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Abstract
This study addressed the issue of determining multiple potential clusters with reg-
ularization approaches for the purpose of spatio-temporal clustering. The general-
ized lasso framework has flexibility to incorporate adjacencies between objects in 
the penalty matrix and to detect multiple clusters. A generalized lasso model with 
two L

1
 penalties is proposed, which can be separated into two generalized lasso 

models: trend filtering of temporal effect and fused lasso of spatial effect for each 
time point. To select the tuning parameters, the approximate leave-one-out cross-
validation (ALOCV) and generalized cross-validation (GCV) are considered. A 
simulation study is conducted to evaluate the proposed method compared to other 
approaches in different problems and structures of multiple clusters. The generalized 
lasso with ALOCV and GCV provided smaller MSE in estimating the temporal and 
spatial effect compared to unpenalized method, ridge, lasso, and generalized ridge. 
In temporal effects detection, the generalized lasso with ALOCV and GCV provided 
relatively smaller and more stable MSE than other methods, for different structure 
of true risk values. In spatial effects detection, the generalized lasso with ALOCV 
provided higher index of edges detection accuracy. The simulation also suggested 
using a common tuning parameter over all time points in spatial clustering. Finally, 
the proposed method was applied to the weekly Covid-19 data in Japan form March 
21, 2020, to September 11, 2021, along with the interpretation of dynamic behavior 
of multiple clusters.
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1 Introduction

Spatio-temporal data consists of information about objects or events located in space 
over a period of time. Ansari et al. (2020) classified spatio-temporal data into five 
types and provided a review on spatio-temporal clustering. Our study focuses on 
geo-referenced time series clustering, which aims to identify dynamic behavior of 
clusters of objects over time. The preceding literature on geo-referenced time series 
clustering includes fuzzy clustering method (Izakian et  al. 2013, 2015), NeuCube 
spiking neural network architecture for brain data (Doborjeh and Kasabov 2015; 
Doborjeh et  al. 2018), and Correlation-based Clustering of Big Spatiotemporal 
Datasets (CorClustST) (Husch et al. 2020).

Recently, regularization approaches have attracted attention in the spatio-tempo-
ral analysis. One approach that has great potential is the generalized lasso. The gen-
eralized lasso (Tibshirani and Taylor 2011; Arnold and Tibshirani 2016), a general 
form of lasso (Tibshirani 1996), makes constraints on regression coefficients based 
on the general structure or geometry using the L1 penalty. Let y ∈ ℝ

n be a response 
vector, X ∈ ℝ

n×p be a predictor matrix, and � ∈ ℝ
p be a parameter vector. Then the 

generalized lasso can be formulated as

where �(≥ 0) is a tuning parameter, and D ∈ ℝ
m×p is a penalty matrix, of which each 

row constructs a linear combination of � to define the desired structural or geometric 
property of the problem. If D = I , then the problem (1) becomes the ordinary lasso.

The generalized lasso has various applications by considering different forms of the 
penalty matrix D and the predictor matrix X in the model. If we specify the predictor 
matrix as X = I , then (1) becomes the coefficient smoothing problem, widely known as 
the fused lasso (Tibshirani et al. 2005; Tibshirani and Wang 2008), trend filtering (Kim 
et al. 2009; Tibshirani 2014), and the wavelet smoothing (Donoho and Johnstone 1995), 
according to the specified structure in D . In contrast, in the case X ≠ I , the applications 
are extended to the modeling problems, such as a modeling for MRI image data (Tib-
shirani and Taylor 2011), spatially varying coefficient models (Zhao and Bondell 2020; 
Rahardiantoro and Sakamoto 2021, 2022b), and outlier detection (She and Owen 2010).

The generalized lasso has been applied to spatial data and time series data by 
determining the penalty matrix D appropriately. For spatial clustering analysis, a 
special form of the generalized lasso is the fused lasso on an irregular graph (Tibshi-
rani and Taylor 2011; Arnold and Tibshirani 2016). In this case, the penalty matrix 
D shows the structure of the graph, so that its each row corresponds to the differ-
ence of coefficients between each pair of nodes connected by an edge. A collection 
of nodes on which the coefficients are estimated as common is considered to form a 
cluster. An application of the generalized lasso to the time series is the trend filter-
ing (Tibshirani 2014). In this case, the penalty matrix D contains discrete differ-
ence operators of a specified order, that is, the first-order difference for estimating a 
piecewise constant structure, the second-order difference for estimating a piecewise 
linear, etc.

(1)arg min
�

�‖y − X�‖2
2
+ �‖D�‖1

�
,
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In the preceding literature on spatio-temporal clustering, ordinary lasso 
approaches have been mainly used in combination with existing clustering methods. 
Kamenetsky et al. (2022) proposed the lasso approach to detect the potential cluster 
using a scan statistic by implementing the sparse matrix representation of the effects 
of potential clusters. Chen et  al. (2018) built separate lasso sub-models at each 
time point to detect influenced predictors for different historical lags up to 8-time 
points and included the neighborhood between objects in the specified radius as one 
of the predictors. However, these methods have limitation in determining multiple 
potential clusters, because they are highly dependent on the specified radius of the 
neighborhood.

In this study, we propose a more flexible approach for spatio-temporal clustering, 
using the generalized lasso framework with two L1 penalties, in which one penalty 
corresponds to roughness on the temporal scale, and the other penalty for fusion of 
adjacent locations at each time point. The proposed model can be separated into the 
two generalized lasso problems: trend filtering on the temporal scale and fused lasso 
for spatial clustering at each time point. In the trend filtering problem, smoothed 
temporal pattern is estimated from the average value over all locations at each time 
point. In the fused lasso problem, clusters are constructed at each time point and 
their relative magnitude can be compared. Therefore, our proposed method can 
reveal dynamic behavior of spatial clusters as time proceeds. One advantage of our 
proposed method is its flexibility, that is, we can incorporate adjacencies between 
objects in the penalty matrix, and it is possible to detect multiple clusters.

An essential aspect to obtain appropriate estimates of parameters is to select the 
optimum tuning parameter. The most common method is the k-fold cross-validation. 
For example, Zhao and Bondell (2020) applied the 10-fold cross-validation to select 
the tuning parameter in the generalized lasso problem. However, it is known that the 
k-fold cross-validation suffers from large biases in estimation of the out-of-sample 
prediction error (Rad and Maleki 2020; Rad et al. 2020). In addition, spatio-tempo-
ral data have time-dependent and neighbor-dependent structures, so splitting such 
data into the test and training sets may fail in estimating some coefficients depend-
ing on the structures of the penalty matrix D . The leave-one-out cross-validation 
(LOOCV), which is the case k = n , can reduce the bias in estimating the out-of-
sample prediction error, but it requires high computational cost. We consider using 
the approximate leave-one-out cross-validation (ALOCV) (Rad and Maleki 2020), 
and its generalized cross-validation (GCV) (Craven and Wahba 1979) version. The 
ALOCV and GCV provide an approximation of the leave-one-out predicted values 
based on the primal and dual formulations of the general regularization problems, 
and can be used formally without breaking the structures of penalty matrix D.

Then, we apply the proposed method to weekly Covid-19 data in Japan as a 
real data application. Many studies on spatio-temporal clustering intended to 
reveal the pattern of Covid-19 outbreaks in some countries, such as, in Brazil 
(Castro et al. 2021), in the United States (Wang et al. 2021b), and in China (Wang 
et  al. 2021a). Takemura et  al. (2022) applied an adjusted Echelon scan method 
to detect multiple space–time clusters of daily Covid-19 cases in Japan, in which 
they detected time intervals and regions with significantly higher risk of infec-
tions than their surrounding ones, and considered the factors that caused them 
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and affected the changes in a cluster’s shape. In contrast, our proposed method 
can reveal the overall trend of the temporal effect and detect dynamic behavior of 
spatial clusters.

The motivation for this study lies in three aspects, based on its purpose, con-
tribution to the generalized lasso studies, and real data application. The first is to 
propose an approach to estimate temporal effect and detect multiple clusters by 
using generalized lasso. Secondly, this paper contributes to the ongoing general-
ized lasso application by extending the application to spatio-temporal data, which 
can be used to estimate the smoothed temporal pattern and identify dynamic 
behavior of spatial clusters according to adjacent locations over time. Finally, 
we are interested in revealing the pattern of temporal effect and spatial clusters 
weekly in the Covid-19 case in Japan. Our source code is available via Supple-
mentary Information which can be accessed online at the link https:// github. com/ 
Rahar diant oro/ Spati otemp oral- Gener alized- Lasso-.

The sections are arranged as follows. Section 2 explains our proposed method 
on the generalized lasso for spatio-temporal clustering. Section  3 contains the 
methods for selecting the optimum tuning parameter. In Sect. 4, we perform the 
simulation study to investigate the performances of the proposed method com-
pared to some existing methods. Section 5 contains the real data application of 
the Covid-19 data in Japan. Finally, Sect. 6 is the conclusion of this study.

2  The generalized lasso for spatio‑temporal clustering

We explain our proposed method for applying to spatio-temporal data by combin-
ing two types of the generalized lasso, the trend filtering on the temporal scale 
and the fused lasso on an irregular graph for spatial clustering. We consider the 
spatio-temporal observations as yit with locations indexed by i = 1, 2,… , S and 
time points indexed by t = 1, 2,… , T  . We represent yit , using temporal effect �t 
and the spatial effect �it at each time point, as a linear model

where �it indicates the noise at i-th location and t-th time point. To estimate 

� =
(
�1,… , �T

)T and � t =
(
�1t,… , �St

)T , we use the regularization method to 
obtain the smoothed of temporal effect and clusters in space over time points, by 
minimizing

where PT (�) and PS

(
� t

)
 indicate the penalty terms of temporal effect and spatial 

effect, respectively, with corresponding tuning parameters �T and �S,t . In this case, 
we use the L1 penalty term for 1-dimensional trend filtering (Tibshirani and Taylor 
2011)

(2)yit = �t + �it + �it, i = 1, 2,… , S, t = 1, 2,… , T ,

(3)
T∑
t=1

S∑
i=1

(
yit − �t − �it

)2
+ �TPT (�) +

T∑
t=1

�S,tPS

(
� t

)
,

https://github.com/Rahardiantoro/Spatiotemporal-Generalized-Lasso-
https://github.com/Rahardiantoro/Spatiotemporal-Generalized-Lasso-
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and the L1 penalty term for the fused lasso on the graph (Tibshirani and Wang 2008; 
Tibshirani and Taylor 2011)

where E is the set of edges on the graph defining adjacency.
We can rewrite the first term in (3) as

where �
⋅t = S−1

S∑
i=1

�it . If we put the constraint �
⋅t = 0 for identifiability of the 

parameters, the Eq. (6) can be expressed as

Thus, we can express the problem (3) as

Therefore, we can solve the problem of minimizing (8) as separated minimi-
zation on the temporal effect and the spatial effects over time, that is, for esti-
mating � we can only minimize

as a 1-dimensional trend filtering problem, and for estimating � t(t = 1, 2,… , T) , we 
can only minimize, for each t = 1, .., T

as a fused lasso problem on the graph. In this study, both the problems (9) and (10) 
have the form of the generalized lasso (1), and we can apply the R package “genl-
asso” (Arnold and Tibshirani 2016).

(4)PT (�) =

T∑
t=3

||�t − 2�t−1 + �t−2
||,

(5)PS

(
� t

)
=

∑
(i,j)∈E

|||�it − �jt
|||,

(6)

T∑
t=1

S∑
i=1

(
yit − �t − �it

)2
=

T∑
t=1

S∑
i=1

(
yit − y

⋅t − �it − �
⋅t

)2

+ S

T∑
t=1

(
y
⋅t − �t − �

⋅t

)2

,

(7)
T∑
t=1

S∑
i=1

(
yit − �t − �it

)2
=

T∑
t=1

S∑
i=1

(
yit − y

⋅t − �it
)2

+ S

T∑
t=1

(
y
⋅t − �t

)2
.

(8)
T∑
t=1

S∑
i=1

(
yit − y

⋅t − �it
)2

+ S

T∑
t=1

(
y
⋅t − �t

)2
+ �TPT (�) +

T∑
t=1

�S,tPS

(
� t

)
.

(9)S

T∑
t=1

(
y
⋅t − �t

)2
+ �TPT (�),

(10)
S∑
i=1

(
yit − y

⋅t − �it
)2

+ �S,tPS

(
� t

)
.
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3  Methods for selecting optimum tuning parameters

LOOCV evaluates the mean square prediction error of each one observation in fitting 
the model using training set of rest n − 1 observations (Stone 1974). In the context of 
the generalized lasso problem (1), the LOOCV error for a specified � can be stated as

where �̂
∕c represents the leave-one-out estimate of � when the c-th observation is 

omitted.
In the case of generalized lasso using the L1 penalty, we have no exact explicit 

form of the leave-one-out estimate �̂
∕c in (11), and solving the generalized lasso 

problem for each c requires high computational cost. However, we can apply the 
approximate leave-one-out cross-validation (ALOCV) to reduce computation 
time, which is based on the primal and dual formulations of non-differentiable 
regularization problems (Wang et al. 2018; Rad and Maleki 2020). In the context 
of generalized lasso problem (1), for each given � , the algorithm of ALOCV can 
be described as follows (Wang et al. 2018).   

(a) Estimate � as a solution of the primal problem (1).
(b) Estimate u as a solution of the dual problem of (1), which can be expressed as:

(c) Remove the rows of D belonging to the index set E =
{
s = 1,… ,m ∶ ||ûs|| = �

}
 , 

to construct a submatrix D−E.
(d) Construct the matrix A = XB , where B has columns span the null space of D−E.
(e) Compute H∗ = AA+ , where A+ represents the Moore–Penrose pseudoinverse of 

A.
(f) Calculate the ALOCV error as

       where h∗
cc

 is the c-th diagonal component of H∗.
Then, the optimum tuning parameter � can be selected as the one minimizing 

ALOCV error (13). Our simulation study (Rahardiantoro and Sakamoto 2022a) sug-
gested that, in the context of spatial clustering with spatially varying coefficient mod-
els, the ALOCV could yield slightly smaller out-of-sample prediction error and could 
detect edges in a graph with differences shrunk more appropriately, compared to k
-fold cross-validation.

In practical computation, we may fail to obtain the ALOCV error for very 
small � values. Since h∗

cc
→ 1 as � → 0 , the denominator 1 − h∗

cc
 for some c in (13) 

may become close to zero, and then computation of ALOCV may be unstable, as 

(11)LOOCV(�) =
1

n

n∑
c=1

(
yc − xT

c
�̂
∕c
)2

,

(12)arg min
�,u

1

2
‖� − y‖2

2
s.t.‖u‖∞ ≤ � and XT� = DTu.

(13)1

n

n∑
c=1

(
yc − xT

c
�̂

1 − h∗
cc

)2

,
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illustrated in our application to real data (Sect. 5). Rad and Maleki (2020) sug-
gested the generalized cross-validation (GCV) approach, which is to approximate 
as h∗

cc
≈ tr

(
H∗

)
∕n , to obtain the following score

However, its performance does not seem to have been well investigated. We 
also adopt the GCV approach in our simulation study and application to real data.

4  Simulation study

In this simulation study, we investigate the performance of our proposed method 
with generalized lasso compared to some existing regularization methods. The 
problem of minimizing (3) consists of two penalties, but as explained in the Sect. 2, 
it can be separated into the two generalized lasso problems with each single pen-
alty. Therefore, we compare our proposed methods with the regularization methods 
which consist of single penalty, such as lasso (Tibshirani 1996), ridge (Hoerl and 
Kennard 1970), and generalized ridge (Zhao and Bondell 2020). Table 1 shows the 
corresponding penalties for PT (�) and PS

(
� t

)
.

For identifiability issues in lasso and ridge, we make some groups of adjacent 
time points (or spatial locations), and pool temporal effects �t (or the spatial effects 

�it ) in the same group. Let �∗ =
(
�∗
1
,… , �∗

T1

)T

 be the vector of pooled temporal 

effects, y =
(
y
⋅1
,… , y

⋅T

)T , and X1 ∈ ℝ
T×T1 be a block-diagonal predictor matrix 

with a vector ones for each block, representing how the elements are pooled. For 
example, suppose that we have 12 time points, grouped into T1 = 3 groups, each 
containing 4 adjacent time points. In this case, �∗

1
, �∗

2
, �∗

3
 are the coefficients for 

group 1, 2, and 3, respectively, and the predictor matrix can be stated as 

X1 =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
 , where 1 =

⎡⎢⎢⎣

1

⋮

1

⎤⎥⎥⎦
 and 0 =

⎡⎢⎢⎣

0

⋮

0

⎤⎥⎥⎦
 are vectors of length 4.

For ridge problems, we can obtain the solution in the close form. Then, the problem 
of minimizing (9) using the ridge penalty for temporal effect is rewritten as

(14)1

n

n∑
c=1

(
yc − xT

c
�̂

1 − tr
(
H∗

)
∕n

)2

.

Table 1  The penalties PT (�) 
and PS

(
� t

)
 used in the 

simulation study

Type PT (�) PS

(
� t

)

Generalized lasso ∑T

t=3
���t − 2�t−1 + �t−2

�� ∑
(i,j)∈E

����it − �jt
���

Generalized ridge ∑T

t=3

�
�t − 2�t−1 + �t−2

�2 ∑
(i,j)∈E

�
�it − �jt

�2
Lasso ∑T

1

t=1
���t��

∑S
1

∀i
���it��

Ridge ∑T
1

t=1

�
�t
�2 ∑S

1

∀i

�
�it
�2
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and the solution of minimizing (15) is �̂∗ =
(
XT
1
X1 + �TI

)−1
XT
1
y.

Similarly, let �∗
t
=
(
�∗
1t
,… , �∗

S1t

)T

 be the vector of pooled spatial effect, ỹt be the 

vector of yit − y
⋅t , and X2 ∈ ℝ

S×S1 be a block-diagonal predictor matrix representing 
how the elements are pooled. Then, the problem of minimizing (10) using the ridge 
penalty for spatial effect over time is rewritten as

for t = 1,… , T  , and the solution of minimizing (16) is �̂∗
t
=
(
XT
2
X2 + �S,tI

)−1
XT
2
ỹt . 

For lasso problems, the penalties in (15) and (16) are replaced with L1 penalties. In 
this simulation study, we used the R package “glmnet” to solve the lasso.

In the generalized ridge problem, we can also obtain the solution in the close 
form as follows. The problem of minimizing (9) using the generalized ridge penalty 
for temporal effect can be expressed in the matrix form as:

where D1 ∈ ℝ
m1×T is the penalty matrix forming the second-order difference. The 

solution for � is written as �̂ =
(
ITI + 𝜆TD

T
1
D1

)−1
ITy . In contrast, the problem of 

minimizing (10) using the generalized ridge penalty for spatial effect over time can 
be expressed in matrix form as:

for t = 1,… , T  , where D2 ∈ ℝ
m2×S is the penalty matrix forming the first-

order difference on the set of edges  E . The solution for � t is written as 
�̂ t =

(
ITI + 𝜆S,tD

T
2
D2

)−1
IT�yt . We also compare the proposed method with the unpe-

nalized estimation in (2), that is �̂�t = y
⋅t and 𝛽it = yit − y

⋅t.
We applied LOOCV using the R function “cv.glmnet” to select the tuning parameter 

in the lasso problem. For ridge and generalized ridge problems, we applied the effi-
cient LOOCV (Meijer 2010). In the case of minimizing (17), an efficient formula of the 
LOOCV error for given �T is represented in a closed form as

where htt is the t-th diagonal element of the hat-matrix HT =
(
ITI + �TD

T
1
D1

)−1 . 
Then, we select �T minimizing LOOCV error (19). Similarly, in the case of mini-
mizing (18), the LOOCV error for given �S,t can be expressed as

(15)S‖‖y − X1�
∗‖‖22 + �T

‖‖�∗‖‖22,

(16)‖‖ỹt − X2�
∗
t
‖‖22 + �S,t

‖‖�∗
t
‖‖22

(17)S‖‖y − I�‖‖22 + �T
‖‖D1�

‖‖22,

(18)‖‖ỹt − I� t
‖‖22 + �S,t

‖‖D2� t
‖‖22

(19)1

T

T∑
t=1

(
y
⋅t − �̂�t
1 − htt

)2

,

(20)1

S

S∑
i=1

(
yit − y

⋅t − 𝛽it
1 − hii

)2
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for t = 1,… , T  , where hii is the i-th diagonal element of the hat-
matrix HS,t =

(
ITI + �S,tD2

TD2

)−1 . We select �S,t minimizing LOOCV error (20) 
for each t , or a common �S ≡ �S,t minimizing the sum of (20) for t = 1,… , T .

In this simulation study, we assessed the performance of the regularization meth-
ods explained above by using the mean square error (MSE) of the coefficients, which 
indicates the closeness between estimates and the true coefficients. We computed 
the MSE of the estimated temporal effect and estimated spatial effect. Moreover, 
to assess the accuracy for detecting clusters in the estimated spatial effect, we used 
the index of edges detection accuracy ( IEDA ) to evaluate the accuracy of detecting 
edges with zero differences, that is, zero elements of the vector D2� t . For 100 data 
replications, IEDA can be stated as

where SensE
z
 and PPVE

z
 indicate the sensitivity and PPV (positive prediction value) 

to detect the edges with zero differences, respectively, in the z-th replication. They 
are calculated as

for t = 1,… , T , where len shows the length of a vector, 
{
s ∶

(
D2�̂ t

)
s
= 0

}
 is the 

index vector of estimated edges with zero differences, and 
{
s ∶

(
D2� t

)
s
= 0

}
 is the 

index vector of actual edges with zero differences. The IEDA close to 1 means that 
the estimates can detect edges with zero differences appropriately which indicates 
the objects are clustered correctly. We calculated IEDA when selecting a common 
tuning parameter ( �S ) over all time points and when selecting a different tuning 
parameter ( �S,t ) for each time point. We also calculated the averages of sensitivity 
and PPV over 100 replications, that is,

Because we are motivated by revealing the spread of Covid-19 positive cases in 
Japan, we constructed data simulating cases for each prefecture in Japan. Japan consists 
of 47 prefectures, with code 1–47 assigned roughly from north to south, and is grouped 
into 8 regions: Hokkaido (1), Tohoku (2–7), Kanto (8–14), Chubu (15–23), Kan-
sai (24–30), Chugoku (31–35), Shikoku (36–39), Kyushu and Okinawa (40–47). We 

(21)IEDA =
1

100

100∑
z=1

2 × SensE
z
× PPVE

z

SensE
z
+ PPVE

z

,

(22)SensE
z
=

len
({

s ∶
(
D2�̂ t

)
s
= 0

}
∩
{
s ∶

(
D2� t

)
s
= 0

})

len
({

s ∶
(
D2� t

)
s
= 0

}) ,

(23)PPVE
z
=

len
({

s ∶
(
D2�̂ t

)
s
= 0

}
∩
{
s ∶

(
D2� t

)
s
= 0

})

len
({

s ∶
(
D2�̂ t

)
s
= 0

}) .

SensE =
1

100

100∑
z=1

SensE
z
, PPVE =

1

100

100∑
z=1

PPVE
z
.
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suppose that the adjacency between each pair of prefectures is defined based whether 
they are connected by land, bridges/tunnels, or ocean transportation (National Statistics 
Center 2016). We set weekly time points as T = 25 to represent about 6 months.

We generated new positive cases oit in the i-th prefecture ( i = 1, 2,… , 47 ) at t
-th week ( t = 1, 2,… , 25) from Poisson distribution with mean �it × Ni , where 
ln
(
�it

)
= �t + �it + �it . Where, the noise �it was generated independently by follow-

ing a normal distribution with mean 0 and standard deviation 3. Ni is the population 
in the i-th prefecture, which was obtained form the 2020 Japan’s Population Census 
(Portal Site of Official Statistics of Japan (e-Stat), 2021). We define three cases of 
the true �t + �it with values 1, 5, and 10 as shown in the Fig. 1, to represent different 
problems and structures of clusters as follows.

(a) The Case 1 represents that one aggregated region of higher risk moves as time 
goes by as in Fig. 1a. In this case, we simulated the cluster of prefectures in Tohoku, 
Kanto, and Chubu Regions, which have a higher risk steady for four weeks. Then, 
the higher risk region moves to southwest prefectures within four weeks and become 
steady on most prefectures in Chubu, Kansai, and Chugoku Regions for eight weeks. 
After that, the higher risk region moves again to southwest prefectures within four 
weeks and become steady in Kansai, Chugoku, Shikoku, and Kyushu Regions for 
remaining five weeks.

(b) The Case 2 represents that one aggregated region of higher risk increases and 
decreases in size as in Fig. 1b. In the first four weeks, the higher risk region keeps 
steady on several prefectures in Kanto, Chubu, Kansai, and Chugoku Regions. Then, 
the higher risk region spreads to other surrounding prefectures within four weeks 
until it becomes steady up to seven regions: Tohoku, Kanto, Chubu, Kansai, Chu-
goku, Shikoku, and Kyushu Regions within eight weeks. After that, the higher risk 
region decreases for four weeks, and then returns to the initial size and keeps steady 
for five weeks.

Fig. 1  True �t + �it;i = 1, 2,… , 47, t = 1, 2,… , 25 for each case.  The row label shows the prefecture 
code, and the column label shows the week.The last row indicates the number of separated regions for 
each time point
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(c) The Case 3 represents that several aggregated regions of higher risk appears 
and disappears as in Fig. 1c. For the first two weeks, there are no region of higher 
risk. Then, a higher risk region appears on prefectures in Tohoku, Kanto, and Chubu 
Regions for 14 weeks. In week 7, the second higher risk region appears on prefec-
tures in Kansai and Chugoku Regions for 16  weeks. Meanwhile, the third higher 
risk region appears on prefectures in Shikoku and Kyushu Regions from week 13 for 
8 weeks.

The regions of adjacent prefectures with higher risk value means that they are 
clustered. The last row of Fig.  1 shows the number of regions separated by adja-
cency of prefectures and different level of �t + �it.

For each case 1, 2, and 3, 100 data sets were replicated. Then, for each data set, 
we transformed as yit = ln

(
oit

Ni

)
 , and fitted several models explained above. For gen-

eralized lasso/ridge, we defined the second-order difference penalty matrix 
D1 ∈ ℝ

23×25 for temporal effect. Moreover, the definition of adjacency between pre-
fectures detects 93 edges, from which we obtained the penalty matrix D2 ∈ ℝ

93×47 
for spatial effect. For lasso and ridge, we pooled 4 successive coefficients for tempo-
ral effect to obtain �∗

1
,… , �∗

6
 (the last one covers five weeks) and pooled coefficients 

based on 8 prefectural regions of Japan to obtain �∗
1t
,… , �∗

8t
 , so that T1 = 6 , S1 = 8 , 

X1 ∈ ℝ
25×6 and X2 ∈ ℝ

47×8.
Figure 2 shows the MSE for the estimate of the temporal effect �t . In Case 1, the 

lasso had the smallest MSE than other methods, followed by the generalized lasso 
with ALOCV and GCV.

The true temporal effect �t was almost constant, and so we guess that the lasso 
estimates of pooled coefficients might be more advantageous. In Case 2, the general-
ized lasso with ALOCV mainly provided the smallest MSE, followed by the gen-
eralized lasso with GCV. In this case, the MSEs of lasso and ridge were fluctuated 
highly, especially at the points where true risk values changed.

In Case 3, although the MSE of lasso had the smallest value for several weeks, 
but the generalized lasso with GCV’s MSE was the most stable, followed by the gen-
eralized lasso with ALOCV. The MSEs of lasso and ridge were also fluctuated when 
the number of clusters increased or decreased. We guess that pooling of the coef-
ficients might have caused poor performance of lasso and ridge. Generally, in the 
temporal effect estimation, the generalized lasso with ALOCV and GCV provided 

Fig. 2  Line-plots of MSE for coefficient �t each time point from 100 replications. The Cases 1, 2, and 3 
correspond to the true �t + �it displayed in Fig. 1



1524 S. Rahardiantoro, W. Sakamoto 

1 3

relatively smaller and more stable MSE than other methods, for different pattern of 
true risk values.

Figure 3 shows the average of MSE for the estimates of the spatial effect �it over 
47 prefectures for each time point. In the case of using a common tuning parameter 
�S (Fig. 3a), the generalized lasso with GCV mainly provided the minimum MSE in 
all cases, followed by the generalized lasso with ALOCV. In Case 1, when the true 
risk values were steady in weeks 9 to 16, the MSE of lasso was smaller than the 
generalized lasso with ALOCV. However, in Case 2 and Case 3, when the true risk 
values changed, the MSEs of other methods were relatively higher than the general-
ized lasso. The result in the case of using a different tuning parameter �S,t (Fig. 3b) 
was slightly different. Mainly, the generalized ridge provided the smallest MSE. The 
MSEs of the generalized lasso with GCV and ALOCV was higher at several inter-
mediate weeks in Case 1, and at the first and last several weeks in Case 2, but were 
smaller than lasso and ridge in other cases.

Figure  4 shows the plots of IEDA for all time points in clustering prefectures. 
We only show the result of the generalized lasso with ALOCV and GCV and lasso 
because all edges take non-zero differences for other methods. We can see that the 
generalized lasso with ALOCV outperformed, as indicated by the highest IEDA for 
most cases in Fig. 4a and b. The IEDA generally increased when the number of sepa-
rated regions was small and decreased when the number of separated regions was 
large. Table 2 shows the averages of SensE , PPVE and IEDA over all time points. 
The generalized lasso with ALOCV provided higher sensitivity and IEDA than the 
generalized lasso with GCV and the lasso, although the coefficients of lasso were 
pooled in advance based on 8 prefectures regions. Moreover, we obtained slightly 
higher IEDA when using a common tuning parameter than using different tuning 

Fig. 3  Line-plots of average and the range of MSE from �it over 47 prefectures for each time point, in the 
case of using (a) a common �S for all time points and (b) different �S,t for each time point. The Cases 1, 
2, and 3 correspond to the true �t + �it displayed in Fig. 1
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parameters for all the cases and methods. If we use a common tuning parameter, the 
chosen tuning parameter value was not too small, so that the differences between 
coefficients on the edges tended to shrink to zero, which resulted in more accurate 
clustering. In contrast, if we use a different tuning parameter at each time point, the 
tuning parameter chosen varied greatly and was small for many time points. As a 
result, the differences between coefficients on the edges did not tend to shrink to 
zero, which decreased the clustering accuracy.

In summary, our simulation study showed that the proposed method performed 
well in estimating the temporal effect, as suggested by lower MSE. Moreover, the 
proposed method was also very flexible in detecting multiple clusters, as shown 

Fig. 4  Line-plots of IEDA for each time point, in the case of using (a) a common �S for all time points 
and (b) different �S,t for each time point. The Cases 1, 2, and 3 correspond to the true �t + �it displayed in 
Fig. 1

Table 2  Averages of SensE  , PPVE  , and IEDA over all time points

Case Value A common tuning parameter (�S,t ≡ �S) Different tuning parameters (�S,t)

GenLasso 
ALOCV

GenLasso 
GCV

Lasso GenLasso 
ALOCV

GenLasso 
GCV

Lasso

Case 1 SensE 0.904 0.781 0.825 0.865 0.763 0.784

PPVE 0.840 0.888 0.836 0.857 0.885 0.837

IEDA 0.870 0.827 0.829 0.857 0.810 0.809
Case 2 SensE 0.929 0.795 0.833 0.881 0.779 0.791

PPVE 0.869 0.915 0.841 0.884 0.911 0.838

IEDA 0.896 0.847 0.837 0.877 0.831 0.813
Case 3 SensE 0.902 0.842 0.839 0.865 0.790 0.818

PPVE 0.765 0.785 0.775 0.780 0.800 0.775

IEDA 0.825 0.808 0.803 0.815 0.783 0.794
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by high IEDA values. The generalized lasso with ALOCV outperformed in detect-
ing clusters, while the generalized lasso with GCV performed well in estimating 
coefficients.

5  Real case data application: weekly Covid‑19 cases in Japan

Since the first confirmed case was detected on January 16, 2020, Japan has experi-
enced 5 major waves of the spread of Covid-19 until September 2021. As of Sep-
tember 11, 2021, the total number of Covid-19 cases in all prefectures in Japan was 
1,627,898, with 98% recovered rate (Ministry of Health, Labor, and Welfare, 2021). 
At that time, the number of Japan’s Covid-19 cumulative confirmed cases was the 
26-th highest in the world (WHO 2021). In our study, we choose the start point on 
March 21, 2020, because on that date the total confirmed Covid-19 cases exceeded 
1,000, spread in 39 of 47 (83%) prefectures of Japan.

Figure  5 shows daily reported Covid-19 cases in Japan, with (a)–(d) indicating 
periods of each declaration of emergency status respectively. To correspond with 
the first wave of Covid-19 spread, the first emergency status was declared on April 
7, 2020, first in seven prefectures, and then it was expanded nationwide on April 
16, 2020 (Fig. 5a). The second wave occurred in August 2020, but at that time the 
government didn’t declare an emergency status until the end of the year. After the 
number of cases decreased in autumn, the third wave occurred at the end of 2020, in 
which the number of infections reached 230,000 people. The second emergency sta-
tus was declared for Saitama, Chiba, Tokyo, and Kanagawa on January 8, 2021, and 
was expanded to 11 prefectures on January 13, 2021. The duration of this emergency 
status was until March 7, 2021 (Fig. 5b). The first dose of Covid-19 vaccination was 
implemented on April 1, 2021, while at that time, Japan was hit by the fourth wave 
of outbreak. The third emergency declaration was issued for Tokyo, Osaka, Kyoto, 
and Hyogo on April 25, 2021, and was expanded to five other prefectures on May 16, 

Fig. 5  Daily reported Covid-19 positive cases in Japan from March 18, 2020, to September 11, 2021, 
with emergency status periods (a)-(d)
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2021, which was lifted on June 20, 2021, except in Okinawa (Fig. 5c). The fifth wave 
occurred around July to September 2021, during which the Olympic Summer Games 
was held in Tokyo, and the fourth state of emergency was declared in several prefec-
tures, particularly to prevent spread of the highly contagious Delta variant (Fig. 5d).

We applied the minimization problem (3) for spatio-temporal analysis, which can 
be decomposed into the two generalized lasso problems (9) and (10), with tuning 
parameter �T and �S,t selected by ALOCV and GCV, to understand the temporal 
effect and prefectural clusters constructed at each time point. We used the weekly 
Covid-19 positive case data for each prefecture in Japan from March 21, 2020, to 
September 11, 2021 (the data file covid_jpn_prefecture.csv in Takaya (2021)). 

Therefore, we have S = 47 and T = 78 . Let y∗
it
 be the number of weekly positive 

cases in the i-th prefecture and at the t-th week, and Ni be the population in the i-th 
prefecture. Here, we used the log transformed positive case per population 
yit = log

(
y∗
it

Ni

)
 as the response variable in the generalized lasso problem. The adja-

cency between each pair of prefectures was introduced as constraints in the same 
way as in Sect. 4, and hence we have D1 ∈ ℝ

76×78 and D2 ∈ ℝ
93×47.

We calculated an unbiased estimate of the DF for �T or �S,t to evaluate complexity 
of the model. According to Tibshirani and Taylor (2011), the DF for given � in the 
generalized lasso (1) is defined as,

where nullity 
(
D−E

)
 is the dimension of the null space of D−E , reduced rows of the 

penalty matrix D corresponding to the boundary index set E of a solution of the 
dual problem (12). The DF for the L1 penalty suggests the number of fused groups. 
In estimating temporal effect with (9), we used the formula (24) to calculate DF for 
selected �T . In estimating spatial effect for each time point with (10), we selected 
a common �S for all t = 1, 2,… , 78 , based on the simulation study described in 
Sect. 4, in which a common tuning parameter resulted in higher IEDA values. In this 
case, the DF was calculated as the average value of DF over all t = 1, 2,… , 78.

5.1  Result of estimating temporal effect

We considered minimizing (9) to estimate the temporal effect �t . Table 3 contains 
selected �T and the DF based on the proposed method with ALOCV and GCV. We 
limited the maximum DF to 3

4
(78) = 58.5 to avoid extremely rough temporal effect. 

The generalized lasso with ALOCV selected higher �T and smaller DF than the 
results of the generalized lasso with GCV.

Figure 6 shows the estimated temporal effect �̂t for each t based on selected �T 
using generalized lasso with ALOCV and GCV, with each emergency status period 
(a)-(d). The break points in the estimated trend should suggest some change of con-
ditions such as emergency status declaration. The estimated trend using ALOCV for 
L1 penalty has slightly fewer break points than the one using GCV for L1 penalty. 

(24)df = E
[
nullity

(
D−E

)]
,



1528 S. Rahardiantoro, W. Sakamoto 

1 3

During the first emergency status period (a), the estimated temporal effect reached 
the first peak at first and then fell down. After the period (a) ended, it rose quickly 
and reached the second peak in summer of 2020. During the second emergency sta-
tus period (b), it reached the third peak at first and then fell down again. During 
the third emergency status period (c), it slightly increased for a while, reached the 
fourth peak, and then decreased quickly. During the fourth emergency status period 
(d), it increased for more than one month and then reached the fifth peak, and then 
decreased.

5.2  Result of estimating spatial effect

We considered minimizing (10) to estimate the spatial effect �it . In this case, we 
assumed that �S ≡ �S,t for all t = 1, 2,… , 78 and selected it by minimizing the sum 
of ALOCV and GCV errors over all t.

Table  4 contains selected �S and the DF. We limited the maximum DF to 
3

4
(47) = 35.25 to avoid extremely rough spatial effect. ALOCV was not computable 

at lower �S (less than 3.47) for the reason of division-by-zero issue, described in the 
last paragraph of Sect. 3, so that ALOCV selected higher �S with lower DF compared 
to GCV.The estimates �̂it of spatial effect for these methods of selecting �S were plot-
ted in Figs. 7, 8, and 9, in which the prefectures are plotted roughly from North (top) 
to South (bottom), and darker red color indicates higher values. Figure 7 shows unpe-
nalized estimates of the spatial effect �̂it = yit − y.t . Based on this figure, we can see 
the relative spread of Covid-19 for each prefecture in every week. However, the unpe-
nalized �̂it looks very rough, and hence it is very difficult to grasp commonalities and 

Table 3  Selected �T and DF for 
estimating the temporal effect �t

Method Selected �T DF

GenLasso with ALOCV 0.2759 37
GenLasso with GCV 0.0411 51

Fig. 6  Plot of estimated temporal effect �̂t based on �T selected by using generalized lasso with ALOCV 
and GCV, with emergency status periods (a)-(d)
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differences of spatial effect between regions for each week. Figure 8 shows the esti-
mated spatial effect �̂it with �S selected by using ALOCV. It looks very smooth, and 
one or few clusters covered all prefectures at most of the weeks, and at some weeks 
the estimated spatial effect had large difference depending on the clustered regions. 
Figure 9 shows estimated spatial effect �̂it with �S selected by using GCV. It suggests 
that there were some clusters of prefectures with the same values. We can see that the 
largest cluster consisted of most of prefectures during the emergency status periods. 
However, in other period of weeks, the prefectures were divided into some clusters.

5.3  Clustering the regions based on the estimated spatial effect

Figure 10 shows the heatmap of the estimated spatial effect �̂it with a common �S 
selected by using GCV for generalized lasso as in Fig. 9, but prefectures have been 
arranged based on agglomerative hierarchical clustering. The heatmap after the 
arrangement can display relative infection risk, that is, how the infection occurred in 
a specific area and then spread to other areas.

Based on Fig. 10, we can detect six major clusters of prefectures from top to bot-
tom: (1) All prefectures in Kyushu region, (2) All prefectures in Chugoku and Shi-
koku regions, (3) All prefectures in Kanto, Chubu, Kansai regions, and Fukushima 
prefecture (central part of Japan), (4) Prefectures in Tohoku region except Fuku-
shima, (5) Hokkaido prefecture, and (6) Okinawa prefecture. We provide the fol-
lowing interpretation of the dynamic behavior of spatial clusters based on the result 
of generalized lasso clustering with separating into the five waves that Japan has 
experienced.

i. First wave (March 21 to June 27, 2020)

During the first wave of infections, relative infection risk increased gradually in 
the central part of Japan (cluster 3) and Okinawa (cluster 6) and decreased in the 
remaining clusters. Then, while the first emergency status had been declared from 
mid-April to May 2020, relative infection risk was extremely higher in Hokkaido 
(cluster 5) and decreased gradually in the other clusters.

 ii. Second wave (July 4 to October 17, 2020)

Table 4  Selected common �S 
and DF for estimating spatial 
effect

Method Selected �S DF

GenLasso with ALOCV 4.1400 1.29
GenLasso with GCV 0.8939 6.64
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In the second wave of outbreaks, relative infection risk was higher in Kyushu 
(cluster 1), central Japan (cluster 3), and Okinawa (cluster 6), while lower in the 
other clusters. In cluster 1, the outbreak reached a peak in August 2020 and then 
decreased gradually. During the period, the relative risk increased gradually in 
cluster 3. It was the highest and stagnant in Okinawa.

 iii. Third wave (October 24, 2020, to February 6, 2021)

In the third wave, relative risk was higher in central and northern parts of Japan 
(clusters 3, 4, 5, and 6). Then, it decreased gradually while the second emergency 
status had been declared from January to March 2021.

 iv. Fourth wave (February 13 to June 5, 2021)

After higher risk in Kanto and Tohoku regions in March 2021, the fourth wave 
spread to other regions. While the third emergency status had been declared from 
April to June 2021, relative risk was higher in Okinawa (cluster 6) in April and in 
Kyushu region (cluster 1) in May but was lower in the other clusters.

 v. Fifth wave (June 12 to September 11)

In the fifth wave of infections, infection risk increased first in Okinawa (cluster 
6), spread into central Japan (cluster 3), Tohoku (cluster 4), and Hokkaido (clus-
ter 5), next into Chugoku and Shikoku (cluster 2), and then into Kyushu (cluster 
1).

In summary, we can see that the outbreaks that occurred in central Japan (clus-
ter 3) spread into outer regions such as Chugoku-Shikoku region (cluster 2) and 
Tohoku region (cluster 4) in one month, and then spread into Kyushu region (cluster 
1) a few months late. We can also see that the outbreaks in some regions leaped into 
Hokkaido (cluster 5) and Okinawa (cluster 6) a few months late.

6  Conclusion

In this study, we proposed a regularization approach using a modified generalized 
lasso model with two L1 penalties for temporal effect and spatial effect. Then, our 
proposed method can be separated into two generalized lasso problems: trend fil-
tering to estimate smooth temporal effect and fused lasso to detect clusters of spa-
tial location for each time point. Through our proposed method, we can understand 
dynamic behavior of spatial clusters over time more flexibly, based on relative mag-
nitude of estimated spatial effect at each time point.
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To select the appropriate tuning parameters in the generalized lasso, we consid-
ered using ALOCV and GCV. Our simulation study suggested that estimation of 
temporal and spatial effects using generalized lasso with ALOCV and GCV was 
comparable or superior in terms of MSE to existing regularization methods such 
as lasso, ridge, and generalized ridge. Also, we showed that the generalized lasso 
with ALOCV provided higher IEDA , the accuracy of detecting edges with non-zero 
difference. In addition, our simulation study suggested that a common tuning param-
eter over all time points was preferable in spatial clustering.

Then, through the analysis of weekly Japan’s Covid-19 panel data, we illustrated 
how to understand the spread of Covid-19 infection using our modified generalized 
lasso model. In estimation of the spatial effect over weeks, the generalized lasso 
with a common tuning parameter over all time points selected by GCV, provided a 
reasonable result.

This study mainly used the “genlasso” package of R software to solve the gener-
alized lasso problems using the dual path algorithm (Arnold and Tibshirani 2016). 
However, we may consider using the coordinate descent algorithm as suggested in 
Yamamura et  al. (2021), which suggested to have better estimation accuracy and 
speed than the algorithm used in “genlasso”. Moreover, to detect the spatial clus-
ters in the spread of disease as a task in epidemiology studies, the response variable 
is often observed as count data. The application of modified generalized lasso for 
count data was proposed by Choi et al. (2018), to which we have a great attention in 
our future work.
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