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Abstract
First-exit problems for the Brownian motion (W (t)) or general diffusion processes,
have important applications. Given a boundary b(t), the distribution of the first-exit
time τ has to be computed, in most cases numerically. In the inverse first-passage-
time problems, the distribution of τ is given and the boundary b has to be found. The
boundary and the density of τ satisfy a Volterra integral equation. Again numerical
methods approximate the solution b for given distribution of τ .Wepropose and analyze
estimators of b for a given sample τ1, . . . , τn of first-exit times. The first estimator, the
empirical estimator, is the solution of a stochastic version of the Volterra equation. We
prove that it is strongly consistent and we derive an upper bound for its asymptotics
convergence rate. Finally, this estimator is compared to a Bayesian estimator, which
is based on an approximate likelihood function. Monte Carlo experiments suggests
that the empirical estimator is simple, computationally manageable and outperforms
the alternative procedure considered in this paper.

Keywords Bayes estimator · Empirical estimator · Inverse first passage times ·
Markov chain Monte Carlo

1 Introduction

The analysis of first-passage problems of diffusion processes and especially of the
Brownian motion is a rich field in applied probability with important applications in
various areas such as mathematical finance, statistics, physics, engineering or biology.
For instance, in mathematical finance, a default event can be modelled by the first time
a stochastic process representing firm value crosses a certain possibly time-varying
barrier or a barrier option can be exercised if the underlying value process reaches a
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predefined boundary. In biology, extinction of a population can be described by the
event that the number of individuals first passes a threshold value (formore applications
in biology, we refer the reader to Ricciardi et al. 1999). Another area of application
arises in statistics, in particular in sequential analysis and change-point problems.

Let (W (t))t≥0 denote a standard Brownian motion, i.e. a Gaussian process with
continuous paths, W (0) = 0, E(W (t)) = 0 and E(W (s)W (t)) = s ∧ t . Let b :
[0,∞) → R denote a function with b(0) ≥ 0, the upper boundary. Define the first-
exit time

τ = inf{t > 0 | W (t) ≥ b(t)}. (1)

τ is a stopping time. Denote the distribution of τ by F . Given regularity conditions,
F is absolutely continuous with a density f , which is continuous and strictly positive
on (0,∞).

The direct first-passage-time problem identifies F for given b. The inverse problem
computes b for given F or f . The problem of finding the boundary function b is of
importance inmanyfields, and the application areas are similar to theones involving the
direct first-passage time problems, e.g. mathematical finance, in particular credit risk
modelling or in biology, in neural activity (formore details seeAbundo 2015). For both
problems an extensive literature exists. Since for only few boundaries the distribution
F of τ can be computed in closed form, numerical procedures, approximate solutions
of corresponding partial differential equations, or Monte Carlo methods are necessary.
For details we refer to Durbin (1971), Lerche (1986), Salminen (1988), Novikov et al.
(1999) or Pötzelberger and Wang (2001).

Inverse problems are often based on a Volterra Integral equation, the so-called
master equation, for which (b, F) is a solution. Let z ≥ b(t). Then

Φ̄

(
z√
t

)
=

∫ t

0
Φ̄

(
z − b(u)√

t − u

)
dF(u), (2)

with Φ̄ = 1 − Φ the survival function of the standard normal distribution. z = b(t)
and the differentiation of (2) in z = b(t) give

Φ̄

(
b(t)√

t

)
=

∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dF(u), (3)

φ

(
b(t)√

t

)
1√
t

=
∫ t

0
φ

(
b(t) − b(u)√

t − u

)
1√
t − u

dF(u). (4)

See Peskir (2002), Zucca and Sacerdote (2009) or Abundo (2015) for thorough dis-
cussion of the inverse problem.

If f is given, an approximation of b(t) on {ti | ti = hi} is the solution of the system
of equations

Φ̄

(
b(ti )√

ti

)
=

i∑
j=1

Φ̄

(
b(ti ) − b(t j )√

ti − t j

)
f (t j ) h, (i = 1, . . . , n). (5)
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In this paper we analyze the statistical inverse first-passage-time problem: Given
a sample τ1, . . . , τn of independent first-exit times, we approximate the unknown
boundary b(t) by an estimator b̂n(t). We propose the empirical estimator, which is the
solution of (2), when F is replaced by the empirical distribution F̂n .

This paper is organized as follows. In Sect. 2 we prove that the empirical estimator
is strongly consistent with rate o((log n + η log log n)1/2n−1/2) for every η > 1/2,
uniformly on t ∈ [0, T ], for all T > 0.

We compare the performance of the empirical estimator to an approximate con-
ditional likelihood method, namely a Bayes estimator. The approximate conditional
likelihood is the density of the first-exit time τ , when the boundary b is approximated
by a piecewise linear boundary bm , i.e. a boundary that is linear on intervals [ti−1, ti ],
with 0 = t0 < t1 < · · · tm = T a partition of [0, T ]. For bm , the density of τ ,
givenW (t1), . . . ,W (tm), can be computed in closed form. In Sect. 3 we compute this
approximate and conditional density. Section 4 concludes with the results of Monte
Carlo experiments for the empirical estimator and a Bayes estimator derived from the
approximate likelihood.

2 Empirical estimator

Let τ1, . . . , τn be an i.i.d. sample of first-exit times corresponding to the boundary b.
Note that τi = ∞ if the Brownian motion (W (t)) never crosses the boundary b. We
denote the empirical distribution of τi , i ∈ {1, . . . , n} by F̂n . The empirical estimator
b̃n(t) of the boundary b(t) is the solution of

Φ̄

(
b̃n(t)√

t

)
=

∫ t

0
Φ̄

(
b̃n(t) − b̃n(u)√

t − u

)
d F̂n(u). (6)

The empirical estimator is consistent. Equation (6) has a solution for all t . However,
it is convenient to solve a corresponding system of equations at the sample. Let τ(1) ≤
τ(2) ≤ · · · ≤ τ(n) denote the order statistics of the sample. Note that for finite order
statistics τ(i), τ(i) < τ(i+1) a.s.

We define the estimator b̂n at τ(i), i.e. b̂n(τ(1)), . . . , b̂n(τ(n)), as the solution of

Φ̄

(
b̂n(τ(1))√

τ(1)

)
= 1

2n

Φ̄

(
b̂n(τ(k))√

τ(k)

)
=

k−1∑
i=1

Φ̄

(
b̂n(τ(k)) − b̂n(τ(i))√

τ(k) − τ(i)

)
1

n
.

In case not all τi ’s are finite,we define b̂n(∞) = ∞. For t /∈ {τ1, . . . , τn}we interpolate
b̂n(t) linearly.

Theorem 1 Let b be continuously differentiable with b(0) > 0. The empirical estima-
tor is strongly consistent:
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Let for η > 1/2, εn = (log n + η log log n)1/2n−1/2. Then for all 0 < T ,

P

(
lim
n→∞ sup

θ≤T
|b̂n(θ) − b(θ)|/εn = 0

)
= 1. (7)

Proof The empirical estimator can be considered as a discretization scheme of the
master equation with the order statistics τ(i) as random knots.

Zucca and Sacerdote (2009) proved the consistency of the Euler scheme for the
(deterministic)master equation.We follow their lines,with the necessarymodifications
indicated. Define for T > 0 fixed and knots 0 = t0 < t1 < · · · < tn = T the solution
of the Euler scheme (5) by b∗(tk) and the local consistency error by

δ(h, tk) =
∫ tk

0
Φ̄

(
b(tk) − b(u)√

tk − u

)
dF(u)

−
∑

1≤ j<k

Φ̄

(
b(tk) − b(t j )√

tk − t j

)
(F(t j ) − F(t j−1)),

with h = max1≤ j<k(t j − t j−1). The proof of Theorem 6.2. in Zucca and Sacerdote
(2009) shows that there is a constant c̃ > 0 (depending on b and T only), such that
for all i ,

|b(ti ) − b∗(ti )| ≤ c̃δ(h, ti ).

Define for θ > 0,

Z j (θ) = Φ̄

(
b(θ) − b(τ( j))√

θ − τ( j)

)
I[0,θ](τ( j))

and

δn(θ) =
∫ tk

0
Φ̄

(
b(θ) − b(u)√

θ − u

)
dF(u) −

∑
τ( j)≤θ

Φ̄

(
b(θ) − b(τ( j)√

θ − τ( j)

)
1

n

=
∑
j≤n

(E(Z j (θ)) − Z j (θ)).

Since |Z j (θ)| ≤ 1 for all j , Hoeffding’s inequality gives for all ε > 0,

P (|δn(θ)| > ε) ≤ 2e−2nε2 .

For εn = (log n + η log log n)1/2n−1/2 we get for η′ = 2η − 1 > 0 and fixed θ ,

P(|δn(θ)| > εn) ≤ 1

n2 log n1+η′ .
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Then

P( max
1≤k≤n

|δn(τ(k))| > εn) ≤ 1

n log n1+η′ . (8)

Since

∞∑
n=1

1

n log n1+η′ < ∞,

the Theorem of Borel–Cantelli implies (7). ��
Remark In case of censoring at T , the empirical estimator is still consistent, if a
consistent estimator of F(T ) is available. If this estimator is even strongly consistent
with rate ε′

n , then the empirical estimator is strongly consistent with rate ε′
n ∨ εn , with

εn defined in Theorem 1.

Let us briefly comment on the asymptotic distribution of the residuals (ε̂n(t))
defined as

ε̂n(t) = √
n(b̂n(t) − b(t)). (9)

Denote by Ûn(t) the empirical process

Ûn(t) = √
n(F̂n(t) − F(t)).

(Ûn(t)) → (UF (t)), with (UF (t)) a Brownian bridge, a Gaussian process with con-
tinuous paths, E(U (t)) = 0 and Cov(U (s),U (t)) = F(s ∧ t) − F(s)F(t). There are
processes (Û∗

n ) and a Brownian bridge (UF∗) with the same distributions as (Ûn) and
(UF ), such that with probability 1, ‖Û∗

n −UF∗‖ → 0 (see Shorack andWellner 2009).
To simplify the exposition, and since we are interested in the asymptotic distribution
of the residuals only, we may assume that a.s. ‖Ûn −UF‖ → 0.

We have

Φ̄

(
b(t) + n−1/2 ε̂n(t)√

t

)
=

∫ t

0
Φ̄

(
b(t) − b(s) + n−1/2(ε̂n(t) − ε̂n(u))√

t − u

)
dF(u)

+ 1√
n

∫ t

0
Φ̄

(
b(t) − b(s) + n−1/2(ε̂n(t) − ε̂n(u))√

t − u

)
dÛn(u),

Φ̄

(
b(t)√

t

)
− φ

(
b(t)√

t

)
ε̂n(t)√
n
√
t

=
∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dF(u)

+ 1√
n

∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dÛn(u)

− 1√
n

∫ t

0
φ

(
b(t) − b(u)√

t − u

)
ε̂n(t) − ε̂n(u)√

t − u
dF(u) + o

(
1√
n

)
.

Therefore

φ

(
b(t)√

t

)
ε̂n(t)√

t
=

∫ t

0
φ

(
b(t) − b(u)√

t − u

)
ε̂n(t) − ε̂n(u)√

t − u
dF(u)
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−
∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dÛn(u) + o(1).

Assume that for all t , ε̂n(t)would converge to a limit ε(t). The process (ε(t))would
solve

φ

(
b(t)√

t

)
ε(t)√

t
=

∫ t

0
φ

(
b(t) − b(u)√

t − u

)
ε(t) − ε(u)√

t − u
dF(u)

−
∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dU F (u).

With (4), (ε(t)) would solve the stochastic linear Abel integral equation

∫ t

0
φ

(
b(t) − b(u)√

t − u

)
ε(u)√
t − u

dF(u) = −
∫ t

0
Φ̄

(
b(t) − b(u)√

t − u

)
dU F (u). (10)

However, there is no “classical” solution (ε(t)) of (10). To see this, let b(t) = b be
constant. Recall that the density f of τ is continuous and bounded. Then Eq. (10) is

∫ t

0

ε(u) f (u)√
t − u

du = −
√

π

2
UF (t). (11)

Applying the Abel transform, (see Gorenflo and Vessella 1991), we get

∫ t

0
ε(u) f (u) du = Ht := − 1√

2π

∫ t

0

UF (u)√
t − u

du. (12)

The process (Ht ) is a Gaussian process with E(Ht ) = 0 and for s ≤ t ,

K (s, t) = Cov(Hs, Ht ) = 2
∫ s

0

(√
s − u

t − u
+

√
t − u

s − u

)
F(u) du − g(s)g(t), (13)

with

g(s) =
∫ s

0

1√
s − u

F(u) du.

Remark 1. If
∫ t
0 ε(u) f (u) du would be of bounded variation with ε(t) f (t) = d

dt Ht ,
then

Var(ε(t) f (t)) = ∂2

∂s ∂t
K (s, t) |t=s

=
∫ s

0

1√
(s − u)(t − u)

f (v) du − g′(s)g′(t)
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=
∫ t

0

1

t − u
f (u) du −

(∫ t

0

1√
t − u

f (u) du

)2

= ∞.

2. Note that Lévy’s theorem on the modulus of continuity implies that the Brownian
bridge UF has modulus of continuity

√
2h log(1/h), i.e. it holds

lim
h→0+ sup

|s|≤h

|UF (t + s) −UF (t)|√
2h log(1/h)

= 1, a.s. .

It follows that the modulus of continuity of (Ht ) is ch
√
log(1/h), with c > 0 a

constant.

Proposition 1 Let b(t) be constant. The process
(∫ t

0 ε̂n(u) dF(u)
)

of integrated

weighted residuals converges in distribution to the centered Gaussian process (Ht )

defined by (12).

3 Approximate likelihood

For piecewise linear boundaries the following conditional boundary crossing probabil-
ity allows the computation of an approximate conditional likelihood function. Let bm
be continuous and linear on intervals [ti , ti+1], where 0 = t0 < t1 < · · · tm = T < ∞.
Let τm denote the corresponding first-exit time and Wm = (W (ti ))i≤m a discrete
Brownian motion and wm = (w1, . . . , wm) ∈ R

m . Wang and Pötzelberger (1997)
prove that

P(τm > T ) = E(νm(W (t1), . . . ,W (tm), T )), (14)

with

νm(w1, . . . , wm, T ) =
m∏
i=1

(
1 − exp

{
−2(bm(ti−1) − wi−1)(bm(ti ) − wi )

Δti

})

×I{wi<bm(ti )}. (15)

Let f (t | bm) denote the density of τm , the first-exit time for the boundary bm and
f (t | bm, wm) is the conditional density of τm given (Wm = wm). Then f (t | bm) =
E( f (t | bm,Wm)).

Proposition 2 Define for given td : tu = td+1 and Δ = tu − td . Let

μt = wd(tu − t) + wu(t − tu)

Δ
, σ 2

t = (tu − t)(t − td)

Δ
. (16)

1. For td < t < tu and wu ≥ b(tu),

f (t | bm, wm) = νm−1(w1, . . . , wd , td)
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×φ

(
bm(t) − μt

σt

)
Δ1/2(b(td) − wd)

(tu − t)1/2(t − td)3/2
(17)

2. For td < t < tu and wu < b(tu), define

ηt = μt + 2(b(tu) − wu)(t − td)

Δ
,

θt = μt + 2(b(tu) − wu)(t − td)

Δ
+ 2(b(td) − wd)(tu − t)

Δ
.

Then f (t | bm, wm) = νm−1(w1, . . . , wd , td) g(t | bm, wm), where

g(t | bm, wm) = φ

(
bm(t) − ηt

σt

)

×
(

Δ1/2(b(td) − wd)

2(tu − t)1/2(t − td)3/2
+ Δ1/2(b(tu) − wu)

2(tu − t)3/2(t − td)1/2

)

+ exp

[
2(b(td) − wd)(b(tu) − wu)

Δ

]
φ

(
bm(t) − θt

σt

)

×
(

Δ1/2(b(td) − wd)

2(tu − t)1/2(t − td)3/2
− Δ1/2(b(tu) − wu)

2(tu − t)3/2(t − td)1/2

)
(18)

Proof Let τm = t ∈ [td , tu]. Conditional on W (td) = wd and W (tu) = wu ,
(W (s))td≤s≤tu is a Brownian bridge, for which the crossing probabilities are given
in closed form. The conditional distribution of W (t) is Gaussian with parameters
(16). To compute P(τm > t | τm ∈ [td , tu]), condition on W (t) = v with v < b(t).
There is no crossing in [td , t] and a crossing in [t, tu]. Note that in caseW (tu) ≥ b(tu)
the latter conditional probability is 1. Taking expectation w.r.t. W (t) and finally the
derivative w.r.t. t gives (17) and (18). ��

Approximate likelihood inference replaces the exact likelihood function by the
approximate one, i.e. the boundary b is approximated by a piecewise linear boundary
bm . Estimates for errors, especially on |P(τ > t) − P(τm > t)| are derived in
Pötzelberger and Wang (2001), Borovkov and Novikov (2005), Zucca and Sacerdote
(2009) and Pötzelberger (2012), among others.

4 Monte Carlo experiments

Monte Carlo simulation experiments were performed to evaluate the performance
of the empirical estimator for finite sample sizes. Since for the Bayes estimator no
theoretical result on its properties is available, the Monte Carlo experiments can indi-
cate whether likelihood-based methods have the potential to outperform the empirical
estimator. We estimate four boundaries—a constant boundary, a linear increasing, a
linear decreasing and a Daniel’s boundary—for which the first-exit time distribution
is known in closed form, on [0, T ] with T = 1. The fifth boundary corresponds to
exponentially distributed first-exit times (see Abundo 2015).
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Fig. 1 Empirical estimator, n = 103. The true boundaries are shown by the black solid lines. The estimated
boundaries are shown by the red solid lines (color figure online)

Table 1 Empirical estimator:
MISE for K = 100 replications

n = 102 n = 103 n = 104

Constant 0.0280 0.00528 0.000644

Linear (Inc.) 0.0083 0.00328 0.000534

Daniels 0.0145 0.00232 0.000393

Linear (Dec.) 0.0216 0.00388 0.000790

Exp. FPT Den. 0.0266 0.00382 0.000480

The results for the empirical estimator are given in Fig. 1. The mean-integrated-
squared errors reported in Tables 1 and 2 are an estimate of

∫ T
0 (b̂n(t) − b(t))2 dt . For

the empirical estimator, we generate K = 100 samples of first-exit times of size n.
For each sample

n∑
i=1

(b̂n(τ(i)) − b(τ(i)))
2(τ(i) − τ(i−1)) (19)

(with τ(0) = 0) is computed. The MISE is the mean over these K = 100 samples.
We compare the performance of the empirical estimator to an approximate Bayes

estimator: Let ti = T i/m. The boundary b(t) is approximated by bm(t), which is
linear on the intervals [ti−1, ti ]. For parameter b = (b(0), b(t1), . . . , b(tm)) and w =
(w1, . . . , wm) ∈ R

m , the conditional approximate density of τi is given by (17) (if
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Fig. 2 Bayes estimator, n = 103. The true boundaries are shown by the black solid lines. The posterior
means are shown by the red dashed lines together with 95%-credible intervals in gray (color figure online)

Table 2 Bayes—posterior mean:
MISE for K = 100 replications

n = 102 n = 103

Constant 0.0409 0.0174

Linear (Inc.) 0.0698 0.0148

Daniels 0.0379 0.0252

Linear (Dec.) 0.0443 0.0107

Exp. FPT Den. 0.0532 0.0262

wu ≥ b(tu)), (18) (if wu < b(tu)) or (15) (if τ ≥ T ). The product of these conditional
approximate likelihoods is denoted by L(b,w1, . . . ,wn, τ1, . . . , τn). The problem can
be formulated as a latent space model with a suitably chosen prior for the parameter
b. The Bayes estimator is the posterior mean of a sample of parameters b generated
through a Markov Chain Monte Carlo scheme:

– Parameter b.
– Data A sample of i.i.d. first hitting times τ = (τ1, . . . , τn).
– Latent state space W1, . . . ,Wn .
– PriorWe assume that the slopes of b follow a randomwalkwith the double gamma
shrinkage prior on the process variances, (see Bitto and Frühwirth-Schnatter 2019)

dti = bm(ti+1) − bm(ti )

ti+1 − ti
,
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dti = dti−1 + εti ,

εti ∼ N (0, θ2j ),

θ2j , ∼ G(0.5, 0.5/ξ2)

ξ2 ∼ G(aξ , aξ κ2).

– Computational details The estimation is performed in JAGS (see Plummer 2015)
and the results shown are based on one chain, burn-in 5000, 10,000 iterations with
a thinning of 10 and hyperparameters aξ = 0.1, κ2 = 1.

Results are given in Fig. 2 and Table 2. The MISE in Table 2 is defined analogously
to the case of the empirical estimator, with (19) replaced by

n∑
i=1

(b̂n(ti ) − b(ti ))
2(ti − ti−1). (20)

Remark and Conclusion The computation of the empirical estimator is straightfor-
ward and in negligible time. A tight upper bound for its asymptotic error is available.
The Bayes estimator based on the approximate likelihood could incorporate prior
knowledge and has its potential if the class of boundaries can be parametrized by a
finite-dimensional parameter. In the nonparametric case, the numerical experiments
revealed drawbacks, at least compared to the empirical estimator. The computation
was costly, considering time. The study was performed on 10 nodes using a cluster
of workstations. Each node on the cluster has 2 six core Intel Xeon X5670 @ 2.93
GHz processor and was used for one boundary with a given n. The execution times are
around 7 min and 2 h 20 min for the Bayesian estimator (while they are only around
1 s and 9 s for the empirical estimator) with n = 102, n = 103 respectively.

As can be seen in Fig. 2, in all cases considered the Bayes estimator showed a strong
positive bias. This bias should be a result of the data-augmentation procedure. Note
that the discrete Brownian motion is always below the boundary up to the observed
exit-time. Then, conditional on the n discrete Brownian motions, the newly sampled
boundary is above all these discrete Brownian motions, which have not crossed the
boundary up to t . These findings do not depend on the chosen prior. Alternative
priors, such as (discrete) Ornstein–Uhlenbeck processes have been considered with
qualitatively the same result.
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