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Abstract

Bayesian multilevel models—also known as hierarchical or mixed models—are
used in situations in which the aim is to model the random effect of groups or lev-
els. In this paper, we conduct a simulation study to compare the predictive abil-
ity of 1-level Bayesian multilevel logistic regression models with that of 2-level
Bayesian multilevel logistic regression models by using the prior Scaled Beta2 and
inverse-gamma distributions to model the standard deviation in the 2-level. Then,
these models are employed to estimate the correct answers in two questionnaires
administered to university students throughout the first academic semester of 2018.
The results show that 2-level models have a better predictive ability and provide
more precise probability intervals than 1-level models, particularly when the prior
Scaled Beta2 distribution is used to model the standard deviation in the second
level. Moreover, the probability intervals of 1-level Bayesian multilevel logis-
tic regression models proved to be more precise when Scaled Beta2 distributions,
rather than an inverse-gamma distribution, are employed to model the standard
deviation or when 1-level Bayesian multilevel logistic regression models, are used.
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1 Introduction

Multilevel models—also known as hierarchical or mixed models—are used to
model data with levels or hierarchies. They naturally occur in various everyday
situations given the hierarchical or nested structure of the sampling units and are
widely employed in fields such as social sciences, medicine, education, and reli-
ability (Gaviria Morera 2005). According to Gaviria Morera (2005) and McEI-
reath (2015), some of their most notable advantages are that they (1) provide bet-
ter estimates for sampling when observations arise from the same individual, (2)
explicitly model variation when the research questions include variation among
individuals, and (3) make it possible to avoid data transformations.

Multilevel models are mainly characterized by modeling the random effect
within groups at different levels. In Bayesian statistics, these models are said to
occur naturally because there exists a multilevel structure in which the prior dis-
tribution represents one level of the model and the likelihood function constitutes
the final stage, which results in the posterior distribution (Pinheiro and Bates
2006; Mason 1985; Bornmann et al. 2016; Gelman et al. 2013; Ntzoufras 2011).

Given the hierarchical nature of everyday situations, Bayesian multilevel
logistic regression models have been increasingly used in recent years (Ayalew
2020; Aychiluhm et al. 2020; Gafan-Cardenas et al. 2021; Mtynarczyk et al.
2021; Jabessa and Jabessa 2021; Fagbamigbe et al. 2021; Grogan-Kaylor et al.
2021; Sherwood et al. 2021). For example, Fagbamigbe et al. (2021) employed
a Bayesian multilevel model to examine the main risk factors and regional vari-
ations in maternal mortality in Ethiopia. Similarly, Grogan-Kaylor et al. (2021)
analyzed the association of physical punishment and nonphysical discipline with
child socio-emotional functioning using Bayesian multilevel logistic regression
models.

Other authors who have also employed multilevel models in their research
studies include: Jara et al. (2008), Birlutiu et al. (2010), Tang and Duan (2014),
De la Cruz et al. (2016), Lu et al. (2017) and Wang et al. (2019). For instance,
Birlutiu et al. (2010) modeled multitask learning in hearing-impaired subjects
using a hierarchical approach. Wang et al. (2019) presented a 10-minute trivia
game-based activity for the intuitive understanding of confidence intervals. They
fitted a mixed-effects Bayesian logistic model using noninformative priors for the
coefficients and variance parameters. In this paper, we will develop an activity
similar to that proposed by Wang et al. (2019), based on the results of two ques-
tionnaires that were administered to university students throughout the first aca-
demic semester of 2018.

For their part, Pérez et al. (2017) proposed the Scaled Beta2 (SBeta2) distribu-
tion as an alternative to the inverse-gamma distribution for modeling variances
and standard deviations (or, more generally, for scales). They presented it as a
flexible and tractable family that can be used to model scales in both hierarchi-
cal and nonhierarchical settings. In addition, they demonstrated that, for certain
values of the hyperparameters, the mixture of a normal and an SBeta2 distribu-
tion gives a closed form marginal. Hence, we will here employ the SBeta2 and
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inverse-gamma distributions to model the variance parameters in the 2-level
Bayesian multilevel logistic model. In addition, the resulting estimates of the
models fitted with these two distributions will be compared by means of a simula-
tion study to determine which distribution has the best predictive ability.

The rest of this paper is structured as follows. In Sect. 2, we provide an overview
of Bayesian multilevel logistic regression and present the general models employed
here. In Sect. 3, we introduce the SBeta2 distribution used to model the variance
parameters. In Sect. 4, we present a simulation study to compare the performance
of the proposed models. In Sect. 5, we apply the proposed models to real-life data.
Finally, we outline the conclusions of this study.

2 Bayesian multilevel logistic regression

Multilevel models are extensions of regression models, with data structured in
groups and coefficients that can vary by group. From the Bayesian perspective,
Bayesian models are said to have an inherently multilevel or hierarchical struc-
ture. The prior distribution, £(0 | ¢), of a model with prior parameters ¢ can be
considered one level or hierarchy, with the likelihood as the final stage of a Bayes-
ian model, which results in the posterior distribution, &(0 | y) x f(y | 8)£(0 | @),
obtained using Bayes’ theorem. A key aspect in these models is that ¢ is unknown;
therefore, it will have its own prior distribution, £(¢). The appropriate Bayesian pos-
terior distribution is that of vector (¢, ) (Mason 1985; Bornmann et al. 2016; Gel-
man et al. 2013; Ntzoufras 2011). The joint prior distribution is given by

$(9.0) =50 | P)E(). 1)
Then, the joint posterior distribution is given by
$(9.01y) x &, 0)f (v | 9,0) =0 | P)EDN (v | O). 2

This latter simplification holds because y and ¢ are conditionally independent given
0. That is, the data distribution f(y | ¢, 8), depends only on 8; the hyperparameters ¢
affect y only through 6 (Gelman et al. 2013).

In Bayesian multilevel logistic regression models, the assumption of interchange-
ability is employed when there is no information on the structure of the parameters
of interest. It is assumed that all random parameters come from a common distribu-
tion and that their ordering does not affect the model or the results. In other words,
the prior distributions of the hyperparameters are invariant to the random permuta-
tions of these latter (Ntzoufras 2011). For further elaboration on this concept, see
the studies by Bernardo and Smith (2000) and Gelman et al. (2013).

Bayesian multilevel (or hierarchical) logistic regression models can be used to
model clustered data having a binary response variable. Such is the case of logis-
tic regression, which is considered a standard way of modeling this type of vari-
ables (i.e., data that take the values of 1 or 0). Results of these variables can be
found in studies into, for instance, social, medical, and natural matters, in which
the response is usually the presence or absence of a characteristic of interest (Peng
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et al. 2002; Gelman and Hill 2006; Pregibon 1981; Ntzoufras 2011). According
to this, the dependent or response variable, y, is assigned a value of 1 if it has the
characteristic of interest or a value of 0 if it does not.

In logistic regression, a single outcome variable, y; (i =1,...,n), follows a
Bernoulli probability function that takes the value of 1 with probability z; or the
value of 0 with probability 1 — z; and is denoted by y; ~ Bernoulli (x;). This type
of regression adopts the logit link, which, besides being the most suitable choice
because it is the canonical link, has a smooth and pleasant interpretation based on
the probability ratio, z;/(1 — x;) (King and Zeng 2001; Ntzoufras 2011).

Let us suppose that, in a study seeking to model the correct answers in a ques-
tionnaire administered to groups of students, y; =1 (G =1,....N;; j=1,...,J) if
the i question is correctly answered by the individual in the j* group and y; =0
if it is not. In this case, the Bayesian hierarchical logistic model is given by

y; ~ Binomial (z;, N)), 3)

[\[/.
where N, is the number of questions in group j and y; = 21 ;- The link function is
i=

given by
logi 1 % 0
t -) = = G
ogl1 (75) og = 7 ¢ (@)
9] ~ N('ble, 6;)’ (5)
for j =1,...,J, with J number of groups, y, follows a noninformative normal distri-

bution and og has a defined distribution on positive values.
If the questionnaire is assumed to be administered twice within each group, the
previous model is then given by

Yij ™~ Binomial (ﬂkj,Nkj),k =1,2and j=1,...,J. (6)

The link function is given by

. Tkj
logit (7)) =log < — > =a,+0I(k=1), %)
L
0; ~ N(uy, 0,), ®)

where y,; are the correct answers in the j™ group in the k" questionnaire. Parameter
¢, denotes the log odds of their correct answers, while a; is the log odds of their
incorrect answers.

Noninformative prior distributions are commonly employed for parameters
Hos 4, and 092. In the specialized literature, u, ~ N(0, 1000), a; ~ N(0, 1000), and

62

, are often modeled using inverse-gamma, half-Cauchy, uniform, and SBeta2
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distributions (Ntzoufras 2011; Pérez et al. 2017). We will here use the SBeta2
and inverse-gamma distributions to model the variance parameters.

In this paper, data from Application 1 in Sect. 5 are modeled using Bayesian
logistic models and following a two-step approach. First, the models are fitted per
questionnaire both 1-level and 2-level models. Then, a similar procedure is carried
out, but this time an independent variable that takes into account the results of the
two questionnaires is included. In both scenarios, the results are compared by means
of the Deviance Information Criterion (DIC) in order to identify which model exhib-
its the best predictive ability. In addition to being employed for assessing model ade-
quacy (Spiegelhalter et al. 2002), this criterion is considered a generalization of the
Akaike Information Criterion (AIC) and used to compare hierarchical or multilevel
models (Ntzoufras 2011).

3 Scaled beta2 distribution

The SBeta2 distribution is a scaled version of the inverse beta distribution and is
employed to model precisions and variances in Bayesian hierarchical models. This
distribution extends previous proposals, such as those of Gelman (2006) and Berger
(2006), for modeling the variance parameter. It is defined as

()"
_ I'p+q9 p
F@HY@b<Z+1>@W)
P

SBeta2 (v | p,q,b) for w >0,b>0,p>0,9>0.

)
Variable y can be represented as the odds ratio, y = ﬁ, where 7 ~ Beta (7 | p, q).
The expected value and variance of y are given by

E(y) qu—)_lp for g > 1. (10)
_plptg-1)
Var(y) _—(q =1 for g > 2. (11)

In the SBeta2 (p, g,b) distribution, parameter p controls the distribution behav-
ior at the origin; parameter g, that in the right-hand tail of the distribution; and
parameter b, the scale. This distribution is characterized by its reciprocity, i.e., if
v ~ SBeta2 (p,q,b), then 1/y ~ SBeta2 (p,q, 1/b). Other properties of this dis-
tribution are described in the study by Pérez et al. (2017). Expression y = éb,
with 7= ~ Beta(p,qg), can be used as a way to generate random variables,
v ~ SBeta2 (p,g,b). The main limitations of SBeta2 are that, in practice, it is dif-
ficult to choose the values of the scale parameter, and that SBeta2 is not conjugate
distribution and hinders the computational process. Pérez et al. (2017) suggest that,
in order to obtain a robust inference considering an SBeta2 (p, g, b) distribution, the
value of parameter ¢ must be between 0 and 1 because the smaller the g value, the
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heavier-tailed the distribution. They also recommend selecting a value between 0.5
and 1 for p when the variance distribution is centered around zero to avoid a very
large shrinkage towards the mean.

In light of the above, we here use two forms of the SBeta2 distribution—
SBeta2(1,1,4) and SBeta2 (1/2,1/2,625) plotted in the Fig. 1 and the inverse-gamma
distribution—IG(e, f), where parameter « denotes the shape; and parameter f, the
scale. In particular, we consider « = f = 0.001 to model the variance parameters in
the 2-level Bayesian multilevel logistic regression model (Llera and Beckmann 2016;
Gelman 2006; Pérez et al. 2017; Rojas and Ramirez 2019). It is important to be careful
when using the inverse-gamma distribution because studies such as those of Berger
(2006), Gelman (2006), Pérez et al. (2017), and Rojas and Ramirez (2019) have out-
lined the drawbacks of using it as a prior distribution. It, for instance, can lead to pos-
terior distributions with incorrect values or improper posterior distributions.

4 Simulation study: comparing the 1-level and 2-level Bayesian
multilevel logistic regression model

This section presents a simulation study in which the scenarios were created to
best show the behavior of the Bayesian multilevel logistic regression model. Data
were generated from a binomial distribution for different groups and proportions of
defects. The focus of this simulation study is to predict the proportions of successes,
as well as to compare the predictive ability of the 1-level and 2-level Bayesian multi-
level logistic model. The procedure we used is as follows:

1. Four groups (N,) of different sizes (j) are considered. The sample sizes are 3, 6,
10, and 15, as shown in Table 1.

Fig.1 SBeta2 distribution for SBeta2(1,1,4) SBeta2(1/2,1/2,625)
the variance parameter with dif-
ferent values of p, g and b 60 — 500 —
50 —
400 —
40 —
> > 300 —
2 2
& 307 7}
o o
200 —
20 —
10 100 —
0 — 0 —
T T T T T T T T
0.00 0.10 0.000 0.010
o (¢}
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For each group, the number of correct answers (successes) is estimated using a
binomial distribution with a probability of success in three percentiles (p = 25%,
50%, and 75%).

With each group, the 1-level and 2-level Bayesian multilevel logistic regression
models are fitted, considering the bugs function in the R library (Sturtz et al.
2010). This function takes into account, among other values, the group sizes, the
number of successes obtained in Item 2, the iterations (40,000), and a burn-in
rate of 10% (4,000) to eliminate unstable autocorrelations.

The convergence of the posterior distributions of the parameters is tested using
the chains obtained in Item 3. Then, the KPSS statistic (Kwiatkowski et al. 1992)
(it is implemented in the zseries package (Trapletti et al. 2019) in R (R Core Team
2019)) and the p-value of the truncation parameter are calculated. If the p-value
is below @ = 0.05, H, (the Markov chain has reached the stationary distribution)
is rejected. Finally, graphical analysis are performed based on the lags, ergodic
averages, and densities. Other convergence proofs can be found in the studies by
Cowles and Carlin (1996) and Brooks and Roberts (1998).

The probability intervals, along with the DIC, are calculated in each scenario to
assess the predictive ability of the models.

The prior distributions considered to model the variance parameters in

2-level Bayesian multilevel logistic regression were selected based on the rec-
ommendations provided by Pérez et al. (2017). In particular, we employed the
SBeta2(1,1,4), SBeta2(1/2,1/2,625), and the inverse-gamma distribution tradi-
tionally used to model said effect, i.e., IG(0.001, 0.001). For the 1-level Bayes-
ian multilevel logistic regression model, we used noninformative normal distribu-
tions, N(0, 1000) (Ntzoufras 2011). The following are the models proposed here:

Model 1 (M1). With SBeta2(1,1,4)

y; ~ Binomial (z;, N;)
logit (7;) = 6,

0; ~ N(uy. 0,)

Hy ~ N(0,1000)

o, ~ SBeta2 (1,1,4)

Table 1 Sample sizes per group

N,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 30 45 60
6 60 75 90 105 120 135
10 135 150 165 180 195 210 225 240 255 270
15 270 285 300 315 330 345 360 375 390 405 420 435 450 465 480
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e Model 2 (M2). SBeta2(1,1,4) in model 1 is replaced with SBeta2(1/2,1/2,625).

o, ~ SBeta2 (1/2,1/2,625)

e Model 3 (M3). SBeta2(1,1,4) in model 1 is replaced with IG(0.001, 0.001).
o5 ~ 1G (0.001,0.001)

. Model 4 (M4). 1-level model
Vi~ Binomial (7rj,Nj)
logit (7;) = 6;
0; ~ N(0, 1000)

Convergence was tested by analyzing the autocorrelation, trace plot, density, and
ergodic average. The autocorrelation between the various values of the parameters
generated at different lags for z; are shown in Table 2, with three groups and a 25%
of correct answers (or successes). According to the information in this table, there
is a low association between the values of the parameter generated with the different
lags.

Figures 2 and 3 present the trace plots, density, and ergodic average of the chain
of values generated with the different lags of the posterior distribution of z;. As can
be seen in these figures, after burning the first 4000 values, the unstable autocor-
relations are eliminated, and the posterior distribution of the parameter of interest is
found to exhibit a stationary behavior. In addition to the aforementioned graphs, the
KPSS test was applied to parameter x|, yielding a value of 0.29075, with a trunca-
tion parameter of 17 and a p-value of 0.1. This indicates that there is not enough
sample evidence to reject H,, which states that the Markov chain has reached the
stationary distribution. Similar results were obtained with M2 and M3, considering
different parameters, groups, and percentages of successes.

Figures 4 and 5 display the probability intervals of M1, M2, M3, and M4 for the
different groups and percentages of correct answers (p = 25%, 50%, and 75%). From
these figures, we observe that M4 provides the widest intervals; and M2, the small-
est ones. This is explained by the fact that the variability within each group is not

Table 2 Lag autocorrelations

for 7, of the model with Lags i?(;lrtloff) ?;eli;i th
o2 ~ SBetad (1. 1.4) o2 ~ SBeta2 (1, 1,4)
0 1.0000000
—0.0095379
5 0.0132617
10 —0.0003188
50 —0.0006554
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Fig.2 Trace plot and density function of one of the simulated chains of 7 in model 1
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Fig. 3 Ergodic averages of one of the simulated chains of x, in model 1

considered in the 1-level model. Also, the intervals are found to be more precise as
the sample size increases. Similar results were obtained with 10 and 15 groups (N,
and N5).

Table 3 provides the results of the DIC, considering the four models (M1, M2,
M3, and M4), the different groups, and the percentages of correct answers (p). As
this table shows, M2 has a better predictive capacity because its DIC is lower in
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Fig.4 Average percentage of correct answers in the subsequent results of group 1 in the different models
for p = 25%, 50%, and 75%
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Fig.5 Average percentage of correct answers in the subsequent results of group 2 in the different models
for p = 25%, 50%, and 75%

all scenarios, whereas the 1-level model (M4) exhibits the lowest predictive abil-
ity because of its higher DIC. Based on this, the prior distributions used to model
the variance parameters in 2-level Bayesian multilevel logistic regression models
are found to produce better results in terms of predictive ability because they pro-
vide more precise intervals and better DIC values.
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Table 3 Deviance Information Criterion (DIC) of the 1-level and 2-level models by group (), consider-
ing the percentages of successes (p)

N, p=25% p =50% p=175%

M1 M2 M3 M4 M1 M2 M3 M4 Ml M2 M3 M4

3 16.34 1529 1589 1798 17.79 17.15 17.63 18.65 1635 1547 1591 17.99
6 3473 3258 3332 4028 3792 3593 36.70 41.66 34.78 3232 3330 40.28
10 69.19 6852 68.62 7484 6793 6537 66.65 77.68 6921 6842 68.61 7481
15 102.0 9948 101.4 121.2 111.8 109.5 1109 1254 1023 99.42 1014 121.1

5 Application: modeling the correct answers of university students

Table 4 shows the correct answers of the university students by group. These data
were collected from two questionnaires administered to students from two Higher
Education Institutions (HEIs) in Medellin (Colombia)—Universidad Nacional
de Colombia (UN) (Medellin campus) and Instituto Tecnolégico Metropolitano
(ITM)—and using a procedure similar to that proposed by Wang et al. (2019). In
their study, these authors present a 10-minute trivia game-based activity for the
intuitive understanding of confidence intervals. In addition, they explain how the
activity can be implemented one or more times in an inferential statistics course.

For data collection, we followed a three-step procedure. First, we formulated
10 general interest questions, the answers to which were provided in the form of
an interval (a minimum and maximum value within which respondents considered
the answer to each question would fall). Then, students were given 10 minutes to
respond. Finally, the students’ responses were tabulated.

The questionnaires were administered to statistical inference students from the afore-
mentioned universities (nine groups from UN and three from ITM) at the beginning
and end of the first academic semester of 2018. It should be noted that permission was
requested from the governing body of each HEI to conduct the experiment, and stu-
dents were explained that the information provided would be employed for academic

Table 4 Students’ correct

. ’ University ~ Groups  Questionnaire 1 ~ Questionnaire 2  Total
answers per questionnaire and

university IT™ ITM1 30 29 210
ITM IT™M2 22 37 130
ITM I™3 17 8 80
UN UNI1 24 28 150
UN UN2 102 68 430
UN UN3 104 129 440
UN UN4 30 40 160
UN UN5 35 26 150
UN UN6 28 20 130
UN UN7 13 10 70
UN UNS 45 40 210
UN UN9 18 24 90
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purposes. This experiment could be useful in examining how students understand basic
statistical concepts such as confidence intervals and confidence levels in statistical tests.

To analyze the results, we first considered students’ correct answers in the two
questionnaires administered throughout the academic semester. Then, a 2-level
Bayesian multilevel logistic regression model was fitted to model the proportion of
correct answers from questionnaires 1 and 2 separately, considering M1, M2, and
M3. The purpose of this was to predict students’ percentage of correct answers in
the two questionnaires, as well as to see whether there were any discrepancies in
the forecasts when taking into account other values of the parameters in the prior
distributions. A 1-level model (M4) was also considered and compared to the other
models in order to identify which has the best predictive ability (Tables 5 and 6).

Subsequently, a single model with an independent variable that considered the
two questionnaires and the prior distributions used in the aforementioned models
was fitted to model the 2-level. The 1-level model was also fitted. The results of the
models’ fitting are presented in Table 7.

To model students’ performance in terms of the probabilities of correct answers
within the groups, M1, M2, M3, and M4 were fitted. If students in group j correctly
answers question i, then y; = 1, and if they do not, then y,; =0 for j=1,2,...12
andi=1,2,... Nj, with N, number of questions per group.

The model in Eq. (5), with link function (7), was used to simultaneously model
both questionnaires. If students in group j correctly answers question i in ques-
tionnaire k, then Yiig = 1, and if they do not, then Vg = 0, for j=1,2,...12, and
i=1,2, o Ny and k= 1,2, with Ny number of questions per group, considering
questionnaire k. The following are the models proposed here:

e Model 5 (M5). With SBeta2(1,1,4)

404

10

4

]

H

[72]

c

@

4630'

g Models
8

0 — M
o

%20-

£ M3
o — M4
[V]

Q

0]

(o))

o

g

<

T T T T T J T T J T J T
mm1 m 2 1T 3 UN1 UN 2 UN3 UN4 UNS5 UN6 UNT7 UN8 UN9

Groups

Fig. 6 Average percentage of correct answers per group in the subsequent results of questionnaire 1 for
the different models
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Table5 Subsequent summary of the results of questionnaire 1 using a 1-level and 2-level Bayesian mul-

tilevel logistic regression models

Ml M2

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Hy -1.375 0.082 —1.546 -1.222 - 1.355 0.061 —1.480 —-1.240
oy 0.179 0.079 0.049 0.360 0.069 0.061 0.002 0.220
Ty 0.202 0.013 0.176 0.228 0.205 0.010 0.185 0.224
b 0.175 0.022 0.130 0.216 0.196 0.018 0.152 0.223
b2 0.190 0.023 0.143 0.235 0.201 0.016 0.164 0.228
3 0.206 0.026 0.157 0.262 0.206 0.015 0.175 0.238
7Ty 0.186 0.023 0.139 0.228 0.200 0.016 0.161 0.226
s 0.225 0.018 0.192 0.263 0.214 0.014 0.191 0.246
T 0.224 0.018 0.193 0.261 0.213 0.014 0.191 0.246
P 0.197 0.022 0.154 0.240 0.203 0.015 0.171 0.230
g 0.216 0.023 0.174 0.266 0.209 0.015 0.182 0.243
g 0.208 0.023 0.163 0.258 0.207 0.015 0.177 0.238
o 0.199 0.026 0.147 0.252 0.204 0.016 0.169 0.234
T 0.209 0.021 0.169 0.252 0.207 0.014 0.180 0.236
Ty 0.203 0.025 0.154 0.255 0.205 0.015 0.172 0.236

M3 M4
Hy —-1.364 0.071 -1.514 -1.234 - 1414 0.063 —1.538 -1.292
oy 0.125 0.071 0.029 0.295 0.294 0.055 0.192 0.408
Ty 0.204 0.011 0.180 0.226 0.196 0.010 0.177 0.216
T, 0.185 0.021 0.140 0.221 0.143 0.024 0.099 0.194
b2 0.196 0.020 0.153 0.232 0.170 0.033 0.110 0.238
3 0.206 0.021 0.165 0.251 0.212 0.045 0.131 0.308
I 0.193 0.020 0.149 0.228 0.160 0.030 0.107 0.223
s 0.220 0.016 0.192 0.255 0.237 0.020 0.198 0.278
7T 0.220 0.016 0.192 0.255 0.236 0.020 0.198 0.277
b2 0.200 0.019 0.161 0.236 0.187 0.031 0.131 0.251
g 0.213 0.020 0.177 0.256 0.233 0.034 0.170 0.303
g 0.207 0.019 0.170 0.248 0.216 0.036 0.149 0.290
o 0.202 0.021 0.158 0.244 0.186 0.046 0.105 0.284
T 0.208 0.018 0.174 0.246 0.214 0.028 0.161 0.272
i) 0.204 0.020 0.162 0.246 0.200 0.042 0.125 0.288
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Y,; ~ Binomial (7;;, Ny;)
logit (m;) = a; + 6,1(k = 1)
0; ~ N(uy. 07)

ty ~ N(0, 1000)

a; ~ N(0, 1000)

o, ~ SBeta2 (1,1,4)

Table 6 Subsequent summary of the results of questionnaire 2 using a 1-level and 2-level Bayesian mul-
tilevel logistic regression

M1 M2

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Ho —1.440 0.130 - 1.706 —1.186 —1.432 0.117 - 1.674 -1.207
N 0.375 0.111 0.206 0.635 0.325 0.102 0.170 0.568
Ty 0.192 0.020 0.154 0.234 0.193 0.018 0.158 0.230
v 0.150 0.022 0.109 0.196 0.153 0.022 0.112 0.199
Ty 0.261 0.035 0.196 0.333 0.255 0.034 0.194 0.326
3 0.140 0.032 0.081 0.206 0.146 0.031 0.087 0.209
4 0.189 0.028 0.137 0.246 0.189 0.027 0.140 0.245
s 0.162 0.017 0.130 0.196 0.164 0.017 0.133 0.198
g 0.283 0.021 0.242 0.325 0.280 0.021 0.239 0.322
y 0.237 0.030 0.181 0.299 0.233 0.029 0.180 0.295
g 0.179 0.027 0.129 0.235 0.181 0.026 0.131 0.235
Ty 0.166 0.028 0.114 0.224 0.169 0.027 0.118 0.224
i 0.166 0.034 0.103 0.237 0.170 0.033 0.108 0.238
Ty 0.191 0.025 0.145 0.242 0.191 0.024 0.147 0.241
Ty, 0.241 0.038 0.173 0.322 0.237 0.037 0.172 0.316

M3 M4
Ho —-1.436 0.125 —-1.693 —-1.196 —-1.483 0.067 -1.618 —-1.354
oy 0.359 0.114 0.188 0.629 0.477 0.078 0.338 0.646
Ty 0.193 0.019 0.155 0.232 0.185 0.010 0.166 0.205
| 0.151 0.022 0.110 0.197 0.138 0.024 0.095 0.188
Ty 0.258 0.035 0.195 0.331 0.285 0.039 0.212 0.365
3 0.142 0.031 0.083 0.206 0.100 0.033 0.045 0.174
4 0.189 0.027 0.138 0.246 0.186 0.032 0.129 0.252
s 0.163 0.017 0.131 0.197 0.158 0.018 0.126 0.194
g 0.282 0.021 0.242 0.325 0.293 0.022 0.252 0.336
Ty 0.236 0.030 0.181 0.298 0.250 0.034 0.186 0.320
g 0.179 0.027 0.129 0.234 0.173 0.030 0.118 0.236
Ty 0.167 0.028 0.116 0.223 0.154 0.032 0.097 0.221
i 0.167 0.034 0.104 0.237 0.143 0.042 0.073 0.234
Ty 0.191 0.024 0.146 0.241 0.191 0.027 0.140 0.246
Ty 0.240 0.038 0.173 0.320 0.267 0.047 0.180 0.363
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e Model 6 (M6). SBeta2(1,1,4) in model 5 is replaced with SBeta2(1/2,1/2,625)
o, ~ SBeta2 (1/2,1/2,625).
e Model 7 (M7). SBeta2(1,1,4) in model 5 is replaced with 1G(0.001,0.001)

o5 ~ 1G (0.001,0.001)

° Model 8 (MS8). 1-level model
Y,; ~ Binomial (7;;, N;)
logit (7)) = a; + 6;1(k = 1)
6; ~ N(0, 1000)
a; ~ N(0,1000)

Tables 5 and 6 show the subsequent results of the models’ fitting for question-
naires 1 and 2, respectively; and Table 7 provides the results for both question-
naires in the same model. Tables 5 and 6 present the average (mean), the Stand-
ard Deviation (SD), and the probability interval (2.5%, 97.5%) per group, while
Table 7 reports similar results but without the standard deviation. As can be seen
from the tables above, o, is lower in M2 and M6 and higher in M4 and M7. This
is explained by the fact that, although this variability within the groups exists, it
is not modeled in the latter models.

As observed in Table 5, UN2 and UN3 (i.e., 75 and 7, respectively) are the
groups with the highest probability of correct answers in the different models,
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104
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=)

Fig.7 Average percentage of correct answers per group in the subsequent results of questionnaire 2 for
the different models
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Table7 Subsequent summary of the results of questionnaires 1 and 2 using 1-level and 2-level Bayesian
multilevel logistic regression models with an explanatory variable

Ml M2 M3 M4

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

u, 0038 —023 032 0032 —-0.19 027 0036 -022 030 0068 —-0.11 025
6, 0356 0.6 065 0243 001 053 0322 010 064 0552 037 0.77
OR, 1049 079 137 1040 083 130 1.046 080 136 0517 047 056
7, 0143 010 019 0142 011 019 0143 010 019 0.143 010 0.19
7, 0197 0.14 026 0207 0I5 027 0200 0.4 026 0.169 0.11 024
75 0179 011 026 0171 011 025 0177 011 026 0213 0.3 03I
7, 0167 012 022 0170 012 022 0168 012 022 0.160 011 022
75 0229 019 027 0221 018 026 0227 019 027 0237 020 028
7 0243 021 028 0248 021 029 0244 021 028 0236 020 028
7, 0202 0.5 026 0207 0.5 026 0204 015 026 0.8 013 025
7 0222 017 029 0216 016 028 0220 0.6 028 0233 017 030
7, 0202 0.14 027 0197 014 026 0200 0.4 027 0216 015 029
70 0174 011 026 0171 011 025 0173 011 025 0.185 0.1 028
7y, 0211 016 026 0209 0.16 026 0210 016 026 0214 016 027
75, 0219 015 030 0225 016 030 0221 015 030 0200 0.12 0.9
7, 0138 010 018 0139 010 018 0138 010 018 0.138 009 0.19
7, 0257 0.19 033 0247 019 032 0254 019 033 0284 021 036
7, 0133 008 020 0141 008 021 0136 008 020 0.100 005 0.18
7, 0179 0.3 024 0177 0.3 023 0179 013 024 0.8 013 026
7,5 0167 013 020 0174 014 021 0169 014 021 0.158 0.13 0.19
7, 0287 025 033 0281 024 032 028 025 033 0293 025 034
7, 0236 0.8 030 0230 0.8 029 0234 018 030 0250 0.17 032
7 0185 013 025 0190 0.4 025 0187 013 025 0.173 012 024
7, 0167 011 023 0173 0.2 023 0169 012 023 0.54 010 022
Ty 0155 009 023 0158 010 023 0156 009 023 0.143 007 023
7y, 0194 0.5 025 0196 0.5 024 0194 015 024 0.91 014 025
7, 0248 017 033 0242 017 032 0245 017 033 0267 0.18 036
OR, 1067 068 1.62 1052 071 152 1062 0.68 159 1084 059 181
OR, 0725 041 1.12 0818 047 116 0753 042 113 0533 028 092
OR, 1501 082 280 1312 083 237 1445 082 270 2812 101 665
OR, 0944 057 144 0970 062 139 0951 058 143 0868 045 151
OR; 1506 108 207 1380 096 196 1470 104 204 1.686 1.18 234
OR, 0803 059 105 0851 062 110 0816 060 107 0753 055 101
OR, 0837 051 124 0893 056 124 0855 053 125 0716 040 118
OR, 1290 081 203 1201 082 185 1261 081 197 1519 083 257
OR, 1306 079 212 1207 081 192 1271 080 205 1.601 081  2.90
OR,, 1.198 066 208 1132 070 186 1177 067 204 1530 056 3.4l
OR, 1136 075 166 1104 078 158 1127 076 164 1.194 071  1.89
OR,, 0881 049 140 0930 055 134 0898 051 138 0729 033 137
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while ITM1 (i.e., x;) is the one with the lowest probability. Regarding the inter-
vals, M4 is found to have the lowest precision, whereas M2 showed the highest
precision. Also, from Fig. 6, we can see that M4 produces the widest intervals,
while M2 provides the smallest intervals. This is may be due to the fact that vari-
ability within each group is not considered in M4.

After the models were compared based on the resulting DIC values, M3 was
found to be the model with the best ability to predict the percentage of correct
answers because it had the lowest DIC (76.81), while M4 exhibited the lowest
predictive ability, with a DIC of 84.81. It should be noted that M1 and M2 also
yielded good results because their DIC was 77.01 and 77.21, respectively.

Table 6 presents the posterior results for questionnaire 2. As can be seen,
UN3 (i.e., 7) is the group with the highest probability of correct answers in the
different models, while ITM3 (i.e., z,) is the one with the lowest probability. As
for the intervals shown in this table, we observe a pattern (illustrated in Fig. 7)
similar to that in Table 5: M4 produces the widest intervals, whereas M2 pro-
vides the smallest intervals. The resulting DIC values of M1, M2, M3, and M4
are similar to those calculated with the results of questionnaire 1 (81.78, 82.12,
81.93, and 84.14, respectively). However, in this case, M1 exhibits the best abil-
ity to predict the percentages of correct answers.

Finally, Table 7 summarizes the results of M5, M6, M7, and M8 in terms
of the probabilities of correct answers, which are similar to those presented in
Tables 5 and 6. From this table, it can be seen that UN3, ITM1, and ITM3 (i.e.,
7, 7y, and m;, respectively) are the groups with the highest and lowest prob-
ability of correct answers. Also, when both questionnaires were compared using
the odds ratio, we observed that students improved their probability of success
in the ITM2, UN1, UN3, UN4, and UN9 groups (i.e., OR,, OR,, ORy, OR;, and
OR,,, respectively), with ITM2 showing the greatest improvement probability.
In the rest of the groups, students were not found to improve such probability.

The behavior of the probability intervals is similar to that observed in Figs. 6
and 7: The model with the least precise probability intervals is M8 and that with
the most precise intervals is M6. The DIC values of M5, M6, M7, and M8 were
165.1, 167.5, 165.7, and 169.2, respectively. According to this, M5 is the model
with the best predictive ability.

6 Concluding remarks

Bayesian multilevel models are commonly used to represent data with levels or
hierarchies, particularly in cases involving students within universities. Since
there is often no information about the variance parameter, it is usually mod-
eled using noninformative distributions. In this paper, we employed two versions
of the SBeta2 distribution and the inverse-gamma distribution to model such
parameter.

According to the results, the probability intervals are wider in the 1-level model
than in the 2-level models. This is explained by the fact that, although variability
within the groups exists, it is not considered in the former. In addition, the 1-level
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model can provide erroneous results when comparing the groups. For instance, as
observed in Fig. 6, when considering variability within each group, the percentages
of correct answers in UN2 and UN3 differ from those in ITM1 when there is, in fact,
no difference. Likewise, the 2-level models were found to have a greater predictive
ability than the 1-level model because they had a lower DIC value.

When the probability of success remains the same, 2-level Bayesian multilevel
logistic regression models exhibit a better predictive ability when SBeta2 distri-
butions, rather than a 1-level Bayesian multilevel logistic regression model or an
inverse-gamma distribution, are used to model the variance parameter. Based on the
estimated DIC values, similar results in terms of the improved predictive ability of
the 2-level Bayesian multilevel logistic regression model with respect to the 1-level
Bayesian multilevel logistic regression model are obtained when the probabilities of
success and sample sizes vary.

Finally, the probability intervals of 2-level Bayesian multilevel logistic regression
models proved to be more precise when SBeta2 distributions, rather than 1-level
Bayesian multilevel logistic regression model or an inverse-gamma distribution, are
employed to model the random effect.
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