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Abstract
This paper examines the problem of computing a canonical smallest covering region
for an arbitrary discrete probability distribution. This optimisation problem is similar
to the classical 0–1 knapsack problem, but it involves optimisation over a set that
may be countably infinite, raising a computational challenge that makes the problem
non-trivial. To solve the problem we present theorems giving useful conditions for an
optimising region and we develop an iterative one-at-a-time computational method to
compute a canonical smallest covering region. We show how this can be programmed
in pseudo-code and we examine the performance of our method. We compare this
algorithm with other algorithms available in statistical computation packages to com-
pute HDRs. We find that our method is the only one that accurately computes HDRs
for arbitrary discrete distributions.

Keywords Computation · Discrete distribution · Highest density condition · Smallest
covering region · 0–1 knapsack problem

1 Introduction

Statistical prediction problems sometimes require the analyst to find the smallest region
on the support of a randomvariable that has some specifiedminimal coverage probabil-
ity. Smallness is measured with respect to the dominating measure for the probability
measure of the random variable. Usually this problem is considered for continuous
distributions that are dominated by Lebesguemeasure, and in this context, the smallest
covering region is (almost) equivalent to the “highest density region” (HDR), which
is obtained by taking the set of all values with density at least as large as some cut-off
value (Box and Tiao 1973; Hyndman 1996). By taking this set of “highest density”
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points, one obtains a set that is a smallest covering region with minimum coverage
probability equal to its actual coverage probability. Non-equivalence of the concepts
arises from the fact that the possible coverage probabilities for the HDR can have
“jumps” as we raise the density cut-off, owing to flat sections in the density.1 If the
minimum required coverage probability is inside a gap from this “jump” then a smaller
covering region can be obtained by removing a section of the values in the HDRwhich
have the smallest density above the cut-off value.

In any case, statistical literature on this problem focuses on HDRs for continuous
distributions, where the task of finding the boundaries of the region is solved using
calculus techniques or grid methods, depending on the dimensionality of the problem
and the shape of the distribution (Hyndman 1996). In the present paper we examine the
underappreciated problem of computing the smallest covering region for an arbitrary
discrete probability distribution (i.e., a distribution with countable support). At first
glance this may seem like a trivial problem; sorting methods can order probability
values, and so we can determine the values with the highest probability within a set,
and take these in descending order of probability until we have a smallest covering
region. However, from a computational perspective the problem is rendered non-trivial
by the fact that we can only sort probability values over finite sets, and many discrete
distributions have countably infinite support. This complication renders the compu-
tational problem non-trivial and behoves an investigation of appropriate methods for
the problem.

In practice, most families of discrete probability distributions used in statistical
problems are univariate and unimodal (quasi-concave) distributions over the integers,
and in this case, there will be a smallest covering region that is a contiguous set of
integers. In such cases, finding the smallest covering region reduces to finding the two
boundary points of an interval, and this can be done efficiently using standard discrete
calculus methods. However, in this paper we will examine the general problem of
computing the smallest covering region for an arbitrary discrete distribution with no
structural assumptions beyond the fact that the support is known to be a subset of some
known countable set of values (for brevity, we say that the distribution is “concentrated
on” a knowncountable set).Wewill showhow the concept of a smallest covering region
relates to the concept of a highest density region for discrete distributions, and we will
formulate methods for finding both.

Highest density regions are of interest in Bayesian analysis in the formulation of
“credibility regions” and “highest posterior density regions” (see e.g., Wei and Tanner
1990;Turkkan andPham-Gia 1993;Chen andShao1999) and also for broader classical
inference problems using “highest confidence density regions” (see e.g., Tian et al
2011). These regions are also used in forecasting problems to obtain a “prediction
region” for an observable variable (see e.g., Hyndman 1995; Kim et al. 2011). In
many statistical problems, interest will focus on a continuous observable value or
unknown parameter, but there are certainly problems where a discrete random variable
or parameter may be of interest, and in such cases the discrete version of the HDR is
of interest.

1 This occurs for all discrete distributions, but also for continuous distributions with flat sections in the
density.
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In addition to being a useful problem in computational statistics in its own right,
this problem is also interesting, since it yields an optimisation problem that is a kind of
“inverse” variation of the classical “knapsack problem” in computer science. This latter
problem is a discrete optimisation where we fill a knapsack of a fixed weight capacity
with items having different weights and values. The problem of finding a discrete
HDR turns out to be an inverse variant of this problem with a countably infinite set of
objects. This is an interesting variant of a well-known optimisation problem, requiring
us to develop a method to deal with a countably infinite set of objects with a finite
algorithm. We will present an algorithm for efficient computation of the solution to
this optimisation problem, using a technique that is useful both in the present case and
also in broader optimisation problems taken over countably infinite spaces.

The two purposes of this paper are to establish some useful mathematical theory
for HDRs for discrete distributions, and to create an effective algorithm to compute
the HDR for an arbitrary discrete distribution, even if the support is countably infinite.
From a practical perspective, thismanifests in an automated algorithm for computation
of HDRs in discrete distributions that can use used by statistical practitioners without
concern for the underlying optimisation problem. Our analysis is implemented in user-
friendly form in the stat.extend package in R (O’Neill and Fultz 2020), allowing
statistical practitioners to easily compute the HDR for any discrete distribution. To the
knowledge of the present author, this function is presently the only available facility
that accurately computes the HDR in all cases.

2 Smallest covering regions for discrete distributions

We will consider an arbitrary discrete probability measure P on a countable sample
space�. As is standard in probabilistic analysis, wewill assume that this sample space
is known, so that the support of the distribution is at least narrowed down to a known
countable set.2 To facilitate our analysis, we denote the probability mass function for
our measure by f (formally this is the Radon-Nikodym derivative of P with respect
to counting measure), which allows us to write the probability of any event as:

P(A) = ∑
x∈A f (x) = ∑

x∈� f (x)I(x ∈ A) for A ⊆ �.

We note that we can also write the size of any event (with respect to counting
measure) as:

|A| = ∑
x∈A 1 = ∑

x∈� I(x ∈ A) for A ⊆ �.

We further define the following functions giving the smallest and largest mass over
a set:

2 In the unusual event that the support is not concentrated on a known countable set, the main challenge
becomes the detection of the discrete support within an uncountable space. That problem is beyond the
scope of this paper and is unlikely to arise in any realistic probabilistic or statistical analysis.
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∇(A) ≡ inf
x∈A

f (x) �(A) ≡ sup
x∈A

f (x).

For any 0 ≤ α ≤ 1 a smallest covering region (SCR) with minimum coverage
probability 1 − α is any solution to the following optimisation problem:

Minimise |A| subject to P(A) ≥ 1 − α.

The optimisation problem for the smallest covering region always has at least one
solution, but there are cases where multiple solutions can occur. For a discrete dis-
tribution, this occurs when there are multiple regions containing the same number of
elements that all meet the minimum coverage probability requirement in the optimisa-
tion, but removal of any element from any of those regionswould reduce its probability
below the required coverage probability. This is illustrated in Fig. 1 for the binomial
distribution with size n = 10 and probability θ = 0.52.

One interesting aspect of the plots in Fig. 1 is that, of the three solutions giving a
smallest covering region with 90% minimum coverage probability, the top-right solu-
tion is the one with the highest coverage probability. It can therefore be regarded as the
“canonical” solution that gives the best trade-off between size and coverage while still
meeting the minimum coverage requirement. For statistical prediction purposes, this

Fig. 1 Covering regions for the Bin(10, 0.52) distribution. (All but the bottom-left plot are solutions to the
90% smallest coverage region problem; observe that the top-right plot is the “canonical” solution with the
highest coverage probability)
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is the solution of most interest. Indeed, if we look at the goal of statistical prediction,
it should be clear that this particular solution is the best prediction region, insofar as
it gives the highest coverage probability among all the regions of the same size. It not
only solves the optimisation problem for the smallest covering region; it also solves
the “dual problem” of maximising the coverage probability among all regions of that
“optimal” size.

In view of this, it is desirable to reframe our analysis of smallest covering regions to
look at the dual problem where we seek to maximise the coverage probability among
all regions with the “optimal” size (i.e., the smallest size needed to meet the minimum
coverage probability), yielding a “canonical” solution to the problem. To do this, let
us define the objects:

R(α) ≡ min
A∈C(α)

|A| C(α) ≡ {A ⊆ �|P(A) ≥ 1 − α}.

The class C(α) contains all the regions that give minimum coverage probability
1 − α, and the value R(α) is the size of each smallest covering region. Our original
optimisation problem was to find sets in C(α) with minimum size. We can now state
the dual problem leading to the canonical solutions. For any 0 ≤ α ≤ 1 a canonical
smallest covering region (CSCR) with minimum coverage probability 1 − α is any
solution to the following optimisation problem:

Maximise P(A) subject to |A| ≤ R(α).

This dual problem is the optimisation that determines the “canonical” solutions for
the smallest covering region. Every solution to this dual problem is also a solution to
the primal problem stated above, but not every solution of the latter is a solution of
the former. In particular, since this dual problem maximises the probability among all
sets with |A| ≤ R(α), it will exclude all solutions to the primal problem where the
coverage probability is less than in another solution. In the example shown in Fig. 1,
the region shown in the top-right plot is the only solution to this dual problem, and so it
is a “canonical” solution to the smallest covering region with the stipulated minimum
coverage probability.

This optimisation problem is an “inverse” variation of the classical “0–1 knapsack
problem”, which is a famous combinatorial optimisation that has spawned a wide
range of algorithms in computer science (see e.g., Marello and Toth 1990; Kellerer
et al. 2004). In that problem we have a finite set of “items” x = 1, . . . , n with weights
wx and values vx and we have a “knapsack” with weight capacity W . We wish to find
the set of items with the highest total value subject to the requirement that they fit
in the knapsack (i.e., their total weight must not exceed the weight capacity). In the
classical problem there are a finite number of items and all these items have weights
and values that are positive integers. However, we can vary the problem to allow a
countably infinite set of items x ∈ �with real weightswx ∈ R and real values ux ∈ R.
The resulting optimisation problem is:

Maximise
∑

x∈� ux I(x ∈ A) subject to
∑

x∈� wx I(x ∈ A) ≤ W .
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With some simple algebra we can easily confirm that the optimisation problem for a
canonical smallest covering region is an instance of this optimisation problem using
a “knapsack” with weight capacity W = R(α), item weights wx = 1 and item values
ux = f (x). This problem is the “unit weight” version of the 0–1 knapsack problem,
but with two differences. Firstly, we have a countable number of items (which may
be infinite) rather than a finite number of items. Secondly, the weight capacity of the
knapsack is not a value that is known in advance— it is itself determined as the solution
to the primal optimisation problem, which means that this variant of the problem is a
kind of “inverse” knapsack problem.

As with the primal optimisation problem, our dual optimisation problem can lead to
multiple canonical solutions. This occurs when there are several equiprobable values
in the distribution and we need to include some —but not all— of those values in
the region giving a canonical solution. This is illustrated in Fig. 2 for the binomial
distribution with size n = 10 and probability θ = 0.50. In this example, the two
canonical solutions occur by swapping out one of two equiprobable values that occur
as the lowest probability values in the region, only one of which is required to meet
the minimum coverage probability. Although we defer formal proof until later, we can
see from Figs. 1, 2 that the canonical smallest covering regions are all “highest density
regions”, in the sense that elements outside the region have probability no greater than

Fig. 2 Covering regions for the Bin(10, 0.50) distribution. (The plots at the top show two canonical solutions
to the 90% smallest coverage region problem; the plots at the bottom show two regions with inade-
quate/excess coverage probability)
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elements in the region. Note that this is a “weak” highest density condition, insofar
as it allows values outside the region to be equiprobable to values in the region. It
is therefore a different conception of a “highest density region” than is obtained by
taking the set of all values that meet some minimum density cut-off.

In order to identify all the canonical smallest covering regions (i.e., all solutions
to the dual optimisation problem set out above), it is sufficient to compute a single
solution, and identify the set of all values in the support that are equiprobable with the
least probable value in the canonical smallest covering region (which we will call the
“variation set”). This allows us to form other solutions by “swapping out” elements
in the variation set in such a way that a fixed number of elements are included. In the
example shown in Fig. 2, it would be sufficient to find the solution shown in the top-left
plot (which includes x = 2 but excludes x = 8), but also identify the variation set
composed of the elements x = 2 and x = 8. The latter solution can then be obtained
by swapping the points in the variation set to yield the region shown in the top-right
of the figure. In general, if there are n values in the variation set and r of these values
must be included to obtain the minimum coverage probability of the region then there
will be

( n
r

)
solutions to the optimisation problem. All of these solutions have the same

coverage probability and the same size, so none is statistically more favourable than
another. Indeed, statistical prediction problems usually require only a single solution
to the problem, and so it is usual that we would not need to compute all solutions.

3 One-at-a-time iterativemethod for computing CSCR/HDR

We have already noted that the optimisation problem for the discrete CSCR/HDR is a
variant of the classical “0–1 knapsack problem”, which is a weak NP-hard problem.
This optimisation problem has several variants in the literature and a number of exact
and approximate solution methods (for an overview, see Martello and Toth 1990;
Pisinger 2005). As a prelude to our discussion of the present optimisation of interest,
we begin with a brief excursion into the general mathematical methods that have been
used to solve that problem. There are a range of well-known algorithms for computing
the optimising set in the classical problem.

Markov Chain Monte Carlo (MCMC) methods can be used to give approximate
solutions for the knapsack problem. One approach to the optimisation is the use
of “simulated annealing” which is a stochastic optimisation method similar to the
Metropolis–Hastings MCMC method. The simulated annealing method explores the
surface of the objective function stochastically using the Metropolis acceptance-
rejection method. The algorithm terminates when the average change in the objective
function is small, when it rejects a large number of consecutive points, or at other
stopping conditions such as a maximum number of total iterations or running time.
The simulated annealing method can be “parallelised” by producing parallel runs of
candidate points and exchanging solution information either at all or occasional iter-
ations. Regular and parallel simulated annealing in the 0–1 knapsack problem have
been examined in a number of papers, and has been subjected to comparative analysis
with other methods (see e.g., Lin et al. 1993; Sonuc et al. 2016; de Almeida Dantas
and Cáceres 2018; Moradi et al. 2021).
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Another class of methods are “genetic” or “evolutionary” algorithms that solve
optimisation problems using a process that mimics evolutionary “natural selection”
processes in biology (Goldberg 1998). These algorithms give a stochastic process
converging to the solution of an optimisation problem by simulating an evolution
where each iteration in the search space is treated as a “generation” that evolves using
either a fitness function or some other evolutionary specification. The broad nature of
this method leads to a variety of specific algorithms. Genetic algorithms have been
applied to a range of knapsack problems (see e.g., Khuri et al. 1994; Chu and Beasley
1998; Gupta and Garg 2009; Changdar et al. 2015; Rezoug et al. 2018; Ali et al. 2021).

The stochastic nature of these algorithms means they are not guaranteed to produce
an exact solution, but the discrete search space for the 0–1 knapsack problem has a
non-zero probability of an exact solution.3 Dynamic programming methods can be
used to solve the 0–1 knapsack problem, by breaking the optimisation problem down
into recursive steps involving simpler problems (usually with heavier constraints).
Dynamic programming has been used to solve the 0–1 knapsack problem (see e.g.,
Martello et al. 1999). Other exact algorithms are available for the classical version of
the problem (Martello et al. 2000). Unfortunately, existing methods of this kind are
only available when the weight capacity is known in advance, and the set of items is
finite, which is not the case in our problem.

Before presenting our method to compute a solution for the canonical smallest
covering region, we will show two useful characterisations of this region. Theorem 1
shows that a canonical smallest covering region can be characterised by the minimum
coverage requirement plus “moderation” and “highest density” conditions. It is notable
that the highest density condition is a weaker condition than taking all points greater
than or equal to some given density cut-off. Instead, it requires only that the smallest
density of values in the region is at least as large as the largest density of values outside
the region. This allows equiprobable values to occur on the margin, with some of those
values included in the canonical smallest covering region and others excluded from the
region. The moderation condition requires the removal of any points from the region
unless this puts its total probability below the minimum coverage probability.

Theorem 1 Suppose that P is a discrete probability measure concentrated on a count-
able set �. Then, subject to an extremely minor exception set out in the footnote,4 a set
H is a canonical smallest covering region (CSCR) with minimum coverage probability
1 − α if and only if the following conditions are satisfied:

(Minimum coverage) P(H) ≥ 1 − α,
(Moderation) P(J ) < 1 − α for all J ⊂ H,

(Highest density) ∇(H) ≥ �(� − H).

3 The reader may naturally ask, what is the probability of an exact solution from the algorithm? Unfortu-
nately, computing this probability is even harder than computing the solution to the knapsack problem, so
it is not useful to enquire into this probability in the present context.
4 The exception occurs in the case where α = 0 (i.e., a 100% covering region) where the support of the
distribution is a canonical smallest covering region. If the support of the distribution is countably infinite
then any countable superset of the support is also “of the same size” and is therefore also a canonical
smallest covering region, even if it is a strict superset that does not obey the moderation condition.
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Theorem 2 gives an alternative characterisation of the highest density condition that
is useful for computational purposes. The theorem shows that this condition is satisfied
if we can find a “search set” that satisfies the inner and outer boundedness conditions.
In practice we need the search set to be finite, so that it is possible to confirm the
two boundedness conditions with a finite number of computations. In cases where the
sample space� is (countably) infinite we check the highest density condition by using
a finite search set S and checking inner and outer boundedness to establish the highest
density condition. This is the basis for our algorithm later in the paper.

Theorem 2 Suppose that P is a discrete probability measure concentrated on a count-
able set �. Then a set H satisfies the highest density condition in Theorem 1 if and
only if there exists a set H ⊆ S ⊆ � (called the “search set”) such that the following
conditions are satisfied:

(Inner-boundedness) ∇(H) ≥ �(S − H),
(Outer-boundedness) 1 − P(S) ≤ ∇(H).

In the case where ∇(H) > 0 there exists a finite search set Ssatisfying these
conditions.

We are now in a position to present an iterative computational method for finding
a canonical smallest covering region. We consider the elements in a given sequence
� = {ω1, ω2, ω3, . . . } and iteratively compute a “candidate region” over each search
set Sk = {ω1, . . . , ωk}, with the value k increasing by one unit each time we iterate.
At each iteration the candidate region is computed in a way that ensures that it meets
the coverage, moderation, and inner-boundedness conditions for the current search
set. The iterations continue over the sequence until the outer-boundedness condition
is satisfied, and at this point the algorithm terminates and the candidate region is
a canonical smallest covering region. For any value α > 0 (i.e., for any coverage
probability less than one), the algorithm will terminate in a finite number of iterations.
The number of iterations required depends on the sequence used—since the algorithm
terminates upon satisfaction of the outer-boundedness condition, it will tend to run
faster if this sequence runs through high-probability values earlier than low-probability
values.

Since this algorithm iteratively forms a canonical smallest covering region from
the first k elements, the first iterations add elements to the candidate region with-
out displacing existing elements. This occurs up until the point where the candidate
region has a total probability that is above the minimum coverage probability. After
this point, addition of any new point to the candidate region must displace at least
one existing element. Since the initial iterations add elements without displacing any
existing elements, it is efficient to start the algorithm by first computing the smallest
value K such that

∑K
i=1 f (ωi ) ≥ 1 − α. We begin the algorithm with the baseline

search set SK ≡ {ω1, . . . , ωk} and with all elements included in the candidate region;
later iterations then proceed from this point by considering one new element at a
time. Before proceeding to the pseudo-code for our algorithm, we briefly describe the
representation and updating of the “candidate region” at each iteration. For ordering
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purposes, we have found it best to represent this object as a vector composed of com-
plex values ωi + √−1 • f (ωi ) ∈ C. For a candidate region with r elements, we use
a complex vector CANDIDATE of length r , with real parts containing the elements in
the region and imaginary parts containing their probabilities. Elements are arranged
in descending probability order (i.e., descending order on the imaginary part), so the
lowest-probability elements occur at the end of the complex vector. The vector begins
with the first K elements included (which is also the search set), which means that the
coverage, moderation and inner-boundedness conditions all hold.

Our algorithm takes an input cover.prob giving the minimum coverage proba-
bility for the smallest covering region. At each iterationwe update the candidate region
CANDIDATE and also keep track of the smallest probability of the elements in this
region (MINPROB), the probability of the new element in the search set (NEWPROB),
and the total probability of all elements that are not in the search set (OUTPROB). Each
iteration adds one new element to the search set and we update the candidate region
and other values by the following process.

• Step 1: Compute NEWPROB by applying the density function to the new element.
• Step 2: Update the value OUTPROB (by subtracting NEWPROB from its existing
value)

• Step 3: If NEWPROB > MINPROB then the new element has a higher probabil-
ity than the lowest-probability element in the candidate region. In this case the
new element is added to CANDIDATE in the appropriate position, displacing low-
probability elements from the end of this vector until the moderation requirement
is met. This ensures that the coverage, moderation, and inner-boundedness require-
ments remain satisfied. We then update the value MINPROB from the updated
CANDIDATE vector.

• Step 4: Check the outer-boundedness condition (OUTPROB ≤ MINPROB). If this
condition is satisfied then the algorithm terminates; otherwisewe start a new iteration
that considers a new element in the search set.

Algorithm 1 below shows our method in pseudo-code. This algorithm takes a prob-
ability mass function f and the minimum coverage probability cover.prob and
computes a canonical smallest covering region, presented in vector form. The proba-
bility mass function is assumed to be defined over an arbitrary countable set �, and we
let E be a function defining a sequence over this set (i.e., a bijective function mapping
the positive integers to the set �). (We allow the function E to be given as an optional
input to our algorithm, but with a default if this is not specified.) Steps 1–3 above
occur in the while loop and the loop condition constitutes the check in Step 4. The
output is the vector of values in the CSCR.
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The above algorithmwill successfully compute a canonical smallest covering region
for any discrete distribution defined over the input set �. So long as the coverage prob-
ability is less than one, the algorithmwill always terminate in a finite number of steps.5

This gives us an “in principle” guarantee of feasibility of the algorithm, subject to com-
putational power/memory. The efficiency of the algorithm depends primarily on how
well the sequence function E travels through the space of the distribution—so long
as this sequence function covers the highest probability elements of the distribution
early, and then goes into the tails later, the algorithm will tend to compute the smallest

5 For the special case where the coverage probability is one, the smallest covering region is the support of
the distribution, and there is no algorithm that can compute this in a finite number of steps for an arbitrary
distribution. For this reason, we recommend that the algorithm should implement this as a special case. We
recommend that the function should return the entire set � in this case, and accompany this output with a
warning message alerting the user that the returned region might not be the smallest covering region.
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covering region within a feasible number of operations. In practice, the discrete distri-
butions in common use are concentrated on the integers, and so the sequence function
E will be a bijection from the set of positive integers N to the set of all integers Z.
Moreover, if the support of the distribution is bounded, it is common that the user
will know the bounds, and can incorporate this information into the chosen sequence
function.

In Algorithm 2 we give a function that constructs a simple sequence function E for
a discrete distribution on the integers, with an allowance for the user to specify bounds
on the support. If the support is bounded from below then the sequence function starts
at the lower bound and travels upward. If the support is bounded from above but not
below then the sequence function starts at the upper bound and travels downward. If
the support is unbounded then the sequence function starts at zero and travels outward
in both directions in an oscillating fashion. This sequence function tends to perform
reasonablywell formost discrete distributions—themain exceptions occur for discrete
distributions with unbounded support where the main “mass” of the distribution is far
from zero.

In practice, Algorithm 2 can be subsumed into the first part of Algorithm 1 (where
the sequence function is set) so that there is a default behaviour set for the sequence
function in the absence of a user input. In this caseAlgorithm1 takes the optional inputs
supp.min and supp.min and these are used to determine the default behaviour of
E. For most discrete distributions in statistical programming languages the user will
have an available quantile function (in addition to the density function) and this can
often be used to find bounds on the support. For example, in R we set supp.min =
Q(0) and supp.max = Q(1) where Q is the quantile function for the distribution
(and this also works fine when the bounds are infinite). This restricts the search to an
interval that contains the support and which is bounded in some cases, making our
search faster.
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The above algorithms give a basic method for computation of the smallest covering
region. It is possible to tweak the algorithms to add some additional user-friendly
features if desired. For example, once a canonical smallest covering region has been
computed, it is simple to add an additional step that searches over the finite search
set to find all the elements in the validation set (i.e., all elements with NEWPROB=
MINPROB), and this latter set can be included as part of the output to allow all canonical
smallest covering regions to be obtained. It is also possible to program the algorithm
to go one step further than this, and output the list of all the canonical smallest cov-
ering regions by substituting elements in and out of the validation set over all

( n
r

)

combinations. This is unlikely to be necessary in practice, since statistical prediction
problems generally require only one representative solution, rather than a list of all
solutions.

4 Implementation in R and comparison to other packages

The algorithm in this paper has been programmed in R (R Foundation 2019) as the
function HDR.discrete in the stat.extend package (O’Neill and Fultz 2020).
This package computes canonical smallest covering regions for a range of probability
distributions, including distributions in baseR and some extension packages. To accord
with common terminology, the package calls the output a HDR although it is actually
a CSCR, and only the weak highest density condition is required for the region;
hereafter, we will call it a HDR to accord with this terminology. (Other literature on
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1242 B. O’Neill

Table 1 Inputs for the HDR.discrete function

Input Type

cover.prob The coverage probability—real value between zero and one

f The density function for the distribution

supp.min = -Inf
supp.max = + Inf

The bounds on the support of the distribution—real values
Default values impose no restriction on bounds

E = NULL The sequence function—a bijective function from the set of positive integers to
the set of all integers (or some subset of the integers that covers the support).
Default mapping covers all the support (for integers up to the maximum value
representable in R)

distribution The name of the distribution—character string

this topic does not discuss the concept of a CSCR at all, so this is a distinction that
is not generally considered in these problems. We use the concept here to obtain the
smallest sized set with a stipulated minimum coverage probability.)

The stat.extend package includes a range of functions of the form HDR.xxxx
where the suffix refers either to a density shape (e.g., monotone, unimodal,
bimodal, etc.) or a distributional family (e.g., pois, binom, hyper, etc.). The
HDR.discrete function is a general optimisation function used in cases where
we have a discrete distribution with known density f but with no known structural
properties that would assist the optimisation. The inputs for the function are shown in
Table 1 below, and the output of the function is a ’hdr’ object containing the highest
density region and some information about the optimisation. (This object type has a
special user-friendly print method in the package.) All of the inputs appear as inputs
in Algorithms 1–2, except for the ’distribution’ input, which is used to give a
description of the HDR in the output of the function.

In the code below we show an example using this function to compute the HDR
for a discrete distribution composed of a mixture of Poisson distributions. (Our code
is shown in black and the output is shown in blue.) This distribution is bimodal and
has countably infinite support. We program this distribution in standard syntax as
the poismix distribution and we use the HDR.discrete function to compute
the HDR. In the code shown we specify the minimum coverage probability with
cover.prob, the minimum of the support with supp.min, and we use the default
mapping over the support for the computation. We can also see that the description in
the distribution input is used in the output to describe the HDR.
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Fig. 3 The 90% HDR for a
bimodal Poisson mixture
distribution. (Computed using
the HDR.discrete function
in the stat.extend package;
H = {7, . . . , 17} ∪ {21, . . . , 47}
with actual coverage probability
P(H) = 0.9063)

The output from the HDR.discrete function gives the HDR in a user-friendly
format, but we can also use the reformat function to reformat it as a table showing
the intervals in the HDR. In this case the HDR is composed of the union of two
intervals, due to the bimodality of the distribution. The HDR is illustrated in Fig. 3
above and the author has confirmed that it is an accurate computation that meets all
the properties of a CSCR.

Multimodal distributions and distributions with infinite support both present a
challenge for computation methods for HDRs. We can see from the output and the
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accompanying plot that our method implemented in the stat.extend package
successfully computes the HDR despite the multimodality and infinite support of the
distribution used in our example. Other R packages can produce HDRs, but unfortu-
nately none of these is able to correctly compute this region for an arbitrary discrete
distribution. At the time of writing, the present author is aware of four other R pack-
ages that compute HDRs for known distributions: the hdrcde package (Hyndman,
Einbeck and Wand 2018), the pdqr package (Chasnovski 2019), the HDInterval
package (Meredith andKruschke 2019), and themclust package (Fraley et al. 2020).
The package and function descriptions in the documentation for these packages do
not explicitly restrict their scope to continuous distributions, but the coding suggests
that they were designed with continuous distributions in mind. In Table 2 we show the

Table 2 Descriptions of HDR functions in R packages (taken from https://rdrr.io/)

R Package Function Description

stat.extend HDR.discrete This function computes the highest density region (HDR) with
support on the integers. The distribution can be any discrete
distribution concentrated on the integers — it does not have to have
any shape properties for the function to work. The user must give
the density function ‘f’ for the distribution
To improve the search properties of the algorithm, the user can also
give lower and upper bounds for the support of the distribution if
these are available
(Warning: If the user specifies incorrect bounds on the support, that
do not contain the full support of the distribution, then the algorithm
may continue to search without end, in which case the function will
not terminate. Similarly, if the user specifies a sequence function E
that is not a proper bijection to the integers then the algorithm may
continue to search without end, in which case the function will not
terminate.)
The output of the function is a ‘hdr’ object containing the HDR for
the discrete distribution

HDInterval hdi Calculate the highest density interval (HDI) for a probability
distribution for a given probability mass. This is often applied to a
Bayesian posterior distribution and is then termed "highest posterior
density interval", but can be applied to any distribution, including
priors
The function is an S3 generic, with methods for a range of input
objects

pdqr summ_hdr summ_hdr() computes a Highest Density Region (HDR) of some
pdqr-function for a supplied level: a union of (closed) intervals total
probability of which is not less than level and probability/density at
any point inside it is bigger than some threshold (which should be
maximum one with a property of HDR having total probability not
less than level). This also represents a set of intervals with the lowest
total width among all sets with total probability not less than a level

hdrcde hdr Calculates highest density regions in one dimension

mclust hdrlevels Compute the levels of Highest Density Regions (HDRs) for any
density and probability levels
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descriptions of each of the HDR functions we will examine in our comparative analy-
sis; we note that none of the descriptions restrict the scope to continuous distributions.
These packages can be applied to discrete distributions (in some cases using simu-
lation or manual manipulations) but it is unclear to the present author whether they
were designed with the latter purpose in mind. In any case, since these are presently
the only other R packages containing functions for HDRs, it is useful to see whether
or not they can handle discrete distributions adequately. This will provide users with
information on performance for discrete distributions.

In Table 3 we illustrate the functions in these packages using the Poisson mixture
example (full code available in the supplementary materials). We compute the HDR
using each available function/method; further details are given below. In cases where
simulation is needed, we have had to make an applied judgment about the number of
simulations to use, and so higher/lower accuracy could be obtained by using more/less

Table 3 Computed 90% HDRs for the Poisson mixture distribution (shown in Fig. 3)

R Package Function and method Computed region Accurate?

stat.extend HDR.discrete 7 … 17
21 … 47

Yes

HDInterval hdi
(using quantile function)

8 … 46 No

HDInterval hdi
(using simulated data*)

6.82334 … 17.88118
21.12481 … 47.51618

No**

HDInterval hdi(manual computation using
estimated density cut-off)

7 … 17
22 … 47

No

pdqr summ_hdr 7 … 17
21 … 47

Yes

hdrcde hdr
(using density list)

6.75725 … 17.81372
21.00000 … 47.59820

Maybe**

hdrcde hdr
(using simulated data*)

6.72782 … 17.86172
21.00000 … 47.50582

Maybe**

hdrcde hdr
(manual computation using
estimated density cut-off)

7 … 17
21 … 47

Yes

mclust hdrlevels
(manual computation using
estimated density cut-off)

7 … 17
21 … 47

Yes

* This calculation used 106 simulations from the true probability distribution
** In these cases the region is estimated from a continuous density, so it is sensible to convert to give
integer boundaries. There are two plausible methods of rounding that one could employ here: either round
all boundaries to the nearest interval; or round all boundaries “inward” to include only the integers that are
inside the real intervals
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simulations than we have used.6 In cases where the output is a continuous HDR we
round to discrete boundaries.

As can be seen from Table 3, none of the other packages (other than
stat.extend) correctly computeHDRs for an arbitrary discrete distribution, but the
pdqr package comes close. Some caveats on the comparisons in our table are appro-
priate. In fairness to the other packages, it is not clear whether they were designed to
deal with discrete distributions; most of the functions appear to have been designed to
computeHDRs for continuous distributions, so herewe are shoe-horning someof these
functions into an alternative. Moreover, the simulation method in the HDInterval
and hdrcde packages could compute the desired HDR more accurately if we were
to use a larger number of simulations, so our results here are heavily dependent on
our own choice of the number of simulations. We think we have used a reasonable
number of simulations in our analysis, so the inaccuracy of the results shown in Table
3 still constitutes a drawback of the methods in those other packages. Moreover, as
will be seen in the descriptions below, it is possible to “break” these algorithms by
using more difficult discrete distribution.

Computation in the HDInterval package The hdi function in this package
allows a range of inputs, including the quantile function of the distribution or a sim-
ulated density function. Unfortunately, the function can only accommodate “split”
regions when the input is a density function taken from simulated data.7 Consequently,
one can either obtain an optimisation that uses the true quantile function but does not
allow split intervals (i.e., optimises only over single connected intervals), or one can
obtain an approximate HDR that allows split intervals using the density of simulated
values. The former method uses discrete calculus to optimise a single connected inter-
val, while the latter method employs a grid approximation which estimates the vertical
density cut-off for the HDR and applies this to the grid of values. Alternatively, one
can use the hdi function to estimate the density cut-off and then manually compute
the values that have a density at least as large as this mass (though this latter method
is not automated).

Computation in the pdqrpackage The summ_hdr function in this package allows
the user to compute the HDR for an input distribution in the custom format required
by the package. The distribution format in the package records discrete distributions
as objects where the mass function is recorded over a finite range (rather than as
a function), with this finite range set to encapsulate most of the probability mass
of the distribution. In the present case the HDR falls within the recorded range, so
the function correctly computes the HDR. However, it is possible to “break” the
limitations of the distribution object by setting a high coverage probability that requires
the search to go into the tails of the distribution. Going near to the extreme end of
the range gives inaccurate results for the HDR and going beyond the range limits of
the distribution object gives highly inaccurate results. In the special case where the

6 Both the HDInterval and hdrcde packages could compute the HDR more accurately if we use the
simulation method and use a larger number of simulations. We think we have used a reasonable number of
simulations in our analysis, so the inaccuracy of the result still constitutes a drawback of the methods in
those packages.
7 The documentation for the package warns the user of this restriction. In the case where the input is a
simulated density the user can set allowSplit = TRUE to allow splits in the computed region.

123



Smallest covering regions and highest density regions for discrete… 1247

coverage probability is set equal to one the package gives highly inaccurate results for
the HDR computation.

Computation in the hdrcdepackage The hdr function in this package uses a grid
method which estimates the vertical density cut-off for the HDR and applies this to a
grid of values to give an approximate HDR. The function can either take a set of data
or an input density set as a list showing a finite number of values and their density.
For a discrete distribution this means that you can give the density over most but not
all of the distribution. In either case the function gives an approximate HDR based on
the grid method. Alternatively, one can use the hdr function to estimate the density
cut-off and then manually compute the values that have a density at least as large as
this mass (though this latter method is not automated). This package also exhibits
some undesirable behaviour when the coverage probability is increased to high levels
that go far into the tails of a discrete distribution. In these extremes, increasing the
coverage probability can actually reduce the computed region, owing to idiosyncrasies
in the grid approximation to the true distribution.

Computation via estimated density cut-offs in various packages Several of the pack-
ages examined here compute estimates of the density cut-off for the HDR, and this
can be used to manually compute a discrete HDR over a finite section of the discrete
distribution. This is done in the HDInterval package, the hdrcde package and the
mclust package. (Note that the last of these packages does not computeHDRs; it only
computes the estimated density cut-off for a HDR.) This method actually performs
quite well in this example; the hdrcde and mclust packages lead to an estimated
density cut-off that is within the correct range to give an accurate HDR for the discrete
distribution (in our computations both of these packages gave the density cut-off equal
to the smallest density of the true HDR). This allows the user to compute the correct
HDR using manual derivation from the estimated density cut-off. One drawback here
is that the method is not automated, and it requires the user to manually compare the
mass at a pre-specified set of values to the estimated cut-off value.

This particular method works on the current example, but unfortunately it does not
always work in these packages. One way it can fail is when we have a distribution that
has a spike in its density that is far out in the tails, and this spike is not detected within
the finite range of values examined by the algorithms used in the above packages. In
the method we have expounded in this paper, such cases are handled by ensuring that
our search set meets the outer-boundedness condition, which ensure that there cannot
be a density spike in the tails of sufficiently large magnitude to affect the HDR. The
methods used in the above packages search over a wide range, but they do not always
continue their search until this condition is met. Consequently, it is possible to “break”
any of the packages by using a pathological discrete distribution that has a hidden spike
so far out in the tails that it is out of the search range. The HDR.discrete function
in the stat.extend package does not suffer from this deficiency, and will always
continue searching until the true HDR is found. (Its only search limitation in this
respect is imposed by the numerical limits of R.)

Other packages for computing HDRs give approximate outputs for discrete distri-
butions, but these do not replicate the exact result that is computed by the method
expounded in this paper. Unlike the stat.extend package, the other packages
examined here accommodate highly general distribution inputs, so it is perhaps not
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surprising that they do not exactly compute HDRs for discrete distributions. We has-
ten to stress that these other R packages are highly sophisticated in their ability to
accommodate a wide range of distributions, and so the lack of accuracy in the present
case is a trade-off for a high level of general applicability to a wide range of distri-
bution inputs. Nevertheless, the present analysis shows that there is a useful “gap” in
existing statistical software that can be filled by the computation method we describe
in this paper. Our method rapidly computes the exact HDR (what we have described
as a canonical smallest covering region in the initial sections) and it does this for any
discrete distribution, including in cases with multimodality and infinite support.

5 Conclusion and future work

We hope that the present algorithm and its implementation in the stat.extend
package will assist users in situations where they wish to compute an exact HDR from
a difficult discrete distribution. Computation of HDRs for discrete distributions has
been a problem that has not received much attention in the statistical literature, and
we hope that this paper assists in giving some underpinning theoretical results and a
useful computational method.

The above analysis is for a probability distribution with known mass function con-
centrated on a known countable set. A natural extension is to consider the case where
we are dealing with an unknown distribution concentrated on a known countable set.
In this case, an estimated HDR can be obtained by a simple two-part process, first
estimating the discrete probability distribution, and then applying our algorithm to the
estimated probability mass function to produce the estimated HDR.

When forming an estimated HDR by this process, it is desirable to use an estima-
tor for the mass function that has a reasonable degree of “smoothness” to avoid an
excessively “spikey” estimate of the HDR for small samples. In particular, we recom-
mend that estimation with the empirical distribution be avoided, since the resulting
HDR is highly volatile and “spikey” for small to moderate sample sizes. Better results
are obtained using of discrete kernel estimators (see e.g., Aitken 1983; Rajagopalan
and Lall 1995; Kokonendji and Kiessé 2011; Kiessé 2017; Racine et al. 2020), which
smooth the estimated mass function in various ways, yielding non-zero estimated
mass values for outcomes that are not in the sample. Using a mass function estimator
that has a degree of “smoothing” gives a resulting estimator for the HDR that is less
volatile, and more likely to yield an estimate consisting of roughly the same number of
intervals as the true HDR. This is particularly so in small to moderate samples where
the data may be sparse over the support.

Nonparametric estimation of HDRs for continuous distributions has been stud-
ied extensively in both univariate and multivariate settings (see e.g., Hartigan 1987;
Polonik 1995; Tsybakov 1997; Rigollet and Vert 2009; Samworth andWand 2010; Lei
et al. 2013). This has included analysis of convergence rates, bandwidth selection, and
optimal choice of plug-in estimators (Rigollet and Vert 2009; Samworth and Wand
2010; Doss and Weng 2018; Baíllo et al. 2001). Detailed examination of appropriate
estimators for this task in a discrete setting is beyond the scope of the present paper and
the present incarnation of the stat.extend package. As a topic for future work
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it would be useful to examine the convergence properties of discrete HDR estima-
tors formed by applying the algorithm in the present paper to various discrete kernel
estimators for discrete mass functions.

Aside from the tricky case of a HDR with coverage probability one (where there
is no algorithm that can guarantee finding the correct support of the distribution if it
is not already known), our algorithm is guaranteed to compute the HDR accurately,
subject only to limitations in the computational power of the machine. In particular,
the outer-boundedness condition in our analysis ensures that we will always be able to
detect spikes in the mass function occurring out in the tails of the distribution. This is
a valuable theoretical advance over existing HDR algorithms, which can be “broken”
by these difficult cases.
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Appendix: Proof of Theorems

In this appendix we set out proofs of the theorems in the main body of the paper and
also some associated lemmata.

Lemma 1 Suppose that P is a discrete probability measure concentrated on a count-
able set � and consider a set H that satisfies the following conditions:

(Minimum coverage) P(H) ≥ 1 − α,
(Moderation) P(J ) < 1 − α for all J ⊂ H,

(Highest density) ∇(H) ≥ �(� − H).

For any set A with |A| < |H| we have P(A) < 1 − α.

Proof of Lemma1: Since |A| < |H| it is possible to choose a strict subsetH∗ ⊂ H−A
with |H∗| = |A − H|. (Note that if A ⊂ H then H∗ is the empty set, but this does
not invalidate our working.) We will show that P(A) < 1 − α by showing that if we
“swap out” the points in A − H with the points in H∗ then this cannot increase the
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probability of the set. First, using the highest density condition onH, and the fact that
H∗ ⊆ H, we have:

f (x) ≤ f (x ′) for all x ∈ A − H and x ′ ∈ H*.

Since |H∗| = |A − H| we then have:

P(A) =
∑

x∈A
f (x) =

∑

x∈A∩H
f (x) +

∑

x∈A−H
f (x)

≤
∑

x∈A∩H
f (x) +

∑

x∈H∗
f (x)

=
∑

x∈A∩H∪H∗
f (x)

= P(A ∩ H ∪ H∗).

Now, noting that A ∩ H and H∗ are disjoint sets and |A| < |H|, we also have:

|A ∩ H ∪ H∗| = |A ∩ H| + |H∗| = |A ∩ H| + |A − H| = |A| < |H|

Since A ∩ H and H∗ are both subsets of H this implies that A ∩ H ∪ H∗ ⊂
H (i.e., this set is a strict subset of H). The moderation condition gives P(A) ≤
P(A ∩ H ∪ H∗) < 1 − α which establishes the result.

Lemma 2: Suppose that P is a discrete probability measure concentrated on a count-
able set � and consider a set H that satisfies the following condition:

(Highest density) ∇(H) ≥ �(� − H).

For any set A with |A| ≤ |H| we have P(A) ≤ P(H).

Proof of Lemma 2: Consider an arbitrary set A with |A| ≤ |H|. Using the highest
density condition on H we have:

f (x) ≤ f (x ′) for all x ∈ A − H and x ′ ∈ H − A.

Since |A| ≤ |H| we have |A − H| ≤ |H − A| which then gives:

P(A) =
∑

x∈A
f (x) =

∑

x∈A∩H
f (x) +

∑

x∈A−H
f (x)

≤
∑

x∈A∩H
f (x) +

∑

x∈H−A
f (x)

=
∑

x∈H
f (x)

= P(H),
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which was to be shown.

Proof of Theorem 1: To establish the equivalence asserted in the theorem we must
establish that any set meeting the conditions of the theorem is a canonical smallest
covering region (⇒) and any canonical smallest covering region meets the conditions
of the theorem (⇐).

(⇒) Consider an arbitrary set H that satisfies the three conditions shown in the
theorem. Since the coverage condition is already present in the conditions, we have
H ∈ C(α). Application ofLemma1 shows thatA /∈ C(α) for any setAwith |A| < |H|,
which means that:

|H| = min
S∈C(α)

|S| = R(α).

This ensures that our region meets the constraint in the optimisation problem defin-
ing the canonical smallest covering region. Application of Lemma 2 then shows that
P(A) ≤ P(H) for any setAwith |A| ≤ |H| (i.e., anyA ∈ C(α)). SoH has maximum
probability among sets meeting the optimisation constraint, which shows that it is a
solution to the optimisation problem defining a canonical smallest covering region.

(⇐) Consider a canonical smallest covering region H. To simplify the proof, we
will first dispose of the two extreme cases. In the case where α = 0 the class C(α)

contains all supersets of the support of the distribution. The support of the distribution
is a canonical smallest covering region; if this is countably infinite then any countable
superset is also a canonical smallest covering region. Any set of this kind clearly obeys
the coverage requirement and the highest density requirement (since all outside ele-
ment have zero probability), but the latter does not obey the moderation requirement.8

In the case where α = 1 the class C(α) contains all subsets of the sample space.
The empty set is the only canonical smallest covering region. This set trivially obeys
each condition in the theorem (the highest density condition being satisfied by the
convention that the infimum over the empty set is infinite).

Now that we have disposed of these extreme cases, we will consider the more
common case where 0 < α < 1. Since H is assumed to be a canonical smallest
covering region, it satisfies the optimisation requirement:

P(H) = max
|S|≤R(α)

P(S).

Sinceα > 0weknow that there exists afinite setCwithP(C) ≥ 1−α and so the class
C(α) has at least one member that is finite. In particular, since R(α) = minS∈C(α)|S|
there must exist a finite set D with |D| = R(α) < ∞ and P(D) ≥ 1 − α. Thus, we
have:

P(H) = max
|S|≤R(α)

P(S) ≥ P(D) ≥ 1 − α.

8 Here is where the minor exception in our theorem occurs. If the support is countably infinite then any
countable superset of the support is also “of the same size” and yet it may be a strict superset of the support.
This means that the superset is a canonical smallest covering region even though it does not obey the
moderation condition. Of course, it is possible to exclude “solutions” of this kind by definition if preferred
(i.e., set the support of the distribution as the only canonical smallest covering region in this case).
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This establishes the minimum coverage condition. Now, since |H| ≤ R(α) < ∞, it
follows that for all strict subsets J ⊂ H we have |J | < R(α) and so by the definition
of R(α)wemust haveJ /∈ C(α). Thismeans thatP(J ) < 1−α, which establishes the
moderation condition in the theorem. It remains only to establish the highest density
condition. To do this, suppose —contrary to the theorem— that ∇(H) < �(� − H).
This requires that there exist elements x ∈ H and x ′ ∈ �−H such that f (x) < f

(
x ′).

Now, construct the new region:

H′ = H − {x} + {
x ′}

This region has the same size asH but we also have:

P(H′) = P(H) − f (x) + f (x ′) > P(H)

which means that H is not a canonical smallest covering region. Since this is in
contradiction to our initial conditions, we have established by contradiction that the
highest density condition holds. This completes the proof. �

Proof of Theorem 2: To establish the equivalence asserted in the present theorem, we
need to establish that any setHmeeting the highest density condition has a search set
S meeting the inner and outer-boundedness conditions (⇒) and if there is a search
set S meeting the inner and outer-boundedness conditions then the set H meets the
highest density condition (⇐). We will establish the additional result for finiteness of
the search set when dealing with the first of these implications.

(⇒) Consider a setH meeting the three conditions shown in Theorem 1. We need
to establish that the set meets the inner and outer-boundedness conditions. To do this,
we first note that for any set S ⊆ �we have�(� − H) ≥ �(S − H) so we can apply
the highest density condition to get the inner-boundedness condition:

∇(H) ≥ �(� − H) ≥ �(S − H)

Since this holds for all S ⊆ � we can choose S = � and this ensures that the
outer-boundedness is (trivially) satisfied. Moreover, in the case where ∇(H) > 0 we
have 1−∇(H) < 1 so theremust exist a finite setH ⊆ S ⊆ �withP(S) ≥ 1−∇(H),
which gives the outer-boundedness condition for the special case mentioned at the end
of the theorem.

(⇐) Consider a search set H ⊆ S ⊆ � satisfying the conditions in the present
theorem. From the inner-boundedness condition we have ∇(H) ≥ �(S − H). From
the outer-boundedness condition we also have ∇(H) ≥ 1−P(S) = P(� − S). Since
� − H can be partitioned into the disjoint sets � − S and S − H we then have:

∇(H) ≥ max(�(� − S),�(S − H)) = �((� − S) ∪ (S − H)) = �(� − H)

This establishes the highest density condition, which completes the proof. �
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