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Abstract
One-parameter link functions play a fundamental role in regression via generalized 
linear modelling. This paper develops the general theory for two-parameter links 
in the very large class of vector generalized linear models by using total deriva-
tives applied to a composite log-likelihood within the Fisher scoring/iteratively 
reweighted least squares algorithm. We solve a four-decade old problem with an 
interesting history as our first example: the canonical link for negative binomial 
regression. The remaining examples are fitting Weibull regression using both the 
mean and quantile directly compared to GAMLSS, and performing quantile regres-
sion based on the Gaussian distribution. Numerical examples based on real and sim-
ulated data are given. The methods described here are implemented by the VGAM 
and VGAMextra R packages, available on CRAN. Supplementary materials for this 
article are available online.

Keywords  Canonical link · Composite likelihood · Expected information matrix · 
Fisher scoring · Iteratively reweighted least squares algorithm · Total derivative · 
Vector generalized linear model · VGAM and VGAMextra R packages

1  Introduction

For 50 years now generalized linear models (GLMs; Nelder and Wedderburn 1972) 
have been the foundational building block of generalized regression. Its central for-
mula is
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with � = �(Y) as the mean response and link function G having strict monotonic-
ity and being twice-differentiable in the range of � . In its original formulation (1.1) 
was restricted to  Y belonging to the one-parameter exponential family (see, e.g., 
Efron 1978), and Fisher scoring/iteratively reweighted least squares (IRLS; see, e.g., 
Green 1984) has become the standard GLM algorithm. The purpose of this paper is 
to develop its natural extension to two parameters �1 and �2 , written as

to also be solved by IRLS. Here, �j are general parameters and not necessarily a 
mean. The core problem is to derive the working weight matrices associated with 
this. It will be seen that total derivatives with chain rule expressions hold the key to 
handling multi-parameters. In (1.2) we say the parameters are intertwined in a com-
posite linear predictor.

The most celebrated example of (1.2) is the canonical link of the negative bino-
mial distribution (NBD),

where Y ∼ NB(�, k) with variance �(1 + �∕k) , and G2(�, k;x) = log k . This model is 
often abbreviated NB-C by some authors, e.g., Hilbe (2011), and it can be treated as 
an ordinary GLM if k is known. Prior to this work, estimation of (1.3) was deemed 
too difficult by some or it was ‘solved’ defectively by others; we recount some of its 
history in Sect. 4.1 and solve this four-decade old problem as our first application.

Given a suitable computational framework, (1.1)–(1.3) can also be used for GLM-
like extensions such as the class of generalized additive models (GAMs; Hastie and 
Tibshirani 1986, 1990; Wood 2017) and Bayesian additive models for location scale 
and shape (Umlauf et al. 2018). This paper is motivated by the work of Miranda-
Soberanis and Yee (2019) on one-parameter quantile link functions and uses the 
vector generalized linear and additive model classes (VGLMS/VGAMs; Yee 2015) 
as the computational and statistical framework. VGLMs can be loosely thought of 
as multivariate GLMs beyond the exponential family and this allows diversification 
to different data types such as categorical data (Yee 2010), extremes (Yee and Ste-
phenson 2007), quantile regression (Yee 2004) and time series analysis (Miranda-
Soberanis 2018). VGLMs/VGAMs handle M linear predictors �j so that the present 
work is focussed on M = 2 . Our work should not be confused with the composite 
link functions of Thompson and Baker (1981) who extended GLMs by associat-
ing more than one �j to each mean value �i ( i = 1,… , n ). Our approach works in 
the opposite direction by associating M = 2 parameters to each �j with both sides 
being  i-specific. The linear/additive predictors thus involve two interlaced param-
eters so that the likelihood that now can be handled is what might be described as a 
composite likelihood.

This work confers several immediate benefits. First, as (1.2) allows x to affect both 
parameters directly, it is much more flexible than (1.1) operating twice separately. Con-
sequently, a second benefit is that we can now fit models previously unimplemented 

(1.1)G(�; x) = � = �Tx,

(1.2)Gj(�1, �2; x) = �j = �T
j
x, j = 1, 2 (= M),

(1.3)G1(�, k; x) = log (�∕(� + k)),
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such as the NBD with its canonical link. Indeed, the methodology can be applied to any 
function of � =

(
�1, �2

)T with a tractable inverse, as defined in Sect. 3.1. In this paper 
we present three diverse applications, e.g., the mean 

(
�W

)
 and the quantile functions of 

the two-parameter Weibull distribution, and the normal distribution’s quantile function. 
The new link functions have the form � = G

(
�W (�1, �2)

)
 or � = G

(
� th(�1, �2) quantile

)
 . 

However, our approach is broader still. In theory, one can directly model, say, the vari-
ance as an alternative to study a model’s underlying homoscedasticity assumptions. 
A third benefit is that the methodology can be readily extended to three-parameter 
VGLMs, and theoretically to M-parameter link functions, and so introducing more 
flexibility by handling statistical measures of distributions having location, scale and 
shape parameters (or LSS–links). The basic motivation for using LSS–links rather than 
simple one–parameter links is that the stochastic relationship between predictors and 
response can be modelled much better and with greater accuracy. Thus this work points 
towards �j = Gj(�; x), j = 1,… ,M , with � =

(
�1,… , �M

)T , as being the ultimate set 
of link functions.

An outline of this paper is as follows. Sect. 2 summarizes skeletal details of VGLMs 
needed here. Sect. 3 gives the general theory for two-parameter links. Sect. 4 solves the 
NBD canonical link problem and proposes two-parameter Weibull mean and quantile 
regression as well as Gaussian quantile regression. Numerical examples involving real 
and simulated data including a comparison to generalized additive models for location, 
scale and shape (GAMLSS) appear in Sect. 5. The paper ends with a discussion. An R 
script file and online appendices are available as supplementary material.

Notationally, we use ‘ � ’ for partial derivatives and ‘d’ for total derivatives 
(see, e.g., Loomis and Sternberg 1990). The digamma and trigamma functions are 
denoted by � and � ′ . The Hadamard (element-by-element) and Kronecker products 
of two matrices A and B are A◦B = [(ajs ⋅ bjs)] and A⊗ B = [(ajs ⋅ B)] respectively.

2 � VGLM review

VGLMs operate on data (xi, yi) , i = 1,… , n , independently with yi a Q-dimensional 
response and covariates xi =

(
xi1, xi2,… , xid

)T with xi1 = 1 if there is an intercept. A 
VGLM is defined in terms of M linear predictors as a model where the conditional 
distribution of y given x has the form (dropping the subscript i for simplicity)

for some function F(⋅) , where B is d ×M with � = �(x) =

In the usual case the jth linear predictor is �j(x) = �T
j x and can be tied in to the param-

eters �j of any distribution as j(�j) = �j = �T
j x , j = 1,… ,M.

(2.1)F(y|x;B) = F(y;�1,… , �M)

⎛⎜⎜⎝

�1(x)
⋮

�M(x)

⎞⎟⎟⎠
=

⎛⎜⎜⎝

�T
1
x

⋮

�T
M
x

⎞⎟⎟⎠
=

d�
k=1

�(k)xk = BTx.
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Fitting VGLMs produce full maximum likelihood estimates (MLEs). The ‘gen-
eral’ VGLM log-likelihood is

for known fixed positive prior weights wi . A Newton-like algorithm for maximiz-
ing  (2.2) has the form �(a) = � (a−1) + I

(
� (a−1)

)−1
U
(
� (a−1)

)
 at iteration  a . For 

VGLMs, the vector of coefficients �(a) is obtained by iteratively regressing the work-
ing responses z(a−1) on the ‘big’ model matrix XVLM =

(
XT
1
,… ,XT

n

)T
, which has the 

form

where XVLM = XLM ⊗ IM , known as the ‘large’ model matrix, has dimension 
nM ×Md , and Xi is the M × (Md) block-matrix Xi = xi ⊗ IM.

In  (2.3), U =
(
u1,… , un

)T comprises the individual score vector ui whose jth 

element is 
(
ui
)
j
=

��i

��j
 and W is the matrix W = diag

(
w1W

−1
1
,… ,wnW

−1
n

)
 . The Wi s 

are the ‘general’ M ×M working weight matrices, with (j,  k)th element [
Wi

]
j,k

= −wi �

(
�2�i

��j��k

)
.

At convergence, the estimated variance-covariance matrix is 
V̂ar

(
�̂∗

)
= �̂

(
XT
VLM

W(a)XVLM

)−1 . Using the observed information matrix (OIM) 
corresponds to the Newton-Raphson algorithm. Fisher scoring is primarily used 
within the VGLM framework over Newton-Raphson because the expected informa-
tion matrices (EIMs) are positive-definite over a larger portion of the parameter 
space.

With multiple �j one can enforce linear relationships between them via

for known constraint matrices Hk of full column-rank (i.e., 
rank Hk = Rk = ����(Hk) ), and �∗

(k)
 is a possibly reduced set of regression coeffi-

cients to be estimated. The matrices Hk can constrain the effect of a covariate over 
some �j and to have no effect for others. Trivial constraints are attained with Hk = IM 
for all k, where XVLM = XLM ⊗ IM is preserved. Other common examples include 
parallelism ( Hk = �M ), exchangeability, and intercept-only parameters �j = �∗

(j)1
 . For 

a general review on VGAMs see Yee (2015, Sec. 1.3.2).

(2.2)�(�;x) =

n∑
i=1

wi �i

{
�1(xi),… , �M(xi)

}
,

(2.3)z(a−1) = XVLM � (a) +W−1 (a−1) U(a−1),

(2.4)�(xi) =

d∑
k=1

� (k) xik =

d∑
k=1

Hk �
∗
(k)

xik,
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3 � General theory for two‑parameter links

3.1 � Problem formulation

Given the preceding background, our attention focusses on M = dim(�) = 2 trans-
formations of � = {

(
𝜃1, 𝜃2

)T
;𝜃j ∈ Aj ⊂ ℝ} of the form

for known bivariate functions Gk ∶ � → B ⊆ ℝ , k = 1,…M . Here, B, and 
Aj, j = 1, 2 are open intervals. Consequently, the VGLM log-likelihood (2.2) reduces 
to

where � =
(
�G1

, �G2

)T.
Equation (3.1) is central to this article and gives rise to the three cases

We assume that �Gj
 can be solved at least iteratively for �j (cf.  (3.9)), allowing 

(3.2)–(3.4) to be expressed as

The interdependency between the �j enforces a reparametrized  log-likelihood. For 
example, for the general case (3.7) above we have

We call (3.8) the modified VGLM log-likelihood as it reflects the composite struc-
ture of two-parameter linear predictors. Fisher scoring must be consequently 
adjusted.

Before detailing its solution, we list the assumptions made over  Gk in  (3.1) 
required.

(3.1)�G1
= G1(�1, �2), �G2

= G2(�1, �2),

�(�;x) = �
(
�G1

, �G2
; x
)
=

n∑
i=1

wi �i

(
�G1

(xi), �G2
(xi)

)

(3.2)�G1
(x) = G1(�1, �2), �G2

(x) = G2(�2);

(3.3)�G1
(x) = G1(�1), �G2

(x) = G2(�1, �2);

(3.4)�G1
(x) = G1(�1, �2), �G2

(x) = G2(�1, �2).

(3.5)�1 = �1
(
�G1

, �2
)
, �2 = �2

(
�G2

)
;

(3.6)�1 = �1
(
�G1

)
, �2 = �2

(
�1, �G2

)
; and

(3.7)�1 = �1
(
�G1

, �2
)
, �2 = �2

(
�1, �G2

)
.

(3.8)�(�; x) = �
(
�1
(
�G1

, �2
)
, �2

(
�1, �G2

)
; x
)
.
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Assumptions

	 (i)	 For each Gj in (3.1) the derivatives �Gj∕��k , �2Gj∕��
2
k
 and �2Gj∕��l��k exist 

over either Aj or � accordingly.
	 (ii)	 For each equation in (3.1), �Gj

 can be solved for �j , in the form 

 for known functions ∗
j
 , j = 1, 2.

	 (iii)	 For every �0 =
(
�0
G1
, �0

G2

)T

∈ B × B , the system (3.1) has unique solution, 

denoted �G =
(
�1
G
, �2

G

)T

 , given by 

	 (iv)	 From (3.9), 

(a)	 the derivatives 

 exist on B, and
(b)	 the derivatives 

 exist over Ak.
When G∗

j
, j = 1, 2, in (3.1) are not tractable then G∗

j
 and �G in (3.10) can be com-

puted via iterative methods. Optionally, implicit differentiation applied to (3.1) 
can be used to obtain (3.11) and (3.12) if (3.1) cannot be explicitly solved for �j . 
In particular, �2�j∕(��G1

��G2
) = 0.

3.2 � Solution

Expressions (3.5)–(3.7). shed light on the interdependence between �j and �k and 
its pivotal role when computing

from the modified log-likelihood (3.8). Note that

(3.9)�1 = �1
(
�G1

, �2
)
= G

∗
1
(�G1

, �2) and �2 = �2
(
�1, �G2

)
= G

∗
2

(
�1, �G2

)
,

(3.10)�1
G
= �1

(
�0
G1
, �2

)
= G

∗
1
(�0

G1
, �2) and �2

G
= �2

(
�1, �

0
G2

)
= G

∗
2

(
�1, �

0
G2

)
.

(3.11)
��j

��Gj

and
�2�j

��2
Gj

, j = 1, 2,

(3.12)
��j

��k
, j, k = 1, 2, j ≠ k,

(3.13)
��

��j
,
�2�

��2
j

, and
�2�

��j ��k
, j, k = 1, 2, for j ≠ k,
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The solution to incorporating two-parameter linear predictors to the VGLM frame-
work relies on computing (3.13) by appropriately embedding (3.8) and (3.14). Total 
derivatives are necessary since �1 and �2 now vary simultaneously, and the solution 
produces a new set of expressions for the score vector and working weight matrices.

For the score vector, each component is a total derivative d�∕d�j given by

which apply to VGLMs with the two linear predictors as in case (3.4). For the spe-
cial cases (3.2) and (3.3), at least one linear predictor is univariate, that is, a func-
tion of either �1 or �2 (but not both), hence ��2∕��1 = 0 or ��1∕��2 = 0 . Table 9 in 
Appendix A shows the expressions for the three cases (3.2)–(3.4).

Likewise, the EIMs for VGLMs with M = 2 linear predictors � is given by 
IE(�) = −�

[
�2�∕(�� ��T )

]
 where

Applying the chain rule with the inclusion of total derivatives,

(3.14)
��j

��k
≠ 0.

d𝓁

d�1
=

�
1,

��2
��1

�
⋅

⎛
⎜⎜⎜⎝

�𝓁

��1
�𝓁

��2

⎞
⎟⎟⎟⎠
=

�𝓁

��1
+

�𝓁

��2
⋅
��2
��1

, and

d𝓁

d�2
=

�
��1
��2

, 1

�
⋅

⎛
⎜⎜⎜⎝

�𝓁

��1
�𝓁

��2

⎞
⎟⎟⎟⎠
=

�𝓁

��1
⋅
��1
��2

+
�𝓁

��2
.

�2�

�� ��T
=

⎛
⎜⎜⎜⎜⎝

�2�

��2
G1

�2�

��G1
��G2

�2�

��G2
��G1

�2�

��2
G2

⎞
⎟⎟⎟⎟⎠
.

(3.15)

�2𝓁

��2
Gj

=
d2𝓁

d�2
1

⋅

�
��1
��Gj

�2

+ 2 ⋅
d2𝓁

d�1d�2
⋅
��1
��Gj

⋅
��2
��Gj

+
d2𝓁

d�2
2

⋅

�
��2
��Gj

�2

+

⎧⎪⎨⎪⎩

d𝓁

d�1
⋅
�2�1

��2
Gj

+
d𝓁

d�2
⋅
�2�2

��2
Gj

⎫⎪⎬⎪⎭
, for j = 1, 2 and
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Under regularity conditions, the terms in braces vanish after taking the expectation, 
giving place to the new expressions for the EIMs:

Again, new complementary expressions for d2�∕d�2
j
 and d2�∕d�j d�k , j, k = 1, 2 , are 

required. For the the general case (3.4), where each linear predictor depends on �1 
and �2 , these are

respectively. Tables 10 and 11 outline the expressions for the three cases (3.2)–(3.4).

4 � Some applications

We present direct applications of the previous section, tying it in with software 
implementations both new and old. The first shows that the NB-C can be straight-
forwardly estimated as a VGLM by adjusting the score vector and working weight 
matrices of the composite log-likelihood. The second considers two variants of 
Weibull regression: the mean parameterization coincides with WEI3() in gamlss.
dist whereas the quantile parameterization is novel. The third sketches the details 
for directly fitting the two-parameter quantile function of the normal distribution, as 
implemented by a new link function normalQlink() from VGAMextra 0.0-5.

(3.16)

�2𝓁

��Gj
��Gk

=
d2𝓁

d�2
1

⋅
��1
��G1

⋅
��1
��G2

+
d2𝓁

d�1d�2
⋅

(
��1
��G1

⋅
��2
��G2

+
��1
��G2

⋅
��2
��G1

)

+
d2𝓁

d�2
2

⋅
��2
��G1

⋅
��2
��G2

+

{
d𝓁

d�1
⋅

�2�1
��G1

��G2

⋅
d𝓁

d�2
⋅

�2�2
��G1

��G2

}
.

(3.17)

−�

⎡
⎢⎢⎣
�2�

��2
Gj

⎤
⎥⎥⎦
= − �

�
d2�

d�2
j

��
��j

��Gj

�2

,

−�

�
�2�

��Gj
��Gk

�
= − �

�
d2�

d�j d�k

��
��j

��Gj

��
��k
��Gk

�
, j, k = 1,… ,M.

d2𝓁

d�2
j

=
�2𝓁

��2
j

+ 2
�2𝓁

��k��j
⋅
��k
��j

+
�𝓁

��k
⋅
�2�k

��2
j

+
�2𝓁

��2
k

⋅

(
��k
��j

)2

and

d2𝓁

d�j d�k
=

�2𝓁

��j ��k
+

�2𝓁

��2
j

⋅
��j

��k
+

�2𝓁

��2
k

⋅
��k
��j

,
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4.1 � Negative binomial canonical link

The estimation of the NB-C has a somewhat interesting history. If we take the 
problem as beginning with the admission of McCullagh and Nelder (1983, p.195) 
[see also McCullagh and Nelder (1989, p.374)] that the NB is little used in appli-
cations and has a “problematical” canonical link then to our knowledge only one 
other publicized attempt has been made since to solve the problem seriously. It 
eluded McCullagh and Nelder because the model makes � a function of a param-
eter of the variance. Hilbe (2011,  pp. 210,309,315–6) sheds more light on the 
problem as well as proposing an adhoc method that tends to work in most cases. 
He writes “In discussing this statement with Nelder, I found that the foremost 
problem they had in mind was the difficulty they experienced in attempting to 
estimate the model. They do not state it in their text, but the problem largely 
disappears when k is entered into the GLM estimating algorithm as a constant” 
[italics added]. He notes that having k in the link and variance can result in esti-
mation difficulties in a full MLE algorithm, with it being sensitive to initial val-
ues and having tedious convergence with Newton-Raphson-type algorithms. To 
our knowledge his R package COUNT function ml.nbc() is the only other 
NB-C MLE-implementation. It treats k as constant at each iteration but it is itera-
tively estimated in the process. It also treats k as an additional scalar parameter 
to be estimated, hence is constrained to be intercept-only. A general optimizer 
stats::optim() is invoked and it has by default some prechosen constants 
for initial values ( k(0) = 2 and �(0) = e−1 ≈ 0.368 ) so that it will be unreliable for 
large � and k. In contrast, we believe our solution to be nondefective. Prior to this 
work, the NB-C had also been unsatisfactorily implemented in VGAM  1.0-3 or 
earlier (see, e.g., Yee 2015, Sec.11.3.4) but has since been corrected in functions 
negbinomial() and nbcanlink()—more details are given in Miranda-
Soberanis (2018).

Ordinarily, NB regression operates with

and adopting the R parametrization

with 0 < 𝜇 and 0 < k , if the ancillary parameter k is intercept-only then this is 
referred to as the NB-2 model. The NB-C is of the first case of Table 9, and is

The ith contribution to the log-likelihood is given by

(4.1)�G1
(x) = log � and �G2

(x) = log k,

(4.2)Pr(Y = y;�, k) =

(
y + k − 1

y

) (
�

� + k

)y (
k

k + �

)k

, y = 0, 1,… .

(4.3)�G1
(�, k;x) = log

�

� + k
, �G2

(k;x) = log k.
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With the ordinary �j of (4.1), one has

However, with the �j as in (4.3), the relationship � = k∕[e−�1 − 1] implies (the sub-
script i is dropped for simplicity)

The partial derivatives here are directly computed from (4.4), resulting in

and ��∕�k as in (4.5). Substituting these into (4.6) gives

which is (4.5) without its last term. Also, d�∕d� = ��∕�� is given in (4.7), com-
pleting the score vector.

The new EIMs are fully specified by (3.17) (see Table 11). Unlike other NB vari-
ants the NB-C EIM is nondiagonal. The adjusted nondiagonal component is given 
by

Moreover, while �
[
d2�∕d�2

]
 remains as usual, the other diagonal element needs 

adjustment:

where Wkk is the usual 2–2 element. Combining everything, the working weight 
matrix is

(4.4)
�i(�i, ki;yi) = log� (yi + ki) − log� (yi + 1) − log� (ki)

+ yi log

(
�i

�i + ki

)
+ ki log

(
ki

�i + ki

)
.

(4.5)
��i

�ki
= �(yi + ki) − �(ki) + log

(
ki

ki + �i

)
−

yi − �i

�i + ki
.

(4.6)
d�

dk
=

��

��

��

�k
+

��

�k
.

(4.7)
��

�k
=
�

k
,

��

��
=

y

�
−

y + k

� + k
,

(4.8)
d�

dk
=�(y + k) − �(k) + log

k

� + k
,

−�

[
d2�

d� dk

]
= �

[
d

d�
log(� + k)

]
=

1

� + k
.

−�

[
d2�

dk2

]
= Wkk +

�

k(� + k)
= � �(k) − �[� �(Y + k)],
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when �G2
= log k . Because the EIM of all NB variants except for the NB-C is diag-

onal the alternating algorithm adopted by Hilbe and MASS::glm.nb() is less 
prone to failure. But with NB-C, � and k are asymptotically dependent therefore the 
alternating algorithm is more likely to fail.

4.2 � Weibull regression

The VGAM family function weibullR() follows from base R’s [dpqr]
weibull() parameterization f (y) = (s∕b)(y∕b)s−1 exp(−(y∕b)s) for shape param-
eter  s > 0 and  scale parameter  b > 0 on  y ∈ (0,∞) . Its mean is  b � (1 + s−1) . 
For � = (b, s)T , weibullR(lss = TRUE) has EIM

where � = −�(1) is the Euler–Mascheroni constant (Yee 2015, Table 12.3). For this, 
�1 = log b and �2 = log s.

Adapted for the Weibull, the methodology of this paper results in the addi-
tion of two new 2–parameter links for mean and quantile modelling, called 
weibullMlink() and weibullQlink(). To our knowledge the lat-
ter is first implementation to exist in such general form. They are used in 
conjunction with the newly written weibullRff() in VGAMextra  0.0-5. 
These links apply only to  �1 . Table  1 gives the Weibull distribution’s new 
links and their inverses �−1

1
= b(s) = bs as a function of  s, hence the composite 

�(b(s), s;y) = log s + (s − 1) log y −
(
y∕bs

)s
− s log bs . The new EIMs have form

⎛
⎜⎜⎜⎝

1

�
−

1

� + k

1

� + k
1

� + k
� �(k) − E[� �(Y + k)]

⎞
⎟⎟⎟⎠
◦

⎛
⎜⎜⎜⎜⎝

�
d�

d�1

�2
d�

d�1

dk

d�2
d�

d�1

dk

d�2

�
dk

d�2

�2

⎞
⎟⎟⎟⎟⎠

=

�
�
�
1 +

�

k

�
�

� k2
�
� �(k) − E[� �(Y + k)]

�
�

(4.9)I(�) =

(
W11 W12

W21 W22

)
=

(
(s∕b)2 − (1 − �)∕b

− (1 − �)∕b [�2 + 6(� − 1)2]∕(6s2)

)

Table 1   New Two–parameter link functions for Weibull regression handled by weibull-

Rff() in VGAMextra 0.0-5. Here � =
(
�1, �2,…

)T is a vector of quantiles

Link weibullMlink() weibullQlink()

�1 = G(b|x, s)    log
[
b ⋅ � (1 + 1∕s)

]
log

{
b
[
− log (1 − �)

]1∕s}

b = �−1
1
(s) exp

[
�1 − log� (1 + 1∕s)

]
exp

[
�1 + log (− log{1 − �})−1∕s

]
�b∕�s −b ⋅ �(1 + 1∕s) log (− log{1 − �}) ⋅ b∕s2
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It is noted that Noufaily and Jones (2013) concerns parametric quantile regression 
like ours but based on a generalized gamma distribution.

4.3 � Distribution–specific quantile regression: the normal distribution

Another example is a two-parameter link for the quantiles of the normal distribu-
tion defined as

where � is the standard normal CDF and pre-specified quantiles of interest 
� =

(
�1,… , �s

)T . Its implementation is uninormalQlink(), available in 
VGAMextra 0.0-5.

Ordinarily, � = (�, �)T can be estimated with VGAM::uninormal() 
whose default linear predictors are �1(�;x) = � and �2(�;x) = log �. For 
uninormal(var.arg = FALSE) the EIMs are

With uninormalQlink() we allow �1 of uninormal() to handle (4.10):

implemented in the brand–new VGAMextra::uninormalff(). Using 
��

��
= −�−1(�) , the new EIMs are

Our work on quantile regression have the following advantages over Koenker and 
Bassett (1978): 

	 (i)	 Parametric quantile regression provides more accurate inference when the 
data comes from the stipulated distribution. In contrast, theirs is a nonpara-
metric L1–norm method based on linear programming which is less familiar 

I
⋆(� = (bs, s)

T ) =

(
W

⋆
11

W
⋆
12

W
⋆
21

W
⋆
22

)
, where W⋆

11
= W11,

W
⋆
21

=W21 +
𝜕b

𝜕s

(
s

b

)2

and

W
⋆
22

=W22 −

(
2𝜓(2)

b

)
𝜕b

𝜕s
+
(
s

b

𝜕b

𝜕s

)2

.

(4.10)G(�; �, x) = � + � �−1(�),

I =

(
W11 W12

W21 W22

)
=

(
1∕�2 0

0 2∕�2

)
.

(4.11)�1(�;�, x) = �G(�;�, x) = � + � �−1(�), �2(�;x) = log �,

I
⋆ =

(
W

⋆
11

W
⋆
12

W
⋆
21

W
⋆
22

)
, withW⋆

11
= W11,

W
⋆
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(
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)
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⋆
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(
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)2(
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.
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to statisticians than L2 methods like IRLS. Moreover, VGAM computes con-
fidence intervals based on the well–known Wald and score tests. In theirs the 
confidence intervals are based on piecewise linear approximations and when 
using large number of predictors the algorithm may become unstable, see, e.g., 
Kneib (2013).

	 (ii)	 The VGLM/VGAM framework can circumvent the quantile crossing problem 
by choosing appropriate constraint matrices Hk (Eq. (2.4); see also Yee (2015, 
Sec. 3.3)). Indeed, for some VGLMs such as the exponential and Maxwell 
the �j are naturally parallel and so constraints need not to be enforced specifi-
cally (Miranda-Soberanis and Yee 2019).

	 (iii)	 While their methodology is less sensitive to extreme values than least squares, 
ours is more amenable to skewed distributions such as the lognormal (theoreti-
cally, we can now implement quantile link functions for as often as needed), 
thus providing a more suitable framework to handle various asymmetric data 
such as income or wealth.

	 (iv)	 VGAM has infrastructure to accommodate spline modelling, so matching 
Koenker and et al. (2020) which includes linear as well as nonlinear effects.

5 � Examples

5.1 � NB canonical link

In this section we present two numerical examples of NB-C regression. The first 
aims to demonstrate the instability of Fisher scoring without total derivative adjust-
ment. We also compare our results to quantile regression using quantreg (Koenker 

Table 2   Fitted regression coefficients for �1 of a NB-C fitted to simulated data. The LHS and RHS are 
from VGAM and COUNT respectively

Estimate Std. Error z value Estimate Std. Error z value

(Intercept):1 −2.680 0.218 −12.290 −1.511 0.009 −175.723
x2 1.204 0.041 29.321 0.871 0.008 107.366
x3 0.097 0.009 10.658 0.051 0.007 7.240

Table 3   Approximate 95% Wald confidence intervals for the regression coefficients for �1 of a NB-C fit-
ted to simulated data is the upper table. The lower table is for �2 . The LHS and RHS are from VGAM and 
COUNT respectively

2.5% 97.5% 2.5% 97.5%

(Intercept):1 −3.107 −2.253 −1.528 −1.494
x2 1.123 1.284 0.855 0.887
x3 0.079 0.115 0.037 0.065
k 503.398 1230.022 214.945 220.375
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and et al. 2020). The second uses the data set medpar from COUNT to compare the 
Hilbe’s and our software. We aim to demonstrate the advantages conferred by neg-
binomial() and its ability to handle the size parameter as a covariate-specific 
linear predictor. All the R code is available as a supplement.

5.1.1 � Simulated data

To illustrate the unreliability of ml.nbc() we adapted code from the COUNT 
online help and generated n = 1000 random variates for  �1 = (−3, 1.25, 0.1)T , 
k = e7 ≈ 1100 , and x2 and x3 ∼ Unif(0, 1) independently. Upon fitting the model, 
several warnings were issued by ml.nbc() from attempts to evaluate (4.2) outside 
the parameter space. When k = e8 ≈ 2980 was attempted ml.nbc() issued an error 
message. A brief comparison of the fits is as follows. The log-likelihood of the ml.
nbc() fit, −3917.8 , is grossly suboptimal compared to VGAM ( −3880.2 ). Also, its 
estimated regression coefficients differ much from the true values (Table 2). In com-
parison, the results of VGAM fare well in Table 2 as well as the Wald 95% confidence 
intervals (Table 3) which cover the true values. For the latter, ml.nbc() fails on all 
counts. From experience, about 5–8 iterations is typical for well-fitting VGLMs and 
the VGAM fit took 5 iterations to converge, and log k̂ ≈ 6.66082 with SE 0.22791. In 
VGAM 1.0-6 or earlier, ‘convergence’ was not achieved within 30 iterations.

5.1.2 � Lake Otamangakau trout data

Dedual et al. (2000) describe a quantitative study of the ecology of brown (Salmo 
trutta) and rainbow trout (Oncorhynchus mykiss) in the central North Island of New 

Table 4   Sorted AIC of four NB 
variants fitted to the trapO 
data

NB-C NB-H NB-1 NB-2

3617.36 3620.74 3645.49 3714.15
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Fig. 1   a Centred component functions (overlaid) with pointwise ±2 SE bands of a fitted NB-H VGAM: �̂
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is blue, �̂
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 is orange; b Fitted values �̂

i
 of the NB-C using regression splines. The vertical lines denote the 

first day of the months April to September (color figure online)
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Zealand. We fit four NB-variants to closely related data, which may be found in the 
trapO data frame in VGAMdata. Comprising 1226 rows of daily captures of the 
two species by gender at the Te Whaiau Trap at Lake Otamangakau, the data were 
collected during the main spawning period over 8 consecutive years by the Depart-
ment of Conservation. The primary aim of this analysis is to model Y = the number 
of male brown trout captured as a function of the day of the year (e.g., 1 = Jan 1, 
244 = Sep 1), i.e., doy is the sole (primary) explanatory variable. It is well known 
that spawning peaks around the second half of May.

The variance-to-mean ratio of 12.12 indicates overdispersion relative to the Pois-
son. Following the same nomenclature as Hilbe (2007), the four NB-variants fitted 
here are abbreviated NB-1, NB-2, NB-H and NB-C. The former has var(Y) ∝ � , and 
the NB-H has �2 = log k = �T

2
x while NB-2 has an intercept-only �2 . All four mod-

els have �1 = �T
1
x . Because � is clearly unimodal, we fit a NB-H VGAM to explore 

the data; the component functions are overlaid in Fig. 1a. Interestingly, both have an 
approximate quadratic shape with different peaks and curvature. It was considered 
safest to model the nonlinearity in both �j nonparametrically.

To compare the variants more rigourously we replace the cubic (vector) smooth-
ing splines (Yee and Wild 1996) by regression splines because inference is more 
standard (Figure  1). In R this was the term bs(doy) used by vglm() rather 
than s(doy) within vgam(). The term offers 3 degrees of freedom excluding an 
intercept.

Table 4 summarizes the results ranked by AIC. The NB-C was superior followed 
by the NB-H, and this suggests that the day of the year strongly affects both � and 
k—the other models are too simple. That the NB-C performed best suggests that the 
relationship between the mean and variance is not as simple as what a basic loglin-
ear relationship can allow. Indeed, � appears to be coupled with k in the more com-
plex nonlinear manner provided by the canonical link. Other NB analyses, including 
the NB-C, on real data are presented in Yee (2020).

5.2 � Distribution‑specific quantile regression: the Weibull distribution

We use the Munich rental guide data (Fahrmeir et al. 2013, Page 5) available in the 
gamlss R package (data set rent99) which has been analysed using a Box-Cox Cole 
and Green (BCCG) regression with GAMLSS by Rigby et al. (2013) (Table 5).

As an alternative, we re-analyse this data using Weibull quantile regression with 
weibullQlink() for two reasons: as a demonstration of the new link function, 
and to show that the Weibull distribution appears to work well for the target variable 
rent, even though it is traditionally used more in survival analysis. The proposed 
GAMLSS model is

Table 5   Variables involved in 
Model (5.1); dataset rent99 
from the gamlss package

Variable Description

rent The monthly net rent per month (in Euro)
area Living area in Square meters
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(5.1)
���� ∼ G(�, �, �), log� = b10 + s11(����), log � = b20, log � = b30.

Table 6   AICs and BICs from BCCG and Weibull regressions on the rent data, as in (5.1)

Modelling framework Modelling function Distribution Family function AIC BIC

GAMLSS gamlss() BCCG​ BCCG() 39332.02 39356.15
VGAM vgam() Weibull weibullR() 39315.03 39351.23
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Fig. 2   Estimated a Weibull and b BCCG QQ–plots of the response RENT 
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Fig. 3   Quantile curves from BCCG regression with GAMLSS and Weibull quantile regression with 
weibullQlink() 

Table 7   Empirical quantiles from GAMLSS using BCCG() and Weibull quantile regression with 
weibullQlink() from VGAMextra 

5% 25% 50% 75% 95%

GAMLSS 5.19 25.67 50.49 73.46 95.2
VGAMextra 4.83 25.05 51.1 74.82 95.07
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where G is either the BCCG or the Weibull distribution. Intercept–only models for � 
and � are set for comparison purposes.

To check on the distributional assumptions we fit BCCG and Weibull regressions 
to the data as in (5.1). The estimated BCCG and Weibull QQ-plots shown in Fig-
ure 2, and AICs and BICs from both models in Table 6 show the Weibull distribu-
tion performs as well as or better than the BCCG method.

We now compare Weibull quantile regression with 
� = c(0.5, 0.25, 0.50, 0.75, 0.95)T and weibullQlink() from VGAMextra to 
the � quantile of rent under GAMLSS given by y� = � ⋅qBCCG(�, 1, �, �) , where 
qBCCG(�, 1, �, �) is the � quantile of the BCCG distribution. Figure  3 shows the 
estimated quantile curves and Table 7 gives the empirical quantiles. Both methods 
are effectively comparable and perform equally well.

5.3 � Quantile modelling with the normal distribution

This example is based on Koenker and Hallock (2001) who performed conditional 
quantile regression of covariates associated to birth weight of live babies to dem-
onstrate its better performance over ordinary least squares (OLS) when estimating 
the effects on the lower tail of the skewed birthweight distribution. This relation-
ship was initially explored by Abreveya (2001). Koenker and Hallock (2001) used 
a sample ( n = 198, 377 ) of the June 1997 Detailed Natality Data published by the 
National Centre for Health Statistics (NCHS) that contains information from live, 
singleton births, mothers aged 18–45 and residing in USA.

5.3.1 � An example using uninormalQlink()

To test the quantile regression framework introduced in Sect.  4.3 we carry out 
VGLM quantile modelling with uninormaQlink() and uninormalff(), and 
compare our results to Koenker and Hallock (2001) via rq() from quantreg. Due 
to availability constraints, we restrict ourselves to a n = 50, 000 subsample of the 
the 1997 NCHS data (Koenker and Hallock 2001) stored in the file BWeights.csv 
and incidentally obtained from the SAS® file Sashelp.BWeights. Section D of the 
Online Supplements gives a short description of BWeights.csv and SAS® code used 
to generate it, as well as supplementary code pertaining this section. BWeights.csv is 
available in the Supplementary Materials.

Following Koenker and Hallock (2001) and Abreveya (2001), the response 
is birthweight (recorded in grames) and the remaining factors are added into the 
model as covariates including a quadratic term for the mother’s age and the mother’s 
reported weight gain during pregnancy:

(5.2)

Birth_weight ∼ Black +Married + Boy + Visit +MomEdLevel

+MomSmoke + CigsPerDay +MomAge +MomWtGain

+MomAge2 +MomWtGain2.
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We set � = (0.05, 0.25, 0.50, 0.75, 0.95).
The trace output from vglm() looks natural and correct. We have set zero = 

NULL to allow both linear predictors to be regressed on all the covariates. Note, �G1
 

in  (4.11) is managed by the new link function uninormalQlink(). The func-
tion Q.reg() is required to create a multiple responses matrix spanning r = 
length(mytau) columns.

Figure 4 shows the estimated parameters by quantile level from VGAMextra and 
quantreg for a few relevant covariates. Results conform with Koenker and Hallock 
(2001, p.150) to a great extent showing similar trends, except by Mom weight gain 
perhaps due the large range covered by this covariate (largest range among all covar-
iates), as shown in Table 8.

Infants born to black mothers appear to weigh less, by between 100 and 300 
grams, than newborns from white mothers across 5% to 95% quantiles. Like-
wise, although to a smaller extent, ‘smoking’ (this is Cigarettes per day 
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Fig. 4   Regression estimates by quantile level for the birthweight model using uninormalQlink() 
(orange) and quantreg (black), c.f. Koenker and Hallock (2001, p. 150) (color figure online)

Table 8   Summary (minimum, maximum, mean and quartiles) of Mom weight gain (kgs) centered 
around its median

Minimum 1st Qu. Median Mean 3rd Qu. Maximum

−30 −8 0 0.7092 9 68
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(CigsPerDay) coded as ‘1’ if the mother smokes more than five cigarettes p/day 
and ‘0’ otherwise) is associated with newborns’ weight loss. With smaller effects, 
maternal age appears to top birth weight up incrementally, by 4–6 grams, from the 
5% quantile to the 95% quantile, while every kilogram gained during pregnancy is 
associated with gradual reductions in the infant’s weight (4–5 grams). The model 
summary is in Section D of the Online Supplements.

6 � Discussion

This paper has developed the general methodology for two-parameter link functions and 
used the NB-C and quantile modelling as the primary examples. The approach taken 
here is the first of two general options: (i) offer one family function that handles several 
different link parameterizations; (ii) offer several family functions corresponding to sev-
eral different parameterizations of the same distribution. Each option has its advantages 
and disadvantages. Writing a new link function arguably involves less work and also the 
EIM may be too difficult to derive directly. However, given a choice, it is likely that 
many practitioners would choose a particular family function and use that solely.

Over many years the NB-C has been widely referred to in mathematical statistics 
because of its connections with core concepts such as sufficient statistics,GLMs and 
variance functions. Despite this, Hilbe (p. 315, 2011) writes concerning its practical 
use: “Little work as been done with NB-C models. No research has been published 
using an NB-C model on data.” This might be partially explained by the observation 
that almost all practitioners use existing implementations written by others and that 
the NB-C is a model with practical shortcomings such as 𝜂G1

< 0 in (4.3) rather than 
being unbounded. It is disappointing that, after several decades, our implementation 
is the first to fit the NB-C by a ‘proper’ algorithm because some packages simply 
call a general optimizer such as optim(). Our solution is naturally flexible too, as 
seen by the NB-C-H VGAM fitted in Sect. 5.1.2.

Our results on quantile regression showing that it is loosely ‘regression estimated 
on multiple quantiles’ are obviously dependent on a strong distributional assump-
tion, however there are real practical benefits and realistic applications, as discussed 
in Sects. 4.3 and 5. The Weibull distribution is used invariably to model observed 
failures in survival analysis and reliability, and the normal distribution is almost 
foundational for many natural phenomena. Covariates can also be included and their 
effects on the distributions examined. We believe that drawbacks from a distribu-
tion-specific framework are ameliorated by smoothing-based infrastructure capable 
of identifying nonlinearity automatically and graphically, as well as the handling of 
a very broad range of response types such as categorical and survival data.

It is not surprising that this work is seemingly related to that of others. For exam-
ple, Efron (1986) and Smyth and Verbyla (1999) model the mean and dispersion 
simultaneously in what are called ‘double exponential families’ and ‘double GLMs’ 
respectively. However, both apply separate ordinary links to each of the first two 
moments rather than including a single link function of both parameters. Likewise, 
Cepeda-Cuervo et al. (2014) develop ‘double GLMs’ with random-effects utilizing 
the same type of ordinary link functions.
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There is scope for future work. Slightly more interpretable than the NB-C link 
might be �G = log

[
− log{�∕(� + k)}

]
 , and practically, other alternatives include 

logit{�∕(� + k)} = log{�∕k} and �−1(�∕(� + k) ; they could easily be estimated 
with the present methodology. More generally, NB regression has the limitation 
that it does not handle underdispersion relative to the Poisson, hence other alterna-
tives such as the Conway-Maxwell-Poisson distribution have gained popularity (see, 
e.g., Sellers and Shmueli 2010). Of course, the methodology could be generalized to 
M > 2 parameters and in particular, the M = 3 case would match distributions hav-
ing a location, scale and shape parameter.

Quantile and mean modelling is another area to be further exploited in the 
short-term. We are applying this methodology to several two–parameter distribu-
tions which will soon have, as the Weibull example, links of the form distri-
bution Qlink() or distribution Mlink() alluding the ‘quantile’ 
and ‘mean’ link respectively. We have already commenced work in this direc-
tion, e.g., with the ‘mean link’ for the 2–parameter gamma distribution, viz. 
VGAMextra::gammaRMlink(). However, the VGLM framework is broader, 
with further options such as additive models (Yee and Wild 1996) and reduced–rank 
regression (Yee and Hastie 2003) over the same � . We hope to investigate these 
options too, including nlrq() from quantreg for nonlinear quantile regression.

Appendix: Expressions for complementary derivatives

This appendix summarizes the new complementary expressions for d�∕d�j , d2�∕d�2j  
and d2�∕d�jd�k , in Table  9, Table  10 and Table  11 respectively, for the three 
cases  (3.2)-(3.4).

Table 9   New complementary expressions for the total derivatives d�∕d�j for cases (3.2)-(3.4)

Linear predictors,
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Table 10   New complementary expressions for the total derivatives d2�∕d�2
j
 in  (3.17)   for cases  (3.2)–

(3.4)
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