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Abstract
Evaluating the ability of a classifier to make predictions on unseen data and increas-
ing it by tweaking the learning algorithm are two of the main reasons motivating the 
evaluation of classifier predictive performance. In this study the behavior of Bal-
anced AC

1
  —  a novel classifier accuracy measure  —  is investigated under differ-

ent class imbalance conditions via a Monte Carlo simulation. The behavior of Bal-
anced AC

1
 is compared against that of several well-known performance measures 

based on binary confusion matrix. Study results reveal the suitability of Balanced 
AC

1
 with both balanced and imbalanced data sets. A real example of the effects of 

class imbalance on the behavior of the investigated classifier performance measures 
is provided by comparing the performance of several machine learning algorithms 
in a churn prediction problem.

Keywords Class imbalance · Binary confusion matrix · Predictive performance 
measures · Customer churn prediction

1 Introduction

Classification algorithms are commonly adopted in service industry to manage 
problems related to various domains, such as cybersecurity systems, smart cities, 
telecommunication, healthcare, e-commerce, bank and finance, customer care, and 
many more. In such contexts, classifiers are built to handle binary and/or multi-class 
problems: binary means that the prediction outcomes (class labels) can be twofold 
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and the two classes are usually indicated as Negative and Positive; multi-class, 
instead, means that the outcome is a value taken from a set of multiple non-overlap-
ping classes.

The evaluation of classifier predictive performance is a relevant issue in order 
to assess the results of the classification process as well as to obtain a datum that 
must be optimized by tuning the classifier parameters. Several performance meas-
ures can be found in the scientific literature, some based on a threshold, others based 
on probabilities, while yet others based on ranks (Ferri et al. 2009). However, the 
most widely employed measures are those based on confusion matrix, a cross table 
that counts the cases that are properly predicted or classified (cells on the main 
diagonal) or not correctly predicted or classified (off-diagonal cells). Hereafter, we 
focus on binary confusion matrix for two reasons: binary classification is the most 
popular classification task and multi-class problems can be decomposed into a set of 
binary problems using the One-versus-All or the One-versus-One approach (Mehra 
and Gupta 2013). Accuracy, sensitivity (or recall), precision, and  F1-score are some 
of the commonly used predictive performance measures based on binary confusion 
matrix. Each measure deals with a specific performance aspect (Sammut and Webb 
2011; Sokolova and Lapalme 2009), so that the appropriate performance measure 
for the problem at hand is generally chosen according to the performance aspect 
to be investigated. Specifically, Accuracy, by far the most widespread performance 
measure, focuses on overall classifier performance; whereas, Specificity, Sensitivity, 
Precision and  F1-score focus on the performance on one class.

In recent years, the scientific community working on classification algorithms 
has shown an increasing interest in the challenges that arise when imbalanced data 
sets are considered and the impact of class imbalance on classification performance 
measures has become a major issue. Class imbalance occurs in a wide range of sci-
entific areas where unequal class distributions arise naturally in such a way that the 
rare cases are often difficult to separate from the most frequent ones although they 
are the most important ones to detect. Some real-world applications suffering from 
the class imbalance problem happen in telecommunication, web & email classifi-
cation, ecology, biology, financial services, as well as in medical field for disease 
diagnosis, in industrial field for fault diagnosis or anomaly detection, and in fields 
of customer service and marketing for churn prediction (Ahn et  al. 2020; Jo and 
Japkowicz 2004; Galar et al. 2011; Chawla et al. 2002; Dashtipour et al. 2016; Tang 
et al. 2015). In order to overcome the effect of imbalance on performance measures, 
several solutions have been suggested, among which the most cited is the use of the 
Balanced Accuracy.

Another criticism raised against all the above cited classifier predictive perfor-
mance measures is that they fail to compensate the non-zero probability that some 
predictions match the actual class only by chance and thus they do not allow to esti-
mate the classification improvement due to the classifier over chance classification. 
To handle this criticism, an alternative accuracy measure adopted in the last decades 
within the context of expert systems, machine learning and data mining communities 
(Ben-David 2008; Duro et al. 2012; Zhou et al. 2019) is the Cohen’s K coefficient 
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(Cohen 1960), a �-type coefficient introduced in social and behavioral sciences for 
measuring the degree of agreement between two raters. Cohen’s K accounts for 
chance agreement by correcting the proportion of observed agreement with the pro-
portion of agreement expected by chance alone, which is estimated through mar-
ginal frequencies. The adoption of Cohen’s K as accuracy measure is still debated 
since the probability of classifications matching by chance converts a reasonably 
high proportion of observed agreement into a much smaller coefficient value when 
the marginal frequencies are unequal (Delgado and Tibau 2019). This means that the 
chance-agreement term of Cohen’s K actually produces a penalization rather than a 
direct and verifiable correction for imbalance and thus it is not clear how the coeffi-
cient balances the predictive performance over majority and minority class. Moreo-
ver, it is worth to highlight that when the imbalance is asymmetrical between actual 
and predicted classes (i.e. the worst performance ever), Cohen’s K value increases 
leading to a strongly misleading conclusion. For these reasons, Cohen’s K should 
be avoided as measure of predictive performance, especially with imbalanced data 
sets. Another �-type coefficient recently adopted as predictive performance measure 
is the AC1 proposed by Gwet (2002) who formulates the chance agreement term as 
independent from marginal frequencies (Labatut and Cherifi 2011).

A robust measure of predictive performance suitable for both balanced and 
imbalanced data sets while compensating the non-zero probability that some clas-
sifications match only by chance is obtained by correcting a balanced performance 
measure with the balanced proportion of classifications matching by chance. Spe-
cifically, a balanced measure averages the performance values estimated for each 
class so as to treat classes equally avoiding the dependency over the majority class, 
and formulates the chance-agreement term as independent from marginal frequen-
cies. A novel accuracy measure able to treat classes equally while compensating the 
non-zero probability that some classifications match only by chance is the Balanced 
AC1 . This research work aims at investigating, via a Monte Carlo simulation study, 
the statistical behavior of the proposed Balanced AC1 for binary classification tasks 
with different class imbalance conditions and comparing it against other commonly 
adopted measures, that is Precision, Sensitivity,  F1-score, Accuracy, Balanced Accu-
racy, Cohen’s K and AC1.

Furthermore, a real example of the effects of class imbalance on the behavior of 
the investigated classifier performance measures is provided by comparing the per-
formance of several machine learning algorithms in a problem of churn prediction, 
that is the customer propensity to stop doing businesses with a company (Mishra 
and Reddy 2017). Handling data imbalance is crucial in customer churn prediction 
since the number of churned customers generally accounts for a small proportion 
compared to the number of retained customers (Au et al. 2003; Burez and Van den 
Poel 2009; Nguyen and Duong 2021).

The remainder of the paper is organized as follows: in Sect. 2 the predictive per-
formance measures under study are introduced; in Sect. 3 the simulation design is 
described and the main results are fully discussed; Sect. 4 is devoted to churn pre-
diction case study; finally, conclusions are summarized in Sect. 5.
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2  Predictive performance measures based on binary confusion 
matrix

The framework where our investigation is set is a machine learning task requiring the 
solution of a binary classification problem. Specifically, the data set describing the 
task is composed by n cases classified on k = 2 non-overlapping classes. The provided 
classifications are arranged in a 2 × 2 confusion matrix reported in Table  1, whose 
cells count the number of correctly classified cases belonging (true positives, tp) or 
not belonging (true negatives, tn) to the positive class and the number of cases that 
are either incorrectly assigned to the positive class (false positives, fp) or that are not 
assigned to the positive class (false negatives, fn).

These counts are the basis for some of the often used classifier performance meas-
ures hereafter introduced. Specifically, Accuracy is defined as the number of both posi-
tive and negative successful predictions relative to the total number of classifications. 
Precision is the proportion of cases predicted as positive that are truly positive related 
to the total count of cases predicted as positive. Sensitivity is the proportion of cases 
predicted as positive that are truly positive related to the total count of truly positive 
cases. Specificity is the proportion of cases predicted as negative that are truly negative 
related to the total count of truly negative cases. Sensitivity and Specificity can be con-
sidered as two kinds of Accuracy, for actual positive cases and actual negative cases, 
respectively (Tharwat 2020).

The main goal of all classifiers is to improve the Sensitivity, without sacrificing 
Specificity and Precision. However, the aim of Sensitivity often conflicts with the aims 
of Specificity and Precision, which may not work well, especially when the data set is 
imbalanced. Hence, the Balanced Accuracy aggregates both Sensitivity and Specificity 
measures; whereas  F1-score has been specifically defined to seek a trade-off between 
Precision and Sensitivity.

Cohen’s K coefficient (Cohen 1960), belonging to �-type coefficient family, com-
pensates the effect of classifications matching by chance by correcting the observed 
agreement, pa (given by the proportion of correctly classified cases and thus coinciding 
exactly with Accuracy), with the proportion of agreement expected by chance, pa|c . 
The coefficients belonging to �-type family are all formulated as follows:

(1)� =
pa − pa|c

1 − pa|c

Table 1  2 × 2 confusion matrix

Predicted

Positive ( +) Negative (−) Total

Actual
Positive ( +) tp fn AP
Negative (−) fp tn AN
Total PP PN n
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�-type coefficients differ each other for the adopted notion of chance agreement and 
thus for the formulation of pa|c term.

Specifically Cohen’s K formulates pa|c by means of the marginal frequencies:

Gwet’s AC1 coefficient (Gwet 2002) quantifies the probability of agreement between 
two series of evaluations exclusively on the cases not susceptible to agreement by 
chance. The cases whose classification is not certain are difficult to classify and 
these are the only cases that could lead to chance agreement. This notion of chance 
agreement let the pAC1

a|c  be formulated as follows:

The Balanced AC1 , instead, is formulated as a relative measure that corrects the Bal-
anced Accuracy with the balanced proportion of classifications matching by chance 
obtained by averaging the values estimated for each class. Specifically, the probabil-
ity of classifications matching by chance, pBal AC1

a|c  , is given by the probability that the 
classifications are correctly predicted (i.e. Agreement, event A) under the assump-
tion of random classifications (event R):

The probability of agreement between actual and randomly predicted classifications 
for each class is estimated under the assumption that classifications are uniformly 
distributed between classes:

whereas the probability of providing random classifications is approximated with a 
normalized measure of randomness defined by the ratio of the observed variance to 
the variance expected under the assumption of totally random classifications:

Under these assumptions, the probability of correct classifications matching by 
chance can be estimated as follows:

(2)pK
a|c =

AP ⋅ PP + AN ⋅ PN

n2

(3)p
AC1

a|c = 2

[
AP + PP

2n

(
1 −

AP + PP

2n

)]

(4)p
Bal AC1

a|c = P(A ∩ R) =
P(A|R)+ ⋅ P(R)+ + P(A|R)− ⋅ P(R)−

2

(5)
P(A|R)+ =

1

2

tp

AP

P(A|R)− =
1

2

tn

AN

(6)
P(R)+ = 2

[
tp

PP

(
1 −

tp

PP

)
+

fn

PN

(
1 −

fn

PN

)]

P(R)− = 2

[
fp

PP

(
1 −

fp

PP

)
+

tn

PN

(
1 −

tn

PN

)]



368 A. Vanacore et al.

1 3

The formulation of the investigated predictive performance measures based on 
binary confusion matrix are reported in Table 2.

3  Monte Carlo simulation

The statistical behavior of Balanced AC1 is investigated via a Monte Carlo simu-
lation study under different class imbalance conditions and compared against the 
behavior of the other performance measures listed in Table 2.

3.1  Study design

The simulated data sets are the 2 × 2 confusion matrices cross-classifying actual and 
predicted classifications of n = 100 cases under the assumption of a prevalence rate 
(Pr) of class ‘ + ’. The study has been designed as a multi-factor experimental design 
with four factors: prevalence rate Pr, classifier sensitivity � , classifier specificity � 
and classifier propensity of randomly classifying cases into classes � . A total of 576 
different scenarios have been investigated, corresponding to balanced and imbal-
anced data sets, obtained by assigning 3 levels (i.e. 0.5, 0.7, 0.9) to factor Pr; moreo-
ver, the factors � and � have 8 levels: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95; and the 
factor � has 3 levels: 0.05, 0.20, 0.50. The behavior of each performance measure is 

(7)
p
Bal AC1

a|c =

tp

AP
⋅

[
tp

PP

(
1 −

tp

PP

)
+

fn

PN

(
1 −

fn

PN

)]
+

tn

AN
⋅

[
fp

PP

(
1 −

fp

PP

)
+

tn

PN

(
1 −

tn

PN

)]

2

Table 2  Formulation of the investigated predictive performance measures based on binary confusion 
matrix

Name    Formulation

Accuracy tp+tn

n

Precision tp

tp+fp

Sensitivity tp

tp+fn

Specificity tn

fp+tn

Balanced Accuracy
(

tp

AP
+

tn

AN

)
⋅

1

2

F1-score 2⋅tp

2⋅tp+fn+fp

Cohen’s K
[
tp+tn

n
−

AP⋅PP+AN⋅PN

n2

]/[
1 −

AP⋅PP+AN⋅PN

n2

]

AC1

[

tp+tn
n

− AP+PP
n

(

1 − AP+PP
2n

)]

 

/[

1 − AP+PP
n

(

1 − AP+PP
2n

)]

Balanced AC1

[(
tp

AP
+

tn

AN

)
⋅

1

2
− p

Bal AC1

a|c

]/[
1 − p

Bal AC1

a|c

]
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assessed by looking at the the bias of the measure related to the true predictive per-
formance value.

The simulation procedure works as follows: 

1. set the factors Pr, � , � and � at the beginning of each experiment;
2. assign the n cases to the actual class in such a way that the probability of belong-

ing to class ‘ + ’ is Pr;
3. choose a proportion of � cases and randomly assign them into ‘ + ’ or ‘−’ class 

with the same probability 1/2, assuming that non random classifications lead to 
a correct classification;

4. assign the (1 − �)% not-randomly-classified cases to the predicted class in such a 
way that the probability of belonging to class ‘ + ’ is � for cases with actual class 
‘ + ’, and 1 − � for cases with actual class ‘−’;

5. match actual and predicted classifications for each case and fill the 2 × 2 confusion 
matrix;

6. assess the predictive performance via Precision, Sensitivity,  F1-score, Accuracy, 
Balanced Accuracy, Cohen’s K, AC1 , and Balanced AC1;

7. repeat R times steps 2 through 6;
8. for each measure under comparison, the performance — expressed in terms of 

relative bias — is estimated as follows: 

 where p̂r is the classifier performance estimated for the rth data set, and p∗ is 
the ‘true’ value of classifier performance, which can be defined for each combi-
nation of � , � and �.

3.2  Simulation results

The values of relative bias obtained for each performance measure and every combi-
nation of � and � are represented in Figs. 1 through 3 for each propensity for random 
classification � (on row) and prevalence rate (on column). Simulation results high-
light the different behavior of the predictive performance measures under compari-
son: for most scenarios, the performance measures with the worst and best behavior 
in terms of relative bias are Sensitivity and Balanced AC1 , respectively.

Specifically, simulation results for performance measures focusing on one class 
(see Fig. 1) highlight that when classes are balanced (i.e. Pr = 0.50) and a very low 
percentage of cases are randomly classified (i.e. � = 0.05 ), Precision tends to over-
estimate the predictive performance when 𝛼 > 0.6 ; Sensitivity and  F1-score overes-
timate predictive performance when 𝛼 < 𝛽 . Vice-versa, the relative bias is underesti-
mated in the other scenarios. The relative bias of Precision, Sensitivity and  F1-score 
gets greater as the difference between � and � increases.

(8)RelBias =

1

R

∑R

r=1
p̂r − p∗

p∗
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For increasing prevalence value, Precision and  F1-score underestimate the 
predictive performance, as revealed by their relative bias equal respectively 
to − 90% and − 70%; Sensitivity, as expected, is not affected by changes in 
prevalence rate. Vice-versa, the propensity for random classifications impacts 
only on Sensitivity, whose relative bias strongly increases with � , especially 
when � ≤ 0.3.

Simulation results for overall performance measures (see Fig.  2) reveal that 
when � = 0.05 , an increase in class imbalance produces no change in Balanced 
Accuracy; instead Accuracy overestimates (resp. underestimates) up to 40% 
(resp. −40% ) when 𝛼 > 𝛽 (resp. 𝛼 < 𝛽 ). When the classifier propensity for ran-
dom classification � increases, the behavior of Accuracy and Balanced Accuracy 
gets worse. It is worth to note that the relative bias tends to infinity if � + � 
approaches � , which is evident in the scenario with both � and � equal to 0.3 and 
� = 0.50 , where the relative bias reaches 470%.

Simulation results for chance-corrected performance measures (see Fig. 3) reveal 
that when classes are balanced (i.e. Pr = 0.50) and a very low percentage of cases 
are randomly classified (i.e. � = 0.05 ), Cohen’s K, AC1 and Balanced AC1 underes-
timate predictive performance. The relative bias of Cohen’s K and AC1 is equal to 

Prevalence = 0.50 Prevalence = 0.70 Prevalence = 0.90
θ
=
0.
50

θ
=
0.
20

θ
=
0.
05

Fig. 1  Relative bias of Precision, Sensitivity and  F1-score
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−45% when � and � are no more than 0.5 and it gets smaller as � and � increase; 
whereas the relative bias of Balanced AC1 is always no more than − 10%.

When prevalence value and propensity for random classification � increase, the 
relative bias of Cohen’s K and AC1 worsens for � and � lower than 0.7, indeed 
in the presence of imbalanced data sets the Cohen’s K value decreases since the 
probability of classifications matching by chance is estimated through marginal 
frequencies and it is not clear how the predictive performance is balanced over 
majority and minority classes. Moreover, when � ≥ 0.7 , the AC1 overestimates 
classifier predictive performance. Balanced AC1 values, instead, get closer to the 
‘true’ value of predictive performance for increasing prevalence and the relative 
bias becomes no more than − 4%.

While the behavior of Precision,  F1-score, Accuracy, Cohen’s K and AC1 changes 
with class prevalence and � being often far from the ‘true’ value of predictive perfor-
mance, Balanced Accuracy and Balanced AC1 are always close to such ‘true’ value 
whatever class prevalence and � , with the only exception of those scenarios with 
� + � ≈ � . Thus, these latter performance measures are recommended for both bal-
anced and imbalanced data sets.

Prevalence = 0.50 Prevalence = 0.70 Prevalence = 0.90
θ
=
0.
50

θ
=
0.
20

θ
=
0.
05

Fig. 2  Relative bias of Accuracy and Balanced Accuracy
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4  Customer churn prediction

Many subscription-based service industries are constantly striving to recognize 
customers that are looking to switch providers (i.e. customer churn). Reducing 
churn is extremely important in competitive markets since acquiring new custom-
ers is very difficult (Verbeke et al. 2011). For this reason, in many service fields 
such as banks, telecommunication and internet services, games, and insurance, 
just to name a few (De Bock and Van den Poel 2011; Dechant et  al. 2019; Lee 
et al. 2018; Ngai et al. 2009; Xie et al. 2015; Zhang e al. 2017), churn analysis is 
one of the most important personalized customer management techniques.

The ability to predict that a particular customer is at a high risk of churning 
represents a huge additional potential revenue source for companies; indeed, the 
increase of retention rate of loyal customers is more efficient than acquiring new 
customers, which can cost up to six times more than what it costs to retain the 
current customers by taking active steps to discourage churn behavior (Mishra 
and Reddy 2017).

Because of customer churn impact on business performance, churn-prone 
industries typically maintain customer relationship management (CRM) 

Prevalence = 0.50 Prevalence = 0.70 Prevalence = 0.90
θ
=
0.
50

θ
=
0.
20

θ
=
0.
05

Fig. 3  Relative bias of Cohen’s K, AC
1
 and Balanced AC

1
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databases; however, knowledge discovery in such rich CRM databases, which 
typically contains thousands or millions of customers information, is a challeng-
ing and difficult task (Amin et al. 2016). As a consequence, several competitive 
industries have implemented a wide range of statistical and intelligent machine 
learning (ML) techniques to develop predictive models that deal with customer 
churn (Burez and Van den Poel 2009).

However, churn prediction algorithms often fail to handle the imbalance between 
churn and non-churn groups since they put emphasis on the majority of non-churn 
customers, leaving the prediction of churn customers vulnerable (Nguyen and 
Duong 2021).

In this case study, several churn prediction models have been evaluated using the 
investigated classifier predictive performance measures in order to assess the effects 
of class imbalance on the behavior of each measure.

4.1  Data set

The analyzed Telco Customer Churn data set1 deals with customer churn of a tel-
ecommunication company, that is the percentage of customers who stopped using 
company’s service within the last month. The data set consists of 21 attributes and 
7043 rows; each row represents a customer, while each column contains an attrib-
ute pertaining to customer that helps to deduce a comprehensible relation between 
customer behavior and churn. The attributes can be distinguished into three groups: 
services that customer has signed up for (i.e. phone, multiple lines, internet, online 
security, online backup, device protection, technical support, streaming TV and 
streaming movies); customer account information (i.e. how long she/he has been 
customer, contract, payment method, paperless billing, monthly charges, and total 
charges); and customer demographic information (i.e. gender, age range, and if she/
he has partners and dependents). All these attributes can be further classified into 
two fundamental categories: numeric attributes and object type attributes. All infor-
mation about attributes are reported in Table 3.

The last attribute is the binary output variable: the value “Yes” is for customers 
who churned, while “No” for the others. The frequency of the two classes is differ-
ent, that is 73.5% for class “No” and 26.5% for class “Yes”. The presence of class 
imbalance makes the problem suitable to display and compare the different behavior 
of the investigated predictive performance measures.

The data set has been analyzed using the Automated Machine Learning pipeline 
PyCaret (Ali 2020) in the Google Colab notebook environment (Bisong 2019). Dif-
ferent algorithms, among those most commonly adopted in churn prediction appli-
cations, have been applied: Regression models such as Logistic Regression (LR), 
Linear Discriminant Analysis (LDA) and Ridge Regression (R; Bhatnagar and Sriv-
astava 2019); Boosted Tree techniques (De et al. 2021) such as Gradient Boosting 
(GB), Extreme Gradient Boosting (XGB), CatBoost (CAT), and Extra trees classifier 

1 https:// www. kaggle. com/ datas ets/ blast char/ telco- custo mer- churn

https://www.kaggle.com/datasets/blastchar/telco-customer-churn
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(ET); Linear Support Vector Machine (Liner-SVM; Coussement and Van den Poel 
2008); Naíve Bayes (NB; Fei et  al. 2017); K-Nearest-Neighbor (KNN; Hassonah 
et al. 2019); Quadratic Discriminant Analysis (QDA); Ada Boost (ADA); Decision 
Trees (DT; Qureshi et al. 2013) and Random Forest (RF).

The adopted strategy for estimating predictive performance is based on 
repeated stratified nested cross-validation (CV) that involves treating model 
hyper-parameter optimization as part of the model itself and evaluating it within 
the broader V-fold CV procedure for models evaluation and comparison. Namely, 
the CV procedure for model hyper-parameter optimization (i.e. inner loop respon-
sible for model selection) is nested inside the CV procedure for model evalua-
tion (i.e. outer loop responsible for generalization performance estimation). The 
algorithm adopted for implementing repeated stratified nested CV is detailed 
in the Appendix. A number of 10 repetitions are performed for both loops (i.e. 
rI = rO = 10 ) with 10 folds for both inner and outer loop (i.e. VI = VO = 10).

Classifier predictive performance has been assessed by means of the measures 
under comparison, that is Accuracy, Cohen’s K, AC1 , Balanced Accuracy, Bal-
anced AC1 , Precision, Sensitivity, Specificity, and  F1-score.

4.2  Study results

The large-sample predictive performance estimates have been obtained by aver-
aging the rO nested CV performance values and their variation has been assessed 
by the range over the rO values. The results obtained by assessing predictive 
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Fig. 4  Large-sample estimates and ranges of Accuracy (in orange), Cohen’s K (in black), AC
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 (in red) (colour figure online)
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performance via Accuracy, Cohen’s K, AC1 and Balanced AC1 are represented in 
Fig. 4 and reported in Table 4; for comparative purpose, the results obtained via 
Precision, Sensitivity, Specificity and  F1-score are represented in Fig. 5.

Study results reveal the different behavior of algorithms and performance meas-
ures. Specifically, Cohen’s K underestimates the predictive performance because of 
the effect of the penalization produced by the adopted chance-agreement term which 
makes the coefficient value strongly decrease in the presence of class imbalance; 
moreover, its variation is often larger than that of other measures. These results con-
firm that Cohen’s K cannot be considered a trustable measure of predictive perfor-
mance with imbalanced data sets.

The large-sample estimates generally take values between 0.4 and 0.75, with the 
exception of NB and XGB algorithms whose predictive performance is assessed 
lower than 0.4 via Cohen’s K; moreover for XGB, ET, LDA, R, L-SVM, QDA, ADA 
and CAT algorithms the large-sample predictive performance is greater than 0.75 
when assessed via Accuracy, Precision, Sensitivity and  F1-score; for CAT, LR, RF, 
DT and KNN the large-sample predictive performance is greater than 0.75 when 
assessed via Balanced Accuracy, Precision, Specificity and  F1-score. In the light of 
simulation findings, case study results allow to group the algorithms as follows: 

1. algorithms performing better on majority class, which obtain higher values of 
Accuracy, Cohen’s K, AC1 , Precision, Sensitivity and  F1-score, viz. NB, XGB, 
ET, LDA, R, L-SVM, QDA, ADA;

2. algorithms performing similarly on both classes, showing the same values for all 
performance measures, viz. CAT, LR;
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Fig. 5  Large-sample estimates and ranges of Precision (in purple), Sensitivity (in orange), Specificity (in 
blue) and  F1-score (in green) (colour figure online)
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3. algorithms performing better on minority class, which obtain higher values of 
Balanced Accuracy, Balanced AC1 and Specificity, viz. RF, DT, KNN, GB.

All the adopted performance measures agree in identifying NB as the algorithm 
with the worst predictive performance. This result is not surprising since NB gener-
ally shows lower performance than other classifiers (Akkaya and Çolakoğlu 2019), 
mainly because of the assumption that all predictors (i.e. attributes) are mutually 
independent, which rarely happens in real life. On the other hand, the performance 
measures do not agree on the selection of the best algorithm: Accuracy selects R, 
Cohen’s K and AC1 select LR whereas Balanced Accuracy and Balanced AC1 select 
CAT as the best performing algorithm.

It is worth pointing out that in a churn model, the reward of true positives is often 
very different than both the cost of false positives and the missed gain of false nega-
tives. Thus, assuming that C is the cost to retain a customer identified as churn, that 
�C is the customer lifetime value gained if the churn is stopped and missed if the 
churn is not predicted, a simple Profit measure can be derived as follows:

The Profit has been assessed for all the algorithms under comparison and the 
results, reported in Table 5, reveal that the algorithm with the highest Profit value is 
GB, which is the algorithm with the highest difference between Balanced Accuracy 
and Balanced AC1 and the other performance measures, meaning the best perfor-
mance on minority class of “No” churn and the lowest proportion of fn cases.

More interestingly, looking at Profit as a benchmark, Balanced AC1 is the predic-
tive performance measure that ranks the algorithms more similarly to it; whereas 

(9)Profit = �K ⋅ tp − K ⋅ (tp + fp) − �K ⋅ fn

Table 5  Large-sample estimates and range of profit (with C = 1000 and � = 5)

The maximum profit value is reported in bold

Algorithm Profit Algorithm Profit

NB −346,060 ADA −79,010

[−505,000,−157,000] [−220,000, 71,000]
XGB −257,120 CAT 266, 140

[−409,000,−72,000] [136, 000, 376, 000]
ET −144,560 LR 261, 840

[−285,000, 16,000] [145, 000, 358, 000]
LDA −80,020 RF 238, 160

[−215,000, 81,000] [110, 000, 342, 000]
R −94,630 DT 258, 260

[−236,000, 37,000] [130, 000, 346, 000]
L-SVM −60,520 KNN 234, 500

[−234,000, 87,000] [99, 000, 338, 000]
QDA −115,980 GB 368,690

[−263,000, 73,000] [233, 000, 459, 000]
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the algorithms’ rankings provided by Sensitivity,  F1-score, Accuracy and AC1 are 
inversely correlated to that provided by Profit.

5  Conclusions

This research study aims to investigate  —  via a Monte Carlo simulation  —  the 
statistical behavior of a new classifier performance measure, that is Balanced AC1 
coefficient, under different scenarios of class imbalance conditions with binary clas-
sification tasks. The behavior of Balanced AC1 is compared against that of other 
performance measures, that is Precision, Sensitivity,  F1-score, Accuracy, Balanced 
Accuracy, Cohen’s K and AC1.

Simulation results reveal that Balanced AC1 has a smaller relative bias (i.e. gener-
ally no more than 10%) compared against the other performance measures. Among 
one-class performance measures, Sensitivity is the one with the worst predictive per-
formance and it generally tends to overestimate classifier performance; in the group 
of chance-corrected measures, Cohen’s K is that with the highest relative bias. As 
expected, the dependency of Accuracy on the performance over the majority class 
makes it overestimate (resp. underestimate) the predictive performance when the 
classifier predicts best the majority (resp. minority) class. More interestingly, sim-
ulation results reveal that  F1-score, although commonly considered a performance 
measure suitable for imbalanced data sets, has generally a greater relative bias than 
Balanced Accuracy and Balanced AC1 , tending to underestimate the predictive per-
formance in the presence of high class imbalance.

The difference among the behavior of classifier predictive performance meas-
ures increases with class imbalance, which is a rule in many real-world classifica-
tion problems, and with the propensity of random classification. Although Balanced 
Accuracy and Balanced AC1 seem to have similar behavior, it is recommended the 
adoption of Balanced AC1 , due to its ability to both deal with class imbalance and 
account for classifications matching by chance.

Moreover, the predictive performance measures under study have been applied to 
a real data set dealing with the problem of predicting customer churn in a telecom-
munication industry. The empirical results confirm the best suitability of Balanced 
AC1 , being the performance measure best correlated to a cost-sensitive criterion for 
the selection of the best performing algorithm.

Appendix: Algorithm of repeated stratified nested CV

Let D be a data set of n realizations (Y ,X1,X2,… ,XP) , fk be a classifier with a 
hyper-parameter vector �k , rI and rO be the repetitions performed respectively for 
inner and outer loop, VI and VO be the number of folds in which inner and outer loop 
are respectively stratified.

Let us consider a grid of K points �1,… , �K ; the optimal one can be found via 
repeated stratified nested CV, whose protocol works as follows: 
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1. divide the data set D into VO stratified folds;
2. for each ith stratified fold, with i from 1 to VO : 

(a) define the learning set LOi
 as the data set D without the ith fold;

(b) define the test set TOi
 as the ith fold of the data set D;

(c) divide the data set LOi
 into VI stratified folds;

(d) for each ith stratified fold of LOi
 , with i = 1,… ,VI:

 i. define the learning set of the inner loop LIi as the data set LOi
 without the ith 

fold;
 ii. define the test set of the inner loop TIi as the ith fold of the data set LOi

;
 iii. for k from 1 to K:

• build statistical model fik = f (LIi ;�k);
• apply fik on TIi and store the predictions;

(e) for each � calculate the classifier performance on all elements in LOi
;

(f) repeat rI times the steps from (c) to (e);
(g) for each � calculate the mean over the rI values of classifier performance;
(h) let �∗ be the hyper-parameter vector for which the average performance is 

maximal and select f ∗ = f (LIi ;�
∗) as the optimal cross-validatory model;

(i) apply f ∗ on LOi
;

(j) calculate the predictive performance of f ∗ on TOi
;

3. calculate the average predictive performance over all test sets TOi
 , hereafter 

referred to as the nested CV predictive performance;
4. repeat rO times the process from step 1 to step 3.

The mean over the rO nested CV performance values is the estimate of the large-
sample predictive performance of algorithm f ∗ , whereas the interval between the 
minimum and maximum over the rO nested CV performance values is the estimated 
interval of the large-sample predictive performance of algorithm f ∗.
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