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Abstract
We propose the class of asymmetric vector moving average (asVMA) models. The
asymmetry of these models is characterized by different MA filters applied to the
components of vectors of lagged positive and negative innovations. This allows for a
detailed investigation of the interrelationships among past model innovations of dif-
ferent sign. We derive some covariance matrix properties of an asVMA model under
the assumption of Gaussianity. Related to this, we investigate the global invertibility
condition of the proposed model. The paper also introduces a maximum likelihood
estimation procedure and a multivariate Wald-type test statistic for symmetry versus
the alternative of asymmetry. The finite-sample performance of the proposed multi-
variate test is studied by simulation. Furthermore,we devise an exploratory test statistic
based on lagged sample cross-bicovariance estimates. The estimation and testing pro-
cedures are used to uncover asymmetric effects in two US growth rates, and in three
US industrial prices.

Keywords Asymmetries · Cross-bicovariance estimates · Multivariate · Test
performance · Wald-type test statistic

1 Introduction

It is widely believed that there is an asymmetric inertia in many major economic time
series, often attributed to differences in time series dynamics in periods of business-
cycle contraction and expansion. This asymmetric behavior has been documented by,
for instance, Wecker (1981) for US industrial prices. Brännäs and De Gooijer (1994)
and Elwood (1998) find empirical evidence of asymmetry in US real GNP growth
rates. Some more recent works include Gonzalo and Martínez (2006) for US GNP
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data, and Taştan (2017) for Turkish real GNP and industrial production index series.
Further related papers are by Brännäs and de Luna (1998), Brännäs and Ohlsson
(1999), Nebeling and Salish (2017), and Sáfadi and Morettin (1998).

A common feature of the above studies is the use of univariate asymmetric moving
average (asMA) models and their variants. The dynamics of these models respond
to innovations with one of two different rules according to whether the innovation is
positive or negative, and hence induces asymmetry. Obviously, the univariate structure
of an asMAmodel offers limited information about the asymmetry in a data generating
process (DGP) because dynamic interrelationship between several variables is ignored.
This calls for a more flexible multivariate (vector) dynamic specification with similar
features as the univariate asMA model.

The purpose of the paper is to introduce and study the class of asymmetric vector
moving average (asVMA) models. The asVMA model may be viewed as an exten-
sion of the univariate asMA model proposed by Wecker (1981). Roughly speaking,
the asymmetric effect in an asVMA model is characterized by different MA filters
applied to the components of vectors of lagged positive and negative innovations.
This allows for a detailed investigation of the interrelationships among model inno-
vations of different sign. From an empirical standpoint, there are sound reasons for
using vector nonlinear models to detect asymmetries in macroeconomic time series;
see, e.g., Atanasova (2003), Keating (2000), and Weisse (1999).

The rest of the paper is organized as follows. In Sect. 2, we introduce the asVMA
model and discuss some covariance properties. Related to this, we briefly investigate
the global invertibility of the proposed model. Section 3 is on estimation and testing.
First, we describe the log-likelihood function. Next, we propose a multivariate Wald-
type test statistic for testing an asVMA against a linear vector MAmodel. We evaluate
the finite-sample performance of the proposedWald-type test statistic in aMonte Carlo
simulation study. In Sect. 4, we devise an exploratory test statistic based on lagged
sample cross-bicovariance estimates. Section 5 contains two illustrative applications.
A summary is given in Sect. 6. All proofs are relegated to an “Appendix”.

2 Asymmetric vector moving averagemodel and properties

2.1 Model

Consider an m-dimensional stochastic process Yt = (Y1t , . . . ,Ymt )
′. Let εt =

(ε1t , . . . , εmt )
′ be an m-dimensional i.i.d. white noise process with m × 1 mean vec-

tor 0m and m × m positive definite matrix �ε, independent of Yt . Assume that the
dynamic relationships in {Yt , t ∈ Z} are represented through a linear vector filter of
positive innovations ε+

t = (ε+
1t , . . . , ε

+
mt )

′ and a linear filter of negative innovations
ε−
t = (ε−

1t , . . . , ε
−
mt )

′ which satisfy, respectively,

ε+
t = (

max{0, ε1t }, . . . ,max{0, εmt }
)′ = (

I (ε1t ≥ 0)ε1t , . . . , I (εmt ≥ 0)εmt
)′
,

ε−
t = (

min{0, ε1t }, . . . ,min{0, εmt }
)′ = (

I (ε1t < 0)ε1t , . . . , I (εmt < 0)εmt
)′
,
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where I (·) denotes the indicator function. Then an m-dimensional asymmetric vector
moving average process of order (q, q), denoted by asVMA(q, q), is defined as

Yt = εt +
q∑

v=1

B+
v ε+

t−v +
q∑

v=1

B−
v ε−

t−v

= εt +
q∑

v=1

B+
v εt−v +

q∑

v=1

(
B−

v − B+
v

)
ε−
t−v, (1)

where B±
v = [b±

rs,v]mr ,s=1 (v = 1, . . . , q) are m × m parameter matrices.
We see that in (1), each component of the vector process εt is transformed by

separate MA filters and the asymmetry in {Yt , t ∈ Z} depends on the sign of the
innovations. Moreover, in (1) we assume that each component of εt has the option
of moving into one of two possible directions, above and below a fixed value zero.
Note that by introducing a suitable number of zero parameter matrices, the order q
can be different for ε+

t and ε−
t . When (B−

v − B+
v ) = 0m×m , (1) reduces to an m-

dimensional VMA(q) process in “standard form”. Also note that for m = 1, model
(1) corresponds to the univariate asMA(q) process proposed by Wecker (1981), i.e.,
Yt = εt + ∑q

v=1 b
+
v I (εt−v ≥ 0)εt−v + ∑q

v=1 b
−
v I (εt−v < 0)εt−v . For one-step

ahead forecasts of stock returns, Koutmos (1999) used a variant of this model with the
conditional mean given by an asMA(1) model and the conditional standard deviation
given by a threshold GARCH(1, 1) model. Guay and Scaillet (2003) modified the
univariate asMA(q) to allow for contemporaneous asymmetric effects.

2.2 Invertibility

Forecasting with an asVMA model is, in principle, the same as producing forecasts
from a VMA model provided the model is invertible. For each univariate component
of Yt , the empirical invertibility of (1) can be checked by Monte Carlo simulation;
see, e.g., De Gooijer and Brännäs (1995). Their approach can be easily extended to the
multivariate case. Alternatively, we can use the following global invertibility condition
(Niglio and Vitale 2013)

|λ(�+)|p|λ(�−)|1−p < 1, (2)

where �± is an mq × mq matrix defined by

�± =
(
B±
1 . . . B±

q
0(m−1)q×mq

)
.

Here, λ(·) is the maximum eigenvalue of a square matrix and p = E[I (1′
mε+

t−1 ≥ 0)]
with 1m an m × 1 vector consisting of ones.

As an illustration, consider a two-dimensional asVMA(1,1)modelwithB+
1 = −B−

1
and with the values of b±

12,1 fixed at zero. The reason for choosing this particular model
will become clear in Sect. 2.3. Using (2) with p = 1/2, we noticed that the shape of the
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Fig. 1 Scatter plot of the global
invertibility region for the pair of
parameters
(β+, β−) ≡ (b+

rr ,1, b
−
ss,1)

(r , s = 1, 2) of a
two-dimensional asVMA(1, 1)
model with B+

1 = −B−
2 and

with b±
12,1 = 0. The black solid

lines represent the condition
|β+||β−| < 1

global invertibility regions are the same for all pairs of parameters (b+
rr ,1, b

−
ss,1) (r , s =

1, 2). Figure 1 shows a graphical representation where the elements of B±
1 are taken in

the range [−4, 4] using a step-size of 0.1. It is interesting to see that the region indicates
invertibility over a wide range of parameter values. In fact, a simple approximation
to the global invertibility region is given by the condition |b+

rr ,1||b−
ss,1| < 1. This

result follows from approximating the values at the boundaries of the invertibility–
non-invertibility region by nonlinear functions of the parameter combinations.

2.3 Covariance properties

For a linear stationary vector time series process {Yt , t ∈ Z}, themean vector, variance
and cross-covariance matrices provide useful summary information on the strength
and direction between its components. Given a particular VMA model, these theo-
retical properties are well known. By contrast, explicit expressions for the mean and
covariance of a general asVMA process are more difficult to derive.

Consider as an illustrative example the following m-dimensional asVMA(1, 1)
process

Yt = εt + B+εt−1 + (B− − B+)
(
I (ε1,t−1 < 0)ε1,t−1, . . . , I (εm,t−1 < 0)εm,t−1

)′
,

(3)

where we suppressed the subscript v in B±
v . The next proposition summarizes some

properties of (3).

Proposition Let {Yt , t ∈ Z} follow the process in (3) with {εt } i.i.d.∼ N (0m,�ε). Then
the unconditional mean vector, the unconditional variance-covariance matrix, and the
unconditional lag-� cross-covariance matrix are given by, respectively,

E(Yt ) = (2π1′
m�ε1m)−1/2(B− − B+)

�ε1m,
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Var(Yt ) = �ε + 1

2

(
B−�ε

(
B−)′ + B+�ε

(
B+)′) − E(Yt )E(Y′

t ),

�(�) = [γi j (�)]mi, j=1 = Cov(Yt ,Yt−�) =
{

1
2

(
B− + B+)

)
�ε, � = 1,

0m×m, � > 1.

We see that unlike the m-dimensional VMA(1) process where E(Yt ) = 0m , the
mean vector of the asVMA(1, 1) process in (3) is a function of the parameter matri-
ces B− and B+ and is in general a nonzero vector. However, the m-dimensional
asVMA(1, 1) process like the m-dimensional VMA(1) process, has the property that
�(�) = 0m×m for � > 1. Thus, it will be hard to distinguish between both processes
on the basis of the sample estimate of �(�). Also, setting B− = −B+, it follows
from the Proposition that �(�) = 0m×m for all lags � ≥ 1. When this asymmetry
in parameter configuration occurs it is impossible to distinguish an m-dimensional
asVMA(1, 1) process from an m-dimensional Gaussian white noise process using the
lag-� cross-covariance matrix.

Following the proofs in the “Appendix”, the results in the Proposition can be
extended to asVMAprocesseswith q > 1. Then the same confusing situation occurs as
above, i.e., it is impossible to distinguish between an asVMAprocess withB−

v = −B+
v

and anm-dimensional Gaussian white noise process, based on the unconditional lag-�
cross-covariance matrix alone. In Sect. 3.2, we overcome this problem by introducing
the proposed Wald-type test statistic.

3 Estimation and testing

For ease of notation, and without loss of generality, we assume throughout this section
that the asVMAmodel order is fixed at q. In Sect. 5 we present estimation results with
some lags excluded from the fitted model specification.

3.1 Likelihood

Assume that {Yt }Tt=1 is generated by the m-dimensional asVMA(q, q) model in (1)
with a constant vector term μ = (μ1, . . . , μm)′ included on the right-hand side.
For the conditional likelihood approach, we also assume that the initial observations
Y0,Y−1, . . . ,Y1−T are fixed, and ε0 = ε−1 = · · · = ε1−T = 0m . This assumption
does not affect the asymptotic properties of the test statistic developed in Sect. 3.2. We
define the T × m matrices Y = (

(Y1 − μ), . . . , (YT − μ)
)′, and ε = (ε1, . . . , εT )′.

In addition, using the vectorizing operation “vec” which forms a vector from a matrix
by stacking the columns of the matrix one underneath the other, we define themT ×1
vectors

y = vec(Y′), e = vec(ε′)

as well as the m2 × 1 parameter vector β(i)
v = vec(B(i)

v ) (i = 1, 2; v = 1, . . . , q),

introducing the notation B(1)
v ≡ B−

v and B(2)
v ≡ B+

v . Next, we introduce the T × T
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lag matrix L with ones on the (sub)diagonal directly below the principal diagonal and
zeros elsewhere, with (Lv ⊗ Im)e = (0′

m, . . . , 0′
m, ε′

1, . . . , ε
′
T−v)

′ (v = 1, . . . , q).

Let Dv = (B(1)
v − B(2)

v ). Then the model in (1) can be written as

y = e +
q∑

v=1

(Lv ⊗ B(2)
v )e +

q∑

v=1

(QLv ⊗ Dv)e

= (
�(1) + �(2))e, (4)

where �(1) = (IT ⊗ Im) + ∑q
v=1(L

v ⊗ B(2)
v ) and �(2) = ∑q

v=1(QLv ⊗ Dv) are
two mT ×mT matrices, andQ = diag{[I (ε11 < 0), . . . , I (εm1 < 0)], . . . , [I (ε1T <

0), . . . , I (εmT < 0)]} is a T × T diagonal matrix.
Define the (2qm2 + m) × 1 parameter vector

θ = (
μ′, (β(1)

1 )′, . . . , (β(1)
q )′, (β(2)

1 )′, . . . , (β(2)
q )′

)′
. (5)

Then on the assumption of normality of the εt and since e
i.i.d.∼ N (0mT , IT ⊗ �ε), the

log-likelihood function, apart from an additive constant term, is given by

�(θ) =
T∑

t=1

�t (θ) = − T
2 log |�ε| − 1

2

∑T
t=1 ε′

t�
−1
ε εt

= − T
2 log |�ε| − 1

2e
′(IT ⊗ �−1

ε )e, (6)

where e = �−1y with � = �(1) + �(2), and assuming the inverse exist. For a
fixed parameter vector θ , it is clear that maximization of (6) with respect to �ε yields
�̂ε = ∑T

t=1 εtε
′
t/T .

For a vector autoregressive moving averagemodel with Gaussian distributed errors,
Reinsel et al. (1992, Sect. 2) derived an expression for the vector of partial derivatives
(also called gradient or score vector) of the log-likelihood function with respect to the
parameter vector. Their result carries over to an asVMA(q, q) process. In particular
the expression for the partial derivatives of the log-likelihood function �(θ) is given
by

∂�(θ)

∂θ
= −∂e′

∂θ
(IT ⊗ �−1

ε )e

= Z′(�′)−1(IT ⊗ �−1
ε )e, (7)

where Z = [(Lε ⊗ Im), . . . , (Lqε ⊗ Im)] is an mT × (2qm2 +m) matrix. In practice,
Eq. (7) needs to be solved by an iterative numerical optimization procedure.Associated
to this, it is often useful to have a convenient expression for the 2qm2 ×2qm2 Hessian
matrix H(θ) of second partial derivatives of �(θ). When T → ∞, it is well known
that H(θ) can be approximated by the outer product of the gradient vector, which is
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equivalent to

H(θ) ≈
(∂�(θ)

∂θ

)(∂�(θ)

∂θ

)′ = Z′(�′)−1(IT ⊗ �−1
ε )�−1Z. (8)

In Sect. 3.2, we use the inverse ofH(θ) as an approximation of the variance-covariance
matrix of the vector of parameter estimates.

3.2 Wald-type test statistic

Let β = (
(β(1))′, (β(2))′

)′ denote the 2qm2 × 1 vector of parameters of an m-
dimensional asVMA(q, q) process, excluding the constant termμ. It is apparent from
the notations introduced in Sect. 3.1 that the problem of testing the null hypothesis of
symmetry is equivalent to testing the restriction β(1) = β(2). A convenient test statis-
tic can be obtained as follows. Let R denote a known restriction matrix of dimension
qm2 × (2qm2 + m) such that Rθ = r with r a qm2-vector of restricted parameters.
Next, from the partition R = (R1 : R2), where R1 is a qm2 × m matrix of zeros and
R2 is a qm2 × 2qm2 matrix, the problem becomes one of testing the null hypothesis

H0 : R2β = 0qm2 versus H1 : R2β �= 0qm2 . (9)

Let θ̂ be the vector of parameter estimates of θ under H0, and H−1(̂θ) the estimate
of the corresponding covariance matrix evaluated under the null. Then the Wald-type
(W) test statistic is given by

WT = β̂
′
R′
2[RH−1(̂θ)R′]−1R2β̂, (10)

with β̂ denoting the unrestricted estimator of β. Under H0, and as T → ∞, WT
D−→

χ2
qm2 . Any consistent estimate ofH(θ)will lead to a different variant of theWald-type

test statistic.

Remark 1 The asymptotic distribution of the restricted estimator θ̂ can be established
using a central limit theorem for martingale difference sequences (see, e.g., White
2001, Ch. 5), and is given by

T 1/2(̂θ − θ)
D−→ N2qm2+m

(
0, (R′VR)−1), (11)

whereV = limT→∞ T−1
E

(−∂2�(θ)/∂r∂r′). Given (11), the asymptotic distribution
of the Wald-type test statistic (10) follows from White (2001, Thm. 4.31(ii)).

Remark 2 Let {q±
rs}mr ,s=1 denote the set of lag orders corresponding to the positive

(negative) innovations of anm-dimensional asVMAmodel. Then, testing for symmetry
implies q−

rs = q+
rs ≡ qrs . In this case the WT is asymptotically χ2 distributed with∑m

r=1
∑m

s=1 qrs degrees of freedom.
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1444 J.G. De Gooijer

Table 1 Size of the Wald-type
test statistic WT at nominal size
0.05 for DGP-1 (m = 2).
Number of simulations is 1000

δ T = 250 T = 500 T = 1000 T = 2000

−0.4 0.053 0.057 0.048 0.052

−0.2 0.054 0.042 0.041 0.053

0 0.052 0.044 0.052 0.058

0.2 0.050 0.042 0.047 0.059

0.4 0.063 0.056 0.049 0.052

3.3 Test performance ofWT

Tostudy the empirical size ofWT ,we consider a two-dimensional asVMA(1, 1) (DGP-

1) model with B± = (
δ −δ

−δ δ

)
, where δ = 0, ±0.2, ±0.4, and {εt } i.i.d.∼ N (02, I2). To

avoid the effect of any starting-up transient on the generated process, a prior part
consisting of 500 observations was discarded from each series. Based on 1000 Monte
Carlo replications, Table 1 shows the observed sizes of the Wald-type test statistic at
nominal size 0.05 for T = 250, 500, 1000 and 2000. The table reveals that WT is
generally well sized. It is also apparent that the observed sizes are about the same for
positive and negative values of δ.

In addition, we also studied the size of the Wald-type test statistic for a three-

dimensional asVMA(1,1) model with {εt } i.i.d.∼ N (03, I3) with the parameter matrix
given by DGP-4 below. Under the H0 : B+ = B− the size (5% nominal level) of the
test statistic is 0.091 (T = 500), 0.051 (T = 1000), and 0.46 (T = 2000) for δ = 0.
For |δ| ≥ 0.2, however, we noticed serious size distortions. The size improves slightly
for T = 2000. Nevertheless, caution is needed when interpreting the results of the
Wald-type test when the sample size is relatively small.

To study the empirical power ofWT , we employ threem-dimensional asVMA(1, 1)
(m = 2, 3) DGPs with the following parameter configurations,

DGP-2: B− =
(
0.5 0.2
0.4 0.3

)
, B+ =

(
0.7 −0.3

−0.2 −0.5

)
,

DGP-3: B− =
(
0.7 0
0.3 0.5

)
, B+ = −B−,

DGP-4 : B− =
⎛

⎝
δ −δ 0

−δ δ −δ

0 −δ δ

⎞

⎠ , B+ = −B−, (δ = 0.2, 0.4, 0.6, 0.8),

where in all cases {εt } i.i.d.∼ N (0m, Im). Note, all DGPs do not have a constant vector
term μ.

Table 2 shows the empirical rejection frequencies of the WT test statistic at a
5% nominal significance level. The power of the test statistic is reasonable to good,
irrespective of the dimensionm and the sample size T . This also applies to the special
case B+ = −B− (DGP-3 and DGP-4) which we discussed in Sect. 2.3.

123



Asymmetric vector moving average models: estimation and… 1445

Table 2 Empirical probability of
rejecting symmetry by the WT
test statistic when the DGP is
given by the three
m-dimensional asVMA(1, 1)
models (m = 2, 3) specified in
Sect. 3.3

DGP m δ T = 200 T = 500 T = 1000

2 2 0.796 0.863 0.879

3 0.732 0.802 0.857

4 3 0.2 0.581 0.661 0.745

0.4 0.684 0.712 0.751

0.6 0.784 0.795 0.802

0.8 0.794 0.796 0.857

Nominal size is 5% and number of simulations is 1000

Table 3 Parameter estimates and their corresponding standard deviations (in parentheses) for DGP-2 and
DGP-3

DGP-2 (m = 2) DGP-3 (m = 2)
b±
rs T = 200 T = 500 T = 1000 b±

rs T = 200 T = 500 T = 1000

0.5 0.503
(0.121)

0.500
(0.071)

0.500
(0.048)

0.7 0.705
(0.118)

0.704
(0.067)

0.701
(0.043)

0.2 0.215
(0.120)

0.205
(0.070)

0.201
(0.048)

0 0.003
(0.090)

0.003
(0.055)

0.003
(0.037)

0.4 0.412
(0.137)

0.406
(0.076)

0.403
(0.054)

0.3 0.306
(0.113)

0.302
(0.069)

0.301
(0.047)

0.3 0.306
(0.142)

0.304
(0.081)

0.301
(0.057)

0.5 0.503
(0.123)

0.496
(0.074)

0.501
(0.053)

0.7 0.715
(0.122)

0.707
(0.068)

0.702
(0.048)

−0.7 −0.717
(0.090)

−0.711
(0.052)

−0.699
(0.034)

−0.2 −0.208
(0.136)

−0.202
(0.079)

−0.201
(0.053)

0 −0.006
(0.090)

−0.005
(0.055)

−0.001
(0.038)

−0.3 −0.304
(0.114)

−0.304
(0.070)

−0.299
(0.049)

−0.3 −0.308
(0.115)

−0.306
(0.067)

−0.299
(0.047)

−0.5 −0.519
(0.147)

−0.508
(0.084)

−0.505
(0.059)

−0.5 −0.512
(0.106)

−0.503
(0.065)

−0.503
(0.042)

Number of simulations is 1000

Table 3 shows parameter estimates and their corresponding standard deviations for
DGP-2 and DGP-3. In all cases the performance of the estimation method is good,
i.e., both the bias and standard deviation of θ̂ decreases as T increases. This empirical
result is in agreement with the asymptotic result in (11).

4 Two exploratory test statistics

4.1 asMAmodel

To investigate the possible asymmetry of an asMAmodel (m = 1),Welsh and Jernigan
(1983) introduced the lag � bicovariance function, defined as γ̃ (�) = Cov(Y 2

t−�,Yt ).
They proposed testing the null hypothesisH0 : γ̃ (�) = 0. For E(Yt ) = 0, an unbiased
and consistent estimator of γ̃ (�) is given by γ̂ (�) = (T − �)−1 ∑T

t=�+1 Y
2
t−�Yt . The
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1446 J.G. De Gooijer

authors showed that under the null hypothesis the standardized bicovariance

Q(�) =
T∑

t=�+1

Y 2
t−�Yt/

√
3(T − �) (12)

has an asymptoticN (0, 1) distribution. For an asMA(1) process, Q(�) has good power
as demonstrated by Brännäs et al. (1998).

4.2 asVMAmodel

Anatural extension of γ̃ (�) is the lag � cross-bicovariance function, defined as γ̃i j (�) =
E[Y 2

i,t−�Y j,t ] (i, j = 1, . . . ,m; � ∈ N
+). However, unlike the correlation matrix

used for the identification of linear vector time series processes, the resulting cross-
bicovariance matrix is not symmetric with respect to the principal diagonal since
γ̃i j (�) �= γ̃ j i (�). To obtain a symmetric matrix, we first define the following matrices

�(1)(�)=[γ (1)
uv ]mu,v=1=

{
γ̃uv(�), u ≤ v,

γ̃vu(�), u > v,
�(2)(�)=[γ (2)

uv ]mu,v=1=
{

γ̃vu(�), u ≤ v,

γ̃uv(�), u > v.

(13)

Then, a symmetrized lag-� cross-bicovariance matrix is given by

�̃(�) = 1

2

(
�(1)(�) + �(2)(�)

)
. (14)

Note that the principal diagonal of �̃(�) is composed of the elements γ̃uu(�) (u =
1, . . . ,m). The off-diagonals above and below the principal diagonal of �̃(�) are
composed of the elements

(
γ̃uv(�)+γ̃vu(�)

)
/2 (u ≤ v; u, v = 1, . . . ,m), respectively.

Using (14), the null- and alternative hypotheses of interest are

H0 : �̃(�) = [γ̃i j (�)]mi, j=1 = 0m×m versus H1 : �̃(�) �= 0m×m, (� = 1, . . . , q),

(15)

where q ∈ Z
+ is a prescribed constant integer. Let �̂m(�) = [Zi j (�)]mi, j=1 denote

an estimator of �̃(�), where Zi j (�) = ∑T
t=�+1 Y

2
i,t−�Yi,t/

√
3(T − �). Then, an

exploratory test statistic for testing H0 can be based on the squared Frobenius norm.
That is, the test statistics is given by

Qm(�) = Tr
(
�̂

′
m(�)�̂m(�)

)
,

=
( m∑

i=1

Z2
i i (�) + 1

2

m∑

i �= j

(
Zi j (�) + Z ji (�)

)2)
, (� = 1, . . . , q). (16)

Large values of Qm(�) indicate that H0 should be rejected.
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Table 4 Empirical power of Qm (1)when the vector time process follows twom-dimensional asVMA(1, 1)
models (m = 2, 3) for sample sizes T = 50, 100, 200

DGP-6 (m = 2) DGP-6 (m = 3)
δ T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

0.1 0.072 0.088 0.172 0.134 0.268 0.593

0.2 0.184 0.347 0.719 0.534 0.865 0.998

0.3 0.371 0.704 0.973 0.873 0.997 1.000

0.4 0.583 0.898 0.999 0.985 1.000 1.000

0.5 0.743 0.970 1.000 0.999 1.000 1.000

Nominal size is 5%, number of bootstrap replicates B = 500, and number of simulations 1000

Given (16), it is easily verified that under H0 the asymptotic distribution of Qm(�)

is characterized by the sum of two uncorrelated random variables, i.e., Qm(�) =
(X1 + X2). Here, the distribution of X1 is χ2(1) multiplied by a constant (m + 1)/2.
Then, the random variable ((m + 1)/2)χ2(1) has a gamma distribution �(k, θ) with
shape parameter k = 1/2 and scale parameter θ = (m + 1). The distribution of X2
is (m − 1)/2 times the product of two uncorrelatedN (0, 1) random variables, say Z ,
where the exact probability density function of Z is given by the well-known result
f (z) = (1/π)K0(z) with K0(·) the modified Bessel function of the second kind of
order zero. Clearly, for m = 1 the null distribution of Q1(�) is χ2(1). For m ≥ 2,
however, the null distribution of Qm(�) is untractable. In that case, we use a stationary
bootstrap scheme, with automatic block-length selection; see Politis andWhite (2004)
and Patton et al. (2007).

4.3 Test performance ofQm(	)

To study the empirical power of Qm(�), we employ twom-dimensional asVMA(1, 1)
(m = 2, 3) DGPs with the following parameter configurations

DGP-5 : B− = −B+ =
(

δ −δ

−δ δ

)
, �1 =

(
1 0.2
0.2 1

)
, �2 =

(
1 0.3
0.3 1

)
,

DGP-6 : B− = −B+ =
(

δ −δ 0
−δ δ −δ

0 −δ δ

)
, �1 =

(
1 0.2 0
0.2 1 0.2
0 0.2 1

)
, �2 =

(
1 0.3 0
0.3 1 0.3
0 0.3 1

)
,

where δ = 0.1, . . . , 0.5, and {εt } i.i.d.∼ N (0m, Im).
For a 5% nominal significance level, Table 4 shows the empirical power of Qm(�)

at time-lag � = 1 with respect to three different sample sizes T and five parameter
values δ. It is seen that Qm(1) has good power for all dimensions m. For fixed values
of δ, the power improves with increasing sample size T . Note that for δ = 0.1 both
DGPs are close to a vector Gaussian white noise process. But still the rejection rates
are satisfactory. As expected, in all cases the empirical size (not shown here) is close
to the nominal size.
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5 Illustrative applications

No general model selection strategy has been developed to determine the most appro-
priate asVMA model in practice. We found it convenient to tackle this problem in
the following way. First, based on the values of the test statistic Q(�) the best-fitted
univariate asMAmodel is obtained for each time series separately. Next, we used these
specifications as initial polynomial estimates for the diagonal elements of the asso-
ciated asVMA model with low order polynomial specifications for the off-diagonal
elements of the vector model. This provides an initial guess of the structure of the
asVMA model, which can be fine-tuned using a suitable model order selection crite-
rion (e.g., AIC(q) = ln |�̂ε| + 2qm2/T ) and by diagnostic checking the residuals. In
addition, the pattern of the lag � cross-bicovariance matrix �̂m(�) and the correspond-
ing test statistic Qm(�) may suggest directions of model improvement. However, in
the interest of parsimony, we recommend that the initial asVMAmodel should be kept
simple. Also, deleting asVMAmodel parameters which are small compared with their
standard errors, may provide a better understanding of the DGP under study.

5.1 GDP and CPI

As a first illustration, we use quarterly US real GDP (seasonally adjusted; not
inflation adjusted) and quarterly US consumer price index (CPI) total all items (sea-
sonally adjusted), covering the period 1960(i)–2017(iv). In particular, we employ
the GDP growth rate, i.e., Y1t = ln(GDPt/GDPt−1) and the inflation rate Y2t =
ln(CPI t/CPI t−1) (t = 2, . . . , 232). Our analysis starts with presenting results for the
exploratory test statistics discussed in Sect. 4.

Table 5 reports values of the test statistics Q(�) and Q2(�) (� = 1, . . . , 10). For
series Y1t , Q(�) has no values exceeding the 95% confidence limits at lags 1–10. For
series Y2t , however, significant values of Q(�) are at lags 1–7 and 9–10. On the other
hand, the univariate version of theWald-type test statistic rejects the null hypothesis of
symmetry for both series. In Table 5 the numbers within parentheses are the p-values
of the test statistic Q2(�). We see that at lags 1–6, the null hypothesis in (15) is rejected
at the 5% significance level. This strongly suggest that an asVMA model should be
entertained with parameter matrices specified at the first 6 lags, and perhaps also at
lag 10.

In our further analysis, we employed AIC to search over different asVMA specifi-
cations. The “best” fitted model is a two-dimensional asVMA given by

μ̂ =
⎛

⎝
0.007
(4.597)

0.011
(8.240)

,

⎞

⎠ , B̂−
1 =

⎛

⎝
−0.151
(−0.981)

0.426
(1.996)

0.063
(0.454)

0.639
(4.351)

⎞

⎠ , B̂−
2 =

⎛

⎝
0.151
(0.888)

0.295
(1.545)

0.023
(0.183)

0.047
(0.518)

⎞

⎠ ,

B̂−
3 =

(
0.228
(1.237)

−0.245
(−1.337)

− −

)

,

B̂−
10 =

( − −
−0.126
(−0.545)

−0.152
(−101.590)

)

,
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Table 6 ML parameter estimates of an asMA(1) model, their t-values (in parentheses), residual variance
σ̂ 2
ε , AIC, and results of theWald-type test statistic for the first differences of the logarithms of six univariate

time series

Series μ̂ b̂+ b̂− σ̂ 2
ε × 105 AIC ŴT

CSSS hot rolled

YBLS
1t 0.000

(0.919)
0.044
(0.202)

0.069
(0.080)

4.05 −10.06 6.75 × 10−4

YNBER
1t 0.002

(2.114)
−0.101
(−1.207)

0.339
(1.473)

5.59 −9.74 2.70

Tin plate

YBLS
2t 0.000

(0.515)
−0.006
(−0.001)

−0.814
(−2.301)

3.23 −10.29 1.87 × 10−2

YNBER
2t 0.000

(0.361)
0.177
(0.918)

−0.020
(−0.056)

4.16 −10.04 1.66 × 10−1

Regular gasoline

YBLS
3t −0.009

(−3.003)
0.425
(2.606)

−0.537
(−3.764)

37.4 −7.84 13.97∗

YNBER
3t −0.001

(−0.835)
0.170
(1.109)

0.230
(1.977)

2.11 −10.72 6.95 × 10−3

* p-value < 0.05

B̂+
1 =

⎛

⎝
0.615
(4.301)

−0.654
(−2.024)

0.316
(1.799)

1.120
(5.980)

⎞

⎠ , B̂+
2 =

⎛

⎝
0.256
(1.497)

−0.908
(−3.475)

0.310
(2.276)

0.061
(0.420)

⎞

⎠ ,

B̂+
3 =

(−0.265
(−2.114)

0.009
(0.038)

− −

)

,

B̂+
10 =

( − −
−0.004
(−0.031)

0.081
(0.570)

)

, �̂ε =
(
4.27 0.13
0.13 2.97

)
× 10−5,

with t-values in parentheses. The Wald-type test statistic is ŴT = 142.60 and AIC=
−20.04.

The Wald-type test statistic is asymptotically distributed as χ2
12 with a p-value of

zero, and hence the H0 of symmetry is rejected at the 5% nominal level. We see that
for Y1t the t-values of the parameter estimates b̂−

12,1, b̂
+
11,1, b̂

+
12,1, b̂

+
12,2, and b̂+

11,3 are
all significant. It implies that for this series there is a strong interrelationship between
the innovations ε−

2,t−1, ε+
1,t−1, ε+

2,t−1, ε+
2,t−2 and ε+

1,t−3 of both time series Y1t and

Y2t . On the other hand, for Y2t we see significant parameter estimates b̂−
22,1, b̂

−
22,10,

b̂+
22,1, and b̂

+
21,2. In this case the dynamic structure depends on the innovations ε−

2,t−1,

ε−
2,t−10, ε+

2,t−1, and ε+
1,t−2. The fitted asVMA model is in agreement with common

expectations, i.e., US inflation has a negative, and statistically significant, asymmetric
effect on growth rates in US real GDP.
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Fig. 2 Six industrial production series for the period 1957:01–1966:12

5.2 Production price indices

As a second illustration, we reconsider the second application of Wecker (1981, Sect.
4). He fitted univariate asMA(1) models to six series of the first differences of log-
arithms of monthly industrial price series (T = 119), i.e., production price indices.
Three series were obtained from the National Bureau of Labor Statistics (BLS) and
three series from the National Bureau of Economic Research (NBER): Carbon Steel,
Sheet and Strip – Hot rolled, Tin plate, and Regular gasoline. The BLS series are based
on “spot” and quoted prices, while the NBER series are based on contract prices. Fig-
ure 2 shows time plots of the original series, initially compiled by Stigler and Kindahl
(1970); see www.nber.org/chapters/c3321.pdf.

Stigler and Kindahl (1970) noted that there are no systematic trend differences
between the indices for the period 1957–1961, while for the period 1962–1966 the
BLS-based indices rose about 0.7 percent a year relative to the NBER-based indices.
They argue that this phenomenon is due to an asymmetric inertia (delay) in industrial
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1452 J.G. De Gooijer

prices movements. Price quotations are not revised immediately when, for instance,
market conditions, and transaction prices, change. The asymmetry comes from the
prudence of sellers to be slow in authenticating price reduction and prompt in authen-
ticating price increases. This behavior is best represented by spot or quoted prices,
and therefore by the BLS-based indices. For a buyer it is measured by the price of
a contract, and therefore by the NBER-based indices. Given these observations, the
BLS-based production indices are likely to show more asymmetries in sign-based
persistence of the innovations than the NBER-based indices.

Below, we first investigate the presence of asymmetries by estimating and testing
univariate asMA models for each of the six production series separately. Next, we
capture asymmetries for the three BLS-based (NBER-based) indices jointly as a group
by fitting asVMA models.

5.2.1 asMAmodels

Wecker (1981) noted that the three BLS-based indices, denoted by YBLS
i t (i = 1, 2, 3),

showed statistically significant signs of asymmetry using a likelihood ratio (LR) test
statistic of the form 2 log(̂σ 2

s /σ̂ 2
ε ) where σ̂ 2

s is the estimated standard deviation of
the innovations under H0 (symmetry) and where σ̂ 2

ε is the estimated standard devi-
ation under H1 (asymmetry). No evidence for asymmetry was found in the three
NBER-based indices, denoted by YNBER

i t (i = 1, 2, 3). For more information about
asymmetric effects, however, it is reasonable to fit asMA(1) models to the univariate
time series first. Table 6 summarizes estimation and testing results. TheML parameter
estimates are close to those reported byWecker (1981, Table 3). But note that in almost
all cases the estimates of b± are not statistically different from zero at the 5% nominal
level. Moreover, with one exception, the Wald-type test statistic indicates that there is
little evidence to reject the null hypothesis of symmetry.

The entries in the first six rows of Table 7 are values of the Q(�) (� = 1, . . . , 10)
test statistic. We see that except for the BLS-CSSS Hot rolled series at lag 8, there is
no evidence to reject the null hypothesis H0 : γ̃ (�) = 0 at the 5% nominal level. The
null hypothesis is rejected, however, for the NBER-CSSS Hot rolled series at lags 1, 2,
6, and 7. Values of Q3(�) and their corresponding p-values are reported in rows 7 and
8 of Table 7. For the NBER-CSSS Hot rolled series the test rejects the null hypothesis
in (15) at lag 3, using a 5% nominal level. By contrast, for all remaining lags, Q3(�)

gives a strong indication not to reject the hypothesis of symmetry, on the basis of the
p-values. This information may be used to drop insignificant parameter values from
the final model specification and, as a result, improves model interpretation.

5.2.2 asVMAmodels

We employ AIC as a model selection criterion but with the additional condition that
the final selected model should be parsimonious. For a fully specified asVMA model
of dimensionm = 3 it is often hard to figure out what is going on. In that case, it makes
sense to drop insignificant parameters. Given this objective, we obtain the following
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estimation results for the BLS-based indices

μ̂ =

⎛

⎜⎜
⎜
⎝

0.002
(1.000)
0.000
(1.000)
−0.010
(−8.25)

⎞

⎟⎟
⎟
⎠

, B̂+
1 =

⎛

⎜⎜
⎜
⎝

− − −0.007
(−0.056)

0.032
(0.156)

−0.147
(−0.344)

−0.006
(−0.138)

0.122
(0.314)

−0.107
(−0.216)

0.453
(11.032)

⎞

⎟⎟
⎟
⎠

,

B̂−
1 =

⎛

⎜⎜
⎜
⎝

− − 0.081
(0.375)

0.156
(0.203)

−0.400
(-4.130)

−0.064
(−3.564)

0.229
(1.072)

−0.417
(−1.195)

−0.593
(−456.000)

⎞

⎟⎟
⎟
⎠

,

B̂+
2 =

⎛

⎜
⎝

0.063
(0.141)

0.029
(0.038)

−
− − −
− − −

⎞

⎟
⎠ , B̂−

2 =
⎛

⎜
⎝

0.238
(0.351)

0.106
(0.044)

−
− − −
− − −

⎞

⎟
⎠ ,

B̂+
4 =

⎛

⎜
⎝

−0.046
(−0.102)

− −
− − −
− − −

⎞

⎟
⎠ , B̂−

4 =
⎛

⎜
⎝

−0.325
(−0.485)

− −
− − −
− − −

⎞

⎟
⎠ , �̂ε =

⎛

⎝
4.02 −0.25 0.81

−0.25 1.98 −0.74
0.81 −0.74 37.11

⎞

⎠ × 10−5,

with ŴT = 3.82 and AIC = −27.71. The Wald-type test statistic is asymptotically
distributed as χ2

10 with a p-value of 0.95, and hence the H0 of symmetry given by (9)
is not rejected at the 5% nominal level. Note that only four parameter estimates b̂+

33,1,

b̂−
22,1, b̂

−
23,1, and b̂−

33,1 are significantly different from zero.
Similarly, for the three NBER-based indices the “best” asVMA model is given by

μ̂ =

⎛

⎜⎜
⎜
⎝

0.000
(0.600)
0.000
(0.136)
−0.001
(−0.600)

⎞

⎟⎟
⎟
⎠

, B̂+
1 =

⎛

⎜⎜
⎜
⎝

− − 0.055
(0.178)

−0.041
(−0.252)

0.215
(0.909)

−0.071
(−0.154)

−0.038
(−0.233)

0.211
(7.389)

0.214
(0.615)

⎞

⎟⎟
⎟
⎠

,

B̂−
1 =

⎛

⎜
⎜
⎜
⎝

− − −0.186
(−0.600)

−0.287
(−0.590)

−0.041
(-0.154)

0.154
(0.962)

0.190
(12.417)

−0.071
(−0.312)

0.250
(0.698)

⎞

⎟
⎟
⎟
⎠

,

B̂+
2 =

⎛

⎜
⎝

−0.164
(−1.028)

−0.012
(−0.652)

−
− − −
− − −

⎞

⎟
⎠ , B̂−

2 =
⎛

⎜
⎝

−0.079
(−0.198)

0.083
(0.034)

−
− − −
− − −

⎞

⎟
⎠ ,

B̂+
6 =

⎛

⎜
⎝

0.010
(0.066)

− −
− − −
− − −

⎞

⎟
⎠ , B̂−

6 =
⎛

⎜
⎝

−0.051
(−0.116)

− −
− − −
− − −

⎞

⎟
⎠ , �̂ε =

⎛

⎝
4.10 0.48 0.17
0.48 3.97 −0.21
0.17 −0.21 2.21

⎞

⎠ × 10−5,

with ŴT = 101.44 and AIC = −29.84.
In this case, the Wald-type test statistic is asymptotically distributed as χ2

10 with
a p-value of zero, and hence the H0 of symmetry given by (9) is rejected at the 5%
nominal level. Note that the rejection of H0 is most likely due to significant, and
positive, values of b̂+

32,1 and b̂−
31,1. Given the size of these parameters, it appears that
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positive innovations persist longer than negative innovations. The remaining asVMA
parameters are indistinguishable from zero. In summary, our multivariate estimation
and testing results cast doubt on Wecker’s univariate test results. That is, we only find
evidence of asymmetric effects in the three NBER-based indices when tested jointly.

6 Summary

In this paper,we introduced the class of asVMAmodels. The general concept and struc-
ture of thesemodels complement thewell-known class of univariate asMAmodels.We
derived some basic properties of an asVMA model. We also proposed a multivariate
Wald-type test statistic to uncover asymmetric effects in vector time series. Simulation
experiments demonstrated reasonable to good power performance of the Wald-type
test statistic in finite sample cases. We illustrated the proposed test and estimation
procedure by finding evidence of asymmetry in two sets of empirical time series, one
set modeled by a two-dimensional asVMAmodel, and one set by a three-dimensional
asVMA model. Given these results, we believe that the asVMA model in conjunction
with the proposed test statistic, has great potential to uncover asymmetric phenomena
in multivariate time series with more precision than has been been possible before.
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Appendix: Proofs of results

For ease in presentation, let M (i) = {ε ∈ R
m |1′

mε ∈ R
(i)} (i = 1, 2) denote the space

R
m decomposed into two non-overlapping subspaces, where R

(1) = (−∞, 0) and
R

(2) = [0,∞). Furthermore, we define the set of matrix functions B : Rm → R
m×m

such that

B(εt−1) = B(1) I (1′
mεt−1 ∈ R

(1)) + B(2) I (1′
mεt−1 ∈ R

(2)),

where B(1) ≡ B− and B(2) ≡ B+.
The proof of the Proposition requires the following two lemmas.

Lemma 1 Let �ε = [σi j ]mi, j=1 =
(

σ11 �12
�′

12 �22

)
, where �12 is an 1× (m−1) vector, �22

is an (m − 1) × (m − 1) matrix, and |�22| > 0. Further, let fm(ε) denote the density
function of {εt , t ∈ Z}. Then
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(i) ∫A(i) ε j fm(ε)dε = (σ j1

σ11

)
μ(i), (i = 1, 2; j = 1, . . . ,m).

(ii) ∫A(i) εkε j fm(ε)dε = (σk1σ j1

σ11

)(σ (i)

σ11
− α(i)

) + σk jα
(i), (i = 1, 2; j, k =

1, . . . ,m),

where

A(i) = {(z1, . . . , zm) ∈ R
m; z1 ∈ R

(i), (z2, . . . , zm) ∈ R
m−1},

and

α(i) = ∫
R(i)

f1(u)du, μ(i) = ∫
R(i)

u f1(u)du, σ (i) = ∫
R(i)

u2 f1(u)du.

Proof Let U ∼ N (0, σ11) and V ∼ Nm−1(0,�22). Then it is well known from the
theory of multivariate statistical analysis that the conditional distribution of V given
thatU = u, is normal with mean�12σ

−1
11 u and covariance matrix�22−�12σ

−1
11 �′

12.

Denote the corresponding conditional density function by gm−1(·|u).

(i) Since fm(v) = gm−1(v|u) f1(u) with v = (v1, . . . , vm)′, we have for j = 1

∫

A(i)
ε1 fm(ε)dε =

∫

A(i)
u f1(u)gm−1(v|u)dudv

=
∫

R(i)
u f1(u)

( ∫

Rm−1
gm−1(v|u)dv

)
du = μ(i).

In a similar way, for j > 1,

∫

A(i)
ε j fm(ε)dε =

∫

R(i)
f1(u)

( ∫

Rm−1
v j gm−1(v|u)dv

)
du

=
∫

R(i)
f1(u)

σ j1

σ11
udu = (σ j1

σ11

)
μ(i).

(ii) Clearly, for k = j = 1 the term on the right-hand side becomes σ (i) − σ11α
(i) +

σ11α
(i) = σ (i). Then, similar to part (i), we have

∫

A(i)
ε21 fm(ε)dε =

∫

A(i)
u2 f1(u)gm−1(v|u)dudv

=
∫

R(i)
u2 f1(u)

( ∫

Rm−1
gm−1(v|u)dv

)
du= σ (i).

For k = 1, j �= 1, the term on the right-hand side becomes
(
σ j1/σ11

)
σ (i). Again,

this result follows in a similar way as above, i.e.,

∫

A(i)
ε1ε j fm(ε)dε =

∫

A(i)
u f1(u)v j gm−1(v|u)dudv
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=
∫

R(i)
u f1(u)

( ∫

Rm−1
v j gm−1(v|u)dv

)
du

=
∫

R(i)
u f1(u)

σ j1

σ11
udu = (σ j1

σ11

)
σ (i).

For k �= 1, j �= 1, we have

∫

A(i)
εkε j fm(ε)dε

=
∫

A(i)
f1(u)

( ∫

Rm−1
vkv j gm−1(v|u)dv

)
du

=
∫

R(i)
f1(u)

{ ∫

Rm−1

(
(vk − σk1

σ11
u)(v j − σ j1

σ11
u)

+ σk1

σ11
uv j + σ j1

σ11
uvk − u2

σk1σ j1

σ 2
11

)
gm−1(v|u)dv

}
du

=
∫

R(i)
f1(u)

(
σk j − σk1σ j1

σ11
+ σk1

σ11
u

σ j1

σ11
u + σ j1

σ11
u

σk1

σ11
u − u2

σk1σ j1

σ 2
11

)
du

=
(
σk j − σk1σ j1

σ11

)
α(i) + σk1σ j1

σ 2
11

σ (i) = σk1σ j1

σ11

(σ (i)

σ11
− α(i)

)
+ σk jα

(i).

��
Lemma 2 Let r and s be two m-dimensional non-random vectors in R

m. Then, using
Lemma 1, it follows that

(i) ∫A(i) r′ε fm(ε)dε = (μ(i)/σ11)r′�∗
12, (i = 1, 2), where �∗

12 = (σ11,�12)
′.

(ii) ∫A(i) r′εε′s fm(ε)dε = γ (i)r′�∗
12�

∗′
12s + α(i)r′�εs, (i = 1, 2), where

γ (i) = σ (i)

σ 2
11

− α(i)

σ11
.

Proof (i) Using result (i) of Lemma 1, we have

∫

A(i)
r′ε fm(ε)dε =

∫

A(i)

m∑

j=1

r jε j fm(ε)dε

=
m∑

j=1

r j

∫

A(i)
ε j fm(ε)dε = μ(i)

σ11
r′�∗

12.

(ii) Using result (ii) of Lemma 1, we have

∫

A(i)
r′εε′s fm(ε)dε =

∫

A(i)

( m∑

j=1

r jε j

)( m∑

k=1

skεk
)
fm(ε)dε
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=
m∑

j=1

m∑

k=1

r j sk
(
σk jσ j1γ

(i) + σk jα
(i))

= γ (i)r′�∗
12�

∗′
12s + α(i)r′�εs.

��
Proof of Proposition To obtain the required moments, we introduce an m ×m orthog-
onal matrix Q with first column given by 1m . Applying the nonsingular linear
transformation Q′ε to ε with Jacobian |Q| �= 0, we have

Q′ε ∈ A(i) ⇐⇒ ε ∈ M (i), (i = 1, 2).

Let ϕ(ε) be the density function of Nm(0,�ε), and ψ(ε) the density function of
Nm(0,Q′�εQ). Then there exists a bounded continuous function g(·) such that

∫

M(i)
g(ε)ϕ(ε)dε=

∫

ξ(M(i))

g
(
ξ−1(ε)

)
ϕ
(
ξ−1(ε)

)
dε=

∫

A(i)
g(Qz)ψ(z)dz, (i=1, 2),

with ξ : ε → Q′ε. Hence, the first moment of {Yt , t ∈ Z} is given by

E(Yt ) = E(εt ) + E[B(εt−1)εt−1]

= E(εt ) +
2∑

i=1

∫

M(i)
B(i)εϕ(ε)dε =

2∑

i=1

∫

A(i)
B(i)Qzψ(z)dz.

Note that the covariancematrixQ′�εQ hasQ′�ε1m as first column. Then, using result
(i) of Lemma 2, we have

E(Yt ) =
2∑

i=1

μ(i)

1′
m�ε1m

B(i)QQ′�ε1m = 1

1′
m�ε1m

2∑

i=1

μ(i)B(i)�ε1m

= 1

1′
m�ε1m

μ(2)(B(1) − B(2))�ε1m = (2π1′
m�ε1m)−1/2(B(1) − B(2))�ε1m,

since −μ(1) = μ(2) = (1′
m�ε1m/2π)1/2.

The variance of {Yt , t ∈ Z} is given by Var(Yt ) = E(YtY′
t ) −E(Yt )E(Y′

t ). Using
result (ii) of Lemma 2, the first term on the right-hand side can be written as

E(YtY′
t ) = �ε +

2∑

i=1

∫

M(i)
B(i)εε′(B(i))′

ϕ(ε)dε = �ε

+
2∑

i=1

∫

A(i)
B(i)Qzz′Q′(B(i))′

ψ(z)dz

123



Asymmetric vector moving average models: estimation and… 1459

= �ε +
2∑

i=1

γ (i)B(i)�ε1m1′
m�′

ε

(
B(i))′ +

2∑

i=1

α(i)B(i)�ε

(
B(i))′

= �ε + 1

2

(
B(1)�ε

(
B(1))′ + B(2)�ε

(
B(2))′)

,

since α(1) = α(2) = 1/2, and

γ (i) = σ (i)

σ 2
11

− α(i)

σ11
= 1′

m�ε1m
2

1

(1′
m�ε1m)2

− 1/2

1′
m�ε1m

= 0, (i = 1, 2).

The cross-covariance matrix at lag � = 1 is given by

�(1) = Cov(Yt ,Yt−1) = Cov(εt , εt−1) + Cov
(
εt ,B(εt−2)εt−2

)

+ Cov
(B(εt−1)εt−1, εt−1

) + Cov
(B(εt−1)εt−1,B(εt−2)εt−2

)

= Cov
(B(εt−1)εt−1, εt−1

)

= E
(B(εt−1)εt−1ε

′
t−1

) − E
(B(εt−1)εt−1

)(
E(εt−1)

)′

= E
(B(εt−1)εt−1ε

′
t−1

)
.

Next, using result (ii) of Lemma 2, we have

�(1) = E
(B(εt−1)εt−1ε

′
t−1

) =
2∑

i=1

∫

M(i)
B(i)εε′ϕ(ε)dε

=
2∑

i=1

∫

A(i)
B(i)Qzz′Q′ψ(z)dz

=
2∑

i=1

γ (i)B(i)QQ′�ε1m1′
m�′

εQQ′ +
2∑

i=1

α(i)B(i)QQ′�εQQ′

=
( 2∑

i=1

γ (i)B(i)
)
�ε1m1′

m�ε +
( 2∑

i=1

α(i)B(i)
)
�ε

= 1

2
(B(1) + B(2))�ε,

since γ (i) = 0 and α(i) = 1/2 (i = 1, 2). When � > 1, it is easy to see that
�(�) = 0m×m . This completes the proof of the Proposition. ��
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