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Abstract
Bayesian multilevel models—also known as hierarchical or mixed models—are 
used in situations in which the aim is to model the random effect of groups or lev-
els. In this paper, we conduct a simulation study to compare the predictive abil-
ity of 1-level Bayesian multilevel logistic regression models with that of 2-level 
Bayesian multilevel logistic regression models by using the prior Scaled Beta2 and 
inverse-gamma distributions to model the standard deviation in the 2-level. Then, 
these models are employed to estimate the correct answers in two questionnaires 
administered to university students throughout the first academic semester of 2018. 
The results show that 2-level models have a better predictive ability and provide 
more precise probability intervals than 1-level models, particularly when the prior 
Scaled Beta2 distribution is used to model the standard deviation in the second 
level. Moreover, the probability intervals of 1-level Bayesian multilevel logis-
tic regression models proved to be more precise when Scaled Beta2 distributions, 
rather than an inverse-gamma distribution, are employed to model the standard 
deviation or when 1-level Bayesian multilevel logistic regression models, are used.
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1 Introduction

Multilevel models—also known as hierarchical or mixed models—are used to 
model data with levels or hierarchies. They naturally occur in various everyday 
situations given the hierarchical or nested structure of the sampling units and are 
widely employed in fields such as social sciences, medicine, education, and reli-
ability (Gaviria Morera 2005). According to Gaviria Morera (2005) and McEl-
reath (2015), some of their most notable advantages are that they (1) provide bet-
ter estimates for sampling when observations arise from the same individual, (2) 
explicitly model variation when the research questions include variation among 
individuals, and (3) make it possible to avoid data transformations.

Multilevel models are mainly characterized by modeling the random effect 
within groups at different levels. In Bayesian statistics, these models are said to 
occur naturally because there exists a multilevel structure in which the prior dis-
tribution represents one level of the model and the likelihood function constitutes 
the final stage, which results in the posterior distribution (Pinheiro and Bates 
2006; Mason 1985; Bornmann et al. 2016; Gelman et al. 2013; Ntzoufras 2011).

Given the hierarchical nature of everyday situations, Bayesian multilevel 
logistic regression models have been increasingly used in recent years (Ayalew 
2020; Aychiluhm et  al. 2020; Gañan-Cardenas et  al. 2021; Młynarczyk et  al. 
2021; Jabessa and Jabessa 2021; Fagbamigbe et  al. 2021; Grogan-Kaylor et  al. 
2021; Sherwood et  al. 2021). For example, Fagbamigbe et  al. (2021) employed 
a Bayesian multilevel model to examine the main risk factors and regional vari-
ations in maternal mortality in Ethiopia. Similarly, Grogan-Kaylor et  al. (2021) 
analyzed the association of physical punishment and nonphysical discipline with 
child socio-emotional functioning using Bayesian multilevel logistic regression 
models.

Other authors who have also employed multilevel models in their research 
studies include: Jara et al. (2008), Birlutiu et al. (2010), Tang and Duan (2014), 
De  la Cruz et al. (2016), Lu et al. (2017) and Wang et al. (2019). For instance, 
Birlutiu et  al. (2010) modeled multitask learning in hearing-impaired subjects 
using a hierarchical approach. Wang et  al. (2019) presented a 10-minute trivia 
game-based activity for the intuitive understanding of confidence intervals. They 
fitted a mixed-effects Bayesian logistic model using noninformative priors for the 
coefficients and variance parameters. In this paper, we will develop an activity 
similar to that proposed by Wang et al. (2019), based on the results of two ques-
tionnaires that were administered to university students throughout the first aca-
demic semester of 2018.

For their part, Pérez et al. (2017) proposed the Scaled Beta2 (SBeta2) distribu-
tion as an alternative to the inverse-gamma distribution for modeling variances 
and standard deviations (or, more generally, for scales). They presented it as a 
flexible and tractable family that can be used to model scales in both hierarchi-
cal and nonhierarchical settings. In addition, they demonstrated that, for certain 
values of the hyperparameters, the mixture of a normal and an SBeta2 distribu-
tion gives a closed form marginal. Hence, we will here employ the SBeta2 and 
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inverse-gamma distributions to model the variance parameters in the 2-level 
Bayesian multilevel logistic model. In addition, the resulting estimates of the 
models fitted with these two distributions will be compared by means of a simula-
tion study to determine which distribution has the best predictive ability.

The rest of this paper is structured as follows. In Sect. 2, we provide an overview 
of Bayesian multilevel logistic regression and present the general models employed 
here. In Sect.  3, we introduce the SBeta2 distribution used to model the variance 
parameters. In Sect. 4, we present a simulation study to compare the performance 
of the proposed models. In Sect. 5, we apply the proposed models to real-life data. 
Finally, we outline the conclusions of this study.

2  Bayesian multilevel logistic regression

Multilevel models are extensions of regression models, with data structured in 
groups and coefficients that can vary by group. From the Bayesian perspective, 
Bayesian models are said to have an inherently multilevel or hierarchical struc-
ture. The prior distribution, �(� ∣ �) , of a model with prior parameters � can be 
considered one level or hierarchy, with the likelihood as the final stage of a Bayes-
ian model, which results in the posterior distribution, �(� ∣ y) ∝ f (y ∣ �)�(� ∣ �) , 
obtained using Bayes’ theorem. A key aspect in these models is that � is unknown; 
therefore, it will have its own prior distribution, �(�) . The appropriate Bayesian pos-
terior distribution is that of vector (�, �) (Mason 1985; Bornmann et al. 2016; Gel-
man et al. 2013; Ntzoufras 2011). The joint prior distribution is given by

Then, the joint posterior distribution is given by

This latter simplification holds because y and � are conditionally independent given 
� . That is, the data distribution f (y ∣ �, �) , depends only on � ; the hyperparameters � 
affect y only through � (Gelman et al. 2013).

In Bayesian multilevel logistic regression models, the assumption of interchange-
ability is employed when there is no information on the structure of the parameters 
of interest. It is assumed that all random parameters come from a common distribu-
tion and that their ordering does not affect the model or the results. In other words, 
the prior distributions of the hyperparameters are invariant to the random permuta-
tions of these latter (Ntzoufras 2011). For further elaboration on this concept, see 
the studies by Bernardo and Smith (2000) and Gelman et al. (2013).

Bayesian multilevel (or hierarchical) logistic regression models can be used to 
model clustered data having a binary response variable. Such is the case of logis-
tic regression, which is considered a standard way of modeling this type of vari-
ables (i.e., data that take the values of 1 or 0). Results of these variables can be 
found in studies into, for instance, social, medical, and natural matters, in which 
the response is usually the presence or absence of a characteristic of interest (Peng 

(1)�(�, �) = �(� ∣ �)�(�).

(2)�(�, � ∣ y) ∝ �(�, �)f (y ∣ �, �) = �(� ∣ �)�(�)f (y ∣ �).
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et al. 2002; Gelman and Hill 2006; Pregibon 1981; Ntzoufras 2011). According 
to this, the dependent or response variable, y, is assigned a value of 1 if it has the 
characteristic of interest or a value of 0 if it does not.

In logistic regression, a single outcome variable, yi (i = 1, ..., n ), follows a 
Bernoulli probability function that takes the value of 1 with probability �i or the 
value of 0 with probability 1 − �i and is denoted by yi ∼ Bernoulli (�i) . This type 
of regression adopts the logit link, which, besides being the most suitable choice 
because it is the canonical link, has a smooth and pleasant interpretation based on 
the probability ratio, �i∕(1 − �i) (King and Zeng 2001; Ntzoufras 2011).

Let us suppose that, in a study seeking to model the correct answers in a ques-
tionnaire administered to groups of students, yij = 1 ( i = 1,… ,Nj ; j = 1,… , J ) if 
the ith question is correctly answered by the individual in the jth group and yij = 0 
if it is not. In this case, the Bayesian hierarchical logistic model is given by

where Nj is the number of questions in group j and yj =
Nj
∑

i=1

yij . The link function is 

given by

for j = 1,… , J , with J number of groups, �� follows a noninformative normal distri-
bution and �2

�
 has a defined distribution on positive values.

If the questionnaire is assumed to be administered twice within each group, the 
previous model is then given by

The link function is given by

where ykj are the correct answers in the jth group in the kth questionnaire. Parameter 
�j denotes the log odds of their correct answers, while aj is the log odds of their 
incorrect answers.

Noninformative prior distributions are commonly employed for parameters 
�� , aj , and �2

�
 . In the specialized literature, �� ∼ N(0, 1000), aj ∼ N(0, 1000) , and 

�2
�
 are often modeled using inverse-gamma, half-Cauchy, uniform, and SBeta2 

(3)yj ∼ Binomial (�j,Nj),

(4)logit (�j) = log

(

�j

1 − �j

)

= �j,

(5)�j ∼ N(�� , �
2
�
),

(6)ykj ∼ Binomial (�kj,Nkj), k = 1, 2 and j = 1,… , J.

(7)logit (�kj) = log

(

�kj

1 − �kj

)

= aj + �jI(k = 1),

(8)�j ∼ N(�� , �
2
�
),
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distributions (Ntzoufras 2011; Pérez et  al. 2017). We will here use the SBeta2 
and inverse-gamma distributions to model the variance parameters.

In this paper, data from Application 1 in Sect.  5 are modeled using Bayesian 
logistic models and following a two-step approach. First, the models are fitted per 
questionnaire both 1-level and 2-level models. Then, a similar procedure is carried 
out, but this time an independent variable that takes into account the results of the 
two questionnaires is included. In both scenarios, the results are compared by means 
of the Deviance Information Criterion (DIC) in order to identify which model exhib-
its the best predictive ability. In addition to being employed for assessing model ade-
quacy (Spiegelhalter et al. 2002), this criterion is considered a generalization of the 
Akaike Information Criterion (AIC) and used to compare hierarchical or multilevel 
models (Ntzoufras 2011).

3  Scaled beta2 distribution

The SBeta2 distribution is a scaled version of the inverse beta distribution and is 
employed to model precisions and variances in Bayesian hierarchical models. This 
distribution extends previous proposals, such as those of Gelman (2006) and Berger 
(2006), for modeling the variance parameter. It is defined as

Variable � can be represented as the odds ratio, � =
�

1−�
 , where � ∼ Beta (� ∣ p, q) . 

The expected value and variance of � are given by

In the SBeta2 (p, q, b) distribution, parameter p controls the distribution behav-
ior at the origin; parameter q, that in the right-hand tail of the distribution; and 
parameter b, the scale. This distribution is characterized by its reciprocity, i.e., if 
� ∼ SBeta2 (p, q, b) , then 1∕� ∼ SBeta2 (p, q, 1∕b). Other properties of this dis-
tribution are described in the study by Pérez et  al. (2017). Expression � =

�

1−�
b , 

with � ∼ Beta (p, q) , can be used as a way to generate random variables, 
� ∼ SBeta2 (p, q, b) . The main limitations of SBeta2 are that, in practice, it is dif-
ficult to choose the values of the scale parameter, and that SBeta2 is not conjugate 
distribution and hinders the computational process. Pérez et al. (2017) suggest that, 
in order to obtain a robust inference considering an SBeta2 (p, q, b) distribution, the 
value of parameter q must be between 0 and 1 because the smaller the q value, the 

(9)

SBeta2 (𝜓 ∣ p, q, b) =
Γ(p + q)

Γ(p)Γ(q)b

(

𝜓

p

)(p−1)

(

𝜓

p
+ 1

)(p+q)
for 𝜓 > 0, b > 0, p > 0, q > 0.

(10)E(𝜓) =
p

q − 1
p for q > 1.

(11)Var(𝜓) =
p(p + q − 1)

(q − 1)2(q − 1)
for q > 2.
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heavier-tailed the distribution. They also recommend selecting a value between 0.5 
and 1 for p when the variance distribution is centered around zero to avoid a very 
large shrinkage towards the mean.

In light of the above, we here use two forms of the SBeta2 distribution—
SBeta2(1,1,4) and SBeta2 (1∕2, 1∕2, 625) plotted in the Fig. 1 and the inverse-gamma 
distribution—IG(� , � ), where parameter � denotes the shape; and parameter � , the 
scale. In particular, we consider � = � = 0.001 to model the variance parameters in 
the 2-level Bayesian multilevel logistic regression model (Llera and Beckmann 2016; 
Gelman 2006; Pérez et al. 2017; Rojas and Ramírez 2019). It is important to be careful 
when using the inverse-gamma distribution because studies such as those of Berger 
(2006), Gelman (2006), Pérez et al. (2017), and Rojas and Ramírez (2019) have out-
lined the drawbacks of using it as a prior distribution. It, for instance, can lead to pos-
terior distributions with incorrect values or improper posterior distributions.

4  Simulation study: comparing the 1‑level and 2‑level Bayesian 
multilevel logistic regression model

This section presents a simulation study in which the scenarios were created to 
best show the behavior of the Bayesian multilevel logistic regression model. Data 
were generated from a binomial distribution for different groups and proportions of 
defects. The focus of this simulation study is to predict the proportions of successes, 
as well as to compare the predictive ability of the 1-level and 2-level Bayesian multi-
level logistic model. The procedure we used is as follows: 

1. Four groups ( Nj ) of different sizes (j) are considered. The sample sizes are 3, 6, 
10, and 15, as shown in Table 1.

Fig. 1  SBeta2 distribution for 
the variance parameter with dif-
ferent values of p, q and b 
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2. For each group, the number of correct answers (successes) is estimated using a 
binomial distribution with a probability of success in three percentiles (p = 25%, 
50%, and 75%).

3. With each group, the 1-level and 2-level Bayesian multilevel logistic regression 
models are fitted, considering the bugs function in the R library (Sturtz et al. 
2010). This function takes into account, among other values, the group sizes, the 
number of successes obtained in Item 2, the iterations (40,000), and a burn-in 
rate of 10% (4,000) to eliminate unstable autocorrelations.

4. The convergence of the posterior distributions of the parameters is tested using 
the chains obtained in Item 3. Then, the KPSS statistic (Kwiatkowski et al. 1992) 
(it is implemented in the tseries package (Trapletti et al. 2019) in R (R Core Team 
2019)) and the p-value of the truncation parameter are calculated. If the p-value 
is below � = 0.05 , H0 (the Markov chain has reached the stationary distribution) 
is rejected. Finally, graphical analysis are performed based on the lags, ergodic 
averages, and densities. Other convergence proofs can be found in the studies by 
Cowles and Carlin (1996) and Brooks and Roberts (1998).

5. The probability intervals, along with the DIC, are calculated in each scenario to 
assess the predictive ability of the models.

The prior distributions considered to model the variance parameters in 
2-level Bayesian multilevel logistic regression were selected based on the rec-
ommendations provided by Pérez et  al. (2017). In particular, we employed the 
SBeta2(1,1,4), SBeta2(1/2,1/2,625), and the inverse-gamma distribution tradi-
tionally used to model said effect, i.e., IG(0.001, 0.001). For the 1-level Bayes-
ian multilevel logistic regression model, we used noninformative normal distribu-
tions, N(0, 1000) (Ntzoufras 2011). The following are the models proposed here:

• Model 1 (M1). With SBeta2(1,1,4) 

yj ∼ Binomial (�j,Nj)

logit (�j) = �j

�j ∼ N(�� , �
2
�
)

�� ∼ N(0, 1000)

�2
�
∼ SBeta2 (1, 1, 4)

Table 1  Sample sizes per group

Nj j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 30 45 60
6 60 75 90 105 120 135
10 135 150 165 180 195 210 225 240 255 270
15 270 285 300 315 330 345 360 375 390 405 420 435 450 465 480
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• Model 2 (M2). SBeta2(1,1,4) in model 1 is replaced with SBeta2(1/2,1/2,625). 

 .
• Model 3 (M3). SBeta2(1,1,4) in model 1 is replaced with IG(0.001, 0.001). 

 .
• Model 4 (M4). 1-level model 

Convergence was tested by analyzing the autocorrelation, trace plot, density, and 
ergodic average. The autocorrelation between the various values of the parameters 
generated at different lags for �1 are shown in Table 2, with three groups and a 25% 
of correct answers (or successes). According to the information in this table, there 
is a low association between the values of the parameter generated with the different 
lags.

Figures 2 and 3 present the trace plots, density, and ergodic average of the chain 
of values generated with the different lags of the posterior distribution of �1 . As can 
be seen in these figures, after burning the first 4000 values, the unstable autocor-
relations are eliminated, and the posterior distribution of the parameter of interest is 
found to exhibit a stationary behavior. In addition to the aforementioned graphs, the 
KPSS test was applied to parameter �1 , yielding a value of 0.29075, with a trunca-
tion parameter of 17 and a p-value of 0.1. This indicates that there is not enough 
sample evidence to reject H0 , which states that the Markov chain has reached the 
stationary distribution. Similar results were obtained with M2 and M3, considering 
different parameters, groups, and percentages of successes.

Figures 4 and 5 display the probability intervals of M1, M2, M3, and M4 for the 
different groups and percentages of correct answers (p = 25%, 50%, and 75%). From 
these figures, we observe that M4 provides the widest intervals; and M2, the small-
est ones. This is explained by the fact that the variability within each group is not 

�2
�
∼ SBeta2 (1∕2, 1∕2, 625)

�2
�
∼ IG (0.001, 0.001)

yj ∼ Binomial (�j,Nj)

logit (�j) = �j

�j ∼ N(0, 1000)

Table 2  Lag autocorrelations 
for �1 of the model with 
�2

�
∼ SBeta2 (1, 1, 4)

Lags Autocorrela-
tion for �� with 
�2

�
∼ SBeta2 (1, 1, 4)

0 1.0000000
1 – 0.0095379
5 0.0132617
10 – 0.0003188
50 – 0.0006554
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considered in the 1-level model. Also, the intervals are found to be more precise as 
the sample size increases. Similar results were obtained with 10 and 15 groups ( N10 
and N15).

Table 3 provides the results of the DIC, considering the four models (M1, M2, 
M3, and M4), the different groups, and the percentages of correct answers (p). As 
this table shows, M2 has a better predictive capacity because its DIC is lower in 
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all scenarios, whereas the 1-level model (M4) exhibits the lowest predictive abil-
ity because of its higher DIC. Based on this, the prior distributions used to model 
the variance parameters in 2-level Bayesian multilevel logistic regression models 
are found to produce better results in terms of predictive ability because they pro-
vide more precise intervals and better DIC values.

p=25% p=50% p=75%

30 45 60 30 45 60 30 45 60
0

25

50

75

Group 1

Av
er

ag
e 

pe
rc

en
ta

ge
 o

f c
or

re
ct

 a
ns

w
er

s

Models

M1

M2

M3

M4

Fig. 4  Average percentage of correct answers in the subsequent results of group 1 in the different models 
for p = 25% , 50%, and 75%
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for p = 25% , 50%, and 75%
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5  Application: modeling the correct answers of university students

Table 4 shows the correct answers of the university students by group. These data 
were collected from two questionnaires administered to students from two Higher 
Education Institutions (HEIs) in Medellín (Colombia)—Universidad Nacional 
de Colombia (UN) (Medellín campus) and Instituto Tecnológico Metropolitano 
(ITM)—and using a procedure similar to that proposed by Wang et al. (2019). In 
their study, these authors present a 10-minute trivia game-based activity for the 
intuitive understanding of confidence intervals. In addition, they explain how the 
activity can be implemented one or more times in an inferential statistics course.

For data collection, we followed a three-step procedure. First, we formulated 
10 general interest questions, the answers to which were provided in the form of 
an interval (a minimum and maximum value within which respondents considered 
the answer to each question would fall). Then, students were given 10 minutes to 
respond. Finally, the students’ responses were tabulated.

The questionnaires were administered to statistical inference students from the afore-
mentioned universities (nine groups from UN and three from ITM) at the beginning 
and end of the first academic semester of 2018. It should be noted that permission was 
requested from the governing body of each HEI to conduct the experiment, and stu-
dents were explained that the information provided would be employed for academic 

Table 3  Deviance Information Criterion (DIC) of the 1-level and 2-level models by group ( Nj ), consider-
ing the percentages of successes (p)

Nj p = 25% p = 50% p = 75%

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

3 16.34 15.29 15.89 17.98 17.79 17.15 17.63 18.65 16.35 15.47 15.91 17.99
6 34.73 32.58 33.32 40.28 37.92 35.93 36.70 41.66 34.78 32.32 33.30 40.28
10 69.19 68.52 68.62 74.84 67.93 65.37 66.65 77.68 69.21 68.42 68.61 74.81
15 102.0 99.48 101.4 121.2 111.8 109.5 110.9 125.4 102.3 99.42 101.4 121.1

Table 4  Students’ correct 
answers per questionnaire and 
university

University Groups Questionnaire 1 Questionnaire 2 Total

ITM ITM1 30 29 210
ITM ITM2 22 37 130
ITM ITM3 17 8 80
UN UN1 24 28 150
UN UN2 102 68 430
UN UN3 104 129 440
UN UN4 30 40 160
UN UN5 35 26 150
UN UN6 28 20 130
UN UN7 13 10 70
UN UN8 45 40 210
UN UN9 18 24 90
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purposes. This experiment could be useful in examining how students understand basic 
statistical concepts such as confidence intervals and confidence levels in statistical tests.

To analyze the results, we first considered students’ correct answers in the two 
questionnaires administered throughout the academic semester. Then, a 2-level 
Bayesian multilevel logistic regression model was fitted to model the proportion of 
correct answers from questionnaires 1 and 2 separately, considering M1, M2, and 
M3. The purpose of this was to predict students’ percentage of correct answers in 
the two questionnaires, as well as to see whether there were any discrepancies in 
the forecasts when taking into account other values of the parameters in the prior 
distributions. A 1-level model (M4) was also considered and compared to the other 
models in order to identify which has the best predictive ability (Tables 5 and 6).

Subsequently, a single model with an independent variable that considered the 
two questionnaires and the prior distributions used in the aforementioned models 
was fitted to model the 2-level. The 1-level model was also fitted. The results of the 
models’ fitting are presented in Table 7.

To model students’ performance in terms of the probabilities of correct answers 
within the groups, M1, M2, M3, and M4 were fitted. If students in group j correctly 
answers question i, then yij = 1 , and if they do not, then yij = 0 for j = 1, 2,… 12 
and i = 1, 2,…Nj , with Nj number of questions per group.

The model in Eq. (5), with link function (7), was used to simultaneously model 
both questionnaires. If students in group j correctly answers question i in ques-
tionnaire k, then yikj = 1 , and if they do not, then yikj = 0 , for j = 1, 2,… 12 , and 
i = 1, 2,…Nkj and k = 1, 2 , with Nkj number of questions per group, considering 
questionnaire k. The following are the models proposed here:

• Model 5 (M5). With SBeta2(1,1,4) 
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the different models



1803

1 3

Bayesian multilevel logistic regression models: a case study…

Table 5  Subsequent summary of the results of questionnaire 1 using a 1-level and 2-level Bayesian mul-
tilevel logistic regression models

M1 M2

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

�� – 1.375 0.082 – 1.546 – 1.222 – 1.355 0.061 – 1.480 – 1.240
�� 0.179 0.079 0.049 0.360 0.069 0.061 0.002 0.220
�� 0.202 0.013 0.176 0.228 0.205 0.010 0.185 0.224
�
1

0.175 0.022 0.130 0.216 0.196 0.018 0.152 0.223
�
2

0.190 0.023 0.143 0.235 0.201 0.016 0.164 0.228
�
3

0.206 0.026 0.157 0.262 0.206 0.015 0.175 0.238
�
4

0.186 0.023 0.139 0.228 0.200 0.016 0.161 0.226
�
5

0.225 0.018 0.192 0.263 0.214 0.014 0.191 0.246
�
6

0.224 0.018 0.193 0.261 0.213 0.014 0.191 0.246
�
7

0.197 0.022 0.154 0.240 0.203 0.015 0.171 0.230
�
8

0.216 0.023 0.174 0.266 0.209 0.015 0.182 0.243
�
9

0.208 0.023 0.163 0.258 0.207 0.015 0.177 0.238
�
10

0.199 0.026 0.147 0.252 0.204 0.016 0.169 0.234
�
11

0.209 0.021 0.169 0.252 0.207 0.014 0.180 0.236
�
12

0.203 0.025 0.154 0.255 0.205 0.015 0.172 0.236

M3 M4

�� – 1.364 0.071 – 1.514 – 1.234 – 1.414 0.063 – 1.538 – 1.292
�� 0.125 0.071 0.029 0.295 0.294 0.055 0.192 0.408
�� 0.204 0.011 0.180 0.226 0.196 0.010 0.177 0.216
�
1

0.185 0.021 0.140 0.221 0.143 0.024 0.099 0.194
�
2

0.196 0.020 0.153 0.232 0.170 0.033 0.110 0.238
�
3

0.206 0.021 0.165 0.251 0.212 0.045 0.131 0.308
�
4

0.193 0.020 0.149 0.228 0.160 0.030 0.107 0.223
�
5

0.220 0.016 0.192 0.255 0.237 0.020 0.198 0.278
�
6

0.220 0.016 0.192 0.255 0.236 0.020 0.198 0.277
�
7

0.200 0.019 0.161 0.236 0.187 0.031 0.131 0.251
�
8

0.213 0.020 0.177 0.256 0.233 0.034 0.170 0.303
�
9

0.207 0.019 0.170 0.248 0.216 0.036 0.149 0.290
�
10

0.202 0.021 0.158 0.244 0.186 0.046 0.105 0.284
�
11

0.208 0.018 0.174 0.246 0.214 0.028 0.161 0.272
�
12

0.204 0.020 0.162 0.246 0.200 0.042 0.125 0.288
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Ykj ∼ Binomial (�kj,Nkj)

logit (�kj) = aj + �jI(k = 1)

�j ∼ N(�� , �
2
�
)

�� ∼ N(0, 1000)

aj ∼ N(0, 1000)

�2
�
∼ SBeta2 (1, 1, 4)

Table 6  Subsequent summary of the results of questionnaire 2 using a 1-level and 2-level Bayesian mul-
tilevel logistic regression

M1 M2

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

�� – 1.440 0.130 – 1.706 – 1.186 – 1.432 0.117 – 1.674 – 1.207
�� 0.375 0.111 0.206 0.635 0.325 0.102 0.170 0.568
�� 0.192 0.020 0.154 0.234 0.193 0.018 0.158 0.230
�
1

0.150 0.022 0.109 0.196 0.153 0.022 0.112 0.199
�
2

0.261 0.035 0.196 0.333 0.255 0.034 0.194 0.326
�
3

0.140 0.032 0.081 0.206 0.146 0.031 0.087 0.209
�
4

0.189 0.028 0.137 0.246 0.189 0.027 0.140 0.245
�
5

0.162 0.017 0.130 0.196 0.164 0.017 0.133 0.198
�
6

0.283 0.021 0.242 0.325 0.280 0.021 0.239 0.322
�
7

0.237 0.030 0.181 0.299 0.233 0.029 0.180 0.295
�
8

0.179 0.027 0.129 0.235 0.181 0.026 0.131 0.235
�
9

0.166 0.028 0.114 0.224 0.169 0.027 0.118 0.224
�
10

0.166 0.034 0.103 0.237 0.170 0.033 0.108 0.238
�
11

0.191 0.025 0.145 0.242 0.191 0.024 0.147 0.241
�
12

0.241 0.038 0.173 0.322 0.237 0.037 0.172 0.316

M3 M4

�� – 1.436 0.125 – 1.693 – 1.196 – 1.483 0.067 – 1.618 – 1.354
�� 0.359 0.114 0.188 0.629 0.477 0.078 0.338 0.646
�� 0.193 0.019 0.155 0.232 0.185 0.010 0.166 0.205
�
1

0.151 0.022 0.110 0.197 0.138 0.024 0.095 0.188
�
2

0.258 0.035 0.195 0.331 0.285 0.039 0.212 0.365
�
3

0.142 0.031 0.083 0.206 0.100 0.033 0.045 0.174
�
4

0.189 0.027 0.138 0.246 0.186 0.032 0.129 0.252
�
5

0.163 0.017 0.131 0.197 0.158 0.018 0.126 0.194
�
6

0.282 0.021 0.242 0.325 0.293 0.022 0.252 0.336
�
7

0.236 0.030 0.181 0.298 0.250 0.034 0.186 0.320
�
8

0.179 0.027 0.129 0.234 0.173 0.030 0.118 0.236
�
9

0.167 0.028 0.116 0.223 0.154 0.032 0.097 0.221
�
10

0.167 0.034 0.104 0.237 0.143 0.042 0.073 0.234
�
11

0.191 0.024 0.146 0.241 0.191 0.027 0.140 0.246
�
12

0.240 0.038 0.173 0.320 0.267 0.047 0.180 0.363
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• Model 6 (M6). SBeta2(1,1,4) in model 5 is replaced with SBeta2(1/2,1/2,625) 

• Model 7 (M7). SBeta2(1,1,4) in model 5 is replaced with IG(0.001,0.001) 

 .
• Model 8 (M8). 1-level model 

Tables  5 and 6 show the subsequent results of the models’ fitting for question-
naires 1 and 2, respectively; and Table 7 provides the results for both question-
naires in the same model. Tables 5 and 6 present the average (mean), the Stand-
ard Deviation (SD), and the probability interval (2.5%, 97.5%) per group, while 
Table 7 reports similar results but without the standard deviation. As can be seen 
from the tables above, �� is lower in M2 and M6 and higher in M4 and M7. This 
is explained by the fact that, although this variability within the groups exists, it 
is not modeled in the latter models.

As observed in Table 5, UN2 and UN3 (i.e., �5 and �6 , respectively) are the 
groups with the highest probability of correct answers in the different models, 

�2
�
∼ SBeta2 (1∕2, 1∕2, 625).

�2
�
∼ IG (0.001, 0.001)

Ykj ∼ Binomial (�kj,Nkj)

logit (�kj) = aj + �jI(k = 1)

�j ∼ N(0, 1000)

aj ∼ N(0, 1000)
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Fig. 7  Average percentage of correct answers per group in the subsequent results of questionnaire 2 for 
the different models
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Table 7  Subsequent summary of the results of questionnaires 1 and 2 using 1-level and 2-level Bayesian 
multilevel logistic regression models with an explanatory variable

M1 M2 M3 M4

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

�� 0.038 – 0.23 0.32 0.032 – 0.19 0.27 0.036 – 0.22 0.30 0.068 – 0.11 0.25
�� 0.356 0.16 0.65 0.243 0.01 0.53 0.322 0.10 0.64 0.552 0.37 0.77
ORt 1.049 0.79 1.37 1.040 0.83 1.30 1.046 0.80 1.36 0.517 0.47 0.56
�
1.1

0.143 0.10 0.19 0.142 0.11 0.19 0.143 0.10 0.19 0.143 0.10 0.19
�
1.2

0.197 0.14 0.26 0.207 0.15 0.27 0.200 0.14 0.26 0.169 0.11 0.24
�
1.3

0.179 0.11 0.26 0.171 0.11 0.25 0.177 0.11 0.26 0.213 0.13 0.31
�
1.4

0.167 0.12 0.22 0.170 0.12 0.22 0.168 0.12 0.22 0.160 0.11 0.22
�
1.5

0.229 0.19 0.27 0.221 0.18 0.26 0.227 0.19 0.27 0.237 0.20 0.28
�
1.6

0.243 0.21 0.28 0.248 0.21 0.29 0.244 0.21 0.28 0.236 0.20 0.28
�
1.7

0.202 0.15 0.26 0.207 0.15 0.26 0.204 0.15 0.26 0.187 0.13 0.25
�
1.8

0.222 0.17 0.29 0.216 0.16 0.28 0.220 0.16 0.28 0.233 0.17 0.30
�
1.9

0.202 0.14 0.27 0.197 0.14 0.26 0.200 0.14 0.27 0.216 0.15 0.29
�
1.10

0.174 0.11 0.26 0.171 0.11 0.25 0.173 0.11 0.25 0.185 0.11 0.28
�
1.11

0.211 0.16 0.26 0.209 0.16 0.26 0.210 0.16 0.26 0.214 0.16 0.27
�
1.12

0.219 0.15 0.30 0.225 0.16 0.30 0.221 0.15 0.30 0.200 0.12 0.29
�
2.1

0.138 0.10 0.18 0.139 0.10 0.18 0.138 0.10 0.18 0.138 0.09 0.19
�
2.2

0.257 0.19 0.33 0.247 0.19 0.32 0.254 0.19 0.33 0.284 0.21 0.36
�
2.3

0.133 0.08 0.20 0.141 0.08 0.21 0.136 0.08 0.20 0.100 0.05 0.18
�
2.4

0.179 0.13 0.24 0.177 0.13 0.23 0.179 0.13 0.24 0.186 0.13 0.26
�
2.5

0.167 0.13 0.20 0.174 0.14 0.21 0.169 0.14 0.21 0.158 0.13 0.19
�
2.6

0.287 0.25 0.33 0.281 0.24 0.32 0.286 0.25 0.33 0.293 0.25 0.34
�
2.7

0.236 0.18 0.30 0.230 0.18 0.29 0.234 0.18 0.30 0.250 0.17 0.32
�
2.8

0.185 0.13 0.25 0.190 0.14 0.25 0.187 0.13 0.25 0.173 0.12 0.24
�
2.9

0.167 0.11 0.23 0.173 0.12 0.23 0.169 0.12 0.23 0.154 0.10 0.22
�
2.10

0.155 0.09 0.23 0.158 0.10 0.23 0.156 0.09 0.23 0.143 0.07 0.23
�
2.11

0.194 0.15 0.25 0.196 0.15 0.24 0.194 0.15 0.24 0.191 0.14 0.25
�
2.12

0.248 0.17 0.33 0.242 0.17 0.32 0.245 0.17 0.33 0.267 0.18 0.36
OR

1
1.067 0.68 1.62 1.052 0.71 1.52 1.062 0.68 1.59 1.084 0.59 1.81

OR
2

0.725 0.41 1.12 0.818 0.47 1.16 0.753 0.42 1.13 0.533 0.28 0.92
OR

3
1.501 0.82 2.80 1.312 0.83 2.37 1.445 0.82 2.70 2.812 1.01 6.65

OR
4

0.944 0.57 1.44 0.970 0.62 1.39 0.951 0.58 1.43 0.868 0.45 1.51
OR

5
1.506 1.08 2.07 1.380 0.96 1.96 1.470 1.04 2.04 1.686 1.18 2.34

OR
6

0.803 0.59 1.05 0.851 0.62 1.10 0.816 0.60 1.07 0.753 0.55 1.01
OR

7
0.837 0.51 1.24 0.893 0.56 1.24 0.855 0.53 1.25 0.716 0.40 1.18

OR
8

1.290 0.81 2.03 1.201 0.82 1.85 1.261 0.81 1.97 1.519 0.83 2.57
OR

9
1.306 0.79 2.12 1.207 0.81 1.92 1.271 0.80 2.05 1.601 0.81 2.90

OR
10

1.198 0.66 2.08 1.132 0.70 1.86 1.177 0.67 2.04 1.530 0.56 3.41
OR

11
1.136 0.75 1.66 1.104 0.78 1.58 1.127 0.76 1.64 1.194 0.71 1.89

OR
12

0.881 0.49 1.40 0.930 0.55 1.34 0.898 0.51 1.38 0.729 0.33 1.37
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while ITM1 (i.e., �1 ) is the one with the lowest probability. Regarding the inter-
vals, M4 is found to have the lowest precision, whereas M2 showed the highest 
precision. Also, from Fig. 6, we can see that M4 produces the widest intervals, 
while M2 provides the smallest intervals. This is may be due to the fact that vari-
ability within each group is not considered in M4.

After the models were compared based on the resulting DIC values, M3 was 
found to be the model with the best ability to predict the percentage of correct 
answers because it had the lowest DIC (76.81), while M4 exhibited the lowest 
predictive ability, with a DIC of 84.81. It should be noted that M1 and M2 also 
yielded good results because their DIC was 77.01 and 77.21, respectively.

Table  6 presents the posterior results for questionnaire 2. As can be seen, 
UN3 (i.e., �6 ) is the group with the highest probability of correct answers in the 
different models, while ITM3 (i.e., �1 ) is the one with the lowest probability. As 
for the intervals shown in this table, we observe a pattern (illustrated in Fig. 7) 
similar to that in Table 5: M4 produces the widest intervals, whereas M2 pro-
vides the smallest intervals. The resulting DIC values of M1, M2, M3, and M4 
are similar to those calculated with the results of questionnaire 1 (81.78, 82.12, 
81.93, and 84.14, respectively). However, in this case, M1 exhibits the best abil-
ity to predict the percentages of correct answers.

Finally, Table  7 summarizes the results of M5, M6, M7, and M8 in terms 
of the probabilities of correct answers, which are similar to those presented in 
Tables 5 and 6. From this table, it can be seen that UN3, ITM1, and ITM3 (i.e., 
�6 , �1 , and �3 , respectively) are the groups with the highest and lowest prob-
ability of correct answers. Also, when both questionnaires were compared using 
the odds ratio, we observed that students improved their probability of success 
in the ITM2, UN1, UN3, UN4, and UN9 groups (i.e., OR2 , OR4 , OR6 , OR7 , and 
OR12 , respectively), with ITM2 showing the greatest improvement probability. 
In the rest of the groups, students were not found to improve such probability.

The behavior of the probability intervals is similar to that observed in Figs. 6 
and 7: The model with the least precise probability intervals is M8 and that with 
the most precise intervals is M6. The DIC values of M5, M6, M7, and M8 were 
165.1, 167.5, 165.7, and 169.2, respectively. According to this, M5 is the model 
with the best predictive ability.

6  Concluding remarks

Bayesian multilevel models are commonly used to represent data with levels or 
hierarchies, particularly in cases involving students within universities. Since 
there is often no information about the variance parameter, it is usually mod-
eled using noninformative distributions. In this paper, we employed two versions 
of the SBeta2 distribution and the inverse-gamma distribution to model such 
parameter.

According to the results, the probability intervals are wider in the 1-level model 
than in the 2-level models. This is explained by the fact that, although variability 
within the groups exists, it is not considered in the former. In addition, the 1-level 
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model can provide erroneous results when comparing the groups. For instance, as 
observed in Fig. 6, when considering variability within each group, the percentages 
of correct answers in UN2 and UN3 differ from those in ITM1 when there is, in fact, 
no difference. Likewise, the 2-level models were found to have a greater predictive 
ability than the 1-level model because they had a lower DIC value.

When the probability of success remains the same, 2-level Bayesian multilevel 
logistic regression models exhibit a better predictive ability when SBeta2 distri-
butions, rather than a 1-level Bayesian multilevel logistic regression model or an 
inverse-gamma distribution, are used to model the variance parameter. Based on the 
estimated DIC values, similar results in terms of the improved predictive ability of 
the 2-level Bayesian multilevel logistic regression model with respect to the 1-level 
Bayesian multilevel logistic regression model are obtained when the probabilities of 
success and sample sizes vary.

Finally, the probability intervals of 2-level Bayesian multilevel logistic regression 
models proved to be more precise when SBeta2 distributions, rather than 1-level 
Bayesian multilevel logistic regression model or an inverse-gamma distribution, are 
employed to model the random effect.

Funding Open Access funding provided by Colombia Consortium.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Ayalew MM (2020) Bayesian hierarchical analyses for entrepreneurial intention of students. J Big Data 
7:711–23

Aychiluhm SB, Gelaye KA, Angaw DA, Dagne GA, Tadesse AW, Abera A, Dillu D (2020) Determinants 
of malaria among under-five children in Ethiopia: Bayesian multilevel analysis. BMC Public Health 
20:10–2011

Berger J (2006) The case for objective Bayesian analysis. Bayesian Anal 1(3):385–402
Bernardo J, Smith A (2000) Bayesian theory. Wiley, New York
Birlutiu A, Groot P, Heskes T (2010) Multi-task preference learning with an application to hearing aid 

personalization. Neurocomputing 73(7–9):1177–1185
Bornmann L, Stefaner M, de Moya Anegón F, Mutz R (2016) Excellence networks in science: A web-

based application based on Bayesian multilevel logistic regression (bmlr) for the identification of 
institutions collaborating successfully. J Informet 10(1):312–327

Brooks S, Roberts G (1998) Assessing convergence of Markov chain Monte Carlo algorithms. Stat Com-
put 8(4):319–335

Cowles M, Carlin B (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J 
Am Stat Assoc 91(434):883–904

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1809

1 3

Bayesian multilevel logistic regression models: a case study…

De la Cruz R, Meza C, Arribas-Gil A, Carroll R (2016) Bayesian regression analysis of data with random 
effects covariates from nonlinear longitudinal measurements. J Multivar Anal 143:94–106

Fagbamigbe AF, Uthman AO, Ibisomi L (2021) Hierarchical disentanglement of contextual from compo-
sitional risk factors of diarrhoea among under-five children in low-and middle-income countries. Sci 
Rep 11(1):1–17

Gañan-Cardenas E, Jiménez JC, Pemberthy-R JI (2021) Bayesian hierarchical modeling of operating 
room times for surgeries with few or no historic data. J Clin Monit Comput 36:1–16

Gaviria J, Morera M (2005) Modelos jerárquicos lineales. Editorial La Muralla
Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article 

by browne and draper). Bayesian Anal 1:13515–534
Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge 

University Press, Cambridge
Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013) Bayesian data analysis, 3rd edn. 

Chapman and Hall/CRC, Reading
Grogan-Kaylor A, Castillo B, Pace GT, Ward KP, Ma J, Lee SJ, Knauer H (2021) Global perspectives on 

physical and nonphysical discipline: a Bayesian multilevel analysis. Int J Behav Dev 45(3):216–225
Jabessa S, Jabessa D (2021) Bayesian multilevel model on maternal mortality in Ethiopia. J Big Data 

8(1):1–17
Jara A, Quintana F, San Martín E (2008) Linear mixed models with skew-elliptical distributions: a Bayes-

ian approach. Comput Stat Data Anal 52(11):5033–5045
King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9(2):137–163
Kwiatkowski D, Phillips P, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against 

the alternative of a unit root: How sure are we that economic time series have a unit root? J Econom 
54(1–3):159–178

Llera A, Beckmann C (2016) Estimating an inverse gamma distribution. arXiv:1605.01019
Lu Z-H, Khondker Z, Ibrahim JG, Wang Y, Zhu H, Initiative ADN (2017) Bayesian longitudinal low-rank 

regression models for imaging genetic data from longitudinal studies. Neuroimage 149:305–322
McElreath R (2015) Statistical rethinking: a Bayesian course with examples in r and stan. Chapman and 

Hall/CRC, New York
Młynarczyk D, Armero C, Gómez-Rubio V, Puig P (2021) Bayesian analysis of population health data. 

Mathematics 9(5):577
Ntzoufras I (2011) Bayesian modeling using winbugs, vol 698. Wiley, New York
Peng C-Y, Lee K, Ingersoll G (2002) An introduction to logistic regression analysis and reporting. J Educ 

Res 96(1):3–14
Pérez M-E, Pericchi L, Ramírez I (2017) The scaled beta2 distribution as a robust prior for scales. Bayes-

ian Anal 12(3):615–637
Pinheiro J, Bates D (2006) Mixed-effects models in S and S-PLUS mixed-effects models in s and s-plus. 

Springer, Berlin
Pregibon D (1981) Logistic regression diagnostics logistic regression diagnostics. Ann Stat 9(4):705–724
R Core Team (2019) R: a language and environment for statistical computing [Computer software man-

ual]. Vienna, Austria. https:// www.R- proje ct. org/
Rojas J, Ramírez I (2019) Ajuste de un modelo jerárquico desde un enfoque bayesiano (Unpublished mas-

ter’s thesis). Universidad Nacional de Colombia-Sede Medellín
Sherwood RJ, Oh HS, Valiathan M, McNulty KP, Duren DL, Knigge RP, Middleton  KM (2021) Bayes-

ian approach to longitudinal craniofacial growth: the craniofacial growth consortium study. Anat 
Rec 304(5):991–1019

Spiegelhalter D, Best N, Carlin B, Van Der Linde A (2002) Bayesian measures of model complexity and 
fit. J R Stat Soc Ser B (Stat Methodol) 64(4):583–639

Sturtz S, Ligges U, Gelman A (2010) R2openbugs: a package for running openbugs from r. http:// cran. 
rproj ect. org/ web/ packa ges/ R2Ope nBUGS/ vigne ttes/ R2Ope nBUGS. pdf)

Tang N-S, Duan X-D (2014) Bayesian influence analysis of generalized partial linear mixed models for 
longitudinal data. J Multivar Anal 126:86–99

Trapletti A, Hornik K, LeBaron B, Hornik M (2019) Package ‘tseries’ Package ‘tseries’
Wang X, Reich N, Horton N (2019) Enriching students’ conceptual understanding of confidence inter-

vals: an interactive trivia-based classroom activity. Am Stat 73(1):50–55
Wong GY, Mason WM (1985) The hierarchical logistic regression model for multilevel analysis. J Am 

Stat Assoc 80(391):513–524

https://www.R-project.org/
http://cran.rproject.org/web/packages/R2OpenBUGS/vignettes/R2OpenBUGS
http://cran.rproject.org/web/packages/R2OpenBUGS/vignettes/R2OpenBUGS


1810 C. D. Correa-Álvarez et al.

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Cristian David Correa‑Álvarez1  · Juan Carlos Salazar‑Uribe2 · 
Luis Raúl Pericchi‑Guerra3

 Juan Carlos Salazar-Uribe 
 jcsalaza@unal.edu.co

 Luis Raúl Pericchi-Guerra 
 luis.pericchi@upr.edu

1 Department of Quality and Production, Instituto Tecnológico Metropolitano (ITM), Calle 73 
No. 76A - 354, Medellín, Antioquia 050034, Colombia

2 School of Statistics, Universidad Nacional de Colombia (Medellín campus), Carrera 65 
Nro. 59A - 110, Medellín, Antioquia 050034, Colombia

3 Department of Mathematics and Center for Biostatistics and Bioinformatics, University 
of Puerto Rico, 14, 2534 Av. Universidad Ste, Rio Piedras 00925, San Juan, Puerto Rico

http://orcid.org/0000-0002-1890-1021

	Bayesian multilevel logistic regression models: a case study applied to the results of two questionnaires administered to university students
	Abstract
	1 Introduction
	2 Bayesian multilevel logistic regression
	3 Scaled beta2 distribution
	4 Simulation study: comparing the 1-level and 2-level Bayesian multilevel logistic regression model
	5 Application: modeling the correct answers of university students
	6 Concluding remarks
	References




