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Abstract
Interval-censored data can arise in questionnaire-based studies when the respond-
ent gives an answer in the form of an interval without having pre-specified ranges. 
Such data are called self-selected interval data. In this case, the assumption of inde-
pendent censoring is not fulfilled, and therefore the ordinary methods for interval-
censored data are not suitable. This paper explores a quantile regression model for 
self-selected interval data and suggests an estimator based on estimating equations. 
The consistency of the estimator is shown. Bootstrap procedures for constructing 
confidence intervals are considered. A simulation study indicates satisfactory per-
formance of the proposed methods. An application to data concerning price esti-
mates is presented.
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1 Introduction

Quantile regression is a flexible approach to analyzing relationships between a response 
variable and a set of covariates. While the classical least-squares regression methods 
capture the central tendency of the data, quantile regression methods allow estimating 
the full range of conditional quantile functions and thus can provide a more complete 
analysis. Other attractive properties of quantile regression are equivariance to mono-
tone transformations, robustness to outlying observations, and flexibility to distribu-
tional assumptions (Koenker 2005).

In many studies, the response variable of interest is observed to lie within an interval 
instead of being observed exactly. Such observations are called interval-censored and 
they often arise when the variable of interest is the time to some event (Kalbfleisch and 
Prentice 2002; Sun 2006; Bogaerts et al. 2017). Interval-censored data may also occur 
in questionnaire-based studies when the respondent is requested to give an answer in 
the form of an interval without having a list of ranges to choose from. This type of data 
is referred to as self-selected interval data (Belyaev and Kriström 2010, 2012, 2015). 
Similar question formats have been explored by Press and Tanur (2004a, 2004b), 
Håkansson (2008), and Mahieu et al. (2017). Such formats are appropriate for asking 
questions which are hard to answer with an exact amount and for sensitive questions 
because they allow partial information to be elicited from respondents who are unable 
or unwilling to provide exact values.

Estimation procedures for quantile regression with interval-censored data have been 
suggested by Kim et al. (2010), Shen (2013), Zhou et al. (2017), Li et al. (2020), and 
Frumento (2022). These methods rely on the assumption of independent censoring, i.e., 
the observation process that generates the censoring is independent of the variable of 
interest, conditional on the covariates included in the model (Sun 2006). However, for 
self-selected interval data this is not a reasonable assumption because the respondent is 
the one who chooses the interval. Not accounting for the dependent censoring in self-
selected interval data can lead to bias in the estimation (Angelov and Ekström 2017, 
2019).

Building upon the ideas of McKeague et al. (2001), Shen (2013), and Angelov and 
Ekström (2017), we suggest an estimator for quantile regression where the response 
variable is of self-selected interval data type and the covariates are discrete. In ques-
tionnaire-based studies, most often the covariates are discrete, such as gender, level of 
education, employment status, and answers to Likert-scale questions, or ones that are 
discretized such as age, personal income, and monthly expenses. In Sect. 2, we out-
line the sampling scheme for self-selected interval data. Section 3 describes the model 
and the suggested estimation procedure. A simulation study is reported in Sect. 4. In 
Sect. 5, the methods are applied to data from a study where the respondents provided 
estimates of the prices of rice and two types of fish. In the Appendix are given proofs 
and auxiliary results.
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2  Data collection scheme

We consider a two-stage scheme for collecting data. The motivation behind 
this scheme is that more information is needed than a single interval from each 
respondent in order to consistently estimate the underlying distribution function 
or related parameters. Therefore the respondent is asked to select a sub-interval of 
the interval that he/she stated. The problem of deciding where to split the stated 
interval into sub-intervals can be resolved using some previously collected data 
(in a pilot stage or an earlier survey) or based on other knowledge about the quan-
tity of interest. Another possibility is to include a predetermined degree of round-
ing in the instruction for the respondents, e.g., to state intervals with endpoints 
rounded to a multiple of 10, and then the points of split will be chosen among the 
multiples of 10.

In the pilot stage, a random sample of individuals is selected and each individual 
is requested to give an answer in the form of an interval containing his/her value of 
the quantity of interest. It is assumed that the endpoints of the intervals are rounded 
(e.g., to the nearest multiple of 10) and that they are bounded from above by some 
large number. Let {d⋆

j
} be the set of endpoints of all observed intervals. The pilot-

stage data are used only for obtaining the set {d⋆
j
}.

In the main stage, a new random sample of n individuals is selected and each 
individual is asked to state an interval containing his/her value of the quantity of 
interest. We refer to this question as Qu1. Then, follow-up questions are asked 
according to one of the following designs.

Design A. The interval stated at Qu1 is split into two or three sub-intervals and 
the respondent is asked to select one of these sub-intervals. The points of split are 
chosen in some random fashion among the points d⋆

j
 that are within the stated inter-

val, e.g., equally likely. We refer to this question as Qu2.
Design  B. The interval stated at Qu1 is split into two sub-intervals and the 

respondent is asked to select one of these sub-intervals. The point of split is the d⋆
j
 

that is the closest to the middle of the interval; if there are two points that are equally 
close to the middle, one of them is taken at random. We refer to this question as 
Qu2a. The interval selected at Qu2a is thereafter split similarly into two sub-inter-
vals and the respondent is asked to select one of them. We refer to this question as 
Qu2b.

The respondent may refuse to answer Qu2 (Qu2a and Qu2b); we assume that the 
respondent chooses not to answer independently of his/her true value. If there are no 
points d⋆

j
 within the interval stated at Qu1 or Qu2a, the respective follow-up ques-

tion is not asked. We assume that if a respondent has answered Qu2 (Qu2a), he/she 
has chosen the interval containing his/her true value, independent of how the inter-
val stated at Qu1 was split. An analogous assumption is made about the response to 
Qu2b.

In Design B, if we know the intervals stated at Qu1 and Qu2b, we can find out the 
answer to Qu2a. Thus, if Qu2b is answered, the data from Qu2a can be omitted. Let 
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Qu2Δ denote the last follow-up question that was answered by the respondent. If the 
respondent did not answer Qu2a (Qu2 in Design A), we say that there is no answer at 
Qu2Δ . Designs A and B are studied in Angelov and Ekström (2019), where they are 
referred to as schemes A and B.

Let d0 < d1 < … < dJ−1 < dJ be the endpoints of all intervals observed at the main 
stage. The assumptions that the endpoints are rounded and bounded from above imply 
that J remains fixed for large sample sizes. Let us define a set of intervals V = {�j} , 
where �j = (dj−1, dj], j = 1,… , J , and let U = {�h} be the set of all intervals that can be 
expressed as a union of intervals from V , i.e., U = {(dl, dr] ∶ dl < dr, l, r = 0,… , J} . 
We denote Jh to be the set of indices of intervals from V contained in �h , 
i.e., Jh = {j ∶ �j ⊆ �h} . For example, if V = {(0, 2], (2, 5], (5, 10]} , then 
U = {(0, 2], (2, 5], (5, 10], (0, 5], (2, 10], (0, 10]} . Also, �4 = (0, 5] = �1 ∪ �2 , hence 
J4 = {1, 2}.

3  Model and methods

Let us denote the observations ��� i = (l1i, r1i, l2i, r2i, �i) , i = 1,… , n , where (l1i, r1i] is 
the interval stated at Qu1, (l2i, r2i] is the interval stated at Qu2Δ , and �i = (1, x1i,… , xdi) 
is a covariate vector. Each data point (l1i, r1i, l2i, r2i, �i) is an observed value of random 
vector (L1i,R1i, L2i,R2i,�i) , i = 1,… , n , �i = (1,X1i,… ,Xdi) . The unobservable val-
ues y1,… , yn of the quantity of interest are values of independent random variables 
Y1,… , Yn and L1i ≤ L2i < Yi ≤ R2i ≤ R1i . The distribution of Yi depends on the value 
of �i . It is assumed that �i takes finitely many values.

Let Q�(�i) be the �-th quantile of Yi conditional on �i = �i,

We assume that

where �𝜏 ∈ � ⊆ ℝ
d+1 is a parameter vector (a vector of regression coefficients).

For uncensored data, an estimate of �� can be obtained by solving the estimating 
equation

Following the ideas of McKeague et  al. (2001) and Shen (2013), we replace the 
unobservable 1{yi ≥ ���

⊺

i
} in (1) by an estimate of the conditional probability that 

Yi ≥ ���
⊺

i
 given ��� i . Thus we arrive at the following estimating equation:

Q�(�i) = inf{y ∶ ℙ (Yi ≤ y | �i) ≥ �}.

Q�(�i) = ���
⊺

i
= �0� + �1�x1i +…+ �d�xdi,

(1)
n∑
i=1

(
1{yi ≥ ���

⊺

i
} − (1 − �)

)
�i = 0.

(2)��(��) =

n∑
i=1

(
G̃i(���

⊺

i
|��� i) − (1 − �)

)
�i = 0,



587

1 3

Quantile regression with interval‑censored data in…

where G̃i(���
⊺

i
|��� i) is an estimate of the probability 

Gi(���
⊺

i
|��� i) = ℙ (Yi ≥ ���

⊺

i
|��� i) . We define �̂� to be the root of estimating 

equation (2).
Unless otherwise stated, hereafter we focus on the case � = 0.5 which cor-

responds to a median regression model and we omit the subscript � in �� and 
�� . However, the suggested estimation procedure is applicable to an arbitrary 
� ∈ (0, 1).

The set of combinations of possible values of �i is denoted by {�k}, k = 1,… ,K , 
i.e., there are K combinations in total. Let c(h) = |Jh| ; thus we can write 
Jh = {j1(h),… , jc(h)} , where j1(h) < j2(h) < … < jc(h) and dj1(h) < dj2(h) < … < djc(h).

Let us define

where �s ⊂ �h . The following relation between pj|h,k and pj|h∗s,k is fulfilled:

We need to estimate pj|h,k and pj|h∗s,k in order to find an estimate G̃i , which is needed 
in (2). The conditional probabilities pj|h,k reflect the relative position of Yi within 
the stated interval (L1i,R1i] . These probabilities are estimated using the data from 
Qu2Δ , where the respondent selects a sub-interval of (L1i,R1i] . The estimate p̃j|h,k is 
obtained by applying the procedure proposed in Angelov and Ekström (2017) to the 
subset of data corresponding to �i = �k , namely, p̃j|h,k, j ∈ Jh , is the maximizer of 
the log-likelihood

where nhjk is the number of respondents who stated �h at Qu1, �j at Qu2Δ ( �j ⊆ �h ) 
and have covariate value �k , while nh∗s,k is the number of respondents who stated �h 
at Qu1, �s at Qu2Δ ( �s is a union of at least two intervals from V , �s ⊂ �h ) and have 
covariate value �k.

The estimate p̃j|h∗s,k is computed using the relation (3), i.e.,

If independent censoring is assumed and the survival function of Yi is close to 
linear over (L1i,R1i] , then the distribution of the relative position of Yi within the 
interval (L1i,R1i] will be close to uniform. This will not be realistic if the respond-
ents exhibit some specific behavior when choosing the intervals, e.g., if they tend 

pj|h,k = ℙ (Yi ∈ �j | (L1i,R1i] = �h, �i = �k),

pj|h∗s,k = ℙ (Yi ∈ �j | (L1i,R1i] = �h, (L2i,R2i] = �s, �i = �k),

(3)pj�h∗s,k =
pj�h,k∑

j∈Js
pj�h,k

.

∑
j

nhjk log pj|h,k +
∑
s

nh∗s,k log

( ∑
j∈Js

pj|h,k
)
,

p̃j�h∗s,k =
p̃j�h,k∑

j∈Js
p̃j�h,k

.
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to choose an interval such that the true value is located in the right half of the 
interval. Therefore, assuming independent censoring in such cases may lead to 
bias in the estimation of �.

If (L1i,R1i] = �h ,    (L2i,R2i] = NA (no answer) , and �i = �k , then an estimate, 
Gi(y |��� i) , of Gi(y | ��� i) can be derived as follows:

Thus, Gi is a step function with jumps at the points dj1(h) ,… , djc(h) . However, it will be 
more convenient to use a smoothed version of Gi and we employ spline interpolation 
for that purpose. The procedure for obtaining the smooth version G̃i is described 
below. Figure 1 visualizes the functions Gi and G̃i in an artificial example. Let � be a 
positive constant.

Case 1 Suppose that (L1i,R1i] = �h ,    (L2i,R2i] = NA , and �i = �k . Then G̃i is 
the monotone cubic spline (see Fritsch and Carlson 1980) through the points:

Gi(y � ��� i) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if y < dj1(h) ;

1 −
∑j1(h)

j=j1(h)
�pj�h,k if y ∈ [dj1(h) , dj2(h) );

1 −
∑j2(h)

j=j1(h)
�pj�h,k if y ∈ [dj2(h) , dj3(h) );

…

1 −
∑jc(h)−1

j=j1(h)
�pj�h,k if y ∈ [djc(h)−1 , djc(h) );

0 if y ≥ djc(h) .

Fig. 1  An illustration of Gi and G̃i for some i, where (L1i,R1i] = �h ,    (L2i,R2i] = NA ,    �i = �k , and 
�h = �1 ∪ �2 ∪ �3 ∪ �4 = (d0, d4]
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By adding the points (dj1(h)−1 − �, 1) and (djc(h) + �, 0) , we get a spline G̃i(y |��� i) 
such that G̃i(y |��� i) = 1 if y ≤ dj1(h)−1 and G̃i(y |��� i) = 0 if y ≥ djc(h) . The constant � 
can be chosen, e.g., as � = minj |dj − dj+1| ; although any positive constant should 
work.

Case 2 Suppose that (L1i,R1i] = �h ,   (L2i,R2i] = �s , and �i = �k . Then G̃i is the 
monotone cubic spline through the points:

Case 3 Suppose that (L2i,R2i] = �j . Then G̃i is the monotone cubic spline through 
the points:

Let �∙(�) be an estimating function based on the true Gi rather than on G̃i , i.e.,

Let D(�) = n−1
�

��
�

∙(�) . Let �0 be the true value of � , i.e., the median of Yi condi-
tional on �i = �i is given by �0

�
⊺

i
.

Assumption 1 D(�0)
a.s.
⟶ A , where A is negative definite.

First coordinate Second coordinate

dj1(h)−1 − � 1

dj1(h)−1 1

dj1(h) 1 −
∑j1(h)

j=j1(h)
p̃j�h,k

… …

djc(h)−1 1 −
∑jc(h)−1

j=j1(h)
p̃j�h,k

djc(h) 0

djc(h) + � 0

First coordinate Second coordinate

dj1(s)−1 − � 1

dj1(s)−1 1

dj1(s) 1 −
∑j1(s)

j=j1(s)
p̃j�h∗s,k

… …

djc(s)−1 1 −
∑jc(s)−1

j=j1(s)
p̃j�h∗s,k

djc(s) 0

djc(s) + � 0

First coordinate Second coordinate

dj−1 − � 1

dj−1 1

dj 0

dj + � 0

�
∙(�) =

n∑
i=1

(
Gi(� �

⊺

i
|��� i) − 1

2

)
�i.
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Assumption 2 If the probabilities ℙ (Yi ≥ dj | ��� i) are known for all possibly 
observed points dj , then the survival function Gi(y | ��� i) = ℙ (Yi ≥ y | ��� i) is the 
monotone cubic spline through the points (dj, ℙ (Yi ≥ dj | ��� i)).

Assumption 3 
∑

j nhjk∕(
∑

j nhjk +
∑

s nh∗s,k)
a.s.
⟶ 𝛾h,k > 0 as n ⟶ ∞.

We can regard Assumption 2 as a sensible approximation of the true underlying sur-
vival function. The very nature of a distributional model is a simplified and idealized 
representation of the underlying survival function, and thus there is no ’true’ model that 
perfectly describes the survival function and how it depends on the covariates.

Assumption  3 ensures the strong consistency of p̃j|h,k , see Angelov and Ekström 
(2017).

The almost sure convergence of �̂ is established in the following theorem.

Theorem 1 Suppose that Assumptions 1–3 are satisfied. Then �̂
a.s.
⟶ �0 as n ⟶ ∞.

For b = 1,… ,B , let ���∗
1,b
,… , ���∗

n,b
 be a random sample with replacement from 

the data ���1,… , ���n . We say that ���∗
1,b
,… , ���∗

n,b
 is the b-th bootstrap sample. 

Let �̂
∗

b
= (�̂∗

0,b
,… , �̂∗

d,b
) be the estimate of � = (�0,… , �d) from the bootstrap sample 

���
∗
1,b
,… , ���∗

n,b
 . Let �̂ boot

r
(�) be the sample � quantile of �̂∗

r,1
,… , �̂∗

r,B
 and let ŝ boot

r
 

be the sample standard deviation of �̂∗
r,1
,… , �̂∗

r,B
 , i.e.,

Let z1−� denote the (1 − �) quantile of the standard normal distribution, i.e., for 
Z ∼ N(0, 1) ,   ℙ (Z < z1−𝛼) = 1 − 𝛼 .

We will explore the following confidence intervals for �r with nominal level 1 − �

:

• Bootstrap percentile confidence interval 

ŝ boot
r

=

√√√√√ 1

B − 1

B∑
b=1

(
�̂∗
r,b

−
1

B

B∑
t=1

�̂∗r,t

)2

.

Table 1  Average computation 
time (in seconds)

The results are based on 30 replications in each case

Sample size Method One covariate Two covariates

n = 100 NM 3.6 7.6
BFGS 21.8 22.8

n = 500 NM 16.0 36.3
BFGS 109.6 123.6

n = 1000 NM 31.8 65.0
BFGS 217.0 268.4
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• Wald-type confidence interval with bootstrap standard error 

For monotone cubic spline interpolation, we use the R function splinefun 
with the option method="monoH.FC", which corresponds to the method of 
Fritsch and Carlson (1980). The estimate �̂� is obtained as a minimizer of ‖��(��)‖ , 
where ‖ ⋅ ‖ is the Euclidean norm. For this task, the Nelder–Mead (NM) algorithm 
is used (the R function optim with the option method="Nelder-Mead"). The 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method can also be used (the R func-
tion optim with method="BFGS"); however, our experiments suggested that it is 
much slower than the Nelder–Mead algorithm for this particular optimization prob-
lem. Table 1 displays the average computation time for the suggested estimation pro-
cedure (using the NM algorithm and the BFGS algorithm) under different settings 
on a laptop computer with Intel(R) Pentium(R) CPU 2117U 1.8 GHz, RAM 4.0 GB.

4  Simulation study

4.1  Setup

Let Y1,… , Yn be independent random variables that have a Weibull distribution,

Then, the �-th quantile of Yi is � �
⊺

i
.

We generate Y1,… , Yn according to the above definition with � = 1.5 and con-
sider two cases for the covariates: (i) one covariate x1i taking values 1, 2, or 3; (ii) 
two covariates x1i and x2i , where x1i takes values 2 or 3 and x2i takes values 0 or 1.

Let UL
1
,… ,UL

n
 and UR

1
,… ,UR

n
 be sequences of independent random variables:

where Mi ∼ Bernoulli(pM) , U
(1)

i
 and U(2)

i
 are random variables defined later. Let 

(L1i,R1i] be the interval stated by the i-th respondent at question Qu1. The left end-
points are generated as L1i = (Yi − UL

i
)1{Yi − UL

i
> 0} rounded downwards to the 

nearest multiple of 10. The right endpoints are generated as R1i = Yi + UR
i

 rounded 

(4)
[
�̂ boot
r

(�∕2), �̂ boot
r

(1 − �∕2)
]
,

(5)
[
�̂r − z1−�∕2 ŝ

boot
r

, �̂r + z1−�∕2 ŝ
boot
r

]
.

ℙ (Yi > y | �i) = exp

(
−

(
y

𝜆i

)𝜈 )
,

𝜆i =
� �

⊺

i(
log

1

1−𝜏

)1∕𝜈
.

(6)
UL

i
= Mi U

(1)

i
+ (1 −Mi)U

(2)

i
,

UR
i
= Mi U

(2)

i
+ (1 −Mi)U

(1)

i
,
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upwards to the nearest multiple of 10. We consider two settings for the random vari-
ables U(1)

i
 and U(2)

i
 in (6), see Table 2. In setting S11, the median length of the inter-

val at Qu1 is 50, while in settings S21 and S22 the median length is 30. The data for 
the follow-up question are generated according to Design A; the interval (L1i,R1i] is 
split into two sub-intervals, the point of split is chosen equally likely from all the 
possible points d⋆

j
 that are within the interval. The probability that a respondent 

gives no answer to Qu2Δ is pNA = 1∕4 . The parameter pM of the Bernoulli random 
variables Mi is considered to be a function of the covariates (see Table 2). For exam-
ple, in setting S11, pM = 0.2x1i − 0.1 , which leads to tree possible values, 
pM = 0.1, 0.3, 0.5 . Figure  2 illustrates the relative position of Yi in the interval 
(L1i,R1i] , i.e., (Yi − L1i)∕(R1i − L1i) , for the different values of pM under setting S11. 
Instead of simulating pilot-stage data, a pre-determined set of points 
{d⋆

j
} = {0, 10, 20,… , 450} is used (cf. Angelov and Ekström 2019).

All computations were performed with R (see R Core Team 2019). The R code can 
be obtained from the corresponding author upon request.

4.2  Results

We conducted simulations for a range of sample sizes where we compare the proposed 
estimator with the estimator of Shen (2013), which assumes independent censoring. 
Our estimator can be seen as an extension of Shen’s estimator to the case of depend-
ent censoring. With such comparison we can see the benefit of using an estimator that 
accounts for dependent censoring. Shen’s estimator is applied to the dataset where 
each data point includes only the last interval stated by the respondent. Relative bias is 
defined as the bias divided by the true value of the parameter. Tables 3, 4, and 5 display 
the results based on 10000 simulated datasets (replications). We see that in most cases 
the root mean square error is smaller for our estimator. The bias of our estimator is 
considerably lower than the bias of Shen’s estimator (with some exceptions for n = 100 
under setting S22). Moreover, the bias of our estimator gets closer to zero as the sample 
size increases, while the bias of the other estimator does not change noticeably when 
increasing the sample size. The bias of our estimator for smaller sample sizes might 
be explained by the not large number of observations for each combination of h and k 
which may lead to poor estimates of some of the probabilities pj|h,k.

Simulations concerning the bootstrap confidence intervals (4) and (5) are reported 
in Table  6. The results are based on 1000 simulated samples of sizes n = 100 and 
n = 1500 . One bootstrap confidence interval is calculated using 1000 bootstrap sam-
ples. For the bootstrap percentile confidence intervals, the coverage is fairly close to 

Table 2  Simulation settings

Setting U
(1)

i
U

(2)

i

Covariates pM

S11 Unif(0, 20) Unif(20, 40) x1i ∈ {1, 2, 3} 0.2x1i − 0.1

S21 Unif(0, 12) Unif(12, 24) x1i ∈ {1, 2, 3} 0.2x1i − 0.1

S22 Unif(0, 12) Unif(12, 24) x1i ∈ {2, 3}, x2i ∈ {0, 1} 0.2(x1i + x2i) − 0.3
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the nominal level of 0.95. The bootstrap percentile method has previously shown good 
performance in the context of quantile regression (see, e.g., Wang and Wang 2009; 
De Backer et  al. 2019). The Wald-type confidence intervals with bootstrap standard 

Fig. 2  Relative position of Yi in the interval (L1i,R1i] , i.e., (Yi − L1i)∕(R1i − L1i) for three different values 
of pM corresponding to xi = 1, 2, 3 . The histograms are based on a generated dataset of size n = 50000 
under setting S11
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Table 3  Simulation results under setting S11. Mean, relative bias (RB), and root mean square error 
(RMSE) based on 10000 replications. Comparison of our estimator (New) and the estimator of Shen 
(2013). The true value of the parameter is �0 = (50, 12) ,  � = 0.5

Estimator n �̂0 �̂1

Mean RB RMSE Mean RB RMSE

New 100 46.219 −0.076 16.822 13.515 0.126 8.530
New 500 48.655 −0.027 8.287 12.521 0.043 4.186
New 1000 49.431 −0.011 6.109 12.225 0.019 3.077
New 1500 49.917 −0.002 5.183 12.053 0.004 2.583
Shen (2013) 100 43.650 −0.127 19.983 14.209 0.184 9.935
Shen (2013) 500 43.678 −0.126 10.716 14.094 0.175 4.881
Shen (2013) 1000 43.601 −0.128 8.845 14.106 0.175 3.758
Shen (2013) 1500 43.679 −0.126 8.017 14.077 0.173 3.271

Table 4  Simulation results under setting S21. Mean, relative bias (RB), and root mean square error 
(RMSE) based on 10000 replications. Comparison of our estimator (New) and the estimator of Shen 
(2013)

Estimator n �̂0 �̂1

Mean RB RMSE Mean RB RMSE

� = 0.25, �0 = (27, 7)

New 100 25.549 −0.054 12.906 7.647 0.092 6.585
New 500 26.854 −0.005 6.271 7.091 0.013 3.203
New 1000 27.095 0.004 4.374 6.982 −0.003 2.296
Shen (2013) 100 24.278 −0.101 13.828 8.076 0.154 7.051
Shen (2013) 500 23.827 −0.118 6.960 8.094 0.156 3.379
Shen (2013) 1000 23.752 −0.120 5.435 8.109 0.158 2.500

� = 0.5, �0 = (50, 12)

New 100 48.691 −0.026 16.833 12.584 0.049 8.585
New 500 49.726 −0.005 8.045 12.155 0.013 4.106
New 1000 50.017 0.000 5.788 12.029 0.002 2.949
Shen (2013) 100 47.235 −0.055 17.594 13.006 0.084 8.985
Shen (2013) 500 46.605 −0.068 8.694 13.138 0.095 4.253
Shen (2013) 1000 46.690 −0.066 6.445 13.116 0.093 3.050

� = 0.75, �0 = (80, 19)

New 100 78.946 −0.013 22.585 19.322 0.017 11.602
New 500 79.619 −0.005 10.789 19.154 0.008 5.472
New 1000 79.691 −0.004 7.795 19.143 0.008 3.949
Shen (2013) 100 77.320 −0.034 22.654 19.864 0.045 11.787
Shen (2013) 500 76.648 −0.042 11.442 20.120 0.059 5.724
Shen (2013) 1000 76.577 −0.043 8.475 20.144 0.060 4.135



595

1 3

Quantile regression with interval‑censored data in…

error (Wald with BootSE) are on average longer and their coverage is in some cases too 
low. Therefore, the bootstrap percentile confidence intervals are recommended.

Table 5  Simulation results under setting S22. Mean, relative bias (RB), and root mean square error 
(RMSE) based on 10000 replications. Comparison of our estimator (New) and the estimator of Shen 
(2013)

Estimator n �̂0 �̂1 �̂2

Mean RB RMSE Mean RB RMSE Mean RB RMSE

� = 0.25, �0 = (18, 9, 5)

New 100 15.201 −0.156 27.948 9.984 0.109 11.286 5.887 0.177 11.188
New 500 17.356 −0.036 13.603 9.196 0.022 5.470 5.204 0.041 5.417
New 1000 17.716 −0.016 9.747 9.097 0.011 3.920 5.098 0.020 3.953
Shen (2013) 100 15.016 −0.166 26.082 9.931 0.103 10.505 5.975 0.195 11.505
Shen (2013) 500 13.945 −0.225 14.072 10.034 0.115 5.511 6.177 0.235 5.520
Shen (2013) 1000 13.788 −0.234 10.480 10.059 0.118 4.009 6.101 0.220 3.963

� = 0.5, �0 = (35, 15, 10)

New 100 33.034 −0.056 35.691 15.557 0.037 14.380 10.923 0.092 14.574
New 500 34.495 −0.014 17.100 15.144 0.010 6.869 10.160 0.016 6.912
New 1000 34.707 −0.008 12.557 15.116 0.008 5.071 10.019 0.002 4.918
Shen (2013) 100 32.568 −0.069 31.940 15.500 0.033 12.854 11.133 0.113 14.492
Shen (2013) 500 30.790 −0.120 17.774 16.083 0.072 7.022 11.074 0.107 6.890
Shen (2013) 1000 30.318 −0.134 13.010 16.227 0.082 5.024 11.097 0.110 5.007

� = 0.75, �0 = (55, 24, 16)

New 100 53.291 −0.031 47.834 24.448 0.019 19.212 16.815 0.051 19.847
New 500 54.271 −0.013 23.114 24.135 0.006 9.291 16.294 0.018 9.054
New 1000 54.513 −0.009 16.674 24.126 0.005 6.694 16.223 0.014 6.693
Shen (2013) 100 54.077 −0.017 36.366 23.661 −0.014 14.755 17.292 0.081 17.601
Shen (2013) 500 51.020 −0.072 23.805 24.936 0.039 9.508 17.123 0.070 9.440
Shen (2013) 1000 50.670 −0.079 17.028 25.067 0.044 6.694 17.131 0.071 6.759

Table 6  Confidence intervals: 
coverage proportion (CP) and 
average length (AL) based on 
1000 replications and 1000 
bootstrap samples under setting 
S11. The nominal level is 0.95. 
The true value of the parameter 
is �0 = (50, 12) ,  � = 0.5

Method n �0 �1

CP AL CP AL

Bootstrap percentile 100 0.941 63.727 0.956 32.981
Wald with BootSE 100 0.922 64.285 0.948 33.244
Bootstrap percentile 1500 0.954 18.780 0.943 9.639
Wald with BootSE 1500 0.930 19.102 0.927 9.706
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5  Application

We apply the proposed methods to data concerning price estimates from a study 
conducted in Aklan, a province in the Philippines. The focus of the sampling process 
was the capital city, Kalibo. The administrative divisions, barangays, of Kalibo were 
classified into either coastal or inland communities. Two coastal barangays (Pook 
and Old Buswang) and two inland barangays (Tigayon and Estancia) were randomly 
selected. In each barangay, a number of households were randomly chosen. With 
their consent, a member of a sampled household (preferably, the head) was asked to 
participate in a survey. They were told to answer as honest as possible, and that their 
identity and personal data gathered will be kept confidential. The questionnaire was 
written in English, but trained enumerators explained questions in the local language 
Tagalog.

The participants were asked to provide estimates of the prices of rice and two 
types of fish (galunggong and bangus). They answered by means of self-selected 
intervals. As a follow-up question, the respondents were asked whether the price 
is more likely to be in the left or in the right half of the interval. Price estimates 
were given for two time periods: April 2019 (summer/fishing season) and Septem-
ber 2019 (typhoon/non-fishing season); thus the dataset contains six price estimates: 

(RA)  Price of 1 kg of rice in April 2019;

(RS)  Price of 1 kg of rice in September 2019;

(GA)  Price of 1 kg of galunggong in April 2019;

(GS)  Price of 1 kg of galunggong in September 2019;

(BA)  Price of 1 kg of bangus in April 2019;

(BS)  Price of 1 kg of bangus in September 2019.

Table 7  Observed market prices 
per kilogram

The data for rice are from the Philippine Statistics Authority. The 
data for galunggong and bangus are from the Bureau of Fisher-
ies and Aquatic Resources and the Municipal Economic Enterprise 
Development Office, Municipality of Kalibo

Product Period Price (in pesos)

(RA) Rice April 2019 38.25
(RS) Rice September 2019 38.00
(GA) Galunggong April 2019 110.00
(GS) Galunggong September 2019 130.00
(BA) Bangus April 2019 160.00
(BS) Bangus September 2019 160.00
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Data collection took place in August 2019, therefore the price estimate for April 
2019 is a recall, while the price estimate for September 2019 is a forecast. The 
observed market prices for the given periods can be found in Table 7.

First, we investigated how the 0.25-quantile, the median, and the 0.75-quantile of 
the price depend on the level of education of the respondent. Consider the following 
models:

where Education is a variable with values 1 = ’Lower than college level’ and 
2 = ’College level or higher’. In the first model, the parameter �1 shows how the 
0.25-quantile of the price differs between respondents with college education com-
pared to those with lower education. In the second model, the parameter �1 shows 
how the median price differs between respondents with college education compared 
to those with lower education. In the third model, the interpretation is similar.

Point estimates and confidence intervals for the parameter �1 based on the collected 
data ( n = 178 ) are presented in Fig. 3. The results indicate that people with college 
education tend to give higher price estimates. However, for each of the six prices, the 
confidence intervals are quite long and contain zero, which implies that the hypothesis 
that �1 = 0 can not be rejected at the 5% significance level.

Point estimates for the 0.25-quantile, the median, and the 0.75-quantile of the 
prices together with confidence intervals are shown in Fig. 4. For rice and galunggong 
(cheaper fish), respondents tend to overestimate the prices (observed market price is 

(7)������(�����) = �0 + �1 ���������,

(8)������(�����) = �0 + �1 ���������,

(9)������(�����) = �0 + �1 ���������,

Fig. 3  Estimates and bootstrap percentile confidence intervals for the parameter �1 in the models with 
one covariate (7, 8 and 9). The confidence intervals are based on 50000 bootstrap samples. The confi-
dence level is 0.95
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below the lower bound of the confidence intervals for the medians). For bangus (luxury 
fish), respondents underestimated the price in April (observed market price is above the 
upper bound of the confidence intervals for the medians and the 0.75-quantiles). How-
ever, they gave more accurate estimates for the price of bangus in September (observed 
market price is within the confidence intervals for the medians).

Respondents expected prices to be higher in the typhoon season compared to the 
non-typhoon season, which in reality happened only with the price of galunggong, 
while the prices of rice and bangus remained stable.

We also considered models with two covariates:

where HouseholdHead is a variable which takes value 1, if the respondent is 
head of the household, and 0 otherwise.

Point estimates and confidence intervals for the parameters �1 and �2 are pre-
sented in Figs. 5 and 6. The results indicate that people with college education tend 
to give higher price estimates compared to those without college education. Heads 

(10)������(�����) = �0 + �1 ��������� + �2 ������������,

(11)������(�����) = �0 + �1 ��������� + �2 �������������,

(12)������(�����) = �0 + �1 ��������� + �2 ������������,

Fig. 4  Estimates and bootstrap percentile confidence intervals for the 0.25-quantile, the median, and the 
0.75-quantile of the prices using the models with one covariate (7, 8 and 9). The confidence intervals are 
based on 50000 bootstrap samples. The confidence level is 0.95. In each plot, the observed market price 
(see Table 7) is displayed with a horizontal dashed line
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of households tend to give higher price estimates for galunggong and bangus com-
pared to people who are not heads of households. However, all the confidence inter-
vals for the parameters �1 and �2 contain zero. Therefore, in each case the hypotheses 
�1 = 0 and �2 = 0 can not be rejected at the 5% significance level.

Fig. 5  Estimates and bootstrap percentile confidence intervals for the parameter �1 in the models with 
two covariates (10, 11 and 12). The confidence intervals are based on 50000 bootstrap samples. The con-
fidence level is 0.95

Fig. 6  Estimates and bootstrap percentile confidence intervals for the parameter �2 in the models with 
two covariates (10, 11 and 12). The confidence intervals are based on 50000 bootstrap samples. The con-
fidence level is 0.95
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6  Concluding remarks

We suggested an estimator for quantile regression for self-selected interval data with 
discrete covariates. We proved the strong consistency of the estimator. Our simu-
lation study indicated that the proposed estimator performs better than an existing 
estimator which assumes independent censoring. A simple bootstrap procedure for 
constructing confidence intervals (the bootstrap percentile) showed satisfactory per-
formance in the simulations.

A Appendix

A.1 Continuity of splines

Here we show the continuity of monotone cubic splines (see Fritsch and Carlson 
1980) with respect to the data points. The notation in this section is independent 
of that in the rest of the paper.

Suppose that we have data points (xi, yi), i = 1,… ,m , where x1 < x2 < … < xm 
and y1 ≥ y2 ≥ … ≥ ym . Let g(x) be a monotone piecewise cubic function such that 
g(xi) = yi, i = 1,… ,m . In each interval [xi, xi+1] , g(x) is a cubic polynomial:

where

We use the following procedure for calculating ai, i = 1,… ,m.
Step 1. If yi+1 = yi , set a[0]

i
= a

[0]

i+1
= 0 . Else,

Step 2. Let

g(x) = yiH1(x) + yi+1H2(x) + aiH3(x) + ai+1H4(x),

H1(x) = �1((xi+1 − x)∕(xi+1 − xi)),

H2(x) = �1((x − xi)∕(xi+1 − xi)),

H3(x) = −(xi+1 − xi)�2((xi+1 − x)∕(xi+1 − xi)),

H4(x) = (xi+1 − xi)�2((x − xi)∕(xi+1 − xi)),

�1(t) = 3t2 − 2t3,

�2(t) = t3 − t2.

a
[0]

i
=

1

2

(
yi − yi−1

xi − xi−1
+

yi+1 − yi

xi+1 − xi

)
, i = 2,… ,m − 1;

a
[0]

1
= a[0]

m
= 0.
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Then

Suppose that ŷi is an estimator of yi, i = 1,… ,m , and ŷi
a.s.
⟶ yi as n ⟶ ∞ , 

where n is the size of the sample used for obtaining ŷi . All quantities with a hat (e.g., 
âi ) imply that yi is substituted with ŷi . Let

Lemma 1 If ŷi
a.s.
⟶ yi as n ⟶ ∞ , then supx∈[x1, xm] |ĝ(x) − g(x)| a.s.

⟶ 0 as n ⟶ ∞.

Proof Taking into account that each âi is a continuous function of ŷ1,… , ŷm , it fol-
lows that âi

a.s.
⟶ ai as n ⟶ ∞.

Note that there is a constant c such that max1≤i≤m |x
i
− x

i+1| ≤ c . Also, 
supt∈[0,1] |�1(t)| = 1 ,   supt∈[0,1] |�2(t)| = 4∕27 . Then

  ◻

A.2 Consistency of the proposed estimator

Lemma 2 If Assumption 3 is satisfied, then

Proof The functions G̃i and Gi are splines based on two different sets of data points. 
Assumption 3 guarantees that p̃j|h,k is a strongly consistent estimator of pj|h,k (see 
Angelov and Ekström 2017). Therefore, the data points used for G̃i converge almost 
surely to the data points used for Gi . Then, the claim follows from Lemma 1.   ◻

Proof of Theorem 1 Using Lemma 2, we get

Δi = (yi+1 − yi)∕(xi+1 − xi),

�i = �{Δi ≠ 0} ai∕Δi,

�i = �{Δi ≠ 0} ai+1∕Δi,

�i =

√
(�2

i
+ �2

i
)∕9.

ai =
a
[0]

i

max{1, �i}
, ai+1 =

a
[0]

i+1

max{1, �i}
.

ĝ(x) = ŷiH1(x) + ŷi+1H2(x) + âiH3(x) + âi+1H4(x).

sup
x∈[x1, xm]

|ĝ(x) − g(x)| ≤ 2 max
1≤i≤m

|̂yi − yi| + 8c

27
max
1≤i≤m

|âi − ai|
a.s.
⟶ 0.

sup
y∈ℝ

|||G̃i(y |��� i) − Gi(y |��� i)|||
a.s.
⟶ 0 as n ⟶ ∞.
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By definition, �(�̂) = 0 . Then n−1�∙(�̂)
a.s.
⟶ 0 as n ⟶ ∞ . Also, we have 

�
∙(�0) = 0.
Applying Taylor’s expansion (see Feng et al. 2013), we obtain

By Assumption  1, D(�0) is negative definite for large n. Therefore �̂
a.s.
⟶ �0 as 

n ⟶ ∞ .   ◻
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