By contrast, 
adaptive shrinkage methods allow for different shrinkages on the coordinates of 
� . An adaptive shrinkage method typically gives estimates of the form

where wp = (w1,… ,wp)
T and the wj ’s are weights on the individual �j’s. Again, 

the first term on the right hand side of (1.2) may be replaced by a log-likelihood. 
Also, the dependence on wj in the second term may be more complicated; we have 
represented the adaptivity of the constraint to the data as multiplicative in the pen-
alty term for simplicity, but more general forms of adaptivity are possible. For 
instance, we have chosen wjL2(�j) , but one could also construct an adaptive penalty 
of the form L2(wj, �j) . We regard the SCAD and minimax concave penalties (MCP) ( 
Zhang (2010)) as adaptive because they are data driven even though they only intro-
duce one extra non-multiplicative parameter (and have the OP). Thus adaptivity is 
not simply parameter counting. Moreover, EN introduces two parameters and is not 
adaptive while the adaptive EN (AEN) introduces p parameters has the OP; see Zou 
and Zhang (2009).

As written, expression (1.2) introduces p new parameters, the wj’s, that must 
be estimated. Two main estimation techniques have been proposed to obtain the 
ŵj’s. One, due to Zou (2006) (see also Wang et al. 2007), is to set ŵj =

1

|𝛽j|𝛾
 where 

𝛽j is any 
√
n-consistent estimator of �j , e.g., from SCAD or the ordinary least 

squares (OLS) estimator when n is large enough, and choose � by a cross-valida-
tion criterion. The justification for this choice is given in remark 2 of Zou 
(2006)—as n → ∞ , the estimated weights for the zero coefficient �j ’s tend to 
infinity and the weights for non-zero coefficient �j ’s tend to a constant. This 
allows for asymptotically unbiased estimates. Another method, due to Qian and 
Yang (2013), sets ŵj =

SE(𝛽j,OLS)
𝛾

|𝛽j,OLS|𝛾
 . This method seems to work well when there is 

high collinearity; see Qian and Yang (2013). In practice, for both methods, � = 1 
is used to avoid extra computation. Here, we have exclusively used the Zou 
(2006) method since it does not require n > p and has a nice interpretation: As 
𝛽j → 0 , ŵj → ∞ forcing �j = 0 in (1.2).

Formally, the OP has two components, consistency in variable selection, and 
asymptotic normality of the estimates. Write � = (�1, �2) where �2 represents the 
zero components of � . Under various conditions, 

√
n-consistent local minimizers 

𝛽 = (𝛽1, 𝛽2) from certain shrinkage criteria (such as SCAD) satisfy the following 
two properties: 

1. P(𝛽2 = 0) → 1 , and
2. 

√
nJ(𝛽1, 0)(𝛽1 − 𝛽1)

D
→ N(0, J(𝛽1, 0))

where J denotes the Fisher information matrix.
Roughly, shrinkage methods segregate into those that are nonadaptive, i.e., intro-

duce exactly one ‘decay’ parameter and usually do not satisfy the OP, and those that 

(1.2)𝛽 = arg min
λ,wp,𝛽

n∑

i=1

L1(yi − xi𝛽) + λ

p∑

j=1

wjL2(𝛽j)
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are adaptive, introduce two or more decay parameters, and often satisfy the OP. We 
will see that, contrary to initial impressions, the oracle property is not rare.

We note that (1.1) corresponds to a joint density � on the data and � . Indeed, 
exponentiating gives that 𝛽  corresponds to the mode of the posterior

in which L2 defines a prior on � with hyperparameter λ . A similar manipulation can 
be applied to (1.2). This means that penalty selection is mathematically equivalent 
to prior selection. However, the equivalence is only mathematical because the class 
of reasonable penalties is a proper subset of the class of reasonable priors. In par-
ticular, many reasonable penalties are convex—our method in Sect.  5.1 assumes 
convexity, for instance—but priors do not have to be log-convex. Hastie et al. (2020) 
suggests that non-convex penalties may be preferable for variable selection, and that 
convex penalties can be seen primarily as variance reduction techniques, although 
they can still be effective in variable selection.

Even though shrinkage methods were originally introduced as a way to solve the 
n < p problem, the OP uses n → ∞ . This is partially ameliorated by results that give 
analogs of the OP where p increases much faster than n does; see Fan and Lv (2013). 
However, the cost of amerlioration is often artificial conditions on the parameter 
space and/or design matrix. Moreover, many of the original examples given to verify 
that shrinkage methods were effective actually had n > p and took p = 8 , see Fan 
and Li (2001), Zou (2006), and Wang et al. (2007).

Our comparison is in terms of predictive stability and accuracy of model selec-
tion. That is, after finding 𝛽  for a given shrinkage method we define the predictor

for Y(x) at some new value x. Then we evaluate how well Ŷ  predicts when the data 
are perturbed. We perturb the data using the technique of Luo et al. (2006). The idea 
is to add N(0, �2) noise to the yi ’s in D and then use part of the data to form a predic-
tor and the rest of the data to evaluate the predictor. We do this by generating ‘insta-
bility’ curves, basically L2 predictive errors as a function of � . A good predictor 
will have smooth instability curves with low values that increase slowly with � . We 
also use more conventional accuracy measures for variable selection similar to the 
measures used in Wang et al. (2020a) for simulations and semi-synthetic data set-
tings. We argue that pairing the two provides an assessment that captures analogues 
of both variance (from the instability curves) and bias (from the accuracy measures). 
We regard instability as more important than variable selection because even if a 
variable is incorrectly included its contribution may be small if its coefficient is near 
zero and if it is incorrectly excluded the bias should show up in the instability curve.

Since our overall approach is predictive and requires no knowledge of a true 
model to implement, it is a technique for data analysis suitable for real data sets 
not just for simulation studies. In particular, it allows us to consider the effects of 
model mis-specification as in Sect. 4. This contrasts the applicability of Wang et al. 
(2020a) as the authors note in Sect. 5 that their simulation studies do not provide a 
method for choosing a shrinkage method when the true model is unknown.

�(� ∣ Yn) ∝ e
−λ

∑p

j=1
L2(�j)e−

∑n

i=1
L1(yi−x

T
i
�)

(1.3)Ŷ(x) = xT𝛽
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The main contributions of this paper are: 

1. The use of predictive stability as a general model selection technique. Here, we 
have used it to choose among many shrinkage methods. Predicgtive stabnility as 
a criterion verifiably works as it should in simulations, and can be directly used 
in real data settings when the true model is unknown; see Sects. 3 and 4.

2. We observe that the OP is more common than most practitioners seem to realize; 
see Sect. 2. So, we needn’t limit ourselves to the specific shrinkage methods that 
have been studied. Hence when n > p , we search a general class of shrinkage 
methods that have the OP. However, when n < p we enlarge the class of shrink-
age methods to include some that do not have the OP. This larger set may give us 
stronger optimality; see Sect. 5.1. In either case, we generate penalties (or priors) 
that are optimal for a given data set.

3. The use of Genetic Algorithms (GAs) with part of the data to form a prior that we 
then apply predictively. By optimizing over the prior in this way we are effectively 
optimizing over the penalty and hence choosing the optimal shrinkage method. 
This optimum may or may not coincide with an established shrinkage method but 
will still have the OP. Thus, we have chosen our shrinkage method to be predic-
tively optimal for our data. We verify in examples that this is predictively better 
than simply using all the data to make predictions.

The structure of this paper is as follows. Section 2 gives general conditions for the 
OP to hold for a wide range of adaptive penalties. We present our comparisons of 
existing shrinkage methods in Sect. 3 and confirm out method agrees with existing 
literature when the true model is known. We illustrate the use of our method for a 
real data set in Sect. 4. In Sect. 5, we present our GA optimization verifying that the 
theory in Sect. 2 holds and the result of the GA is optimal given the data. We sum-
marize our overall findings and intuition in Sect. 6.

2  Theoretical results

Our first two results are oracle properties for penalized log-likelihoods and empiri-
cal risk settings under relatively standard regularity conditions. Our second pair of 
results are oracle properties where we have relocated the penalties on log-likeli-
hoods and empirical risks at 

√
n-consistent estimators.

Our proofs for these four results are motivated by the techniques in Fan and 
Li (2001) and Wang et al. (2007). We assume an adaptive setting and allow dif-
ferent penalty functions on different parameters. This is different from Fan and 
Lv (2013) who did not treat different penalty functions on different parameters 
or adaptivity. Their main result concerned the asymptotic equivalence of penal-
ized methods and permitted p to increase with n. Like other papers that allow p 
to increase with n, some of the conditions appear artificial. For example, aside 
from truncations of the parameter space, one must assume that there is a sequence 
of explanatory variables such that if one of the early variables is correct and 
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accidentally not included it can be reconstructed from later explanatory variables 
in the sequence, thereby sacrificing identifiability. Our result, like many others, 
assumes either fixed p or p increasing so slowly with n that the required conver-
gences hold.

2.1  General penalized log likelihood

The linear model can be written as

Assume that �j ≠ 0 for j ≤ p0 and �j = 0 for p0 < j ≤ p for some p0 ≥ 0 . With-
out loss of generality, we write the true vector of regression coefficients as 
� = (�1, �2)

� = (�1, 0)
� . Here, we regard the x′

i
s as deterministic. When needed we 

write 𝛽 ∈ Ω ⊂ ℝ
p where Ω is open and Ω = (Ω)0.

Let (xi, Yi) for i = 1,… , n each have density �(Yi|xi, �) (with respect to a 
fixed dominating measure) such that the six regularity conditions stated below 
are satisfied. Let L(�|xn) be the log-likelihood function of the observations 
(x1, Y1),… , (xn, Yn) and denote the penalized log-likelihood objective function as

In Sect. 5.2.2, we use the extra generality of allowing different fj ’s for different �j’s. 
Here we write xn to mean x1,… , xn for ease of notation. Recall λj = wjλ and define

When estimating the λ∗
max

 and λmin we must consider the ordering of these two 
quantites. Note that as the sample size increases, λ̂∗

max
< λ̂min ; see Remark 2 in Zou 

(2006). To help see why, note that the max and min are over different sets.
Now we state six regularity conditions required for our first result.

Condition 1 Each Fisher information matrix

exists and is positive semi-definite uniformly in i. In addition, ∃B > 0 so that 
BIp0×p0 ≥ I(�|xi) ≥ 1

B
Ip0×p0 uniformly in i where Ip0×p0 is the p0 × p0 Fisher informa-

tion matrix for the non-zero �j’s.

Condition 2 Assume there exists an 𝜖 > 0 so that for 𝜂 > 0 small enough,

(2.1)Y
i
= x

T

i
� + �

i
, i = 1,… , n,

Q(�) = L(�|xn) + n

n∑

i=1

λjfj(�j).

λ∗
max

= max{wjλ ∶ j = 1,… , p0},

λmin = min{wjλ ∶ j = p0 + 1,… , p}.

J(�|xi) = −E

(
�2

�2�
ln �(Yi|xi, �)

)
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where B(�0, �) is the Euclidean ball centered at �0 with radius 𝜂 > 0 . Also, assume 
the log likelihood has a convergent second order Taylor expansion. That is, for all 
j,� = 1,… , p , we have ∀� ∈ Ω and ∀xi that, as � → 0,

Condition 3 For any � , ∃N such that ∀n ≥ N , ∃I(�|x∞) positive semi-definite so that

We write J1(�1) = J1(�1|x∞) to mean the information matrix for �1 only.

Condition 4 There exists an increasing sequence of compact sets C = Cn in the 
parameter space and constants M = Mn ∈ ℝ

+ such that for all n, 
sup�j∈Cn

|f �
j
(�j)| ≤ Mn . That is, the first derivative of the penalty term is uniformly 

bounded on compact sets.

Condition 5 The penalty function satisfies fj(0) = 0 and fj(𝛽j) > 0 for �j ≠ 0.

Condition 6 The penalty function, fj , is uniformly Taylor expandable when �j0 ≠ 0 . 
That is, for h ∈ ℝ and �j0 ≠ 0 , fj(�j0 + h) − fj(�j0) = f �

j
(�j0)h + oj(1) uniformly in j 

i.e., supj oj(1) → 0.

Remark Condition 6 requires fj to be differentiable at every point except 0. This 
condition is reasonable because of the Condition 5. Since fj(0) = 0 , we do not need 
to worry about the derivative at 0. We discuss the consequences of allowing 
f �
j
(0) = 0 in Sect. 2.3.

Our main result generalizes the class of oracle procedures to a penalized log like-
lihood with an arbitrary penalty function that satisfies mild conditions. By using 
arbitrary penalty functions, our result shows that the class of methods that have the 
OP contains an infinite dimensional vector space of functions. Our proof technique 
is modified from Fan and Li (2001) and Wang et al. (2007).

Theorem 2.1 (Oracle Property) Assume Conditions 1–6 hold. Suppose 
√
nλ∗

max
→ 0 

and 
√
nλmin → ∞ Then, the estimator 𝛽 = (𝛽1, 𝛽2)

T satisfies 

1. P(𝛽2 = 0) → 1 , and

E

[
sup

𝛽∈B(𝛽0,𝜂)

|||||
𝜕2

𝜕𝛽j𝜕𝛽�
L(𝛽|xi)

|||||

1+𝜖
]
< ∞,

E

[
sup

�∈B(�0,�)

|||||
�2

��j���
L(�|xi) − Jj,�(�0|xi)

|||||

]
→ 0.

sup
𝛽

|||||
1

n

n∑

i=1

J(𝛽|xi) − J(𝛽|x∞)
|||||
< 𝜖.
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2. 
√
n(J1(𝛽1�x∞))

1

2 (𝛽1 − 𝛽1)
D
→ N(0, Ip0 )

where Ip0 is the p0 × p0 identity matrix.
For proof see Appendix B1.
Therefore, we can construct an oracle procedure by choosing any fj(�j) ’s that sat-

isfy Conditions 4 and 5. We can choose a single penalty function f (�j) = fj(�j) for 
all j, or we can choose an individual fj for each �j.Thus, we treat different �j ’s differ-
ently and retain the OP.

2.2  Penalized empirical risk

We now extend the OP results for penalized likelihoods to penalized empirical risks. 
This is a more general setting because we allow a larger class of loss functions on 
the data.

Consider the same regression scenario as Sect. 2.1 and a distance d(yi − xT
i
�) . Let

be the empirical risk of the observations (x1, Y1),… , (xn, Yn) and denote the penal-
ized empirical risk objective function by

We introduce one more condition for empirical risks.

Condition 7 Let

The empirical risk R satisfies for some 𝜖 > 0

and has a convergent second order Taylor expansion. That is, for all j,� = 1,… , p 
we have that ∀� ∈ Ω and as � → 0,

R(�|xn) = 1

n

n∑

i=1

d(yi − xT
i
�)

Q(�) = R(�|xn) + n

p∑

j=1

λjfj(�j).

J∗(�|xi) = −E

(
�2

�2�
R(�|xi)

)
.

E

[
sup

𝛽∈B(𝛽0,𝜂)

|||||
𝜕2

𝜕𝛽j𝜕𝛽�
R(𝛽|xi)

|||||

1+𝜖
]
< ∞,

E

[
sup

�∈B(�0,�)

|||||
�2

��j���

1

n

n∑

i=1

R(�|xi) − J∗(�|x∞)j,�
|||||

]
→ 0
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and ∃B > 0 so that BIp0×p0 ≥ J(�|xi) ≥ 1

B
Ip0×p0 uniformly in i. Hence, J∗(�|x∞) is 

positive semi-definite and we abbreviate it to J∗(�).

We see that J∗(�) = J∗(�|x∞) is an analog to the Fisher information matrix but 
for an empirical risk rather than a log-likelihood.

The distance function we use in the empirical risk must satisfy some regularity 
conditions as well. Namely, we must use an even distance function with a unique 
minimum at 0. This ensures the expectation is 0, as shown in the following lemma.

Lemma 1 Let d(u) be an even distance function with a unique minimum at 0. If u 
comes from some distribution with pdf fU(u) that is symmetric about zero with sup-
port [−a, a] for a ∈ ℝ , then EU[d

�(u)] = 0.

Proof Since d(u) is an even function, d�(u) is an odd function. By definition,

Since fU(u) is symmetric, fU(u) = fU(−u) , i.e., fU(u) is even. Let 
g(u) = d�(u)fU(u) . Then g(u) is an odd function, and we have ∫ a

−a
g(u)du = 0, so 

EU(d
�(u)) = lima→0 ∫ a

−a
g(u)du = 0.   ◻

Note that Lemma 1 is true for any even distance function d(u), and this is useful 
for us because we focus on the distance function d(yi − xT

i
�) which is even due to the 

symmetry of (yi − xT
i
�).

Next we present a result analogous to Theorem 2.1 but we replace the log-like-
lihood with an empirical risk. We see that under mild regularity conditions, the OP 
holds for penalized empirical risks.

Theorem  2.2 (Oracle Property) Assume Conditions 4–7 and Lemma 2 in Appen-
dix B2 hold and suppose 

√
nλ∗

max
→ 0 and 

√
nλmin → ∞ . Then the estimator 

𝛽 = (𝛽1, 𝛽2)
T satisfies 

1. P(𝛽2 = 0) → 1 , and
2. 

√
n(J∗

1
(𝛽1�x∞))

1

2 (𝛽1 − 𝛽1)
D
→ N(0, Ip0),

where Ip0 is the p0 × p0 identity matrix.
For proof see Appendix B2.
Taken together, Theorems 2.1 and 2.2 give us insight into how large the class 

of oracle procedures is. Previously it seemed oracle procedures were rare, isolated 
choices of priors. Now, even though we have not characterized the class of all oracle 
procedures, we can see that the conditions for a procedure to have the oracle prop-
erty are quite general, allowing a large range of likelihoods, distances, and penalties 
(or priors).

EU(d
�(u)) = ∫

a

−a

d�(u)fU(u)du.
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Given the fact that many shrinkage methods are equivalent asymptotically, pro-
viding a method for choosing a shrinkage method in finite sample problems is essen-
tial. Hence, since there are infinitely many oracle procedures, two key questions 
arise. For a given data set, which shrinkage method should we use? Also, when it 
is desirable to use a method without the OP? We answer both these questions using 
simulations. We propose choosing a ‘best’ shrinkage method (which may or may 
not satisfy the OP) by optimizing a stability criterion over both a class of penalty 
functions and a class of distance functions. Allowing fj(�j) to be different for each 
parameter, as long as they are uniformly Taylor expandable and have similar proper-
ties, is powerful because we can choose variable-dependent penalties. This is a more 
general sense of adaptivity than each �j merely having its own shrinkage parameter 
λj.

In Sect. 3, we study popular shrinkage methods, many of which satisfy the condi-
tions of our Theorems. For instance, ALASSO and AEN satisfy the conditions for 
Theorem 2.1. Other penalties such as SCAD and MCP also have the OP, but they are 
not special cases of our results, emphasizing the fact that the class of methods that 
have the OP is large.

2.3  Parameter specific locations for the penalty

Let 𝛽∗ be a 
√
n-consistent estimator of � . To take advantage of the fact that shrink-

age methods can set 𝛽j ’s to zero, it is natural to choose 𝛽∗ to be from a specific 
shrinkage method such as SCAD that only requires the estimation of one extra 
parameter. Adaptive methods such as ALASSO, AEN, etc., are also viable. The idea 
is to use the 𝛽∗

j
 ’s in 𝛽∗ to adjust the location of the penalty function (in the James-

Stein sense). Using the data multiple times in this manner is done regularly in 
shrinkage methods.

We state our extensions to Theorems 2.1 and 2.2 as corollaries since we assume 
the same hypotheses. For penalized log likelihoods with location shifted penalties 
we have the following analog to Theorem 2.1.

Corollary 2.1 Redefine the objective function in Sect. 2.1 to be

Then, under the same conditions as in Theorem 2.1, the estimator 𝛽 = (𝛽1, 𝛽2)
T that 

minimizes Q(�) has the OP, i.e., 

1. P(𝛽2 = 0) → 1 , and
2. 

√
nJ1(𝛽1�x∞)

1

2 (𝛽1 − 𝛽1) → N(0, Ip0 ).

Proof The proof of Corollary 2.1 follows directly from the proof of Theorem 2.1. 
Indeed, if for each true �j = 0 , then for large n and for p0 + 1 ≤ j ≤ p we have 

Q(𝛽) = L(𝛽|xn) + n

p∑

j=1

λjfj(𝛽j − 𝛽∗
j
).
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P(𝛽∗
2
= 0) → 1 . This is a direct result of using a consistent shrinkage estimator for 

�∗
j
 . So, in the proof of Lemma 2 in appendix B2, the inequalities at the end are 

asymptotically unchanged. Then, since 𝛽∗
j
 only appears in the penalty, not the likeli-

hood, and in the proof of Theorem 2.1 the penalty only has to be controlled in the 
last term of (B8) in appendix B1, to get the asymptotic normality it is enough for √
nλj → 0 , as guaranteed by the hypotheses.   ◻

For penalized empirical risks with location shifted penalties we have the follow-
ing analog to Theorem 2.2.

Corollary 2.2 Redefine the objective function in Sect. 2.2 to be

Then, under the same conditions as Theorem  2.2, the estimator 𝛽 = (𝛽1, 𝛽2)
T that 

minimizes Q(�) has the OP, i.e., 

1. P(𝛽2 = 0) → 1 , and
2. 

√
nJ∗

1
(𝛽1�x∞)

1

2 (𝛽1 − 𝛽1) → N(0, Ip0 ).

Corollary 2.2 follows from Theorem 2.2 the same way that Corollary 2.1 follows 
from Theorem 2.1.

The methods motivated by these corollaries continue to allow shrinkage via the 
wj ’s as well as ‘James-Stein’ type shrinkage (i.e. shifting the penalty to be located 
around a 

√
n-consistent estimator of its true value). We are introducing another p 

hyper-parameters, and for this reason we only recommend this ‘double shrinkage’ 
approach when n is not too much smaller than p (preferably n > p ). For these cases, 
we use ŵj = 1∕|𝛽j,OLS| when n > p and wj = 1 for all j when n < p because our simu-
lations show adaptive methods perform poorly in this case. Taken together, double 
shrinkage lets us set coefficients to zero from the OP on the 𝛽∗

j
 ’s and from the OP on 

the �j’s. Moreover, when n > p the estimated weights ŵj give tighter intervals around 
�j ’s that have smaller |𝛽j,OLS|’s. Thus, in practice, we tend to get penalties/priors that 
are centered around zero when they should be and not centered around zero when 
they shouldn’t be.

All of the theory to this point requires the derivative of the penalty f ′
j
 not be 

defined at 0. If we allow the derivative of the penalty to be 0 at 0, i.e. f �
j
(0) = 0 , then 

we get similar, but weaker results. Namely, we have 

1. 𝛽2
p
→ 0 , and

2. 
√
nJ∗

1
(𝛽1�x∞)

1

2 (𝛽1 − 𝛽1) → N(0, Ip0 ).

Q(𝛽) = R(𝛽|xn) + n

p∑

j=1

λjfj(𝛽j − 𝛽∗
j
).
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This follows from the same proof as in Theorem 2.1, but without assuming Lemma 
1 in Appendix B.1. That is,we can allow the penalty to be differentiable everywhere 
and still get the convergence in distribution and thus in probability analog.

The main difference from this and our main results presented here is that differ-
entiable penalties are unable to set estimates exactly to zero, but asymptotically, they 
still converge to 0 for the parameters that are indeed 0. While this is a weaker mode 
of convergence, the fact that a convergence result holds for differentiable penalties 
allows us to search for an optimal penalty from a list of differentiable and non-differ-
entiable penalties. This is seen in Sect. 5.1.

3  Computational comparisons

Every shrinkage method for linear models generates a predictor of the form (1.3),i.e.,

where the estimate 𝛽  of � is a function of the data-driven estimates of λ and the wj

’s. It is well-known that many shrinkage methods (LASSO, EN, etc) zero-out coef-
ficients �j and thus do variable selection as well as estimation—specifically penalties 
that have a corner at 0; see the discussion in Sect. 6. Here, we look only at the insta-
bility of predictive error and the accuracy of variable selection.

Following Luo et al. (2006) we add random N(0, �2) noise to the yi ’s in Dn and 
denote the partition of the perturbed data by

For any predictor Ŷ  , we define its instability to be

where Ŷ𝜏 means we have formed a predictor using Dtrain(�) . In the computations we 
present in this section we used �k = k , k = 1,… , 10 , to generate instability curves of 
the form (k, S(Ŷ)𝜏k ) , and looked for patterns.

Intuitively, perturbing the Y’s by adding normal noise should only increase S(Ŷ)𝜏k , 
i.e., the instability curves should increase with � . Of course, we prefer instability 
curves that are small—less instability upon perturbation suggests a better predictor. 
However, if an instability curve decreases with � then perturbation of Y is making 
the predictor more stable. We take this to mean the predictor is discredited for some 
reason. We suggest this behavior arises when the predictor has omitted or included 
terms incorrectly or has poorly chosen coefficients. We seek predictors with insta-
bility curves that are lower than the instability curves of competing predictors and 
smoothly increase slowly with �.

Our basic computational procedure is as follows. Fix a number K of values of � 
to form the points on the instability curve and a (large) number L for the number of 

Ŷ(xn+1) = xT
n+1

𝛽

Dn(�) = Dtrain(�) ∪Dtest(�).

S(Ŷ)𝜏 =

√
1

ntest

∑

i∈Dtest(𝜏)

(yi − Ŷ𝜏(xi))
2
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iterations to be averaged. For each k = 0, 1,… ,K , let � = 1,… , L . Note, we allow 
k = 0 to be the first iteration, meaning no extra noise is added to the data. This first 
iteration corresponds to standard RMPSE. Thus, our method compares the shrink-
age methods predictive performance as part of the instability evaluation.

Instability curves for a given predictor can generically be formed by the following 
steps. 

1. For each � , randomly split Dn in to Dtrain and Dtest.
2. Perturb the y-values in Dtrain and Dtest using N(0, �2

k
) noise. Call the results Dtrain,�k

 
and Dtest,�k

 , respectively.
3. Using Dtrain,�k

 form the competing predictors denoted Ŷ𝜏k.
4. Using Dtest,�k

 obtain S(Ŷ𝜏k ) for each predictor.
5. Let S(Ŷ𝜏k ,�) be the �-th value of S(Ŷ𝜏k ).
6. For each predictor and k, find the sample mean: 

7. Plot S𝜏k (Ŷ) as a function of �k for each predictor.

In this section all simulated data come from

where the rows Xi = xi of X, for i = 1,… , n , are either MVNp(0,M) or are IID ∼ t3 
( t3 is a t distribution on 3 degrees of freedom) to see the effect of heavier tails. In the 
MVNp(0,M) case, we consider various choices of variance matrix M.

The vector � = (�0, 0) has values �0 ∈ ℝ
p0 drawn from IID Np0

(4, 1) with a 
1 × p − p0 vector of zeros appended to allow for sparsity.

Thus we have, dim(Y) = n , dim(X) = n × p , and dim(�) = n . We use two 
choices for the distribution of �i , N(0,  1) and t3 , to represent light and heavy 
tails in the error, respectively. We are concerned mainly with the case p < n , but 
include cases p > n for completeness.

We compared predictors from seven different shrinkage methods as well as a 
full linear model. Four of the shrinkage methods have the OP, namely, ALASSO 
(Zou 2006), AEN (Zou and Zhang 2009),

SCAD, and MCP (Zhang 2010). The remaining three methods, RR, LASSO, 
and EN, do not have the OP.

Below we list our choices for estimating the adaptive weights as well how we 
split the data into a training set and testing set.

As noted in Sect. 1, we follow Zou (2006) for the adaptive methods by choos-
ing ŵj = 1∕|𝛽j,OLS| for p < n . When we do not have enough data to implement 
OLS, i.e. p > n , we used ŵj = 1∕|𝛽j,SCAD| because SCAD is a 

√
n-consistent esti-

mator (although this is not necessarily important since n < p . Note for 𝛽j,SCAD = 0 , 
we set ŵj = 500 for computational reasons since we cannot divide by 0.

S𝜏k (Ŷ) =
1

L

L∑

�=1

S(Ŷ𝜏k ,�).

Y = X� + �
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We examined four settings of p relative to n, while considering three different 
sparsity levels. We set p = 100 and considered three sparsity levels, 10%, 50%, 
and 90%, which corresponds to p0 = 90, 50, 10 , repsectively. We consider four 
sample sizes n = 40, 75, 150, 500 . For each n we let L = 1000 for the instability 
computations. That is we averaged over 1000 datasets to get an instability value 
for each perturbation level. We used a training data set to form the predictor and a 
testing data set to evaluate its performance. Formally we have

We reserve 75% of the data for training and the remaining 25% for testing.
Producing the instability curves for the seven shrinkage methods required two 

packages in R. For LASSO, RR, EN, ALASSO, AEN, we used the glmnet package 
(see Friedman et al. 2010) in RStudio Ver. 1.2.5033. To implement SCAD and MCP 
we used the ncvreg package. Using both of these packages, we implement the same 
k-fold cross validation to estimate the shrinkage parameter λ.

The next three subsections present our simulation results for the four sample 
sizes and three sparsity levels. We provide a summary with our recommendations in 
Appendix A. We included this section in the appendix because we want to empha-
size that our method can be used for real data. These simulations are only meant to 
show that our method behaves as it should in settings when the true model is known.

3.1  Sample size n = 40

Our first example uses n = 40 that is small compared to p = 100 . Here, we exam-
ine variable selection performance and predictive performance for the three sparsity 
levels.

We use two assessments for this. First, we generate instability curves to evaluate 
predictive performance. Then we also look ‘inside’ the predictor to see which vari-
ables were included correctly.

As noted in Sect. 1, we think of instability curves as more important because they 
reflect ‘variability’ and bias.

Figure 1 shows that there is overall more instability with heavy tails, and as spar-
sity increases the methods become more stable for both light and heavy tails. Fur-
ther, EN is the top performing method for both light and heavy tailed cases. As spar-
sity increases, LASSO becomes better and is closer to EN. This is due to the fact 
that LASSO is only able to retain n variables at most, and when there is little spar-
sity LASSO does not have enough data to retain all the true variables. Since EN is a 
trade off between RR and LASSO, it is able to retain more than n variables.

The adaptive methods do not perform as well as some of the non-adaptive meth-
ods in this case. This is partially due to having to estimate the extra parameters.

In all curves, note that that the � = 0 point on an instability curve is the RMPSE. 
That is, the actual predictive error of the predictor with no perturbations. So sudden 
increases (jumps) or decreases (falls) indicate model instability that should be inter-
preted in the context of the problem.

Dn = Dtrain ∪Dtest.
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For the heavy tailed cases, almost all the instability curves decrease markedly as 
the perturbation increases suggesting they have chosen poor initial models. This is 
likely due to the small sample size coupled with the heavy tails, making it difficult 
for the assumptions of the model to be met in the data. Also, it is seen that there 
are some jumps in the instability curves. These are usually when the initial noise is 
added. We suggest these jumps indicate the shrinkage method is unstable in terms 
of choosing a good predictor. While there may be a lack of stability, we still cannot 
immediately discredit models for these initial jumps. Since we are choosing from a 

Fig. 1  Instability curves for n = 40 . From top to bottom the sparsity increases from 10%, to 50%, to 90%. 
The left column is for �i ∼ N(0, 1) and right column is �i ∼ t3
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list of shrinkage methods, we would still choose the most stable among the list, even 
if they are all relatively unstable.

Next, we consider a more classical approach for comparing the predictors by 
looking at the variable selection performance of each. Table 1 compares each of 
the methods for both light (Li) and heavy (H) tails based on the total percentage 
of variables selected on average (Tot; ideally equal to 1 minus the sparsity level), 
the true positive rate (TP; ideally 100%) and the false positive rate (FP; ideally 
zero). In our view, the predictive performance (as in the stability curves) is more 
important, but when the goal is to have a parsimonious model, that is predic-
tively just as good as another model, we can use variable selection performance 
to choose between comparable shrinkage methods.

From Table  1, it is seen that none of the methods perform well. The values 
in the Tot columns for low and medium sparsity are often much too low which 
leads to high values in the FP columns, trivially. Further the TP columns are all 
too low to consider any of them good. EN and AEN appear to be better than the 
rest, albeit still not good, in that they retain more or close to the true number of 
non-zero parameters, on average. This leads to higher TP values for EN and AEN, 
but also higher FP values. In this scenario, its hard to choose a good method from 
the more classical approach (variable selection tables), which makes the newer 
predictive approach (instability curves) more usable and hence more important. 
Table 1 agrees with Fig. 1 in that variable selection is generally worse for heavier 
tails.

As a final point about the classical approach versus the predictive stability 
approach we emphasize that the variable selection tables only describe how well the 
variables were chosen, and not how well the coefficients of the chosen variables esti-
mate their corresponding parameters. Predictive stability encompasses both selec-
tion and estimation in that the methods that estimate the parameters better naturally 
form better predictors which can be seen in the curves.

Table 1  Variable selection 
performance for n = 40

Sparsity .10 .50 .90

Tot TP FP Tot TP FP Tot TP FP

Li LASSO .05 .05 .12 .06 .06 .07 .16 .59 .11
Li ALASSO .05 .05 .12 .05 .05 .03 .07 .44 . 03
Li EN .36 .37 .42 .52 .53 .53 .18 .60 .13
Li AEN .32 .32 .37 .45 .45 . 46 .07 .45 .04
Li SCAD .05 .12 .12 .08 .07 .08 .11 .53 .06
Li MCP .02 .11 .11 .05 .05 .03 .08 .45 .04
H LASSO .02 .03 .12 .04 .05 .05 .09 .40 .07
H ALASSO .03 .03 .12 .03 .03 .04 .06 .25 .04
H EN .28 .28 .35 .55 .55 .54 .14 .43 .11
H AEN .28 .28 .34 .52 .52 .52 .09 .28 .07
H SCAD .04 .05 .13 .03 .04 .05 .05 .21 .05
H MCP .02 .03 .12 .02 .02 .04 .04 .17 .03
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We also considered two cases where the xj ’s have a nontrivial dependence struc-
ture. Specifically, we set X ∼ MVN100(0,M) where M is tridiagonal or Toeplitz, 
both with light tailed errors. We do not show the plots for these cases, however we 
include them in the recommendations we give in Appendix A.

As in the independence case, the methods performed generally better as sparsity 
increased. For figures analogous to those in Fig. 1 but for tridiagonal variance matri-
ces, we found that for low and medium sparsity, EN was always the best method. For 
high sparsity we got the same results as in the upper right panel of Fig. 1. When the 
variance matrix of X was Toeplitz, we found that EN performed best for all sparsity 
levels.

In terms of variable selection as indicated in Table 1, we found that the results 
for the tridiagonal and Toeplitz were similar to the independence case across all 
methods and sparsity levels except for EN in the Toeplitz case where EN performed 
noticeably better than the other methods across all sparsity levels. In addition, 
LASSO does well in the high sparsity case. We suggest that being able to choose 
what the penalty looks like as in EN gives some advantage over the other methods. 
We return to this point in Sect. 5.

3.2  Sample size n = 75

Next we consider a second example where p > n . Here we still have fewer observa-
tions than explanatory variables, but n is much closer to p than in Sect. 3.1. We see 
in Fig. 2 that if n ≈ p , shrinkage methods can result in good predictive performance 
in high sparsity cases.

Examining the instability plots in Fig. 2, we see that as in Fig. 1, the methods 
become more stable as sparsity increases (top to bottom) and less stable as the tails 
become heavier (left to right).

Similar to the n = 40 case, EN remains the top performing method for 10% and 
50% sparsity. However, for 90% sparsity we observe SCAD and MCP outperforming 
the other methods for both light and heavy tailed cases. The n = 40 and n = 75 cases 
are qualitatively similar apart from n = 75 being slightly more stable, especially for 
the the light tail, high sparsity case.

Table 2 shows that, as with Table 1, no method performs variable selection well 
for low to medium sparsity. For high sparsity, all methods were very much improved. 
However, LASSO and EN were the worst—the only methods not having the OP. The 
other methods, ALASSO, AEN, SCAD, and MCP, have the OP and perform roughly 
equally well. As a generality, the methods performed better for light tailed than for 
heavy tailed distributions. As before, the better performing methods in the instabil-
ity curves (EN, RR, LASSO) tended to perform worse in terms of variable selec-
tion. The differences in variable selection and predictive stability performance can 
be attributed to better parameter estimation for EN, RR, and LASSO. Namely when 
a method included more variables than necessary, the incorrectly included variables 
may have coefficient estimates close to zero.
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It is seen that the curves in Fig. 2 have fewer sudden increases and decreases to 
the right of zero than the curve in Fig. 1. In fact,it is the upper two panels that show 
most instability perhaps due to the higher sparsity level. Overall, the comparison 
indicates that more data (unsurprisingly) generally provides more stability.

When we included dependence via tridiagonal matrices, we found results similar 
to the independent case. Namely, the instability curves show that EN performed best 
at all sparsity levels, roughly tying with most other methods for high sparsity. The 

Fig. 2  Instability curves for n = 75 . From top to bottom the sparsity increases from 10%, to 50%, to 90%. 
The left column is for �i ∼ N(0, 1) and right column is �i ∼ t3
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key difference was that RR tended to perform poorly overall. When we generated 
the data using the Toeplitz matrices, for low and medium sparsity, EN was the best 
method and for high sparsity all methods except RR worked well relatively.

In terms of variable selection, the tridiagonal case was similar to the independ-
ence case but slightly better. This was surprising and difficult to interpret. In the 
Toeplitz case, EN, SCAD and MCP are noticeably better than the other methods 
for low and medium sparsity. For high sparsity, LASSO also performs well. This 
is the same as the Toeplitz case with n = 40 . Thus, overall, the results for depend-
ence cases with n = 75 are very close to the corresponding results for n = 40.

3.3  Sample size n = 150

Now we examine a case where n > p , making it qualitatively different from the ear-
lier two subsections. Here we implement LM’s as well as the same shrinkage meth-
ods. Note that the “penalty” associated with LM’s is a constant and corresponds to a 
uniform prior.

Figure 3 parallels Figs. 1 and 2, but includes LM.
For low sparsity, light tails LM, SCAD and MCP are initially the best and indis-

tinguishable from each other. The other methods are more stable as more noise is 
added, but the noticeably worse initial performance suggest LM, SCAD, or MCP is 
preferred here. For the heavy tailed case LM is the clear top performing model ini-
tially, but its curve increases faster than for some other penalties

For medium sparsity, LM becomes slightly worse than all the other methods 
except for RR. Here we also begin to see several methods performing roughly 
equally well: SCAD, MCP, EN, AEN, and ALASSO are all initially roughly equal 
(their instability curves and associated predictive intervals overlap initially). That 
said, EN, RR, and LASSO’s instability curves increase the slowest, indicating they 

Table 2  Variable selection 
performance for n = 75

Sparsity .10 .50 .90

Tot TP FP Tot TP FP Tot TP FP

Li LASSO .20 .21 .19 .17 .23 .13 .21 .91 .14
Li ALASSO .10 .11 .12 .08 .12 .08 .10 .90 .01
Li EN .43 .44 .37 .50 .53 .43 .22 .91 .14
Li AEN .16 .16 .17 .20 .24 .18 .10 .90 .01
Li SCAD .12 .13 .13 .12 .16 .09 .10 .90 .01
Li MCP .07 .07 .12 .06 .09 .05 .10 .90 .01
H LASSO .12 .12 .13 .20 .30 .12 .22 .90 .13
H ALASSO .04 .04 .11 .07 .11 .04 .10 .87 .01
H EN .24 .25 .21 .31 .41 .22 .22 .90 .15
H AEN .08 .08 .14 .10 .15 .08 .10 .87 .01
H SCAD .09 .10 .13 .12 .18 .08 .10 .88 .02
H MCP .06 .07 .12 .08 .12 .05 .10 .89 .01
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are stable relative to the other methods. Taken together, we find that the adaptive 
methods appear to be better initially, but the non-adaptive methods are not much 
worse initially and overall more stable since they do not need to estimate as many 
parameters.

Finally for high sparsity, RR and LM are discredited, but the other methods are 
all roughly the same with SCAD and MCP being slightly less stable than EN, AEN, 
LASSO and ALASSO.

Fig. 3  Instability curves for n = 150 . From top to bottom the sparsity increases from 10%, to 50%, to 
90%. The left column is for �i ∼ N(0, 1) and right column is �i ∼ t3
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A key difference between the n = 150 case and the n = 75, 40 cases is that the 
adaptive methods are initially performing better than the nonadaptive methods. For 
instance, AEN and ALASSO are performing better for small perturbations than EN 
or LASSO, respectively. When the perturbations are too high, it makes sense that 
the non-adaptive version of a penalty will perform better that their adaptive versions 
because they are less affected by the noise; they use fewer estimators. One can argue 
that the perturbation level at which the curves for non-adaptive penalties and their 
adaptive versions cross represents the largest reasonable perturbation that should be 
considered for that penalty. Moreover, the OP is not a determining factor for perfor-
mance: Some methods with the OP perform well and some do not. Some methods 
that do not have the OP perform better than other methods that do.

For light tails and low sparsity, Table 3 shows that ALASSO and AEN are the 
generally the best methods in terms of variable selection. For medium sparsity they 
remain noticeably better than the other. For high sparsity, ALASSO, AEN, SCAD, 
and MCP all perform similarly. For heavy tails, the results are roughly the same.

Compared to Table  2 we see that all methods improved in variable selection, 
which is not surprising, but that the adaptive methods improved more. This is true 
for the instability curves as well. LM’s and RR are not included in Table 3 because 
they don’t do variable selection.

Comparing the conclusions from Fig 3 and Table 3, we see that the methods with 
the OP perform roughly the same, and there are no obvious contradictions in vari-
able selection and predictive performance.

Again, we considered two dependence cases with light tails, the tridiagonal and 
the Toeplitz. For the tridiagonal case, the instability curves and the variable selec-
tion table are qualitatively the same as for the independence case. For the Toeplitz 
case, LM is the best method in general.

Overall, variable selection in this case is worse than in the independence case. 
This is virtually the opposite of Toeplitz in the n < p case where variable selection 

Table 3  Variable selection 
performance for n = 150

Sparsity .10 .50 .90

Tot TP FP Tot TP FP Tot TP FP

Li LASSO .94 .97 .68 .71 .99 .42 .25 1 .17
Li ALASSO .89 .99 .10 .50 .98 .02 .14 .92 .05
Li EN .98 .99 .84 .71 .99 .43 .27 1 .19
Li AEN .92 .99 .33 .50 .98 .02 .14 .92 .06
Li SCAD .97 .99 .73 .62 .98 .25 .16 .95 .07
Li MCP .97 1 .74 .60 .98 .23 .13 .94 .04
H LASSO .83 .86 .57 .72 .99 .46 .21 .92 .13
H ALASSO .83 .91 .12 .51 .98 .04 .11 .90 .02
H EN .94 .96 .75 .73 .99 .47 .21 .92 .13
H AEN .89 .96 .22 .51 .98 .04 .11 .90 .02
H SCAD .89 .93 .53 .64 .99 .28 .11 .90 .02
H MCP .89 .93 .53 .63 .99 .28 .10 .90 .02
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was improved. Typically, our intuition resides in the n > p setting, so this is more in 
line with intuition.

3.4  Sample size n = 500

For completeness we also considered the case n = 500 to observe the limiting 
behavior of the methods. Figure 4 and Table 4 have the same general properties as 
the earlier figures and tables. Namely, as sparsity increases instability decreases. 

Fig. 4  Instability curves for n = 500 . From top to bottom the sparsity increases from 10%, to 50%, to 
90%. The left column is for �i ∼ N(0, 1) and right column has �i ∼ t3
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The methods improve as sparsity increases although the improvement is not as 
dramatic as in the smaller sample cases. In the heavy tailed cases, as before there 
is more variability.

Many of the methods at this point are indistinguishable via Fig. 4 or Table 4. 
So for descriptive purposes it is easier to identify the methods that perform 
poorly rather than the ones that perform well. From the left column in Fig. 4, the 
only relatively poor method is RR for light tails. Even so, RR performs well, but 
it’s instability curve is slightly above the upper bound of the confidence intervals 
from the other methods.

In the right column in Fig. 4, RR is clearly the worst in all cases. For low sparsity 
LM SCAD and MCP are best. For medium sparsity, RR is is the only method that 
can be discredited. For high sparsity the worst performers are RR and LM’s. Note 
that LASSO and EN still perform well even though they don’t have the OP, reiterat-
ing the fact that having the OP should not be the main driver in choosing a shrinkage 
method. That said, EN is a generalization of LASSO and under stronger conditions, 
LASSO has some consistency properties, see Zhao and Yu (2006). Thus, the good 
performance of LASSO and EN is not surprising.

Table 4 shows that at n = 500 , most methods are performing variable selection 
quite well. In fact, almost all the methods used that have the OP are nearly perfect, 
on average, in performing variable selection. Even the methods that look worse in 
terms of variable selection (LASSO, EN) predict well because they almost always 
retain all the important variables (TP ≥ 93 ). In general, we start to see consistency 
properties take effect, although not perfectly yet. Hence, we get generally agreement 
in the instability curves and the variables selection table for n = 500.

For the dependence cases, the tridiagonal covariance matrix resulted in the quali-
tatively the same results as the independence case. The Toeplitz case resulted in LM 
always performing the best.

Table 4  Variable selection 
performance for n = 500

Sparsity .10 .50 .90

Tot TP FP Tot TP FP Tot TP FP

Li LASSO .93 1 .38 .72 .98 .46 .14 .93 .05
Li ALASSO .90 .99 .10 .50 .98 .02 .10 .90 .01
Li EN .94 1 .42 .72 .98 .46 .14 .93 .05
Li AEN .90 .99 .10 .50 .98 .02 .10 .90 .01
Li SCAD .90 .99 .13 .51 .98 .05 .11 .90 .02
Li MCP .90 .99 .13 .51 .98 .04 .10 .90 .01
H LASSO .93 .99 .38 .65 .98 .31 .14 .90 .06
H ALASSO .90 .99 .10 .50 .98 .02 .10 .90 .01
H EN .93 .99 .42 .64 .98 .33 .15 .90 .07
H AEN .90 .99 .10 .50 .98 .02 .10 .90 .01
H SCAD .90 .99 .13 .50 .98 .03 .10 .90 .02
H MCP .90 .99 .13 .50 .98 .02 .10 .90 .01
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3.5  Increasing p and n

In this subsection, we verify that the conclusions from the earlier subsections in this 
section remain valid for a larger range of p and n. So, we consider two new set-
tings, namely p = 200 and p = 500 , and continue to use the same sparsity settings 
as before. For p = 200 , we set n = 80, 150, 300 and 1000. This allows use to observe 
the effect of larger n and p while keeping the same ratio n/p as in our earlier simula-
tions. For ease of presentation, we only consider the independent observations case; 
we omit the low sparsity (10%) cases; and, we omit the low sample size ( n = 80 ) 
cases. However, we note the results are consistent with the earlier subsections. For 
p = 500 , we use the same sample sizes but have a smaller n/p ratio.

Figure 5 shows the stability curves for p = 200 . It is seen that EN tends to peform 
best although the degree of outperformance decreases as n and/or the sparsity 
level increases. Also, as n or the sparsity level increases, the curves shift lower and 
become more similar. This is consistent with Tables 1A,2, 3 and 4A, in the Appen-
dix. Overall there is a bigger separation among curves compared to earlier simula-
tions, but the same qualitative patterns are seen.

Next we consider p = 500 for increasing values of n to observe the effect 
of a larger model space on our stability criterion. Figure  6 shows the stability 
curves for the competing shrinkage methods. We make the same key observations 
as before. Namely, as n increases or as sparsity increases the methods become 
more stable. It is also seen that some of the curves decrease as � increases from 
zero; this is like the p = 100 , n = 40 case from Sect. 3.1 and shows that for small 
sample sizes model uncertainty dominates. Otherwise, we see separation of the 
curves and that EN remains the best choice if only by a tiny margin. Again, this 
corroborates our earlier findings.

4  Corroboration on real data

As a test of our predictive methodology, we examine the predictive instability 
of the shrinkage methods on the data set Superconductivity presented in Hami-
dieh (2018). This data set has 81 explanatory variables of a physical or chemi-
cal nature to explain a response Y representing temperature measurements (in 
degrees K) for when a compound begins to exhibit superconductivity. Initial data 
analyses suggested the data were sparse, but it was unclear how sparse. Hamidieh 
(2018) suggests a sparsity level of about 90% and our techniques here confirm 
this in the sense that we find, if a penalized linear model that performs variable 
selection is fit, around 90% of the coefficients will be zero and this will be nearly 
best possible from a predictive standpoint. In addition, Hamidieh (2018) implic-
itly used light tails in the error term, � , and did not comment on the distribution 
of the explanatory variables apart from effectively taking them as independent 
and not requiring any special treatment to account for spread. Accordingly, we 
treated these as coming from a light tailed distribution.

Furthermore, Hamidieh (2018) identified 20 variables of potential importance. 
Of those 20, we suggest only seven of them are important because the variable 
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importance factors decreased suddenly at the eighth most important variable. 
This gives 7/81 < 10%, confirming this case corresponds to the high sparsity set-
ting. Histograms of the residuals from the full LM suggest this falls into the light 
tail case as well. Thus, we compare our computed results in this section to the 
recommendations for the light tailed high sparsity cases treated in Appendix A.

In fact, the full Superconductivity data set had n = 21, 263 , so Hamidieh 
(2018) was able to use a standard (unpenalized) LM as a ‘benchmark model’ and 
then improve on it by developing an XGBoosting model—a boosted, penalized 
tree model in which the penalty was carefully constructed to be appropriate for 
trees.

Fig. 5  Instability curves for p = 200 . From top to bottom n increases from 150 to 300 to 1000. The left 
column is for 50% sparsity and right column shows 90% sparsity
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Here, as is common in practice, especially where a more justifiable methodol-
ogy is infeasible, we have used LM’s for their interpretability. Also, when n << p , 
XGBoosting often does not perform well. So, it may sometimes be reasonable to use 
shrinkage techniques in mis-specified model situations with small sample sizes.

Since Superconductivity is so much larger than the data sets used in our simula-
tions, we drew 40, 75, 150, and 500 data points at random to match the sample sized 
used in our simulations. We note that many data sets are much smaller than Super-
conductivity so our example here is intended to be suggestive for them, too.

We repeated the analyses presented in Sect. 3 for the independent cases with 
light tails but replaced the simulated data with the randomly chosen subsets of 

Fig. 6  Instability curves for p = 500 . From top to bottom n increases from 150 to 300 to 1000. The left 
column is for 50% sparsity and right column shows 90% sparsity
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Superconductivity. We were able to generate instability curves but not the vari-
able selection accuracy tables because the true model is unknown. We highlight 
this point because our predictive instability methodology is always usable, even 
when the true model is unknown, as is the case here.

The instability curves for Superconductivity are given in Fig. 7.
For each sample size, we compare the best methods from Fig.  7 to the cor-

responding recommendations in Appendix A. For n = 40 , the upper left panel in 
Fig.  7 shows that EN gives the lowest predictive error and is the most stable. 
This is the same as recommended in Table A1 in Appendix A for sparsity.9 and 
light, independent tails. For n = 75 , the upper right panel in Fig. 7 shows EN is 
again the best performing method, followed LASSO which improved to be better 
than RR when increasing the sample size from 40 to 75. Table A2 in appendix A 
shows only that RR should not be used with light, independent tails. So, again we 
see agreement even if the recommendations are not specific.

By contrast, for n = 150 , the lower left panel in Fig. 7 shows that EN and RR 
are the top performing methods. Table A3 in appendix A indicates that RR and 
LM’s are to be avoided (for light independent tails). So, the good performance of 
RR disagrees our recommendations. Finally, for n = 500 , the lower right panel 
in Fig.  7 shows that five methods form a cluster of the best of the 3 methods. 
The cluster of top methods is LASSO, EN, and RR. In this case LM is notice-
ably worse than the rest of the shrinkage methods. The recommendation from 

Fig. 7  Instability curves for the Superconductivity data for n = 40, 75 (top) and n = 150, 500 (bottom)
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Table A4 in Appendix A is not to use RR or LM’s. Again, we have a disagree-
ment on the use of RR.

We explain these findings by model mis-specification. First, the true model 
is almost certainly not a LM. Indeed, Hamidieh (2018) proposes a model based 
on trees. The agreement between our recommendations and the data analysis for 
small values of n probably means that the sample size is too small to detect the 
difference between the true model and a LM. However, when the sample size 
increases, the model mis-specification matters. RR normally performs well for 
non-sparse cases but here is performing well when the true model is sparse.

We conjecture this occurs because when the true data generator is a sparse 
non-linear model, a non-sparse linear model may approximate the data generator 
better than a sparse linear model. As a simple example, consider the space of all 
functions on a domain that have convergent Fourier series expansions. Within this 
space the model Y = sin(x) + � is nonlinear and sparse. However, within the space 
of analytic functions sin(x) is approximated arbitrarily well by taking enough 
terms in its Taylor expansion. That is, it is linear but not sparse. A more complex 
example in keeping with the Superconductivity data, is to imagine representing 
a single true tree model with a single linear model. The linear model would have 
to have many terms to approximate a tree; even one with relatively few nodes. 
That is, a large enough LM might provide a good approximation. A further point 
is that even though both LM and RR retain all of the explanatory variables, RR 
performs better because the regularization provides variance reduction.

One limitation to this argument is that if there are many explanatory variables, 
the terms in the linear model may be collinear. With large enough sample size or 
small enough model bias, this is not a problem. However, if these conditions fail, 
linear models may be discredited as an adequate summary for the data. In such 
cases, techniques such as neural nets and projection pursuit (that do not suffer the 
curse of dimensionality) may be necessary as a way to control model bias under 
constrained sample sizes. Even so, lack of data may still be a problem.

5  Optimizing over the shrinkage method

Previous sections used existing well-studied shrinkage methods, but the results of 
Sect. 2 show that there are infinitely many other penalties that could be used to 
get shrinkage methods with the OP. Recalling that penalties are special cases of 
priors, it is clear that the choices of shrinkage methods used in Sect. 3 are limited. 
Here we propose that, rather than choosing a shrinkage method from a list, one 
should find a prior by optimizing a predictive optimality criterion using an adap-
tive search technique such as a genetic algorithm (GA). The idea is that we use 
part of the data in a GA optimization to find an optimal prior/penalty and then 
treat that data dependent prior/penalty as a prior on the rest of the data to make 
predictions. The fact that the result of our optimization is data dependent makes it 
look like a posterior.
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We use the results in Sect.  2.3 to allow for data-dependent shifts in parameter 
locations. The main benefit of shifting the location of the penalty is that it reduces 
prior-data conflict. That way, when we find an optimal penalty in the next subsec-
tion, it will correspond to putting priors on the �j ’s that have more of their mass 
close to the true values of the parameters. If the location shift is not used in the pen-
alty, our method below still can be used but is not as effective, especially in small 
samples. Then we present our GA methodology and verify that we get better predic-
tive performance than off the shelf methods.

5.1  Using GAs to find a shrinkage method

First, we define our initial class of penalty functions. Cors. 2.1 and 2.2 imply we can 
use any penalty function within a very large class, as long as the regularity conditions 
are met. Here we represent fj(�j) using finitely many polynomials. That is, with mild 
abuse of notation, we set

Obviously, we would get a better approximation to an optimal penalty if we used 
more terms but for present purposes sixth order polynomials turned out to be suf-
ficient. Our initial population of penalty functions is generated from (5.1) by select-
ing M values of � = (�1,… , �6) IID from a Unif[0,10], say �m = (�1,m,… , �6,m) for 
m = 1,… ,M . The GA will update this initial population denoted A0 = {�0

1
,… , �0

M
} 

of size M over F iterations to a final population AF = {�F
1
,… , �F

M
} also of size M in 

which we expect essentially all members to be the same. ( Givens and Hoeting 2013 
p. 75 states that the algorithm often stops when there is little diversity in the popula-
tion, as we detected.)

We start by showing how the typical iteration from A0 to A1 proceeds. Assume we 
have data D = Dn = {(yi, xi)|i = 1,… , n} and dim(xi) = p and the empirical risk

In view of Corollary 2.2 we seek

where

for each �0
m
∈ A0 . We find suitable values of the decay parameter λ ∈ ℝ

+ and the 
𝛽∗
j
 ’s based on the data as described shortly. We will use two versions of (5.2) 

(5.1)fj(𝛽j) =

6∑

k=1

𝛼k|𝛽j − 𝛽∗
j
|k.

R(�|Dn) =
1

n

n∑

i=1

(yi − xT
i
�)2.

(5.2)𝛽𝛼0
m
= arg inf

𝛽,λ,wp

(
1

n

n∑

i=1

(yi − xT
i
𝛽)2 + λ

p∑

j=1

wjf
0
j,m
(𝛽j)

)

f 0
j,m
(𝛽j) =

6∑

k=1

𝛼0
m,k

|𝛽j − 𝛽∗
j
|k
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depending on the relative sizes of n and p. Specifically, if p ≥ n or not too much 
smaller than n, we set all ŵj = 1 and all 𝛽∗

j
= 0 . If p < n , we set ŵj = 1∕|𝛽j,OLS| as 

noted in Sect. 2.3. We make this choice because when n < p typically our asymp-
totic results do not apply. In the case that p ≥ n (5.2) reduces to

To solve (5.2) or (5.3), we randomly split the data to estimate the various param-
eters. We begin by writing D = Dtrain ∪Dtest . We reserve Dtest for comparing predic-
tors after the entire GA process is completed. Next we split the training data

We use Dtrain,λ to find λ and Dtrain,� to find the 𝛽∗
j
 ’s and the ŵj ’s ( n > p ). Since 𝛽𝛼0

m
 

depends on λ we begin by searching over a list of values Λ equally spaced from

to λmin = �λmax for some 0 < 𝛾 < 1 . (Here, ntrain,� = #Dtrain,� with corresponding 
data indicated by Ytrain,� and Xtrain,� .) For each fixed �0

m
 and each choice of λ ∈ Λ , we 

find 𝛽𝛼0
m
,λ from Dtrain,� and choose the λ̂0

m
 that minimizes R(𝛽𝛼0

m
,λ|Dtrain,λ).

We find 𝛽𝛼0
m
 for each m in (5.2) by sub-gradient descent since �0

m
 , λ = λ̂0

m
 , wj = ŵj 

and 𝛽∗
j
 can be taken as given. (The ŵj and 𝛽∗

j
 should also have sub- and super-scripts 

m and 0; we omit these for convenience.) Recall, the sub-gradient descent algorithm 
allows for us to have points of non-differentiability in the penalty (e.g., a corner as in 
L or SCAD), and in cases where the penalty is differentiable, the sub-gradient is 
uniquely defined by the gradient. Note that the objective function is constructed to 
be convex, so we are sure to find a minimum. We initialize the gradient descent 
algorithm at the LASSO solution for n > p and at the RR solution for n < p.

Now define the fitness function for the GA to be

We evaluate the fitness for each �0
m
 in A0 . Note that for each �0

m
 for m = 1,… ,M we 

get a single best choice for λ̂0
m
 and 𝛽𝛼0

m
,λ̂0

m
 and hence a single fitness value. However, it 

is possible for different �0
m
 ’s to give exactly the same f-value because its possible 

𝛽𝛼0
i
,λ̂0

m
= 𝛽𝛼0

j
,λ̂0

m
 for some i ≠ j . Although this would appear to happen with probability 

zero, it is observed on a regular basis. This arises because different but similar pen-
alties may lead to the same solution and because computing only has limited 
precision.

Next, by elitism we select off the top 20% of members of A0 . We fill in the ‘miss-
ing’ 80% by applying crossover and mutation to the bottom 80% of fitness values to 
obtain a new generation of size M from the algorithm to go into the second iteration. 

(5.3)𝛽𝛼0
m
= arg inf

𝛽

(
1

n

n∑

i=1

(yi − xT
i
𝛽)2 + λ

p∑

j=1

6∑

k=1

𝛼0
m,k

|𝛽j|k
)
.

Dtrain = Dtrain,λ ∪Dtrain,� ∪Dtrain,� .

λmax =

(
1

ntrain,�

)
max |YT

train,�
Xtrain,�|

(5.4)f =
∑

i∈Dtrain,𝛼

(yi − xT
i
𝛽𝛼0

m
,λ̂0

m
)2.
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Crossing means switching some entries of a genome �′
m
 with entries from another 

�†
m
 to generate a ‘new genome’. This is done at random keeping only the ‘child’ 

until the population size M is achieved. Mutation means adding a perturbation to 
all members of � (here a random number between the user specified maximum and 
minimum values for each component in � ). Mutation does not change the size of the 
population, only the specific genomes already in it. In this way we get a new popula-
tion A1 to which we can apply the same procedure. Then, we can iterate to get A2 , A3 
and so on until AF contains little diversity.

To see that this is the typical behavior of this sort of GA, we use the framework 
of Rudolph (1996). First, it is easy to see that, as we have set it up here, the GA is 
a Markov process. That is, the probabilistic behavior in moving from time t to time 
t + 1 depends only on the state at time t. Moreover, this Markov process is homo-
geneous in the sense that the transition from time step to time step is the same for 
any two adjacent time steps. Note that the Markov process is ‘discrete time’ and 
has a discrete population (leading to distinct crosses) but the mutation is continuous 
because of the uniform distribution. Thus, there is no transition ‘matrix’. Instead, 
there is a transition kernel, K(x, S), where x is a population member at time t and S is 
a set of possible states to which x may be transformed and K is independent of t. In 
fact, K(⋅, ⋅) can be partitioned into a Km and Kc , a mutation and crossover kernel. The 
crossover kernel is a transition matrix since crossover is discrete. The mutation ker-
nel includes the continuous mutation phase based on the uniform distribution. So, 
let x be any state at time t and suppose an optimum f ∗ exists and the Markov process 
has state space E. Then, there will be elements of E arbitrarily close to f ∗ . Let b(xt) 
be the best fitness value within the t-th population and let d(x) = b(x) − f ∗ . As long 
as the population is large enough, B𝜖 = {d(x) < 𝜖} will have nonzero probability for 
𝜖 > 0 and hence Km(x,B�) will be bounded away from zero. Now, given that we have 
used elitism, Theorem 2 in Rudolph (1996) applies to give convergence of the GA to 
the global minimum of f within the class of priors that satisfy the conditions of Cors. 
2.1 and 2.2.

The behavior of the GA—as opposed to the behavior of the subgradient descent 
used to estimate the parameters—depends on M, the elements of A0 , the size of F, 
the choice of f, the number of generations, the form of elitism and mutation, and 
the data. Being based on Markov processes, convergence is not the question, rather 
convergence rate is. However, it is difficult to provide guidance on how to choose 
any of these optimally in general. If we fix minimal predictive error as our criterion 
(as opposed to running time) and fix a method for choosing the � ’s (such as used 
here) then as M increases, the error can only decrease, assuming the other factors are 
held constant. Of course, if the # generations increases, the predictive error can only 
decrease albeit at the cost of longer running time. It is unclear what happens if the 
elitism and mutation rate change. This may be a setting where the ‘No Free Lunch’ 
theorem applies i.e., any solution that is optimized for one setting will perform 
poorly in another setting to compensate. For instance, on our system, in Sect. 5.2.1, 
the running time was about two hours whereas in Sect. 5.3, running times were typi-
cally over nine hours. Thus, each setting should be addressed indvidually.

Indeed, a pragmatic check on the behavior of a GA would be to run it with differ-
ent initial populations to see if the GA outputs approximately the same minimum. 
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To ensure convergence of the GA one should set a large population as well as a large 
number of generations. We comment that in the sub-gradient descent phase of our 
procedure, we have limited ourselves to convex objective functions. For more gen-
eral results we would have to ensure convergence of the gradient based optimization 
to ensure convergence of the GA-based optimization. We implemented our GA com-
putations using genalg, see Willighagen and Ballings (2015).

Our intuition tells us that this method will be beneficial in low to medium sparsity 
cases, as well as heavy dependence or non-asymptotic cases. For large sample cases, 
the OP will take over and methods having the OP are equivalent. Thus a GA can do 
no better. Further, in the smaller sample cases with high sparsity we observed an effect 
similar to the OP in that all methods seemed to achieve ‘asymptotic’ performance. In 
this setting using the GA approach will likely not provide much benefit. For low to 
medium sparsity cases, there is more variability between the methods and thus, opti-
mizing to find a best penalty is reasonable. We focus our GA simulations on this setting.

Also using only a standard basis expansion may not allow us to approximate 
some penalties well. Thus, there may be scenarios where one should use a more gen-
eral expansion in order to approximate a wider class of penalties. This idea needs to 
be explored further. Further, one could also choose to optimize the points at which 
to shift the locations, 𝛽∗

j
 , rather than fixing those point before performing the optimi-

zation. In principle, this should provide a more optimal solution. However, we have 
chosen not to perform this extra step in the optimization for two reasons. The first 
being this obvious issue of computation time. This extra step could require much 
more time for the optimal solution to be found. Second, our goal is to find the opti-
mal penalty, i.e. the shape of fj which does not depend on the location.

5.2  Simulations

Here we present two simulations, one for p > n and one for n > p to show how 
implementing the GA performs relative to other shrinkage methods in a predictive 
setting. We simulate IID observations from

where X ∼ MVNp(0, I100) , � = (�1,… , �n)
T with �i ∼ N(0, 1) , and � = (�1, �2)

T and 
we set p = 100 , as before. We assume 50% sparsity, so the dimension of both �1 
and �2 are 50. We take �1 ∼ MVN50(4, I50) and set �2 = 0 . We consider n = 40 and 
n = 150 and we split the data as described in Sect. 5.1.

The GA will find an optimal penalty as defined by an optimal vector 
�opt = (�1,opt,… , �6,opt)

T . The entries �j,opt = �j,opt(Dtrain,�) so we are treating the 
penalty as a hyperparameter in the prior that would be mathematically equivalent to 
it. The difference from actually estimating a hyperparameter comes from the fact we 
are only using Dtrain,� ⫋ Dtrain . Given the penalty, we have a potentially new shrink-
age method, dependent on a proper subset of Dtrain . So, we can form a posterior 
using the prior determined from the penalty given the rest of the data. This posterior 
can be used to generate predictions for Dtest that can be compared with the predic-
tions from the other shrinkage methods used in Sect. 3.

Y = X� + �
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5.2.1  GA example n = 40

The first example we show is for the case where n < p . Here we split the data so that

with corresponding sample sizes (2, 30, 4) and #(Dtest) = 4 . All other methods we 
compare use all of the training data to find estimates of � and λ . Note for compari-
sons with other methods, those that use glmnet and ncvreg use all 36 observations 
in the training data to form the predictor. Thus, we ensured that each method used 
all the training data, providing a fair comparison.

Interestingly, but perhaps not surprisingly, we find

which corresponds exactly to RR. This is consistent with the methods that per-
formed the best in the analogous cases in Sect. 3.1. This suggests that when we have 
few data points relative to explanatory variables, we do not have enough information 
to obtain an informative prior (in terms of its location and variance) so we default to 
the prior that makes us retain all the explanatory variables.

The predictive errors for #(Dtest) are given in Table 5. We comment that because 
GA’s require a lot of computing time, we have not averaged over many data sets to 
get the prediction errors reported in this table. However, we believe we have used a 
large enough population and large enough number of generations that our results are 
accurate.

This example illustrates that by optimizing over the choice of penalties, we 
are not guaranteed to find a penalty that is different from an established method 
(although we argue this is the typical case). The guarantee is only that we will find 
an optimal penalty for prediction and it is no surprise if there are settings where a 
well known technique is optimal. The novelty in our GA approach is that it can be 
used in any linear regression problem and, if properly implemented, will always give 
the best predictions.

5.2.2  GA example n = 150

Now we provide an example for the case where n is slightly larger than p. Splitting 
the data in this scenario is delicate because we must keep more than 100 observa-
tions in Dtrain,� to ensure n > p . Accordingly, we set

#(Dtrain) = #(Dtrain,λ ∪Dtrain,� ∪Dtrain,�) = 36

�̂� = (0, 1, 0, 0, 0, 0)T

#(Dtrain) = #(Dtrain,λ ∪Dtrain,� ∪Dtrain,�) = 135

Table 5  MSPE for our new GA 
method and seven other methods

GA LASSO RR EN AEN ALASSO SCAD MCP

20.26 45.89 22.75 22.75 31.75 33.00 31.31 30.65
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with corresponding sample sizes of (9, 113, 13) respectively, and #(Dtest) = 15 . Par-
allel to our methodology in Sect. 5.2.1, the methods implemented using glmnet and 
ncvreg used all 135 observations in the training data to form the predictor.

The GA approach resulted in the chosen penalty being defined by

The associated prediction error on Dtest for each method is given in Table  6. We 
observe the penalty selected through GA achieves the best predictive error among 
all methods considered. As in Sect. 5.2.1, we comment that because GA’s require a 
lot of computing time, we have not averaged over many data sets to get the predic-
tion errors reported in this table. However, we believe we have used a large enough 
population and large enough number of generations that our results are accurate.

Since we found a new (and better) penalty, we have graphed it in Fig. 8 for two 
�j’s—one where �j = 0 (left ) and one where �j ≠ 0 (right). This shows the util-
ity of allowing different fj ’s for different �j’s. Since half the parameter values are 
zero, half are non-zero, and the penalty term depends on the index of the param-
eter, we find different penalties on different parameters. In both plots, we compare 
the penalty found from the GA procedure against to the other common penalties 
RR, LASSO and SCAD. It is obvious that the GA method described in Sect. 2.3 
gives two sorts of fj’s. The training data forces the fj ’s corresponding to �j = 0 to 
concentrate at zero and forces the fj ’s that correspond to nonzero �j ’s to concen-
trate away from zero. This explains the improvement in prediction error seen in 
Table 6.

�̂� = (1, 0.3, 7, 1, 2.4, 0)T .

Table 6  MSPE for our new GA method and for eight other methods

GA LM LASSO RR EN AEN ALASSO SCAD MCP

4.620 5.287 4.750 7.195 4.898 4.907 4.667 4.623 4.705

Fig. 8  GA optimal penalty versus standard penalties for zero (left) and nonzero �j ’s (right)
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To end this section, note that our simulations only shows proof of concept; 
the priors we found here may not be genuinely optimal for prediction because we 
have not run the GA for many generations with a large population size. Thus we 
cannot assume the GA has converged. In fact, in both cases here ( n = 40, 150 ) 
we only ran a single generation of the GA and we only used a population size of 
M = 150 . However, because of the elitism operation, running the GA longer can 
never result in a worse predictor and our results show that it can be relatively easy 
to find a penalty that is better for prediction than established penalties—even if 
they are not optimal within the class of all penalties with the OP.

5.3  Superconductivity real data example

Here, we revisit the superconductivity data and use a GA to choose the shrinkage 
method. We run the GA for four different sample sizes namely for n = 75, 150, 500 
and 5000, randomly sampling n observations from the super conductivity data. Then 
we use the GA to find an optimal penalty as described in Sect. 5.1. The results are in 
Table 7. The columns show the optimal penalties chosen by the GA, by the stability 
criterion applied to the superconductivity data, and the best penalty found from the 
simulations shown in Sect. 3; n = 5000 was done separately.

First, note that the GA and stability columns never disagree. The only lack of 
agreement is that the GA’s always give a unique result whereas the stability criterion 
allows for multiples methods to perform nearly equally well.

Second, for n = 150 , the simulation results contradict the results for GA’s and 
stability. Obviously, this is a sample size large enough for the model mis-specifica-
tion to have a substantial impact: Here, with p = 81 , n is large enough that the meth-
ods detect the difference between the tree-based models found optimal in Hamidieh 
(2018) and the linear models on which the simulations were based. This is to be 
expected whenever mis-specification is an imnportant factor. Note that for n = 75 
there is not enough data to detect mis-specification whereas for n = 500, 5000 , we 
are effectively in the asymptotic case. That is, all methods perform as well as the 
model mis-specification allows. In particular, since Bayesian posteriors are always 
consistent for the point in model space closest to the true model, all the techniques 
show the prior washing out making all methods essentially equivalent.

Overall, this reinforces the point that our methods—GA’s and stability—are fit 
for purpose in that they are data driven. They respond to the specifics of the data set 
because they rely on predictive criteria.

Table 7  The first two columns 
show the best penalties 
chosen by GA’s and by the, 
stability criterion for the 
Superconductivity data

The third column shows the results from simulations with high-spar-
sity linear models for the given sample size

n GA Stability Simulation results

75 EN EN Not RR
150 RR RR/EN Not: RR/LM
500 RR RR/EN/L Any
5000 LM Any Any
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6  Discussion

This paper assumes a predictive stability perspective and within that context shows 
several results that may be a bit unexpected. First, the OP is not rare; it is actu-
ally rather common. A proof for a general result requires little more than what most 
would regard as regularity conditions. Second, for small n and large p, shrinkage 
methods did not perform very well even if they have the OP and the true model has 
reasonable sparsity. Third, on the other hand, if optimal or near optimal penalties 
are used they give shrinkage methods that often perform noticeably better than the 
established ones. Our findings indicate that methods having the OP do not perform 
particularly well for n < p and for n > p the OP is no guarantee that they perform 
better than methods not having the OP. Fourth, our results suggest there may be a 
sort of ‘OP in terms of increasing sparsity’ rather than increasing sample size. How-
ever, this intuition needs to be developed because the limit of ‘perfect’ sparsity gives 
the trivial model.

Even though the OP is important, it is not always clear how important it is or 
when it is important in cases where sample sizes are finite. We still think it’s better 
to have the OP than not if only because it gives consistency, asymptotic normality 
and efficiency. This is especially the case with high sparsity and large n relative to p, 
but in these cases other methods often perform comparably. When n is small com-
pared to p, the OP is not a useful property, and thus the adaptive methods that have 
the OP do not perform well. A possible explanation for this is a poor bias variance 
trade off when p > n . It does not seem to be a good idea to use methods that require 
estimating wj for each �j : For p > n we have not seen any example where the adap-
tive penalty gives better results than its nonadaptive version.

Since the OP requires n → ∞ whereas n often must be taken as truly finite, we 
introduce the notion of instability of predictions as a criterion for selecting a penalty 
or prior. Comparing instability curves is a finite sample check for good predictive 
performance. For instance, with high sparsity using a linear model by itself is often 
unstable. In general, quantifying the variability of variable selection when p is large 
is difficult, so defining instability in terms of the prediction errors seems reasonable. 
Furthermore, predictive error alone, without the introduction of perturbations in the 
data, may lead to choosing a method that is less stable than another method. This is 
seen in the instability curves when one curve crosses over another, appearing to be 
good at first (with no added noise), but deteriorating quickly with small amounts of 
added noise. See for example Fig. 2, where in the top left panel, LASSO becomes 
worse and its curves crosses over others. Further, using instability curves to select a 
shrinkage method is more robust than simply looking predictive error alone because 
the instability curves are able to detect both variability and bias. Hence, if a method 
has small bias initially, but large variability, it may not be preferred to a method with 
slightly higher bias initially, but much less variability.

Our simulation studies show that as a generality, shrinkage methods tend to per-
form better in terms of variable selection, and thus prediction, as sparsity increases 
as well as when n increases. In fact, our simulations showed that regardless of n, 
as the sparsity increased, the methods seemed to perform roughly equally well. For 
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instance, recall the n = 75 simulations in Sect.  3.2. At 90% sparsity, we observed 
what appeared to be asymptotic convergence of the method with the OP. Of course 
this situation is not asymptotic as n < p , but an increase in sparsity is associated 
with an increase in efficiency of the methods.

We have presented a methodology that can often be used in practice, i.e. when 
the true model is not known. Like others who have compared the performance of 
shrinkage methods, our recommendation may not apply because we cannot identify 
which scenario (sparsity, signal to noise ratio, dependence structures, etc.) the true 
model represents. However, we can always generate instability curves. Our real data 
example in Sect. 4 verifies that our approach is usable and allows us to choose what 
we deem the most appropriate off the shelf shrinkage method for the given data set.

Since there are infinitely many such choices for penalties that have the OP, we 
take the subjectivity out of penalty (or prior) selection by using a GA to find an 
optimal penalty/prior for prediction. When n > p we use the GA approach to find a 
predictively optimal penalty that has the OP or other asymptotic properties related 
to the OP for continuous penalties. When n << p , we do not search for methods 
with the OP because we do not benefit from the known asymptotic results. Thus, we 
search over the class of penalties that are non-adaptive and do not require estimation 
of many hyper-parameters. In principle, as long as we let the GA run long enough to 
converge, this approach can never do worse that simply choosing a standard shrink-
age method. In fact, we have examples where the GA approach does better than oth-
ers; when the GA approach selects the best among standard methods, we can infer 
the standard method was the right choice.

Another way to look at the procedure in Sect. 5 is that when we find a penalty/
prior based on the data we are producing an approximation to a predictively optimal 
posterior given the training data that can then be used with the log-likelihood. Thus, 
the predictive improvement comes from the efficiency of the way the posterior uses 
the data with an optimal prior.

We close with another heuristic that seems to be borne out by our results. Namely, 
we associate corners and other points of non-differentiability in the penalty with set-
ting parameter values equal to zero in finite samples. Recall that minimizing

is equivalent to minimizing

subject to the constraint 
∑p

j=1
wjfj(�j) ≤ R ∈ ℝ where R typically decreases as λ 

increases. Denote the constraint region by

n∑

i=1

L(yi − xT
i
�) + nλ

p∑

j=1

wjfj(�j)

Q =

n∑

i=1

L(yi − xT
i
�)

D =

{
p∑

j=1

wjfj(�j) ≤ R

}
.



1279

1 3

Predictive stability criteria for penalty selection in linear…

Since D is closed and compact, the Krein-Milman theorem (see Royden and 
FitzPatrick 2010) gives that D is the closed convex hull of its extreme points, i.e., 
D = CCH(Dext) . For reasonable choices of fj , D is defined by the intersection of 
regions of the form

where the Uk ’s are defined from the fj ’s and wj’s. When our goal is optimizing Q 
over D, it is often the case that the optima occur at extreme points of D. When the 
extreme points of D are on the coordinate axes we will find at least some of �j ’s 
are zero. Indeed, if Q is convex and continuous on an open set containing D, then 
Q often attains its minimum over D on a ‘face’ of D and the exact point where the 
optima occur may lie at the intersections of some or all of the Uk = �k ; this defines a 
subset of the extreme points of D. This is well-established for the case of linear opti-
mization with linear constraints. Indeed, if Q is minimized for at least one extreme 
point of D that lies on a coordinate axis then at least some �j ’s will be set to zero. 
This means that any locally convex penalty with a ‘corner’ on a coordinate axis will 
perform nontrivial variable selection if R is small enough. We conjecture a converse 
to this statement will hold, too.
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