
Computational Statistics (2022) 37:2029–2047
https://doi.org/10.1007/s00180-021-01190-4

ORIG INAL PAPER

Flexible, non-parametric modeling using regularized neural
networks

Oskar Allerbo1 · Rebecka Jörnsten1

Received: 3 February 2021 / Accepted: 15 December 2021 / Published online: 7 January 2022
© The Author(s) 2021

Abstract
Non-parametric, additive models are able to capture complex data dependencies in a
flexible, yet interpretable way. However, choosing the format of the additive compo-
nents often requires non-trivial data exploration. Here, as an alternative, we propose
PrAda-net, a one-hidden-layer neural network, trained with proximal gradient descent
and adaptive lasso. PrAda-net automatically adjusts the size and architecture of the
neural network to reflect the complexity and structure of the data. The compact net-
work obtained by PrAda-net can be translated to additive model components, making
it suitable for non-parametric statistical modelling with automatic model selection.
We demonstrate PrAda-net on simulated data, where we compare the test error perfor-
mance, variable importance and variable subset identification properties of PrAda-net
to other lasso-based regularization approaches for neural networks. We also apply
PrAda-net to the massive U.K. black smoke data set, to demonstrate how PrAda-net
can be used to model complex and heterogeneous data with spatial and temporal
components. In contrast to classical, statistical non-parametric approaches, PrAda-
net requires no preliminary modeling to select the functional forms of the additive
components, yet still results in an interpretable model representation.

Keywords Additive models · Model selection · Non-parametric regression · Neural
networks · Regularization · Adaptive lasso

B Oskar Allerbo
allerbo@chalmers.se

Rebecka Jörnsten
jornsten@chalmers.se

1 Mathematical Sciences, University of Gothenburg and Chalmers University of Technology,
Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01190-4&domain=pdf
http://orcid.org/0000-0002-5926-0830

2030 O. Allerbo, R. Jörnsten

1 Introduction

Non-parametric, additive models combine the flexibility of non-parametric regression
(e.g. splines and smoothers) with the interpretability of an additive model structure
(Hastie and Tibshirani 1990). For non-parametric functions { f j }rj=1, the model can
be formulated as

E[y] =
r∑

j=1

f j (x j).

For more flexible integration of explanatory variables, Friedman and Stuetzle (1981)
proposed projection pursuit regression (PPR), where the non-parametric additive com-
ponents are formed from a component-specific projection of explanatories:

E[y] =
r∑

j=1

f j (β
T
j x). (1)

By allowing for the number of components, r , in Eq. 1 to grow,more andmore complex
data structures can be captured by the model.

PPR is very flexible, but loses some of the interpretability of the additive model as
the projection parametersβ j maycombine several covariates into additive components
in a way that is often difficult to untangle. While a sparse projection could alleviate
this fact, it is not trivial to combine with the selection and flexibility of the non-
parametric functions, f j . In practice, especially for high-dimensional and complex
data, it is therefore common to use data exploration, marginal or partial modeling and
domain knowledge to pre-define the subsets of covariates (e.g. potential interactions,
component content) to combine into additive components, as well as to pre-select the
family of functional components (e.g. which type of spline).

Neural networks also have the capacity to learn complex dependencies from data
and can capture non-linear relationships between input and output variables, as well
as interactions between variables. Contrary to the additive model, but similar to PPR,
the results do not easily transfer to an interpretable model, since there will be links
between all inputs and outputs through the inner layers. For a one-hidden-layer neural
network, the neural network model resembles PPR, with the weight matrix elements
(links) corresponding to the projection parameters β j and an activation function σ

that generates f j ∝ σ(β�
j x). Now, we recognize that some neural network param-

eters (links) contribute more to the prediction than others, and there is reason to
believe that if the less important links are removed from the network architecture, an
interpretable structure would appear, as sketched in Fig. 1. That is, sparse weights
(projections) will enhance interpretability. Furthermore, by utilizing multiple hidden
nodes, corresponding to squares in Fig. 1, to obtain the additive components, a diverse
set of data-adaptive f j , with varying complexity, can be obtained.

A popular approach to eliminate parameters from a model is l1-penalization, here-
after referred to as lasso (Tibshirani 1996), which, together with its extensions such as
the group lasso (Yuan and Lin 2006) and the adaptive lasso (Zou 2006), has been used
in neural networks to reduce complexity and increase interpretability. Group lasso is

123

Flexible, non-parametric modeling using regularized neural networks 2031

Fig. 1 Desired architecture for an interpretable neural network representing E[y] = f1(x1) + f2(x2) +
f3(x3)+ f1,2(x1, x2). The circles represent single nodes and the squares represent combinations of nodes

used to penalize all the weights in a predefined group, typically all the inputs or outputs
from a node or, in the case of convolutional neural networks, a channel (Scardapane
et al. 2017; Wang et al. 2018a; Lym et al. 2019; Zhang et al. 2019; Tank et al. 2017;
Ainsworth et al. 2018). An alternative to group lasso is to add extra parameters that
are multiplied to all the weights in a group and then apply standard lasso to these
parameters (Leclerc et al. 2018; Sun et al. 2017; Wang et al. 2018b; Vaughan et al.
2018). Adaptive lasso, where each parameter is assigned a unique penalty, has been
used by Xu and Han (2016) and Qiao et al. (2018) to improve estimation stability, but
without focus on interpretability. Works cited above that focus on interpretability are
those by Tank et al. (2017), where Granger causality between time series is restrained;
Ainsworth et al. (2018), where multiple decoders are connected only to a subset of
the latent variables generated by variational autoencoders; and, most relevant for our
work, by Wang et al. (2018b), Distillation Guided Routing (DGR) and Vaughan et al.
(2018), Explainable Neural Networks (xNN).

In DGR, unimportant channels in a trained convolutional neural network are
removed by multiplying the outputs from each channel with a lasso penalized parame-
ter, balancing removal of channels with maintained performance. Since DGR removes
entire channels, it can never remove unimportant links from important nodes. In Fig. 1
this corresponds to penalizing only the weights between the f ’s and y.

In xNN, parallel neural networks with lasso penalized inputs are used to model
each function in an additive model. xNN removes individual links, but only between
the inputs and the, still black-box, parallel networks. In Fig. 1, each f -box would cor-
respond to a neural network of pre-defined capacity, where the inputs of the functions
are chosen by the model, but where function complexities are pre-defined.

Here, we propose PrAda-net, a novel method that combines adaptive lasso for
individual penalties of network parameters with proximal gradient descent. PrAda-
net addresses two problems with lasso regularization of neural networks. First, lasso
penalizes all model parameters equally, yet it is reasonable to assume that in an over-
parameterized neural network some weights contribute more to the final result than
others, and should ideally be penalized less. Second, gradient descent algorithms can-
not handle the non-differentiability of the lasso penalty at zero, something that has to

123

2032 O. Allerbo, R. Jörnsten

be circumvented, e.g. by defining ∂|x |
∂x

∣∣∣
x=0

:= 0 or by using some smooth approxima-

tion, such as |x | ≈ √
x2 + ε. However, such approximations result in no parameters

set exactly to zero, introducing the need for thresholding, which requires tuning as
well.

PrAda-net can be thought of as a generalization of xNN,where the number of hidden
nodes to realize a function is adaptively chosen, depending on the function complexity.
Therefore, it both improves the interpretability and reduces the number of parameters.
Compared toDGR, PrAda-net penalizes not only the outputs, but also the inputs, of the
functions, resulting in a clear-cut identification of functional components. Compared
to non-parametric, additive models, PrAda-net is completely data adaptive and neither
the input, nor the form of the functional components, f j , need to be pre-specified.

The rest of this paper is structured as follows: In Sect. 2, we present the PrAda-net
algorithm. In Sect., 3 we illustrate the method on simulated data, comparing the pre-
dictive and interpretable performance of PrAda-net to that of standard lasso and DGR.
We also apply PrAda-net to U.K. black smoke data. We compare the model com-
ponents automatically selected by PrAda-net to the large-scale generalized additive
model presented by Wood et al. (2017). We show how the method is able to automat-
ically select the network complexity to generate a concise, interpretable architecture,
thus making it suitable for non-parametric additive modelling. Finally, in Sect. 4, we
discuss our findings and possible future directions for research.

2 Method

In this paper the following notation will be used: The input nodes of a neural network
will be denoted by the vector x, with elements x j , and the single output node will be
denoted by y. Functions realized by hidden nodes of the network will be denoted by
f j (x|θ)where θ denotes the vector of network parameters, whichwill interchangeably
be referred to as parameters, weights and links. Usually, θ will be implicit, writing only
f j (x). A hat over a parameter or a function, e.g. ŷ, means that this is the reconstructed
parameter or function inferred by the network; when it is clear from the context, the
hat will be omitted.

As sketched in Fig. 1, the architecture of a sparse neural network can be inter-
preted as an additive model, where each function is defined as the set of hidden nodes
connected to the same set of input nodes. In order to use lasso to obtain such an archi-
tecture, the two limitations stated above have to be overcome. First, lasso penalizes
all parameters equally, while ideally, if the true model were known, one would want a
very small penalty on the truemodel parameters, and a large penalty on parameters that
should not be included. In the neural network setting, it is better to think of parameters
as “relevant” or “important” rather than “true”, but the rationale for data-adaptively
eliminating parameters still stands. It was shown by Zou (2006) that under certain
conditions, standard lasso is not consistent and as a remedy the adaptive lasso was
proposed. In adaptive lasso, each parameter obtains an individual penalty based on its
ordinary least square (OLS) estimate, penalizing parameters with small OLS values
more.

123

Flexible, non-parametric modeling using regularized neural networks 2033

Second, lasso regularizedmodels trainedwith gradient descent donot obtain explicit
zeroes, which is a consequence of the non-uniqueness of the derivative of the lasso
penalty at zero. Proximal gradient descent (Rockafellar 1976), on the other hand, lever-
ages on this non-uniqueness and obtains exact zeros. Like standard gradient descent,
proximal gradient descent is an iterative method, with the difference that the non-
differentiable parts of the objective function are handled in an additional, proximal,
step. If the objective function, l(θ), can be decomposed into l(θ) = g(θ)+h(θ), where
g is differentiable (typically a reconstruction error) and h is not (typically a lasso regu-
larization term), then a standard gradient descent step followed by a proximal gradient
descent step is defined as

θ t+1 = proxαh(θ
t − α∇g(θ t))

where α is a step size and prox is the proximal operator, that depends on h. In the case
of lasso with penalty parameter λ, when h(θ) = λ||θ ||1 = λ

∑
j |θ j |, the proximal

operator decomposes component-wise and is, with η j := (θ j − α∇g(θ j)) denoting
the output of the standard gradient descent step,

proxαh(η j) = sign(η j) · max(|η j | − αλ, 0).

I.e., each η j is adaptively shrunk towards zero, and once it changes sign it is set to
exactly zero.

2.1 The PrAda-net algorithm

PrAda-net builds on the assumption that once a neural network is trained, even if all
nodes in two subsequent layers are connected, some of the weights are more important
than others, and that these important weights are larger in absolute value than the less
important ones. Thus, adding an adaptive lasso penalty, i.e. an individual penalty based
on the current value of the weight, and continue training will penalize the small, unim-
portant, weights more than the important ones, ideally setting all unimportant weights
to zero, while penalizing the important weights less, thus reducing bias. Adding the
adaptive lasso penalty changes the objective function as below:

argmin
θ

l(x|θ) �⇒ argmin
θ

⎛

⎝l(x|θ) + λ
∑

j

|θ j |
|θ̂ j |γ

⎞

⎠ , (2)

where θ̂ j denotes the value of the weight just before adding the penalty and γ > 0 is
a tunable parameter that we here set to 2, which is common practice in adaptive lasso
(Zou 2006).

In order to get exact zeros one would like to use proximal gradient descent for
this phase of the training. However, proximal gradient descent is not compatible with
momentum based optimization algorithms, such as Adam (Kingma and Ba 2014).
Furthermore, the choice of the step size α, is not as obvious as in Adam, where the

123

2034 O. Allerbo, R. Jörnsten

default parameters have been shown to work very well in most cases. We circumvent
these issues by training PrAda-net in three stages: In the first stage, the network is
trained with a standard optimizer, but without the lasso penalty, until convergence or
some other stopping criterion. In the second stage, the adaptive lasso penalty is turned
on, using the same optimizer as in the first stage, i.e. not utilizing proximal gradient
descent, thus obtaining some weights close to, but distinct from, zero. Before the third
stage the adaptive lasso penalty is updated based on the current weight values and then
proximal gradient descent is used. Since someweights are now very close to zero, even
with small values of α and λ, these weights will be heavily penalized and proximal
gradient descent converges in relatively few iterations. For stage three, we thus used
10−5 for both α and λ, since the algorithm provided a stable behaviour around this
value. PrAda-net is summarized in Algorithm 1. The more crucial selection of tuning
parameters in stage 2 is discussed separately in Sect. 2.2.

Algorithm 1 PrAda-net
1: Train the neural network until convergence or other stopping criterion, with optimizer of choice.
2: Add an adaptive lasso penalty to each weight according to Eq. 2. Continue training with the chosen

optimizer.
3: Update the adaptive lasso penalty. Continue training with proximal gradient descent.

2.2 Choosing the lasso penalty parameter

Choosing the optimal regularization parameter, λ∗, is a trade off between inter-
pretability and model performance.When performance is the sole priority, the optimal
regularization is often chosen so that it minimizes the mean test error across multiple
splits of the data into training and test sets (cross-validation). Here, we are willing
to sacrifice some performance to gain interpretability and use a similar approach as
in standard lasso regression packages (Friedman et al. 2010). We thus choose our λ∗
as the largest one of those whose resulting mean test error is within two standard
deviations of the minimum test error across all λ. Figure 2c in Sect. 3.1 illustrates this.

2.3 Choosing stopping criterion

Themost obvious stopping criterion for all three stages in PrAda-net is to train until the
performance on the test set stops improving. However, it is known that early stopping
can work as a regularizer, which is sometimes desirable. Nonetheless, our experience
is that using PrAda-net with early stopping is inferior compared to training until
convergence. Too early stopping in the first stage tends to result in θ̂ j in Eq. 2 to exhibit
an insufficient spread of magnitude for the adaptive lasso penalty have an impact. This
thus reduces the ability of PrAda-net to generate compactmodel components. Too early
stopping in one of the two last stages tends to result in unnecessarily complex models,
using more hidden nodes than necessary. In all our experiment full convergence was
used as the stopping criterion.

123

Flexible, non-parametric modeling using regularized neural networks 2035

2.4 Identifying linear functions

As activation function for the hidden nodes, tanh was used. The slope of tanh varies
smoothly between 0 and 1 on its support, which makes it suitable to approximate an
unknown, smooth function. Another popular activation function is the rectified linear
unit, max(0, x). In contrast to tanh, this function is piecewise linear, and using it for
approximating a smooth function would in general require more hidden nodes, or a
rougher approximation, than when using tanh.

However, as can be seen from its Maclaurin expansion tanh(x) = x + O(x3), is
almost linear if x is small in absolute value. For x1 close to zero, tanh(x1 + x2) ≈
x1 + tanh(x2), and therefore, if the output is linear in some input variable (x1 in this
example), no separate hidden node is needed to model this linear function. Instead,
the function can be incorporated into some other node, thus increasing compactness
but decreasing interpretability. Ideally, a separate penalty or regularization technique
should be included to avoid this, but since it is far from obvious how this penalty
should be formulated while retaining computational feasibility, instead the following
postprocessing step was added: For each identified function, the partial derivatives
with respect to all its inputs were calculated and if, for some input, the derivative was
close to constant, i.e. with variance lower than some σ 2

max, that input was removed
from the function and put into a new, linear, function, realized by a new node. σ 2

max
was calibrated on synthetic data to 0.01. Since for standardized data, σ 2

max translates
between data sets, this value was consistently used throughout the paper.

3 Experiments

All experiments in this section were done on neural networks with one hidden layer,
with tanh as activation function, and one output node with a linear activation function.
The mean squared error was used as the loss function and the Adam optimizer was
used in the two first stages of the PrAda-net algorithm. The data was randomly split
into 90 % training and 10 % testing data. When choosing λ∗, 20 random splits of the
data were made for each λ value. In order to escape suboptimal minima, five different
initializations were used for each training. All computations were done on a NVIDIA
V100, 32GB, GPU.

Three experiments were performed. In the first experiment, synthetic data was
generated from the first four Legendre polynomials; in the second experiment, we
used a data set with black smoke levels in the U.K. recently analyzed by using a large-
scale generalized additive model by Wood et al. (2017); and in the third experiment
synthetic data was generated from the model inferred by PrAda-net on the U.K. black
smoke data.

123

2036 O. Allerbo, R. Jörnsten

3.1 Legendre polynomials

Our first experiment was done on the sum of the first four Legendre polynomials,
which are orthogonal on the interval [−1, 1] and are given by

P1(x) = x

P2(x) = 1

2
(3x2 − 1)

P3(x) = 1

2
(5x3 − 3x)

P4(x) = 1

8
(34x4 − 30x2 + 3).

(3)

For the simulations, five random variables, x1, . . . x5, were generated from U[−1, 1],
each with 1000 realizations, resulting in a 1000× 5 x-matrix, from which a 1000× 1
y-matrix was created according to

y = P1(x1) + P2(x2) + P3(x3) + P4(x4) + ε (4)

where ε ∼ N (0, 0.12) is added noise. Note that y is independent of x5. A neural net-
work with five input nodes and 50 hidden nodes was trained by applying Algorithm 1
with λ∗ chosen as explained in Sect. 2.2.

The results are shown in Fig. 2. As seen in 2a, out of the original 50 hidden nodes,
only 10 are used in the final architecture and the hidden units are split into four different
functions, each with only one x j as input. Figure 2b shows the reconstructed P̂j (x)’s
(left-most panels) and also how the model decomposes each P̂j (x) into a sum of up
to four subfunctions, each represented by one node in the hidden layer. Figure 2c
demonstrates the penalty parameter selection for this simulation.

We compared the test error and the variable importance, measured using saliency
maps (Simonyan et al. 2013) for PrAda-net, standard lasso andDGR.Tomake standard
lasso more competitive, we did not apply lasso regularization from the start. Instead,
we utilized the PrAda-net algorithm with the same penalty for all links, i.e. γ = 0
in Eq. 2. DGR was adapted to feedforward regression networks by looking at nodes
instead of channels and by using the squared error instead of the cross-entropy loss.

For saliency maps, the importance of variable j , evaluated at x, is defined as

I j (x) :=
∣∣∣ ∂ f (x)

∂x j

∣∣∣, which in our case reduces to I j (x) =
∣∣∣ ∂Pj (x j)

∂x j

∣∣∣. Since for non-linear
functions the value of the derivative depends on x, in order to get a global importance
measure, we averaged over all x’s in the test set X , I j := 1

|X |
∑

X I j (x). This can be

seen as a Monte Carlo integral, meaning that as |X | → ∞, I j → 1
2

∫ 1
−1 | ∂Pj (x j)

∂x j
|dx j ,

where 1
2 is the probability density function of the uniform distribution that x j is sam-

pled from. Thus, for large sample sizes, the true value of the variable importance is
given by the analytical integral.

50 runs with different noise realizations were performed with PrAda-net penalized
withλ∗, and the other twomodels penalized to equal complexity. In the case of standard

123

Flexible, non-parametric modeling using regularized neural networks 2037

(a) (b)

(c)

Fig. 2 Identifying the sum of the four first Legendre polynomials. a shows the inferred reduced neural
network, with the hidden nodes and links color coded according to the identified functions. In b, the
leftmost column shows, from top to bottom, P̂1(x1), P̂2(x2), P̂3(x3) and P̂4(x4), while the other columns
show their decompositions into the subfunctions realized by single hidden nodes. c shows, the mean ± two
standard deviations of the test error obtained by 20 bootstrap runs for each λ. λ∗ is chosen as the value
where the lower interval intersects the lowest mean value

123

2038 O. Allerbo, R. Jörnsten

Table 1 Legendre polynomials: Mean and one standard deviation of test error and estimated variable

importance (1
|X |

∑
X

∣∣∣ ∂ f (x)
∂x j

∣∣∣) togetherwith the true asymptotic variable importance (12
∫ 1
−1 | ∂Pj (x j)

∂x j
|dx j)

True Var.Imp. PrAda-net Standard Lasso DGR

Test error – 0.04 ± 0.02 0.13 ± 0.03 0.16 ± 0.03

x1 1 0.75 ± 0.33 0.69 ± 0.43 0.63 ± 0.09

x2 1.5 1.26 ± 0.09 1.21 ± 0.05 0.65 ± 0.12

x3 1.89 1.42 ± 0.16 0.96 ± 0.11 0.32 ± 0.12

x4 2.23 1.72 ± 0.3 0.43 ± 0.24 0.25 ± 0.08

x5 0 0.0 ± 0.0 0.01 ± 0.01 0.07 ± 0.04

lasso, the regularization was chosen to obtain the same number of parameters in both
models, while for DGR this would be an unfair comparison, since penalization is done
at node level. Instead, for DGR, regularization was chosen to have the same number
of nodes as PrAda-net, allowing it to use many more parameters than PrAda-net and
standard lasso.

The results are summarized in Table 1. PrAda-net outperforms both standard lasso
and DGR, both in terms of test error and variable importance. This effect is especially
notable for the higher order functions. While all methods did fairly well at identifying
the noise variable as such, PrAda-net was the only method to do so in all 50 runs.

We also investigated how well the algorithms could identify the four different
functions in the true model. In this comparison, DGRwas left out since all input nodes
are connected to all nodes in the hidden layer, resulting in only f (x1, x2, x3, x4, x5)
being identified. Standard lasso was penalized with two different strengths, one to get
the same number of parameters as for PrAda-net and one to get the same number of
functions.

Table 2 shows that PrAda-net is able to identify the true functions in the model as
well as their complexity,measured in number of nodes. That is, PrAda-net assignsmore
nodes to the higher order polynomials. The true functions are identified much more
often by PrAda-net than by standard lasso. Standard lasso with the same complexity
erroneously includes higher-order interaction terms (e.g. f (x1, x2, x3)) rather than
increasing the presence or function complexity of the main effect terms (e.g. f (x2)).
Standard lasso with the same number of functions successfully identifies f1(x1) and
f2(x2) but fails to identify f3(x3) and f4(x4).

3.2 Black smoke data

To illustrate the usefulness of PrAda-net on real, large-scale data with a complex
structure, we applied it to the U.K. black smoke network daily data set, analyzed
by (Wood et al. 2017) and available on the main author’s homepage1. The data set,
collected over four decades, is massive, comprising 10 million observations of air
pollution data (daily concentration of black smoke particulates inμgm−3) measured at

1 https://www.maths.ed.ac.uk/~swood34/data/black_smoke.RData.

123

https://www.maths.ed.ac.uk/~swood34/data/black_smoke.RData

Flexible, non-parametric modeling using regularized neural networks 2039

Table 2 Legendre polynomials: Presence (proportion of simulations where function is identified) and
average complexity of functions across 50 simulation runs. The true model components (main effects) are
marked with an asterisk. Complexity of identified functions is measured in number of nodes

PrAda-net Standard Lasso (same
number (of functions)

Standard Lasso
(same complexity)

Function Presence Complexity Presence Complexity Presence Complexity

f (x1)
∗ 1.0 1.0 1.0 1.72 0.12 1.0

f (x1, x2) - - - - 0.12 1.17

f (x1, x2, x3) - - - - 0.14 1.0

f (x1, x2, x3, x4) - - - - 0.82 1.46

f (x1, x2, x3, x4, x5) - - - - 0.44 1.0

f (x1, x2, x3, x5) - - - - 0.02 1.0

f (x1, x3) - - - - 0.96 1.06

f (x1, x3, x4) - - - - 0.64 1.25

f (x1, x3, x4, x5) - - - - 0.06 1.0

f (x1, x4) - - - - 0.42 1.0

f (x2)
∗ 1.0 1.96 0.92 2.0 0.14 1.14

f (x2, x3) - - 0.08 2.0 0.02 1.0

f (x2, x3, x4) - - - - 0.04 1.0

f (x2, x3, x5) - - - - 0.02 1.0

f (x2, x4) 0.04 1.0 - - 0.08 1.0

f (x2, x5) - - - - 0.02 1.0

f (x3)
∗ 1.0 2.62 0.1 1.6 0.2 1.6

f (x3, x4) 0.04 1.0 0.02 1.0 0.1 1.2

f (x4)
∗ 1.0 3.98 0.06 1.0 0.96 1.83

more than 2000monitoring stations. In addition to the pollution data,bs, the following
eleven covariates are available: year, y; day of year, doy; day of week, dow; location
as kilometers east, e and north, n; height, h; cubic root transformed rainfall, r; daily
minimum and maximum temperature T0 and T1; and mean temperatures the previous
two days, T̄1 and T̄2.

Wood et al. (2017) first perform a separate spatial modeling and then a separate
temporal modeling of the data to propose some candidate model components. In a
final modeling step, the components are combined through a generalized additive
modeling approach, including interactions between the proposed model components.
Specifically, the log transformed black smoke level is modelled as a sum of fourteen
functions, each containing up to three of the eleven covariates. In addition to these
functions, the model includes an offset for each station site type k (rural, industrial,
commercial, city/town center or mixed), αk ; a station specific random effect, b; and a
time correlation model for the error term following an AR process, e. The final model
is given by

123

2040 O. Allerbo, R. Jörnsten

Table 3 Identified functions in 20 bootstrap runs using PrAda-net and standard lasso. Only the functions
present in more than half of the runs are shown

PrAda-net Standard lasso

Identified functions in total 52 143

Functions with more than 3 covariates 6 103

Most frequent functions with frequencies f (doy) 1.0 f (e,n) 0.8

f (y) 1.0 f (dow) 0.8

f (T1) 1.0 f (n) 0.7

f (n) 1.0 f (n,h) 0.6

f (e) 1.0 f (h) 0.55

f (e,n,h) 1.0 f (e) 0.55

f (e,n) 1.0

f (dow) 0.95

f (h) 0.9

f (n,h) 0.85

f (e,h) 0.8

f (T0) 0.75

f (doy,T1) 0.6

f (T̄2) 0.55

log(bs) = f1(y) + f2(doy) + f3(dow) + f4(y,doy) + f5(y,dow)

+ f6(doy,dow) + f7(n,e) + f8(n,e,y) + f9(n,e,doy)

+ f10(n,e,dow) + f11(h) + f12(T
0,T1) + f13(T̄1, T̄2)

+ f14(r) + αk + b + e.

(5)

For functional forms, cubic splines were used for the temporal components,
thin-plate splines for the spatial components and tensor product smoothers for the
interactions. In summary, this analysis builds on a substantial and non-trivial prelim-
inary screening and modeling of the data.

In contrast, our approach is to let PrAda-net with 100 hidden nodes automatically
decide the format of the additive model functions. To make the results reasonably
comparable we use a penalization parameter for PrAda-net to obtain, approximately,
the same number of functions as in Eq. 5. Note, however, that this generally produces
slightly fewer functions for PrAda-net than the model by Wood et al. (2017) since
we do not post-process to combine functions that are decomposed into main and
interaction terms by PrAda-net. E.g. the single function f (e, n) inWood et al. (2017) is
decomposed into two main effects, f (e) and f (n), and one interaction effect, f (e, n),
by PrAda-net (see Eq. 6 and Table 3) and is thus realized by three functions. It is
non-trivial to conduct such post-processing for all possible main and higher order
interactions so we elect to choose a conservative model for PrAda-net.

123

Flexible, non-parametric modeling using regularized neural networks 2041

We ran PrAda-net for 20 different random splits of the data which resulted in, in
total, 52 different functions, 6 of which contained more than three covariates, see
Table 3. The medoid model, where the distance between models was measured by the
Jaccard distance between the set of included functions, is given by

log(bs)PrAda = f1(y)︸ ︷︷ ︸
10

+ f2(doy)︸ ︷︷ ︸
4

+ f3(dow)︸ ︷︷ ︸
2

+ f4(T
0)︸ ︷︷ ︸

1

+ f5(T
1)︸ ︷︷ ︸

2

+ f6(T̄2)︸ ︷︷ ︸
1

+ f7(r)︸ ︷︷ ︸
1

+ f8(e)︸ ︷︷ ︸
3

+ f9(n)︸ ︷︷ ︸
8

+ f10(h)︸ ︷︷ ︸
2

+ f11(doy,T1)︸ ︷︷ ︸
2

+ f12(e,n)︸ ︷︷ ︸
12

+ f13(e,h)︸ ︷︷ ︸
1

+ f14(n,h)︸ ︷︷ ︸
1

+ f15(T
0,T1, T̄1)︸ ︷︷ ︸
1

+ f16(e,n,h)︸ ︷︷ ︸
3

+ αk + b + e,

(6)

where the number under a function denotes its complexity, measured in the number of
hidden nodes used to realize it. Six of the sixteen functions in the PrAda-net medoid
model overlap with the manually selected functions in Wood et al. (2017). However,
the pre-identified interaction terms between temporal covariates and between temporal
and spatial covariates are not selected by PrAda-net, which, on the other hand, selects
a more complex spatial interaction, f16(e,n,h).

For standard lasso, the 20 data splits resulted in 143 different functions, 103 of
which contained more than 3 covariates, see Table 3, with medoid function

log(bs)Lasso

= f1(dow)︸ ︷︷ ︸
2

+ f2(e)︸ ︷︷ ︸
1

+ f3(n)︸ ︷︷ ︸
1

+ f4(h)︸ ︷︷ ︸
1

+ f5(doy, T̄2)︸ ︷︷ ︸
1

+ f6(e,n)︸ ︷︷ ︸
1

+ f7(r,h)︸ ︷︷ ︸
1

+ f8(n,h)︸ ︷︷ ︸
1

+ f9(y,r,e)︸ ︷︷ ︸
1

+ f10(y,e,n)︸ ︷︷ ︸
1

+ f11(y,doy,T1,r)︸ ︷︷ ︸
1

+ f12(y,T1, T̄1,r)︸ ︷︷ ︸
1

+ f13(y,e,n,h)︸ ︷︷ ︸
1

+ f14(T
0, T̄1, T̄2,h)︸ ︷︷ ︸

1

+ f15(T
1,r,n,h)︸ ︷︷ ︸
1

+ f16(T
0,T1,e,n,h)︸ ︷︷ ︸

1

+ f17(y,doy,T0,T1,r,h)︸ ︷︷ ︸
1

+ f18(y,dow, T̄1,r,n,h)︸ ︷︷ ︸
1

+αk + b + e.

(7)

Compared to standard lasso, PrAda-net has higher precision, i.e. it detects fewer unique
functions more frequently, indicating a more stable selection performance. This is
confirmed by the medoid model being more similar to the other models for PrAda-net
than for standard lasso. The average Jaccard similarity of the PrAda-net medoid model
is 0.63, compared with 0.18 for standard lasso. PrAda-net also identifies functions
containing fewer covariates (order of interaction) thus resulting in more interpretable

123

2042 O. Allerbo, R. Jörnsten

Fig. 3 Functions identified by PrAda-net to be compared to functions by Wood et al. (2017), Supplemental
Fig. 2, https://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1195744. Since dayof year, height
and the temperature covariates are present in multiple functions in PrAda-net, in these cases the marginal
function is displayed. Subscript numbers refer to functions in Eq. 6, while subscript m denotes marginal
function

models compared to standard lasso. All the 2 · 20 models had an explained variance
of R2 ≈ 0.79, which is the same as reported by Wood et al. (2017).

In Figure 3 we visually summarize a subset of the model components identified
by PrAda-net in Eq. 6. These same model components are presented in Fig. 2 in the
Supplemental material of Wood et al. (2017)2. In the cases where PrAda-net splits the
dependency of a covariate across multiple functions, the marginal function is plotted
to allow for direct comparison with Wood et al. (2017). The generated functions in
Fig. 3 bear a strong resemblance to those in Supplemental Fig. 2 ofWood et al. (2017),
indicating that PrAda-net was able to automatically identify a highly similar model to
the manually curated one. With the exception of height, h, PrAda-net tends to identify
smoother functions than Wood et al. (2017).

3.3 Synthetic black smoke data

To test PrAda-net on a more complex model than the synthetic data in Sect. 3.1, we
generated data from the PrAda-net medoid model for the black smoke data. 10000
data points were sampled, according to N (0,ΣS), where ΣS is the Spearman rank
correlationmatrix of the variables in the black smoke data set, resulting in a 10000×11
x-matrix, fromwhich a 10000×1 y-matrix was created according to Eq. 6, without αk ,
b, and e and with added noise distributed asN (0, 0.12). 50 simulations, with different
noise realizations, were performed using a hidden layer with 100 units. For PrAda-
net, λ∗ was chosen as described in Sect. 2.2 and for standard lasso, the regularization
strength was chosen to obtain the same number of functions as for PrAda-net. The
results are summarized in Table 4, where all functions present in more than 20 % of

2 Available at https://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1195744.

123

https://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1195744
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1195744

Flexible, non-parametric modeling using regularized neural networks 2043

Table 4 Presence and average complexity of functions across 50 simulation runs for PrAda-net (left) and
standard lasso (right), with true model components above the line and falsely included components below.
Only functions present in more than 20 % of the runs are presented, functions present in more than 50 %
of the runs are marked with an asterisk

PrAda-net Standard lasso
Function Presence Complexity Function Presence Complexity

f (y)∗ 1.0 5.06 f (y)∗ 1.0 15.8

f (doy)∗ 1.0 20.92 f (e,n)∗ 1.0 4.16

f (dow)∗ 1.0 2.9 f (e,n,h)∗ 0.96 1.27

f (e)∗ 1.0 2.36 f (doy)∗ 0.82 1.76

f (n)∗ 1.0 3.0 f (n)∗ 0.82 1.37

f (doy,T1)∗ 1.0 2.22 f (h)∗ 0.56 1.0

f (e,n)∗ 1.0 13.44 f (dow,e,h)∗ 0.7 1.2

f (n,h)∗ 1.0 1.18 f (T0,e,n,h)∗ 0.58 1.03

f (e,n,h)∗ 1.0 2.22 f (doy,T1, T̄2,e,h)∗ 0.52 1.27

f (T1)∗ 0.98 1.27 f (doy,T0,T1, T̄2,r,e,n,h)∗ 0.52 1.0

f (T0)∗ 0.94 1.23 f (dow,e) 0.44 1.05

f (e,h)∗ 0.72 1.44 f (doy,T0,T1, T̄1, T̄2,r,e,n,h) 0.34 1.18

f (h) 0.48 1.04 f (doy,T0,T1,e,h) 0.32 1.0

f (r) 0.22 1.0 f (doy,dow,e,h) 0.3 1.07

f (doy, T̄1) 0.4 1.05 f (doy,T1, T̄2,e) 0.3 1.0

f (doy,e) 0.3 1.07 f (doy, T̄1,e,h) 0.3 1.0

f (dow,e) 0.24 1.17 f (doy,T0,T1, T̄1, T̄2,h) 0.3 1.0

f (T1, T̄1) 0.2 1.0 f (doy,T0,T1, T̄2,e,h) 0.3 1.2

f (T0,T1, T̄1, T̄2,r,e,n,h) 0.26 1.0

f (T1,n) 0.24 1.0

f (T0,e,n) 0.24 1.0

f (doy,T0,T1, T̄1, T̄2,r,e,h) 0.24 1.0

f (doy,T1,e,h) 0.22 1.0

the simulations are shown and functions present in more than 50 % of the simulations
are marked with an asterisk.

PrAda-net identifies 14 of the 16 true model components together with 4 false
positives, the corresponding numbers for standard lasso are 6 and 17, respectively.
There is a tendency that more complex functions, i.e. functions consisting ofmore than
one hidden node, are more easily identified. Except for f5(T1) and f10(h), PrAda-
net identifies all the functions realized by more than one hidden node in 100 % of
the simulations; for both algorithms all the falsely included functions also have a
complexity close to one node. Apart from f (doy), PrAda-net seems to be closer to
the true complexity than standard lasso.

In Figs. 4 and 5 , the means and standard deviations for the most frequently identi-
fied functions are plotted together with the true functions. Since the intercept can be

123

2044 O. Allerbo, R. Jörnsten

Fig. 4 PrAda-net: Comparison of true (red and dotted) and the mean ± two standard deviations of the
identified functions (blue). For themulti-dimensional functions, in each plot all but one of the input variables
are kept fixed. The first row shows the total dependency of the covariate, including all functions, while the
rest of the rows show the most frequently identified functions

realized in any function, all functions were translated to have zero mean. For functions
depending on more than one covariate, all covariates except one were fixed at ±1 to
be able to plot in one dimension. For PrAda-net we see that for total the contribution
of a covariate, the true and identified functions coincide very well (first row). This is
also true for most identified functions with a few exceptions. However, the differences
between true and identified functions seem to be balanced by those of other functions
including the same covariate. See e.g. f (doy) and f (doy|T1), where, for small val-
ues of doy, the true f (doy) is much larger than the estimated function, while the true
f (doy|T1) is much smaller than the estimated function.
Standard lasso exhibits poor overlap with the true model components, even in terms

of total contribution. The functions identified by standard lasso align poorly with the
true model components.

123

Flexible, non-parametric modeling using regularized neural networks 2045

Fig. 5 Standard lasso: Comparison of true (red and dotted) and the mean ± two standard deviations of
the identified functions (blue). For the multi-dimensional functions, in each plot all but one of the input
variables are kept fixed. The first row shows the total dependency of the covariate, including all functions,
while the rest of the rows show the most frequently identified functions

4 Conclusions and discussion

For complex and large data sets, non-parametric additive models often require sub-
stantial exploratory work to identify candidate model components, such as sets of
potential interactions and format or family of additive function, before any fitting
strategy can be applied. Here, we proposed a fully data-adaptive alternative based on
a simple neural network trained with proximal gradient descent and adaptive lasso,
PrAda-net. PrAda-net was found to improve on lasso penalized neural networks both
in terms of test error performance and in terms of generating interpretable models. For
additive models, PrAda-net was able to identify the function components of the mod-
els as well as to express the function complexity by using multiple hidden nodes. We
illustrated how PrAda-net could be used to model a massive and complex air pollution
data set with weather, temporal and spatial covariates. PrAda-net was able to identify a
highly similar model to one recently presented in the state-of-the-art literature, but, in
contrast, required no pre-selection of modeling components or pre-processing of the
data. This data driven strategy thus reduces the dependency on subjective choices and
preliminary or partial modeling of complex data, while retaining the interpretability
of the classical statistical methods.

123

2046 O. Allerbo, R. Jörnsten

While there is no explicit limitation to the depth of the network that PrAda-net
can be applied to, we only used one hidden layer in this paper. We thereby loose the
possibility of making the network even more compact. However, preliminary results
from applying PrAda-net to deep networks indicated that interpretability was much
reduced in favor of compact representation. It is not trivial to untangle the compact
representation to obtain an interpretable additive model representation. In addition,
according to the universal approximation theorem (Cybenko 1989) the utilization
of a one-hidden-layer network does not limit the complexity of the functions that
can be modelled. It would, nonetheless, be interesting to apply extensions of PrAda-
net to deeper networks, with regularization penalties constructed to e.g. guarantee an
ordering ofmain to higher order effects in the layers. Indeed, structural constraintsmay
bewhat is needed to generate interpretable networks frommore complex architectures.
However, this is left for future work.

Code is available at https://github.com/allerbo/prada_net.

Acknowledgements This research was supported by grants from the Swedish Research Council (VR), the
Swedish Foundation for Strategic Research (SSF) and the Chalmers AI Research Center (CHAIR).

Funding Open access funding provided by University of Gothenburg.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ainsworth SK, Foti NJ, Lee AK, Fox EB (2018) oi-vae: output interpretable vaes for nonlinear group factor
analysis. In: international conference on machine learning, pp. 119–128

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst
2(4):303–314

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Softw 33(1):1

Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76(376):817–823
Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC Press, London
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
Leclerc G, Vartak M, Fernandez RC, Kraska T, Madden S (2018) Smallify: Learning network size while

training. arXiv preprint arXiv:1806.03723
Lym S, Choukse E, Zangeneh S, Wen W, Erez M, Shanghavi S (2019) Prunetrain: Gradual structured

pruning from scratch for faster neural network training. arXiv preprint arXiv:1901.09290
Qiao J, Wang L, Yang C (2018) Adaptive lasso echo state network based on modified bayesian information

criterion for nonlinear system modeling. Neural Comput Appl 31(10):6163–6177
Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim

14(5):877–898
Scardapane S, Comminiello D, Hussain A, Uncini A (2017) Group sparse regularization for deep neural

networks. Neurocomputing 241:81–89
Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image clas-

sification models and saliency maps. arXiv preprint arXiv:1312.6034

123

https://github.com/allerbo/prada_net
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1806.03723
http://arxiv.org/abs/1901.09290
http://arxiv.org/abs/1312.6034

Flexible, non-parametric modeling using regularized neural networks 2047

Sun K, Huang S-H, Wong DS-H, Jang S-S (2017) Design and application of a variable selection method
for multilayer perceptron neural network with lasso. IEEE Trans Neural Netw Learn Syst 28(6):1386–
1396

Tank A, Cover I, Foti NJ, Shojaie A, Fox EB (2017) An interpretable and sparse neural network model for
nonlinear granger causality discovery. arXiv preprint arXiv:1711.08160

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol)
58(1):267–288

Vaughan J, Sudjianto A, Brahimi E, Chen J, Nair VN (2018) Explainable neural networks based on additive
index models. arXiv preprint arXiv:1806.01933

Wang J, Xu C, Yang X, Zurada JM (2018) A novel pruning algorithm for smoothing feedforward neural
networks based on group lasso method. IEEE Trans Neural Netw Learn Syst 29(5):2012–2024

Wang Y, Su H, Zhang B, Hu X (2018b) Interpret neural networks by identifying critical data routing paths.
In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8906–8914

Wood SN, Li Z, Shaddick G, Augustin NH (2017) Generalized additive models for gigadata: modeling the
uk black smoke network daily data. J Am Stat Assoc 112(519):1199–1210

Xu M, Han M (2016) Adaptive elastic echo state network for multivariate time series prediction. IEEE
Trans Cybern 46(10):2173–2183

Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc
Ser B (Stat Methodol) 68(1):49–67

Zhang H, Wang J, Sun Z, Zurada JM, Pal NR (2019) Feature selection for neural networks using group
lasso regularization. IEEE Trans Knowl Data Eng 32(4):659–673

Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1711.08160
http://arxiv.org/abs/1806.01933

	Flexible, non-parametric modeling using regularized neural networks
	Abstract
	1 Introduction
	2 Method
	2.1 The PrAda-net algorithm
	2.2 Choosing the lasso penalty parameter
	2.3 Choosing stopping criterion
	2.4 Identifying linear functions

	3 Experiments
	3.1 Legendre polynomials
	3.2 Black smoke data
	3.3 Synthetic black smoke data

	4 Conclusions and discussion
	Acknowledgements
	References

