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Abstract
This paper proposes and discusses a bootstrap scheme to make inferences when an 
imbalance in one of the levels of a binary variable affects both the dependent vari-
able and some of the features. Specifically, the imbalance in the binary dependent 
variable is managed by adopting an asymmetric link function based on the quantile 
of the generalized extreme value (GEV) distribution, leading to a class of models 
called GEV regression. Within this framework, we propose using the fractional-
random-weighted (FRW) bootstrap to obtain confidence intervals and implement 
a multiple testing procedure to identifying the set of relevant features. The main 
advantages of FRW bootstrap are as follows: (1) all observations belonging to the 
imbalanced class are always present in every bootstrap resample; (2) the bootstrap 
can be applied even when the complexity of the link function does not allow to eas-
ily compute second-order derivatives for the Hessian; (3) the bootstrap resampling 
scheme does not change whatever the link function is, and can be applied beyond 
the GEV link function used in this study. The performance of the FRW bootstrap 
in GEV regression modelling is evaluated using a detailed Monte Carlo simulation 
study, where the imbalance is present in the dependent variable and features. An 
application of the proposed methodology to a real dataset to analyze student churn 
in an Italian university is also discussed.
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1  Introduction

In recent years, imbalanced data has attracted researchers’ attention, given the 
exponential growth of data and rise of the phenomenon of big data, for two main 
reasons. First, the class imbalance problem is pervasive and intrinsic in many 
real situations and domains (for a review of the main applications, see Krawc-
zyk 2001; Haixiang et al. 2017; Sun et al. 2009). Second, some statistical mod-
els and methods may be inadequate when encountering this imbalance and rare-
ness because they are based on the assumption of equal class distribution for data 
(King and Zeng 2001; Wang and Dey 2010).

The imbalanced binary variables are characterized as having more instances of 
certain classes than others. Particularly, one class is represented by a large num-
ber of units (that is, the majority class, corresponding to the non-events class), 
while another class has only a few samples (that is, the minority class, related to 
the events class).

When the degree of imbalance is extreme, and the data are characterized by 
the number of ones being hundreds to thousands of times smaller than the num-
ber of zeros, the events become rare (King and Zeng 2001; Wang and Dey 2010; 
Bergtold et al. 2018).

Given that rare instances occur frequently and the minority class is usually the 
group of interest, statistical models should consider this imbalance and avoid pro-
ducing biased estimates (McCullagh and Nelder 1989).

Indeed, when this rareness affects the response variable, using logistic regres-
sion based on the symmetric logit link function, could be inappropriate because 
the probability of rare events may be underestimated. Therefore, the units should 
be allocated into the majority class (the non-events) so that the bias of the maxi-
mum likelihood estimators increases (among the others see Agresti 2002).

Since the 90s, many methods have been developed for dealing with imbalanced 
data. The following two main groups of methods have been developed in the lit-
erature: (1) balancing the class distribution and making it suitable for the statisti-
cal models using preprocessing and/or sampling techniques, and then applying 
traditional models, and (2) modifying the existing classifiers to improve the bias 
toward majority classes to obtain better results from imbalanced data.

Sampling techniques re-balance the sample for an imbalanced dataset and miti-
gate the effect of skewed class distribution. Among various sampling methods 
developed to address this problem and eliminate the issue of skewed distribution, 
oversampling and undersampling are the two most used. The first creates new 
minority class samples, while the second removes the samples from the majority 
class. The two widely used oversampling methods are randomly duplicating the 
minority samples and SMOTE (Synthetic Minority Over-Sampling technique), 
which show good results across various applications (Chawla et  al. 2002). The 
simplest undersampling method is the Random Under-Sampling (RUS), which 
involves the random elimination of majority class examples (Tahir et al. 2012).

However, these resampling schemes have some disadvantages. First, they 
change the data structure, because with undersampling, the balanced classes 
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loss a lot of majority class data. Moreover, oversampling creates multiple sam-
ples within the minority class, resulting in overfitting of the model. Furthermore, 
both procedures focus on the rareness and imbalance in binary response varia-
ble, neglecting if these characteristics are also present in the categorical features. 
Consequently, they might be able to re-balance the response variable, but simul-
taneously increase the imbalance and rareness in the covariates. For a review of 
the main characteristics of sampling techniques, see among the others (Japkowicz 
and Stephen 2002; Estabrooks et al. 2004.

Apart from sampling methods, another common technique to handle imbalanced 
data is reweighting the likelihood function, which consists of directly passing the 
weights to each observation to the likelihood function. Seiffert et al. (2008) investi-
gate the difference between the reweighting and sampling methods for imbalanced 
data.

Olmus et  al. (2022) present an approach to parameter estimation bias using 
inverse conditional distributions, and compare their approach with different penal-
ized LR methods.

Moreover, the use of asymmetric link function has been proposed because the 
probability of binary response approaches zero at a significantly different rate than 
it approaches one (Chen et al. 1999; Kim et al. 2007). Furthermore, to appropriately 
model the large skewness caused by the rareness, Wang and Dey (2010) and Cala-
brese and Osmetti (2013) propose the use of an asymmetric link function based on 
the quantile of the Generalized Extreme Value (GEV) distribution, introducing the 
GEV regression.

The appropriate skewed link function remains an open problem, motivating some 
authors to investigate more flexible models to accommodate such imbalances.

Using the GEV regression framework, here we investigate the effect of imbal-
anced data on dependent and independent variables. According to the results in 
Calabrese and Osmetti (2013), the main novelty of our method is the use of a spe-
cific bootstrap scheme to make inferences about GEV regression models. Particu-
larly, we implement the Fractional-Random-Weighted (FRW) bootstrap, presented 
in Xu et al. (2020), for GEV regression, to build confidence intervals and implement 
multiple testing for identifying the set of relevant features of the model. The main 
advantage of using the FWR bootstrap is that it offers an alternative resampling 
method that never fails to capture every single class, regardless of the underlying 
probability distribution of the classes. Given that the observations remain across all 
bootstrap samples, it prevents the rare events from not being in the bootstrap resam-
ple. Thus, it makes be easier to deal with the imbalance and rareness. It also avoids 
the estimation procedure failures and accelerates the optimization algorithm, avoid-
ing poorly behaved likelihoods that require extra time to converge.

Thus, our proposal has some advantages. It is flexible because it can be used for 
all link functions, including standard link functions (i.e. logit and probit) and others 
beyond the GEV (i.e. cauchit and skewed probit). Moreover, it can be easily applied, 
especially when the link function is difficult to analytically manage. Moreover, it 
overcomes the disadvantage of other sampling techniques (i.e. oversampling and 
undersampling), which might change the data structure. Finally, it considers the 
rareness and imbalance across response variable and features.
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The performance in the finite samples of the FRW bootstrap in GEV regres-
sion modelling, is evaluated using a detailed Monte Carlo simulation study, where 
the imbalance and rareness are present across the dependent variable and features. 
Finally, the proposed methodology is applied to a real dataset to analyze student 
churn in an Italian university.

The paper is organized as follows. In Sect. 2 we introduce the notation and recall 
the generalized linear and generalized extreme value models. In Sect.  3 for GEV 
regression, we introduce the weighted bootstrap resampling scheme (Sect.  3.1), 
along with a short review of the bootstrap confidence intervals used throughout the 
study (Sect. 3.2) and a bootstrap testing procedure for variable selection that con-
trols for the Familywise Error Rate (Sect. 3.3). Next, we evaluate the performance of 
the proposed procedure in finite samples for rare events regression, using a simula-
tion study (Sect. 4.1) and apply it to a real dataset to study student churn (Sect. 4.2). 
Some concluding remarks conclude the paper (Sect. 5).

2 � GEV binary regression models

The generalization of linear regression models allows the management of cases 
where the response variable is not continuous but dichotomous, polytomous, et 
cetera.

Let Y be the response variable whose distribution belongs to the exponential fam-
ily, with expectation E[Yi] = �i , for i = 1, 2,… , n , and n the sample size. Let g(⋅) be 
a monotone and differentiable function such that:

where � = (�0, �1, �2,… , �p) is the (k × 1) vector of parameters, with k = p + 1 and 
� ∈ ℝ

k , x�
i
= (1, xi1, xi2,… , xip)

� is the vector of explanatory variables (covariates or 
dummy variables for factor levels) of unit i. The function g(⋅) , called link function, 
relates x′

i
� to �i and has to be chosen to properly deal with the set of values assumed 

by �i , for i = 1, 2,… , n (e.g. with a dichotomous variable 0 < 𝜇i < 1 ). The Eq. (1) 
defines the generalized linear model (GLM) and, different from the linear regres-
sion model (where g(�i) = �i ), has a link function that is an increasing or decreasing 
function of �i.

Assume that Y is a binary response variable that takes the value of 1 if the event 
of interest occurs, and 0 otherwise; X is the design (n × k) matrix; the probability 
associated with Yi = 1 is �i , and the corresponding probability of Yi = 0 is 1 − �i . 
Therefore, the event of interest for the i-th unit can be modelled using a Bernoulli 
random variable Yi , with E[Yi] = �i and P(Yi = yi) = �

yi
i
(1 − �i)

1−yi , for yi = 0, 1 and 
i = 1, 2,… , n.

Furthermore,

where F(⋅) is the proper chosen cumulative distribution function. Using the GLM 
notation (1):

(1)g(�i) = x
�
i
�,

(2)E[Yi] = �i = P(Yi = 1) = F(��
i
�),



185

1 3

Bootstrapping binary GEV regressions for imbalanced datasets﻿	

This implies that F−1(⋅) is the link function and if F−1(�i) is the logit link function, 
logit(�i) = ln[�i∕(1 − �i)] , the distribution function F(��

i
�) becomes

(see Dobson and Barnett 2008, among the others).
When Yi ( i = 1,… , n ) is imbalanced, the logit link function has several draw-

backs (see McCullagh and Nelder 1989, shortly listed in Sect.  1. The response 
curve is symmetric and approaches zero at the same rate that it approaches one; 
the logistic regression model could underestimate the probability �i ; the bias of 
the maximum likelihood estimators of the parameters � further increases in the 
presence of finite samples.

Calabrese and Giudici (2015), Calabrese and Osmetti (2013) and Wang and 
Dey (2010) have largely discussed these points and proposed the use of the GEV 
distribution function to estimate the probability �i.

Accordingly, let W be a random variable. It belongs to the GEV family, if its 
distribution function is as follows:

where {w ∶ 1 + 𝜉

(
w−𝜇

𝜎

)
> 0} and ( � ∈ ℝ , � ∈ ℝ

+ , � ∈ ℝ ) are the location, scale 
and shape parameters, respectively.

This class of random variables, widely presented in Kotz and Nadarajah (2000) 
and Coles (2001), includes the following three types of extreme values distri-
butions: if 𝜉 > 0 , the Fréchet family is obtained; if 𝜉 < 0 , the Weibull family is 
achieved, if � → 0 , the Gumbel family is attained.

Furthermore, the advantages of using the GEV distribution function include 
the definition and application of skewed link functions and flexibility of the GEV 
family because the parameter � controls the shape and size of the tails of the dis-
tribution. This characteristic is particularly important in the presence of rare and 
imbalanced data, because different proportions of zeroes and ones are required 
for the selection of a link function that approaches one at a different rate than it 
approaches zero.

To provide the corresponding empirical evidence, consider the standardized 
GEV distribution with 𝜉 < 0 (Weibull distribution function) and 𝜉 > 0 (Fréchet 
distribution function). In Fig. 1 it can be noted that the distributions in both plots 
become more asymmetric as |�| increases and then tails change. Particularly, the 
Weibull distribution on the left side of Fig. 1 approaches 1 sharply, and 0 slowly. 
Conversely, the Fréchet distribution approaches 1 more slowly as � increases on 
the right side of Fig. 1.

Following Calabrese and Osmetti (2013), for the GEV distribution function (3), 
�i is given by

�i = g−1(x�
i
�) = F(x�

i
�).

�i =
exp

{
��
i
�
}

1 + exp
{
��
i
�
} i = 1, 2,… , n,

(3)FW (w) = exp

{
−
[
1 + �

(w − �

�

)]− 1

�

+

}
,
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where (1 + 𝜉��
i
�) > 0 , with a non-canonical link function

for i = 1, 2,… , n , and correspondingly the log-likelihood function becomes:

(4)�i = exp{−[1 + ���
i
�]

−
1

� }

(5)
[− ln(�i)]

−� − 1

�
= ��

i
�,

Fig. 1   GEV distribution function with different values of the shape parameter �

Fig. 2   The scheme of the merging procedure between ESSE3 system and Almalaurea surveys
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where �i is given by (4).
Calabrese and Osmetti (2013) discussed some computational issues related to the 

maximization of (6) and clarified that, because the Fisher information matrix is not 
diagonal, the parameters � and � need to be jointly estimated.

In the Appendix, they report that the gradient and Hessian of the log-likelihood 
function allow the attainment of the asymptotic variance of the parameters but 
simultaneously provide evidence of the analytical burden faced during the com-
putation of the first and second-order derivatives. Moreover, given the asymptotic 
normality of the � and � maximum likelihood estimators, confidence intervals and 
proper tests can be built to evaluate the accuracy of the estimates and their signifi-
cance, respectively.

These results further reveal that, as the complexity of the link function increases, 
the analytical computations related to the second-order derivatives, can be challeng-
ing to calculate.

Resampling techniques can significantly help eliminate analytical complexities 
that make it difficult for practitioners to build confidence intervals and testing pro-
cedures. Here, we introduce inferential results based on the bootstrap. To the best 
of our knowledge, this has not been previously addressed in the GEV regression 
domain. Thus, we reach two main objectives. First, no analytical computation of the 
Hessian matrix is needed, to overcome the aforementioned analytical issues. Sec-
ond, the bootstrap procedure can be made almost automatic and used along with 
other link functions beyond the GEV function used in this study.

In Sect. 3, we consider the FRW bootstrap, largely discussed in Xu et al. (2020), 
to build confidence intervals for the parameters included in the vector � of the GEV 
regression model. Next, the bootstrap distribution is used to make variable selection. 
This takes place in the multiple testing setting, which will be discussed in Sect. 3.3.

An important advantage of the FRW bootstrap is that it can be properly used 
when the number of successes in the binary dependent variable, is related to rare 
events or where there is insufficient mixing of successes and failures across the fea-
tures. Moreover, as will be discussed in Sect.  3, under mild conditions, the FRW 
version of the maximum likelihood (ML) estimator is consistent and asymptotically 
follows the normal distribution.

3 � Fractional‑random‑weighted bootstraping for GEV regression

The weighted bootstrap has had a long-established role in the bootstrap literature 
since the seminal paper of Efron (1982), where the standard bootstrap was shown 
to be equivalent to a weighting resampling scheme with random integer weights, 

(6)

�(�, �;�, �) =

n∑

i=1

�i(�, �; �i, yi)

=

n∑

i=1

{−yi log(�i) + (1 − yi) log(1 − �i)},
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and the weights were given by the number of times each observation is drawn in the 
resampling.

In the presence of binary imbalanced data, resampling bootstrap approaches do 
not work well because of the very low number of ones that could entail the selection 
of bootstrap samples with only zeroes. This leads to a preference for different boot-
strap schemes where the resampling is replaced by a proper random weighting of the 
observations.

In this domain, we describe the FRW bootstrap (presented in Xu et  al. 2020) 
which will be applied to gain inference regarding the parameters of the GEV regres-
sion, which is mainly used in the presence of imbalanced and rare events datasets.

3.1 � Weighted bootstrap for GEV regression

Let �(�, �;�, �) be the log-likelihood function (6), with �i(�, �; �i, yi) , for 
i = 1,… , n , the contribution for the observation (��

i
, yi).

The random weighted log-likelihood is given as follows

where the weight vector �∗ = (w∗
1
,w∗

2
,… ,w∗

n
)� is generated using a uniform Dir-

ichlet distribution, multiplied by n. Therefore, 
∑n

i=1
w∗
i
= n.

The probability density function of the Dirichlet distribution of order n ≥ 2 with 
parameters �1,… , �n is given by:

with Γ(⋅) denoting the Gamma function, 𝛼i > 0 , 
∑n

i=1
wi = 1 and wi ≥ 0 . When 

�1 = �2 = ⋯ = �n = 1 , we get the uniform Dirichlet distribution.
Operationally, generating fractional weights using uniform Dirichlet distribution 

is equivalent to generating random weights using normalized exponential distribu-
tion with mean one. More precisely, the random vector �∗ = (w∗

1
,w∗

2
,… ,w∗

n
)� is 

generated as follows:

where Z1,… , Zn are iid exponential distributions with mean one.
Generating the weights according to the previous scheme delivers FRW boot-

strap estimators with good asymptotic properties, as long as the weights are posi-
tive, independent, and identically distributed from continuous random variables with 
equal mean and variance, as for the uniform Dirichlet case (see Jin et al. 2001 and 
empirical results in Xu et al. 2020).

The fractional random weight counterpart of the likelihood estimate �̂ is obtained 
by maximizing (7):

(7)�
∗(�, �;�, �,�∗) =

n∑

i=1

w∗
i
�i( �, �; �i, yi),

f (w1,… ,wn;�1,… , �n) =
Γ(
∑n

i=1
�i)∏n

i=1
Γ(�i)

n�

i=1

w
�i−1

i
,

(8)w∗
i
= n ⋅

Zi∑n

i=1
Zi
, i = 1,… , n,
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The probability law of 
√
n
�
�̂∗ − �̂

�
�� delivers the bootstrap approximation for the 

unknown sampling distribution 
√
n
�
�̂ − �

�
.

There is a clear advantage in using fractional random weights in our framework. 
Integer weighting schemes, such as those based on the Multinomial distribution, 
have a random number of weights equal to zero. Consequently, some observations 
from the log-likelihood function (7) are excluded. This might cause serious estima-
tion problems in contexts where the dependent variable or some predictors have rare 
levels, making the bootstrap procedure fail altogether or deliver poor results. In such 
cases, integer weights or sampling schemes (as in the under-sampling case) may 
lead to the selection of samples with binary variables, originally affected by rarity, 
having all values equal to zero because, for example, the small number of ones has 
not been sampled from the procedure. In a fractional weighted bootstrap scheme, the 
weights are never zero and all observations remain in the bootstrap samples. There-
fore, the estimation difficulties associated with the resampling process do not arise.

The fractional-weighted bootstrap scheme for GEV regression delivers consist-
ent results. Therefore, for n → ∞,

and

where I(�) is the Fisher information matrix for � , as computed in the Appendix by 
Calabrese and Osmetti (2013).

The proof is straightforward. It starts with the results in Smith (1985) and 
Calabrese and Osmetti (2013), showing the regularity of the GEV maximum like-
lihood estimators when 𝜉 > −0.5 . Particularly, under this condition, the maximum 
likelihood estimators have the usual asymptotic properties. Thus, for n → ∞

and

Accordingly to Result 1 of Xu et al. (2020), the consistency of the fractional random 
weight �̂∗ estimators follows (see Eq. 9). The asymptotic normality (see Eq. 10) is 
instead obtained from Result 2 and the corresponding proof details given in the Sup-
plement of Xu et al. (2020).

Based on the previous results, we can state that the probability laws of √
n
�
�̂∗ − �̂

�
�� and 

√
n
�
�̂ − �

�
 are asymptotically equivalent. Thus, for large n, the 

�̂
∗
= argmax

�
�
∗(�, 𝜉;�, �,�∗).

(9)�̂∗
p

⟶�

(10)
√
n
�
�̂
∗
− �̂

�
��

d
⟶N

�
�, I(�)−1

�
.

�̂
p

⟶�

√
n
�
�̂ − �

� d
⟶N

�
�, I(�)−1

�
.
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unknown sampling distribution of 
(
�̂ − �

)
 can be approximated with the distribution 

of (�̂∗ − �̂)|�.
The bootstrap distribution is difficult to analytically derive, and, as usual, it will 

be approximated using Monte Carlo, according to Algorithm 1. The approximated 
bootstrap distribution can be used to construct confidence intervals and tests for 
the parameters � . The adaptation of our framework is straightforward and shown in 
Sects. 3.2 and 3.3.

3.2 � Bootstrap confidence intervals

Given the distribution derived in Algorithm 1, several alternative confidence inter-
vals can be constructed (see Shao and Tu 1995 for a general introduction).

Let �j be the parameter of interest and 𝛽j its maximum likelihood estimator 
(MLE), with j = 0, 1, 2,… , p . The distribution derived from Algorithm  1 can be 
used to construct approximate confidence intervals using the hybrid (or basic) boot-
strap method. The approximate 100(1 − �)% bootstrap interval for �j is given by:

where q� denotes the percentile of order � of the ECDF of {�∗
j,1
, �∗

j,2
,… , �∗

j,B
} with 

𝛿∗
j,b

= 𝛽∗
j,b
− 𝛽j.

This method delivers a valid asymptotic approximation, but the interval limits are 
neither range-preserving nor transformation invariant. This is an essential and cru-
cial property of our framework, where some quantities of interest in the applications 
need to be written as smooth functions of the model parameters vector.

An alternative approach is the bootstrap confidence interval obtained using the 
percentile method. The approximate 100(1 − �)% bootstrap percentile interval for �j 
is given as follows:

[
𝛽∗
j,lo
, 𝛽∗

j,up

]
=
[
𝛽j − q1−𝛼∕2, 𝛽j − q𝛼∕2

]
,
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where 𝛽∗
j,(𝛼)

 denotes the percentile of order � of the empirical distribution of the boot-
strap replicates 𝛽∗

j,1
, 𝛽∗

j,2
,… , 𝛽∗

j,B
 . This is the simplest way to derive a bootstrap confi-

dence interval because it is easy to compute, range-preserving, and transformation 
invariant. However, it tends to be too narrow for small n (Hesterberg 2015).

A better alternative is given by the bias corrected (BC) percentile method. The 
basic idea of the BC method is to replace the percentiles �∕2 and 1 − �∕2 used in the 
simple percentile method with the adjusted percentiles �1 and �2 . Particularly, the 
confidence interval using the BC percentile method is given as follows:

where

with Φ(⋅) denoting the CDF of the Standard Gaussian distribution, z� denoting the 
percentile of order � of the Standard Gaussian distribution, and b̂ denoting the frac-
tion of the values 

{
𝛽∗
j,b
, b = 1, 2,… ,B

}
 that are less than 𝛽j . The value zb̂ is the bias-

correction, that is, the value that corrects for the median bias in the distribution of 
𝛽∗
j
 , on the Standard Gaussian scale.
The BC percentile method is less intuitive than the other two methods and 

requires the estimation of a bias-correction term. However, it delivers confidence 
intervals that are range-preserving and transformation invariant, works well for a 
variety of parameters, and is second-order accurate (see DiCiccio and Efron 1996).

3.3 � Bootstrap variable selection

The variable selection problem can be seen as a multiple testing problem and is 
implemented using the bootstrap distribution derived in Algorithm 1. Let

and consider the following test statistics

Clearly “large” values of the Tj are indicative of the alternative.
Here, the problem is how to perform the test given the multitude of tests. Accord-

ingly, we refer to a bootstrap procedure suggested by Romano and Wolf (2005a, 
2005b) to control Familywise Error Rate (FWE), which indicates the probability of 
having at least one false rejection. In our case, it is the probability of having at least 
one wrongly labeled variable as relevant to the model.

[
𝛽∗
j,lo
, 𝛽∗

j,up

]
=
[
𝛽∗
j,(𝛼∕2)

, 𝛽∗
j,(1−𝛼∕2)

]
,

[
𝛽∗
j,lo
, 𝛽∗

j,up

]
=
[
𝛽∗
j,(𝛼1)

, 𝛽∗
j,(1−𝛼2)

]
,

𝛼1 = Φ
[
2zb̂ − z1−𝛼∕2

]

𝛼2 = Φ
[
2zb̂ + z1−𝛼∕2

]
,

Hj ∶ �j = 0 vs H�
j
∶ �j ≠ 0, j = 1, 2,… , p

Tj = |𝛽j|, j = 1, 2,… , p.
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The procedure runs as follows. Relabel all hypotheses in descending order of 
the observed test statistics, Tr1 ≥ Tr2 ≥ ⋯ ≥ Trp . Accordingly to the labels 
{r1, r2,… , rp} , Hr1

 denotes the “most significant” variable and Hrp
 , the “least sig-

nificant” variable. Now, consider the absolute values of the bootstrap replicates 
obtained in Algorithm (1)

and compute

for s = 1, 2,… , p and b = 1, 2,… ,B.
Finally, let ĉ(1 − 𝛼, s) be the 1 − � percentile of the set 

{
max

∗,b

T ,s
, b = 1, 2,… ,B

}
.

Now, we can apply Algorithm 3.1 described in Romano and Wolf (2016), which 
we report in Algorithm 2 adapted to our variable selection testing problem.

Algorithm 2 Multiple testing algorithm for controlling FWE at level α
Require: Fix the level of the test α
1: for j = 1 to p do
2: Reject Hrj if, and only if, Trj > ĉ(1− α, 1)
3: end for
4: Let R1 be the number of hypotheses rejected.
5: if R1 = 0 then
6: Stop
7: else
8: s = 2
9: end if
10: for j = Rs−1 + 1 to p do
11: Reject Hrj if, and only if, Trj > ĉ(1− α,Rs−1 + 1)
12: end for
13: if No further hypotheses are rejected then
14: Stop
15: else
16: Denote by Rs the number of hypotheses rejected so far
17: s = s+ 1
18: Return to step 10
19: end if

When the number of the hypothesis is in the hundreds or thousands, controlling 
the FWE might lead to test procedures that are too conservative. Therefore, vari-
ables may be wrongly labeled as irrelevant to the model, when they actually are 
relevant. Alternatively, the k-FWE, defined as the probability of rejecting at least 
k of the true null hypotheses, can be used to construct more powerful tests. Algo-
rithm 2 can be easily extended for controlling the k-FWE along the lines described 
in Algorithm 4.2 in Romano et  al. (2008). Finally, when k = 1 , controlling the k-
FWE reduces to controlling the FWE.

{
|𝛿∗

j,b
| = |𝛽∗

j,b
− 𝛽j|, j = 1, 2,… , p; b = 1, 2,… ,B

}
,

max
∗,b

T ,s
= max

{
|�∗

rs,b
|,… , |�∗

rp,b
|
}
,
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4 � Numerical study

4.1 � Monte Carlo simulation

This section discusses the results of a Monte Carlo simulation study used to assess the 
performance in finite samples of the proposed fractional-weighted bootstrap scheme for 
GEV regression models. These performances are compared with those obtained from 
the maximum likelihood method. Particularly, the primary purpose is to investigate the 
effect on the accuracy of alternative inference procedures when the data are affected 
by unbalanced and rare events in the dependent and independent variables. The latter 
scenario has received less attention in the literature. However, it appears to be very fre-
quent in real applications, especially when considering one-hot-encoding transforma-
tions used to deal with categorical predictors. Such transformations often generate very 
unbalanced binary variables when some of the levels are associated with rare events.

For this purpose, we have considered a GEV regression model with p features, 
where p = {2, 4, 10} , including numeric and binary variables. The first p/2 pre-
dictors are numeric variables and the last p/2 are binary variables. Let pnum be the 
number of numeric variables and pbin the number of binary variables, such that 
p = pnum + pbin . The pbin binary variables are generated using independent Ber-
noulli distributions, where the probability of success assumes the values pX given 
in the set {0.05, 0.10, 0.20, 0.50} , which includes balanced and imbalanced classes. 
The pnum numeric variables are generated from a pnum-variate normal random 
variable where all variables have mean zero, unit variance, and corr(Xi,Xj) = � , 
for i ≠ j and i = j = 1,… , pnum , where � ∈ {0.0, 0.5} . Given the p features, the 
dependent variable Y is generated using the binary GEV regression model with 
P[Y|�] given in (4). Three different values are considered for the shape parameter 
� = {0.10,−0.10,−0.20} , � = (�0, �1,… , �p)

� with �j = 0 , for j = 1,… , p , whereas 
�0 is set at different levels to guarantee that P(Y|�) ∈ {0.05, 0.10, 0.20, 0.50}.

Furthermore, we have assumed B = 1999 bootstrap runs, 1000 Monte Carlo rep-
licates, and sample size n varying in the set {250, 500, 1000, 2000} . Finally, the frac-
tional weights of the FRW bootstrap are generated using a uniform Dirichlet distri-
bution (with all parameters equal to one). The overall simulation design comprises a 
total of 1152 design points.

To better clarify the simulation design, in Algorithm 3, all settings and the struc-
ture of the Monte Carlo study, are shortly described. All procedures are imple-
mented in R (R Core Team 2022) and the code is included as Supplementary file.
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Given the large simulation study, we only discuss the cases with � = −0.10 and 
� = 0.5 , because the overall results are significantly similar when � = {−0.20, 0.10} 
and � = 0 . Moreover, the moderately correlated features scenario appears to be more 
realistic than the scenario where all numeric features are uncorrelated.

Given the copious number of plots, we include only the plots where the num-
ber of predictors is p = 4 . This is because the results obtained by fixing p = 2 and 
p = 10 , are very similar. In any case, the complete set of results is available from the 
authors as supplementary material.

Given the aim of the simulation study, the accuracy of the bootstrap estimators 
has been evaluated by comparing the variance of 𝛽∗

j
 , for j = 0, 1,… , 4 , with the 

“true” variance (based on further 20000 Monte Carlo replicates where the corre-
sponding ML estimates are obtained for each of them). To compare the bootstrap 
results with that of a competing method, the ratios between the variance of the 
maximum likelihood estimator 𝛽j , obtained from the Monte Carlo study described 
in Algorithm 3, and the “true” variance are further computed. In Figs. 3 and 4, 
the empirical distributions of the bootstrap and maximum likelihood (ML) 



195

1 3

Bootstrapping binary GEV regressions for imbalanced datasets﻿	

variance ratios are shown for all �j , with j ∈ {0, 1, 2, 3, 4} , for different levels of 
imbalance in the dependent variable Y and across the binary covariates, X3 and 
X4 . It can be noted that the variability of the methods increases as the rarity of Y, 
X3 , and X4 grows, and no remarkable differences are seen among them. This latter 
point could be seen as an advantage for the bootstrap method. This is because 
when the complexity of the link function does not allow to easily obtain the sec-
ond derivatives for the Hessian, the bootstrap approach can be considered as a 
valid alternative to maximize the likelihood and effectively gain inference about 
the unknown parameters of the model. Moreover, the bootstrap resampling 
scheme does not change whatever the complexity of the chosen link function is. 
Therefore, it can be applied beyond the GEV regression considered in this study.

the FRW bootstrap distributions of the GEV regression parameters are further 
used to build bootstrap confidence intervals (CIs). As clarified in Sect.  3.2, we 
consider the following three methods: the percentile, bias-corrected, and hybrid 
methods.

Given the nominal confidence level 1 − � = 0.90 , in Figs. 5 and 6 the lengths 
of the bootstrap confidence intervals are compared with those obtained from the 
maximum likelihood approach. The similar behavior of the lengths, for all values 
of pX and p, further provide evidence of what was previously noted.

Finally, the empirical coverage of the three different methods in the FRW boot-
strap domain with imbalanced data is shown and compared with the empirical 
coverage of the confidence intervals based on the likelihood approach. To sim-
plify the presentation of results and obtain clearer plots, in Figs. 7, 8, 9 and 10, 
the empirical coverage of the confidence intervals is evaluated by separately 
considering the lower and upper confidence bounds. In Figs.  7 and 8, we con-
sider the empirical percentage error obtained by comparing the true �j value, for 
j ∈ {0, 1, 2, 3, 4} with the lower confidence bound. In Figs. 9 and 10, the corre-
sponding empirical percentage error for the upper bound is considered.

If we evaluate the results of the lower bounds, the four methods are almost 
equivalent for all �j , j ∈ {0, 1, 2, 3, 4} , for all rates of imbalance in the data, and 
for small values of n. In all cases, the empirical error rate is close to the nominal 
level �∕2 = 0.05.

A different evaluation arises from Figs. 9 and 10, panels (c) and (d). In these 
cases, when n is not sufficiently large, the small number of ones in Y, X3 , and X4 
comprise the upper empirical percentage errors of the bootstrap CIs for �3 and �4 , 
far from the nominal level �∕2 = 0.05 (the dark gray line). In any case, the BC 
and Hybrid methods outperform the Percentile method as expected. However, all 
bootstrap methods are almost equivalent to the likelihood method, as n grows.

Finally, as presented in Sect. 3.3, the FWR bootstrap distributions are used in 
a multiple testing setting, for variable selection. To the best of our knowledge, the 
FWR bootstrap has not been previously used in this domain.

Following the steps of Algorithm 2, the test is built by controlling the prob-
ability of having at least one false rejection (FWE), which, in practice, corre-
sponds to the case where at least one variable is wrongly labeled as relevant.
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Given the nominal FWE level 0.10, Fig. 11 shows the corresponding empiri-
cal values obtained using the FWR bootstrap distribution of the GEV regression 
parameters.

Note that what mainly affects the testing performance is the imbalance of Y 
and the predictors, which could lead to the inclusion of irrelevant variables in 
the model. In all other cases, the performance of multiple testing procedure is 
satisfactory.

It confirms the following results of the construction of the CIs: the FRW boot-
strap delivers reasonable good results in all cases, except when the dependent and 
independent variables are highly imbalanced across small sample sizes.

4.2 � Empirical data analysis

Our proposal for imbalanced binary data is evaluated by analyzing a complex 
dataset related to university students’ careers. Particularly, we are interested in 
investigating students’ churn, defined as students’ choice to enroll for a master 
course in the same university they graduated from with a bachelor’s degree. Thus, 
the event of interest can be modeled by a binary response variable Y, which takes 
the value of 1 if students stay in the same university, and 0 otherwise.

The analysis aims to i) identify which students’ characteristics influence their 
choice and ii) sketch a profile of the students who are willing to enroll in a master 
program from the same university they received their bachelor degrees from.

For these purposes and given the complexity of the factors contributing to the 
university churn under analysis, we collected information from two main sources. 
The first is the Student Information System (ESSE3), a student management sys-
tem used by most Italian universities, which manages the entire career of stu-
dents from enrollment to graduation. It contains information about students’ high 
school diplomas, personal characteristics, exams, abroad experience, internship, 
and degrees. Therefore, given the large amount of available data, from this source, 
we collected and merged information on students’ enrollment, exams, and gradu-
ation for all years under analysis (Fig. 2). The second source is the AlmaLaurea 
Consortium (https://​www.​almal​aurea.​it/​en). It is an inter-university consortium 
that collects information and assessments of partner universities and their activi-
ties every year, for statistical and research purposes. It also facilitates the entry 
of young graduates into the labour market using its innovative online platform. 
Accordingly, Almalaurea also carries out the following two statistical surveys: 

1.	 graduates’ profiles, which provide a portrait of the characteristics of graduates, 
their university achievements, experiences they have gained during their studies, 
and the evaluation of the studies completed;

2.	 graduates’ employment status, which provides, at certain time points (one/three/
five year(s) after graduation), a portrait of the graduates’ job placement in the 
labor market, characteristics of the jobs found, and skills acquired during univer-
sity studies.

https://www.almalaurea.it/en
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The micro-data collected by both surveys are delivered to all affiliated universities. 
The datasets of the two AlmaLaurea surveys are characterized by a large number of 
variables (i.e. 145 and 159 variables in the surveys on the graduates’ profiles and 
employment status, respectively) (Fig. 2). The data from ESSE3 and Almalaurea are 
not freely available and can be acquired from the university staff for research pur-
poses only.

Given the complexity and large size of the datasets, we only focused on the 
University of Salerno, established in 1968 in Southern Italy. It has 17 Departments 
and about 90 bachelor and master programs. Additionally, among all departments 
and programs, we opted for analyzing the bachelor courses in Business Adminis-
tration (BA), Economics (E), and Administration and Organization (A &O) at the 
Department of Economics and Statistics for eight academic years (2013–2020).

Thus, the analysis covers 1543 students (BA = 697; E = 654; A &O = 192) that 
have started a master program at the University of Salerno Y = 1 (1036 students) 
or elsewhere Y = 0 (507 students). Next, we merged the datasets from ESSE3 and 
Almalaurea using students’ identification numbers, to finalize the data matrix, which 
contains information about students’ high school diplomas, university career, evalu-
ation and satisfaction of their experience in university, first job experience, and fam-
ily background (Fig. 2).

Given the large number of features resulting from the merging procedure, we 
reduce the number of risk factors by taking into account the aim of the study. A first 
screening of the covariates was performed by testing their statistical significance on 
the response variable Y. The final set of the variables identified as potential charac-
teristics, affecting the students’ churn, is shown in Table 1. They are classified into 
the following four groups: high school, bachelor degree, socio-demographic infor-
mation, and job position.

The analyzed dataset consists of some binary variables with different levels of 
imbalance, which have to be managed along with the imbalance in the response var-
iable. This is because they might affect the estimates, as discussed in Sect. 1 and 
shown in the simulation study (Sect. 4.1).

Thus, for sketching the profiles of students who enrolled for a master program in 
the same university they received their bachelor degrees from, we estimate the GEV 
regression model and make inferences on the estimated parameters using the FRW 
bootstrap distribution. Particularly, because we aim to estimate students’ churn and 
identify the main students’ characteristics that might affect their choice of continu-
ing their career in the same university they received their bachelor degree from, we 
compared the variables selected by multiple testing based on controlling FWE, with 
those obtained by estimating a generalized linear model with c-log-log link function 
and elastic-net regression.

Given that the FRW bootstrap procedure is based on the numerical maximization 
of the log-likelihood, it requires the specification of starting values for the model 
parameters. The starting values for the � s are fixed at the values estimated using 
c-log-log link function because, for � close to zero, the GEV distribution becomes 
a Gumbel distribution, which corresponds to c-log-log link. Furthermore, for the 
shape parameter � , two approaches are suggested in Calabrese and Osmetti (2013), 
Calabrese and Giudici (2015); Calabrese et al. (2016). The first consists of fixing a 
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grid of values for � , and choosing the value that maximizes the likelihood or gives 
the best empirical predictive performance. The second approach suggests to jointly 
estimate the shape parameter � and coefficients � by maximizing the likelihood. In 
this analysis, we adopt both proposals. Given that the estimates for � are substan-
tially equal for both approaches ( � = −0.25 for the first approach and � = −0.26 for 
the second approach), the initial value for the shape parameter is set at � = −0.25.

Table 2 shows the variables that are significant by observing the p-values of the 
maximum likelihood estimates in c-log-log regression and using the elastic net pro-
cedure. When controlling FWE, only one variable is selected as relevant. Thus, all 
other previously identified features might be wrongly labeled as relevant.

Table 2   The relevant covariates by maximum likelihood, elastic net, and FWE

Variable ML Elastic net FWE

Course of study: economics ✓ ✓

Course of study: administration and organization ✓ ✓

Social status: high ✓ ✓

Social status: white-collars middle class
Social status: autonomous middle class
High school diploma: scientific ✓

High school diploma: psychopedagogical
High school diploma : technical-professional ✓ ✓

High school diploma: other
Degree age
Enrollment age: the same year of diploma ✓ ✓

Residence: same region of the study ✓ ✓

Residence: different region of the study/abroad
final degree mark
Gender: female
International experience: yes ✓ ✓

Satisfaction: no satisfied ✓ ✓

Back to the start: yes, but same course and University ✓

Back to the start: yes, but different course, same University
Back to the start: yes, but same course, different University ✓ ✓ ✓

Back to the start: yes, but different course & University
Teachers relationship: no satisfied ✓

Job province: yes ✓

Job Europe: yes
Job no-Europe: yes ✓

Job region: yes ✓

Exams: ≤ 50% ✓

Exams: > 50% ✓

Exams: always or almost always ✓
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For the significant variable, Back to the start: Yes, but same course, different Uni-
versity, we plot the bootstrap distribution of the corresponding estimates based on 
the GEV maximum likelihood, with its BC bootstrap confidence interval (Fig. 12). 
For sake of comparison, we also report the c-log-log maximum likelihood estimate 
and corresponding confidence interval (Fig. 12). It is evident that the bootstrap dis-
tribution is slightly negative skewed. Moreover, the likelihood-based confidence 
interval is wider than the BC. Finally, the negative value of the estimate denotes a 
decrease in the probability of starting a master program at the University of Salerno 
for those students that, going back to the first-level enrolment, would choose the 
same course but different university. This might appear quite obvious but provide 
clear implications in terms of university policies that need to focus their attention on 
the overall satisfaction of students. In fact, it emerges that students are not unsatis-
fied with the selection of the type of course of study, but other factors might com-
promise their positive experience at the University of Salerno (Table 2).

5 � Concluding remarks

We addressed the problem of imbalance and rareness in binary dependent and inde-
pendent variables, which may produce inaccurate inferences. To model these data, 
we employed GEV regression models from Calabrese and Osmetti (2013) and Wang 
and Dey (2010), which use an asymmetric link function based on the quantile func-
tion of the Generalized Extreme Value (GEV) distribution.

Furthermore, instead of using the inferential results presented in Wang and Dey 
(2010) and Calabrese and Osmetti (2013), we propose to implement the Fractional-
Random-Weighted (FRW) bootstrap, proposed by Xu et al. (2020), to construct both 
bootstrap confidence intervals and a multiple testing procedure for selecting the set 
of relevant variables.

The following advantages can be obtained from the use of the FRW bootstrap: 
i) it is flexible because the same algorithm can be used for all link functions; ii) it 
can be easily applied when the link function is challenging to analytically manage; 
iii) it overcomes the disadvantage of other sampling techniques (i.e. oversampling 
and undersampling), which might change the data structure; and iv) it considers the 
rareness and imbalance in both response variable and features, while other sampling 
techniques usually focus only on the dependent variable.

The simulation study shows that the imbalance in the binary independent vari-
ables seems to have a higher impact on the variability of the estimates, compared 
to the binary imbalanced response variable. In fact, when the probability of having 
one in the features is less than 0.10, the estimates have larger variability, especially 
for small sample sizes. Moreover, the effect of rare events in the response variable is 
mitigated by the asymmetric distribution of GEV. These results are achieved in the 
presence of ML and FRW bootstrap estimators. However, the advantages of the lat-
ter approach enable the use of FRW for practitioners.

The FRW bootstrap distribution is then used to construct a variable selection pro-
cedure which considers the multiple testing structure of the problem. The simulation 



202	 M. La Rocca et al.

1 3

Fig. 3   Variance ratios of the bootstrap estimators and of the maximum likelihood estimators with the 
“true” variance of �j , j = 0, 1, 2, 3, 4 , for pX = {0.20, 0.50} and p = {0.05, 0.10, 0.20, 0.50}
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Fig. 4   Variance ratios of the bootstrap estimators and of the maximum likelihood estimators with the 
“true” variance of �j , j = 0, 1, 2, 3, 4 , for pX = {0.05, 0.10} and p = {0.05, 0.10, 0.20, 0.50}
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Fig. 5   Confidence intervals length of the percentile, bias corrected and hybrid bootstrap method 
and of the confidence intervals based on likelihood, for different values of pX = {0.20, 0.50} and 
p = {0.05, 0.10, 0.20, 0.50}



205

1 3

Bootstrapping binary GEV regressions for imbalanced datasets﻿	

β0 β1 β2 β3 β4

0.05
0.1

0.2
0.5

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

n

Le
ng

th

Type
BC

Hybrid

Likelihood

Percentile

(a) pX = 0.10

β0 β1 β2 β3 β4

0.05
0.1

0.2
0.5

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

n

Le
ng

th

Type
BC

Hybrid

Likelihood

Percentile

(b) pX = 0.05

Fig. 6   Confidence intervals length of the percentile, bias corrected and hybrid bootstrap method 
and of the confidence intervals based on likelihood, for different values of pX = {0.05, 0.10} and 
p = {0.05, 0.10, 0.20, 0.50}



206	 M. La Rocca et al.

1 3

BC Hybrid Likelihood Percentile

β
0

β
1

β
2

β
3

β
4

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

n

E1

p
0.05

0.1

0.2

0.5

(a) pX = 0.50

BC Hybrid Likelihood Percentile

β
0

β
1

β
2

β
3

β
4

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

n

E1

p
0.05

0.1

0.2

0.5

(b) pX = 0.20

Fig. 7   Empirical percentage error of the lower FRW bootstrap confidence bound, with nominal level 
�∕2 = 0.05 , pX = {0.20, 0.50} and p = {0.05, 0.10, 0.20, 0.50} . The gray line is the nominal level
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Fig. 8   Empirical percentage error of the lower FRW bootstrap confidence bound, with nominal level 
�∕2 = 0.05 , pX = {0.05, 0.10} and p = {0.05, 0.10, 0.20, 0.50} . The gray line is the nominal level
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Fig. 9   Empirical percentage error of the upper FRW bootstrap confidence bound, with nominal level 
�∕2 = 0.05 , pX = {0.20, 0.50} and p = {0.05, 0.10, 0.20, 0.50} . The gray line is the nominal level
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Fig. 10   Empirical percentage error of the upper FRW bootstrap confidence bound, with nominal level 
�∕2 = 0.05 , pX = {0.05, 0.10} and p = {0.05, 0.10, 0.20, 0.50} . The gray line is the nominal level
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Fig. 11   Empirical FWE obtained from the FRW bootstrap distributions
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results show that the imbalance of Y and the predictors, combined with that of the 
small values of n, leads to the inclusion of irrelevant variables in the model. How-
ever, satisfactory results are obtained even with these imbalanced data, as n grows.

As an application to a real dataset, we analyzed university students’ churn, defined 
as their choice to opt for continuing their studies in other universities after earning 
their first-level graduation at a specific university. We identified the main factors that 
might contribute to this choice using different variable selection approaches. The 
multiple testing procedure based on the FRW bootstrap distributions of the GEV 
regression parameters with fixed FWE, reduced the number of false positives.
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