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Abstract
The assessment of production plant efficiency is crucial for optimizing the operational performance of manufacturing systems.
In traditional facilities, automated data collection is limited and information primarily relies on operators declarations, which
are prone to inaccuracy. There is therefore a need for readily accessible digital alternatives. This paper introduces a cost-
effective method for classifying the status of machine tools using smart sensors to monitor their primary doors with minimal
integration, and a streamlined algorithm for efficient data processing. The innovative algorithm was conceived using data
collected in over 3 months in a manufacturing plant comprising 50 diverse machine tools engaged in batch production for
the automotive industry, and is based on non-dimensional thresholds, making it suitable for generic applications requiring
classification of repetitive patterns. Also, a realistic simulator was developed to provide reliable data for algorithm accuracy
evaluation. The classification performance was fully tested using synthetic data, showing very good accuracy. In addition, the
performance of the algorithmwas compared to basic machine learning approaches further proving the validity of the proposed
method. Ultimately, the classification algorithm was employed to assess the Overall Equipment Effectiveness (OEE) of the
real plant machines, which were closely aligned with the estimates provided by the enterprise management.
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Nomenclature
BA Balanced accuracy
C Number of cases
cm Chance number of maintenance
cp Chance number of production
cs Chance number of setup
ct Chance number of stop
cw Chance number of waiting
cs Non-dimensionalized cumulative

sum of intervals distribution
dm,n Interval duration mean
dts1,ts2 Difference between time series
dts1,ts2,crs Cross difference between time series
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dts1,ts2,str Straight difference between time
series

dz,w Difference between cumulative sum arrays
rm,n Standarddeviation-to-mean ratio for inter-

val duration
k Classification coefficient
kopt Optimal classification coefficient
n Number of open-closed cycles in a pattern
nopt Optimal number of open-closed

cycles in a pattern
n̂ Estimated number of open-closed cycles

in a pattern
nbopen Number of open intervals per bin
nbclose Number of close intervals per bin
N Number of intervals
Nk Number of intervals classified as produc-

tion time
Nnprod,nrep Number of non-production intervals cor-

rectly classified
Nnrep Total number of non-repetitive intervals
Nprod Total number of production intervals
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Nprod,rep Number of production intervals correctly
classified

OEE Overall Equipment Effectiveness
OEE∗ Overall Equipment Effectiveness

neglecting quality factors
p yn Sequence half-width
popt Optimal yn sequence half-width
pm Probability of maintenance status
RI Relative increment of Nk

smax Reference variance threshold for testing
open-close patterns

sre f ,seq Estimated standard deviation of combined
interval durations

s
′
re f ,seq,p Adjusted estimated standard deviation of

neighborhood combined interval durations
sx,close Standard deviation of close interval dura-

tions
sx,open Standard deviation of open interval dura-

tions
sy,n,p Expected standard deviation of neighbor-

hood combined interval durations
s

′
y,n,p Adjusted expected standard deviation of

neighborhood combined interval durations
s

′
y,nopt ,p Adjusted expected standard deviation of

neighborhood optimal combined interval
durations

s
′
y,p Standard deviation of combined intervals
sy,n Expected standard deviation of combined

interval durations
x Interval durations
yn Combined interval duration
ynopt Optimal combined interval duration
ȳy,n,p Expected mean of neighborhood combined

interval durations
μBA Average balanced accuracy
μEBA(i) Estimated average balanced accuracy
σBA Standard deviation of the balanced accu-

racy
σEBA Estimated standard deviation of the bal-

anced accuracy
DES Discrete Event Simulation
I oT Internet of Things
I I oT Industrial Internet of Things
J SON JavaScript Object Notation format
K P I Key Performance Indicator
L − BFGS − B Limited-memory Broyden-Fletcher-

Goldfarb-Shanno with Bound constraints
MQTT Message Queueing Telemetry Transport

protocol
NoL Number of Levels
ReLu Rectified Linear Unit

1 Introduction

Most of existing production plants still have limited connection
capabilities and process engineers mainly rely on operators
declarations, direct observations, and average throughput
rates for driving improvement actions. The collection and
processing of such data are rather demanding, it is affected
by declaration inaccuracies, and the processing time may be
unacceptably long. Moreover, production systems do evolve
over time and this activity should be repeated from time to
time to adapt to emerging bottlenecks.

Industry 4.0 and the smart manufacturing concept are
strongly pushing for an interconnected system, but this
mainly applies to new machines and installations. Legacy
machines generally have very limited inter connectivity and
data sharing capabilities.Moreover, the necessary investment
for enabling those functions may be high. Therefore, there is
a need for tools aimed at easily collecting data from existing
plants and provide preliminary data for driving improvement
actions and investments.

One possible solution may be to apply external sensors
systems which do not require hardware or software modi-
fication of the machine. Very recently, Tran et al. proposed
a comprehensive review of IoT-based approaches for con-
dition monitoring [1]. Vibration sensors require minimal
installation and are very promising for many applications,
as reported by Er et al. in 2016 [2]. Unfortunately, vibration
sensors are still rather expensive and require specific hard-
ware for real-time processing of signals to extract relevant
information.

Since energy consumption is becoming a critical aspect
for environmental and economic reasons, many recent pub-
lications focus on the application of electrical power sensors
for assessing and classifying the machines status in order to
estimate their effective productivity and efficiency, as pro-
posed by Abele et al. [3]. A systematic literature review of
classification of machine statuses using energy consumption
was recently proposed by Sihag et al. [4].

Teiwes et al. presented an application of machine learn-
ing for the identification of machines working statuses based
on clustering the energy consumption data [5]. The cluster
with the highest average power consumption was labeled as
the “processing” state. The algorithm was based on many
adaptive thresholds and confirmed the complexity of this
application. In 2015, O’Driscoll et al. presented a non-
intrusive approach for determining the operational status of
a machine by measuring the main incomer [6] and apply-
ing a statistical classifier. Sihag et al. [7] applied a similar
approach in 2018 using unsupervised clustering. An unsu-
pervised load monitoring approach for the classification of
machine statuses was presented by Seevers et al. in 2019 [8].
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Avertical grindingmachine and amillingmachinewere used
to collect data over one day and “in machining,” “ready,” and
“warm-keeping” modes were detected. According to these
works, the proposed strategies for energy consumption mon-
itoring are very promising for increasing plant efficiency.
Nevertheless, poor information regarding machines statuses
classification accuracy was reported.

A more elaborate approach for the automatic assessment
of machine tool energy efficiency and productivity was pre-
sented by Hacksteiner et al. in 2017 [9]. Internal machine
data were collected in combination with data derived from
additional external sensors. In detail, a power monitoring
sensor was applied to the main incomer while pressure and
flow sensors were applied to the compressed air inlet of the
machining center. Unfortunately, no performance evaluation
of the automatic assessment system against other approaches
was provided.

More recently, Petruschke et al. presented a machine
learning approach for the classification of machine energy
statuses, obtaining an accuracy higher than 95% [10]. This
preliminary information also confirms the possibility of using
energy monitoring systems to assess the efficiency of man-
ufacturing plants in terms of productivity, in addition to
estimating the absorbed electrical energy.

However, monitoring the energy consumption of amachine
entails a substantial investment due to the costs of the sens-
ing elements, ranging from hundreds to thousands of euros,
the cost of the processing unit, and the cost of the electri-
cal modifications of the machine. Moreover, the insertion of
an electrical power measurement unit may be considered a
major modification of the electrical plant; thus, it may imply
a complete recertification and the loss of the warranty. For
this reason, the electronics industry is proposing IIoT devices
that can be easily mounted on production systems to start
collecting readily available information such as the tower
light status, the door status, the intensity of acoustic emis-
sions, and several other metrics. A comprehensive review
of sensor solutions for machine condition monitoring was
recently published by Ahmad et al. [11]. All these systems
are designed to be easy to install and interface with the fac-
tory network system to start recording information on a data
repository. Nevertheless, how this data can be converted to
relevant information is left to the user.

The main idea that started this research was that binary
data obtained through simple sensorsmonitoring themachine
tool door status may effortlessly provide a preliminary
assessment of the machine performance and a rough evalua-
tion of key performance indicators (KPIs) such as the overall
equipment effectiveness (OEE) [12]. Indeed, the doors of
machine tools are readily accessible and can be monitored
with minimal sensorization investment while preserving the
electrical certification of the equipment.

Fig. 1 Overview of the experimental approach

In the next sections, the development of a prototype data
collection system designed to monitor the door status (open,
close) is discussed. After laboratory validation, 50 devices
were deployed to collect data from 50 machine tools in
an operational automotive components factory for over 3
months. The collected data were analyzed and an innova-
tive methodology for the automatic classification of machine
status was proposed. A realistic simulator was developed to
validate the classification methodology. Ultimately, the col-
lected data were analyzed to calculate the efficiency of actual
machines, with surprising and very promising results (Fig.
1).

2 Data collection and classification
algorithm

In this section, the development of the monitoring device and
its validation are discussed. Then, details about the applica-
tion of sensors in an actual plant together with a preliminary
data analysis are given. Finally, the development of the clas-
sification algorithm and its validation with using simulated
data are provided.
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Fig. 2 Development of the monitoring device: (a) prototype test circuit; (b) installation of the device on the main door of a milling machine in
laboratory; (c) electrical circuit of the reed contact sensor

2.1 Door status monitoring devices

The status of the machine doors was monitored using simple
and inexpensive magnetic reed switches. This type of sensor
is priced at less than 30 USD and was selected due to the
simplicity of installation – no precise mechanical fixtures
or complex electrical conditioning circuits were necessary.
The sensor was interfaced with an ESP8266micro-controller
which provided real-time data processing and Wi-Fi con-
nectivity. The prototype system is shown in Fig. 2(a). It is
noteworthy that the same simple device can be straightfor-
wardly used for processing data from multiple other sensors.

In Fig. 2(b), the installation of the sensor on the door of a
milling machine inside the laboratory is shown. The micro-
controller and conditioning electronics were enclosed inside
a plastic box for protection. Electrical power was provided
either by a USB power supply or by a power pack.

The reed switch was connected to one of the digital inputs
of an ESP8266 micro-controller with a pull-up resistor. The
electrical circuit is shown in Fig. 1(c). The micro-controller
was programmed to check the sensor status at approximately
1 kHz. If the sensor status varied from that in the previous
scan cycle, an event message was sent to a message queue-
ing telemetry transport (MQTT) broker in JavaScript Object
Notation (JSON) format using Wi-Fi. To avoid bouncing,
sensor state variations occurring within 200 ms from the last
state change were ignored. The final cost for each prototype
device amounted to less than 100 USD.

The JSON message included the unique micro-controller
code, the sensor code, the sensor status, and the time interval
in milliseconds from the last state change. The micro-
controller programming was performed in C++ using the
Arduino Integrated Development Environment.

The overall IIoT architecture of the system is shown in
Fig. 3. On the server side, an MQTT client running on the
same virtual machine of the broker received all JSON mes-
sages, decoded them, and inserted the new values into a
PostgreSQL database table.

2.2 Application of sensors to a real plant

After preliminary testing and laboratory validation, 50 sen-
sors were deployed onto the main doors of various types
of machine tools within an operational factory specialized
in manufacturing automotive components. The apparatus
comprised injection molding machines, milling machines,
machining centers, lathes, and grinding machines. Specific
details about the equipment cannot be disclosed due to
contractual confidentiality agreements. Manufacturing oper-
ations were organized in batches, with production changes
occurring once or twice a month on some of the machines.

Plant production data were manually recorded on paper,
with daily productivity and scrap rate information being par-
tially transferred to Excel spreadsheets on a monthly basis.
The majority of the machine tools were outdated, and the
anticipated investment required for interconnecting even the

Fig. 3 IIoT architecture and
main components of the
monitoring system
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newer machines was significant. Consequently, this monitor-
ing activity also aimed at providing a preliminary efficiency
assessment of the plant. Specifically, an estimation of losses
resulting from material shortages, cleaning procedures, and
minor maintenance tasks was expected.

Some of the doors of these machines were automated and
door opening and closing was automatically controlled. In
many machines, the closing of the door directly initiated or
resumed the execution of the part program. Additionally, the
open-close logic varied among machines due to their distinct
characteristics and configurations, as it relied on operational
or installation details.

The 50 machines were monitored continuously for over
3 months, and 1 GB of data was collected. No problems
with connectivity or power loss were registered in this time
interval.

Data were exported from PostgreSQL in CSV format and
imported into theMathworksMATLAB environment, where
all analysis activitieswere performed.As a preliminary stage,
the data were filtered and processed to produce a final dataset

of approximately 80 MB, detailing solely the sequence of
open-close intervals for eachmachine.This datasetwas struc-
tured as a table with three columns: the Unix timestamp of
the interval end, the interval type (0=open door; 1=closed
door), and the interval duration in seconds.

2.3 Preliminary analysis of the sensor data

Data analysis was performed to highlight repetitive time
patterns and to identify methodologies for the automatic
classification of machine statuses. The data collected from
different machines varied strongly, and some examples are
illustrated in Fig. 4, where a logarithmic scale was employed
to effectively represent a broad range of time intervals, span-
ning from seconds to several days.

In Fig. 4, the open-close interval duration data are rep-
resented with different colors, using the y-axis to represent
the interval duration in seconds, and the x-axis to provide
the position of the interval end relative to the monitoring
time. In this way, each interval corresponds to a single point

Fig. 4 Examples of data collected from machines 1, 41, 9, and 14: (a)
open-close intervals duration versus monitoring time. The x-coordinate
represents the interval end position. Sequences of intervals with the
same duration appear as adjacent points on a horizontal line, facili-
tating the identification of repetitive patterns; (b) frequency analysis

of the interval duration enabling the identification of typical duration
peaks associated with repetitive patterns; (c) detail of the open-close
sequence obtained focusing on a time range of 20,000s to illustrate the
repetitive pattern. The y-axes of charts (b) and (c) are aligned with that
of chart (a)
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on a graph and sequences of open-close intervals are repre-
sented by point patterns. A sequence of intervals with the
same duration is represented as a set of neighboring points
on the same horizontal line, making it is easier to identify
repetitive patterns. For this reason, duration frequency anal-
ysis was performed to identify the duration peaks typical of
repetitive patterns.

The following observations were made:

1. For all machines, long intervals corresponding to pro-
duction stops, holidays, weekends, and night shifts were
identified. These intervals ranged from hours to several
days.

2. The time schedule of the machines were quite different
with different shifts (2–3 shifts per day). Some systems
were active during the weekend.

3. Almost all machines evidenced repetitive patterns. These
patterns represent normal repetitive production opera-
tions during batch production, and theywere separated by
long time intervals without movement or by sequences
of non-repetitive time intervals that were explained as
setups, cleaning, and maintenance operations.

4. In several machines, production changes were clearly
discernible, as different repetitive patterns separated by
chaotic patterns were visible.

5. As illustrated in Fig. 5, the repetitive patterns were of dif-
ferent kinds: simple open-close cycles, where both the
open and close intervals had quasi-constant durations;
double open-close-open-close cycles,where the open and
close intervals had twovery distinct alternating durations;
triple open-close-open-close-open-close cycles with an
approximately constant overall duration; semi-repetitive
cycles, where either the open or close interval duration
was approximately constantwhile the other interval dura-
tionwaswidely distributed; and chaotic cycles, where the
duration frequency distributions of both intervals were
rather large.

Due to the presence of repetitive patterns, frequency anal-
ysis of the time intervals was applied to identify peaks in the
distribution diagram. For instance, in Fig. 4, machines with

different logic are shown. Machine 1 exhibited a repetitive
pattern of single open-close sequences, with the open time
interval demonstrating remarkable regularity, as indicated
by the narrow frequency peaks. Machine 14 was a perfect
example of double open-close pattern and two very narrow
frequency peaks for both the open and close intervals are vis-
ible. Machine 9 had a complex triple open-close pattern and
a rather complex overall behavior with many non-production
intervals. Machine 41 displayed a notably precise double
open-close pattern and discernible production changes.

These four cases were selected to provide the reader
with an idea of the data quality and variability and lay the
groundwork for explaining the requirements of the automatic
classification algorithm described in the next section.

2.4 Automatic classification algorithm

After the preliminary data analysis, the following require-
ments for the automatic classification algorithm were iden-
tified:

• The algorithm should adapt to different open-close repet-
itive patterns and production changes, but it should not
rely on the type of intervals, sincemanymachines exhibit
inverse or varying logic.

• For the greatest applicability of the methodology, it
should be possibly based on adaptive and non-dimensional
thresholds.

To simplify the approach, it was assumed that the logic of
each machine was constant in the monitoring interval. This
was not considered a strong limitation since it could be easily
overcome by splitting production intervals into smaller time
frames, if necessary.

Among all the possible classification approaches, a statis-
tical approach based on the intervals distributions and joint
distributions was attempted. Many alternative ways were
attempted to establish a statistical classification criterion, and
eventually the procedure described in Figs. 6 and 7was devel-
oped, where xi with i = 1 . . . N is the sequence of interval
durations recorded from one machine.

Fig. 5 Description of the
different open-close repetitive
patterns
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Fig. 6 Description of
open-close data used to
determine statistical parameters
and identify patterns.
Open-close patterns are first
transformed into combined
interval duration sequences,
then the average and the
standard deviation are computed
to enable the identification of
patterns. The detection threshold
determines which open-close
cycle patterns (n) provide the
best classification performance

As shown at the top of Fig. 6, if a repetitive pattern com-
posed of n open-close cycles is present, the average overall
duration should be rather constant. Since the data evidenced
n = 1, 2, 3 open-close cycle patterns, all these possibilities
had to be tested to determine which pattern provided the best
classification performance, i.e., which one had a variance of
neighboring points lower than a reference threshold smax.

The detailed step-by-step analysis process is shown in
Fig. 7. The first aim of this process is to provide a suit-
able starting estimate for sre f ,seq . For this purpose, the long
intervals are first identified. The following long interval clas-
sification was adopted:

• Long stops: duration between 2 and 6h;
• Missing shifts: duration between 6 and 10h;
• Missing double shifts: duration between 10 and 20h;
• Free days: duration between 20 and 32h;
• Weekends or 2-day breaks: duration between 32 and 56h;
• Holidays: duration over 56h.

Unfortunately, precise data were not available in this case,
and the schedule varied widely from machine to machine.
However, it is highly advised that long interval classification
is performed in adherence to production schedule.

After classification of the long intervals, the method
focused on short open and close intervals and the standard
deviations of the open and close intervals, sx,open and sx,close,
were calculated.

Let the combined interval duration yi,n be defined as fol-
lows:

yi,n =
∑i

i−2n+1 xi
2n

and n = 1, 2, 3 (1)

The characteristics of the combined interval duration are
given in Fig. 8(a) and (b) using a logarithmic scale to rep-
resent a wide spectrum of time intervals. In Fig. 8(a), the

combined interval durations are shown for n = 1, 2, 3. The
dispersion is lower for n = 3 due to the smoothing effect
of averaging. In Fig. 8(b), the frequency distribution of the

Fig. 7 Analysis of open-close data used to determine statistical param-
eters, identify patterns, classify intervals, and calculate performance
indicators
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Fig. 8 Example of combined intervals durations for machines 1, 41, 9,
and 14: (a) combined intervals with different open-close cycle patterns
(n) of lengths yi,n ; (b) frequency analysis of the combined inter-
vals duration showing very distinctive duration peaks associated with
repetitive patterns; (c) standard deviations of sequences of combined
intervals s′

y,i,p versus the total monitoring time taking consistently low

values during repetitive production; (d) frequency analysis of standard
deviations in (c) focusing on the occurence of a peak; (e) detail of the fre-
quency analysis in (d) showing the open-close cycle patterns detected.
The y-axis of charts (b) is aligned with that of chart (a), whereas the
y-axis of chart (d) is aligned with that of charts (c)

interval durations is shown. For all the example machines,
there were very distinctive peaks typical of repetitive pat-
terns.

The expected standard deviation sy,n is as follows:

sy,n = 1

2
√
n

√
s2x,open + s2x,close (2)

Let us now consider a sequence of yi,n values composed
of the p preceding values and the p subsequent values for
each element i , for a total of 2p+ 1 elements. The statistical
parameters of the sequence are:

ȳy,i,n,p =
∑i+p

i−p yi,n

2p + 1
(3)

and

sy,i,n,p =

√
√
√
√

∑i+p
i−p(yi,n − ȳy,i,n,p)2

2p + 1
(4)

Since the yi,n elements in the expression of sy,i,n,p are
not mutually independent, it is rather complex to determine
the expected value of sy,i,n,p [13]. Preliminary investiga-
tions evidenced that it depends linearly on 1

n ; therefore, the
sequence standard deviation was adjusted to have a reference
that does not depend on n, as follows:

s′
y,i,n,p = n · sy,i,n,p (5)

The characteristic of the standard deviation for each
machine introduced in Fig. 4 is given in Fig. 8(c), (d), and
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(e). In Fig. 8(c), the standard deviation against the total mon-
itoring time is provided. During repetitive production, the
values were consistently low, and a peak was observed in the
frequency distribution, as illustrated in Fig. 8(d) and further
detailed in Fig. 8(e).

To compare the value of s′
y,i,n,p with a reference value,

Eq. 2 was modified to remove n and to take into account the
effect of averaging over 2p+1 values. The adjusted expected
standard deviation of the sequence s′

re f ,seq,p was estimated
as follows:

s′
re f ,seq,p = 1

2
√
2p + 1

√
s2x,open + s2x,close (6)

Unfortunately, this reference value demonstrated some
degree of unreliability owing to inaccuracies inherent in the
estimates of sx,open and sx,close. Therefore, the coefficient k
was introduced to allow an adaptable classification approach.
Accordingly, a sequence centered on the i-th element was
considered repetitive if:

s′
y,i,n,p ≤ k · s′

re f ,seq,p (7)

All the raw intervals composing a sequencewhich satisfies
(7) can be classified as “production time.” Let Nk represent
the number of intervals falling under this classification.

In Fig. 9(a), the fraction of short intervals classified as pro-
duction time for increasing values of k are given for the four
reference machines. For each n, the value of k was increased

from 0.01 to 1.5 in steps of �k = 0.01. As expected, the frac-
tion of intervals classified as “production time” increased
with increasing values of k.

The pattern characteristics were significantly different
across different apparatus. For machines 41, 9, and 14, the
characteristic corresponding to the effective pattern demon-
strated superior classification performance for small values
of k. Conversely, formachine 1, the three characteristicswere
nearly superimposed.

Figure 9(b) shows the relative increment RI calculated
for each value of k:

RI (k) = Nk − Nk−�k

Nk−�k
(8)

All the characteristics of RI generally decrease with
increasing values of k. In the left part of each diagram, when
k is close to 0, the characteristics have a clear and strong
decreasing trend, especially those that correspond to the pat-
tern type of the machine. After this decreasing trend, all
characteristics slightly decrease asymptotically with a very
noisy behavior. The transition between the initial decreasing
trend and the noisy behavior was found to be a good marker
separating the intervals effectively belonging to a repetitive
pattern from the others. Accordingly, the non-dimensional
threshold of RI <= 0.01 was adopted to determine the opti-
mal value of k.

For machines 41, 9, and 14, the curve corresponding to the
pattern of the machine also had a kopt,n that was significantly

Fig. 9 Description of open-close data used to determine statistical parameters and identify patterns
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smaller than the others, thus further confirming the validity of
the proposed approach. Formachine 1, the three kopt,n values
were almost identical. The conclusionwas that for the pattern
n = 1 all curves provided a very similar classification which
is a consequence of a single cycle pattern. In other cases, the
curves that first reached saturation for a relatively small value
of k corresponded to the most likely type of pattern, which
was then assigned to that machine for that time interval.

It should be pointed out that the values of k and s′
re f ,seq,p

are determined dynamically for each machine and they are
adaptive non-dimensional thresholds, as previously speci-
fied.

In conclusion, this procedure was used to determine the
corresponding pattern from the raw dataset of each machine,
and to provide a suitable classification of short intervals. At
the end of this process, the short intervals were classified as
belonging to a repetitive pattern, either marked as production
time or not.

3 Results and evaluation of the algorithm
performance

Unfortunately, no real data characterizing the effective sta-
tus of each machine tool during the production process were
available. Therefore, for evaluating the classification accu-
racy of the novel algorithm, a numerical simulator aimed
at generating realistic synthetic data was developed. In this
way, it was possible to quantitatively assess its classification
capabilities. It is worth noting that only the data generated by
the simulator that were similar to real data were kept for the
final performance evaluation, as illustrated in the following
section.

3.1 Development of the simulator

The simulator was completely developed inMATLABwork-
ing environment using a discrete event simulation (DES)
approach. Starting from an initial idle condition, the sim-
ulator determined the new status of the machine from the
possible alternatives according to their respective proba-
bilities. Door movements were then determined based to
machine status. The logical statuses of themachines andother
simulation details are described in Table 1.

At each simulation step, a random number was gener-
ated to determine the next status of the machine according to
its respective frequency number. For instance, the effective
probability of maintenance pm is:

pm = cm
cm + cp + cs + ct + cw

(9)

where cm , cp, cs , ct , and cw are the random frequency num-
bers of maintenance, production, setup, stop, and waiting,
respectively.

Each simulation produced synthetic data covering a time
interval of approximately 4 months including shifts and
weekend breaks.

The simulator was run 10,000,000 times with different
combinations of the simulation parameters using Hammers-
ley sampling [14, 15] and according to the overall design of
the experiments in Table 2.

For each simulation, the output of the simulator was a
long table (approximately 30,000 rows on average) where
each row was an interval and the columns were the start
time stamp of simulated interval, the door status, the interval
duration, and the simulated machine status.

Table 1 List of machine
statuses implemented in the
simulation: status name;
description; number of
simulated intervals to be
simulated; simulated interval
duration range; interval duration
distribution

Status Description Int. Num. Int. Dur. [s] Distrib.

Idle Machine status at the beginning of
the simulation run and during non-
scheduled time intervals;

N/A N/A N/A

Setup Random activities during machine
preparation for production;

< 12 100–300 Uniform

Production Repetitive activities according to
the simulated open-close pattern;

2, 4, 6 Simul. params. Normal

Stop Short production interruption for
minor cleaning or other ordinary
activities;

1 1–10 Uniform

Wait Production interruption due to
absence of incoming material from
previous production stages;

1 10–1,800 Uniform

Maintenance Production interruption due to
breakdown and sequence of random
activities during repair.

8 1,800–7,200 Uniform

For production status, the reference interval duration range was derived from factors in Table 2
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Table 2 Experimental design for simulation: factors and symbols; levels for each factor; number of levels (NoL)

Factor and symbol Levels NoL

Pattern number n 1, 2, 3 3

Chance number of maintenance cm 0.00005, 0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01 10

Chance number of production cp 4 1

Chance number of setup cs 0.0002, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02 8

Chance number of stop ct 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.08 8

Chance number of waiting cw 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.08 8

Interval duration mean dm , n 2, 3, 5, 8, 10, 15, 20, 30, 50, 80, 100, 120, 150, 200, 250, 300, 400, 500, 600 19

Interval duration st.dev./mean ratio rm , n 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.25, 1.5, 2, 2.5, 3, 4, 5 14

The data structure was identical to that acquired from real
machines, with the addition of a machine status column that
was used to evaluate the performance of the classification
algorithm.

In total, the simulations lasted approximately 30h on a PC
equipped with an 8-core microprocessor running at 3.8-GHz
clock speed. The simulations generated around 10TBof data,
making it impractical to store all data on disk. Consequently,
only simulations with data resembling real-world scenarios
were recorded and used for subsequent analysis. For this
purpose, a similarity criterion was introduced to evaluate
the affinity between time series derived from measurement
and simulation. The criterion was based on the difference
between the non-dimensional cumulated distributions of the
interval durations of the two time series under analysis. To
apply this criterion, the following steps were necessary:

• A set of classification bins was determined according to
the characteristics of the available data. The bins ranged
from 1 to 7,200s to cover short intervals. This range was
divided into 1,000 intervals on a logarithmic scale. Since
fractional numbers were useless in this case, each point
was rounded to the closest integer, and duplicates were
removed. Ultimately, 580 bins were obtained.

• The numerosity of the intervals belonging to each
bin was determined. This operation was performed for
open and close intervals separately, thus providing two
arrays of 580 elements representing the original time
series—nbopen(i) and nbclose(i). Each array was non-
dimensionalized by dividing it by the respective total
number of intervals. Ultimately, the cumulative sum dis-
tribution of each array was calculated:

csz(i) =
∑i

j=1 nbz( j)
∑580

j=1 nbz( j)
, z ∈ (open, close) (10)

• The difference between two cumulative sum arrays,
either referring to open or close intervals, was calculated

as follows:

dz,w =
580∑

i=1

|csz(i) − csw(i)| (11)

where the z andw symbols generally indicate two distinct
cumulative distributions.

• Both the straight and cross differences were calculated.
The straight difference was obtained by the composition
of corresponding difference terms:

dts1,ts2,str =
√
d2ts1=o,ts2=o + d2ts1=c,ts2=c (12)

The cross difference was obtained by the composition of
the cross terms:

dts1,ts2,crs =
√
d2ts1=o,ts2=c + d2ts1=c,ts2=o (13)

• The difference between two time series was eventually
obtained as the minimum between straight and cross dif-
ferences:

dts1,ts2 = min(dts1,ts2,str , dts1,ts2,crs) (14)

Simulations were only recorded if their distance from at
least one of the real time series was below 30. This threshold
was determined by analyzing the average distances between
real time series. As a result, a total of 18,695 simulations
were acquired, comprising 18.6 GB of data in memory or
2.4 GB on disk when stored in compressed format.

3.2 Algorithm performance on synthetic data

The classification accuracy of the algorithm was calculated
by using the subset of synthetic data that was close to real
data. Accuracy was defined as the ability to correctly classify
production intervals as “repetitive” and all other intervals as
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“non-repetitive.” The balanced accuracy BA was then com-
puted as follows:

BA = 0.5(
Nprod,rep

Nprod
+ Nnprod,nrep

Nnrep
) (15)

where Nprod,rep is the number of production intervals cor-
rectly classified as “repetitive”; Nprod is the total number
of production intervals; Nnprod,nrep is the number of non-
production intervals correctly classified as “non-repetitive”;
Nnrep is the total number of “non-repetitive” intervals. The
balanced accuracy index ranges from 0.5 (worst) to 1 (opti-
mal).

For each synthetic time series, the procedure described
in Fig. 7 was applied and the following quantities were
obtained:

• The estimated pattern number n̂;
• The best sequence half-width popt and coefficient kopt ;
• The balanced accuracy BA.

In Table 3, the classification performance data are given
against the true and estimated pattern numbers.

Let us first consider the elements on the diagonal: in
4,141+2,647+231=7,019 cases out of 18,695 the pattern type
was correctly recognized (37.54%). For n = 1, the major-
ity of the simulated time series were classified incorrectly.
However, as discussed in the previous section, this was not a
problem since the single pattern classification performance
was similar for all n.

The elements outside the matrix diagonal for n = 2
and n = 3 cannot be considered acceptable, totaling
137+501+6+31=675 cases out of 18,695 (3.6%). The failure
to recognize the correct pattern could be attributed to large
standard deviations or very similar average interval durations
among different elements within the same cycle. In conclu-
sion, the pattern was correctly identified in 96.4% of cases.

Additionally, the average balanced accuracy μBA and the
standard deviation σBA were computed according to con-
ventional definitions. In all cases, μBA exceeded 90%, while
σBA was very low. This finding demonstrates that, on aver-
age, the classification algorithm performed very well, even in
complex scenarios where the underlying pattern was unclear.

The classification algorithm was executed using different
levels (1, 2, 3, and 4) of the half-width sequence p to deter-
mine the optimal value. The results shown in Fig. 10 indicate
that the cumulated distribution improves with increasing val-
ues of p. However, a slight decrease in performance was
observed when comparing p = 4 to p = 3. Consequently,
p = 3 was adopted as optimal value.

Concerning the coefficient k, since it was automatically
adapted for each classification, its values are not particularly
interesting.However, for a rough reference, the average value
was 0.17, with a maximum of 0.75 observed among all con-
sidered cases.

3.3 Preliminary comparison of algorithm
performance against other classification
approaches

To provide a more comprehensive evaluation of the algo-
rithm performance, a preliminary comparison of its accuracy
against that of other classifiers was performed.

For each realistic simulation, the yi,nopt and s
′
y,i,nopt ,p

and
the simulated machine status values were used to train a ran-
dom forest of 10 classification trees using cross-validation in
Matlab environment. The data corresponding to the optimal
number n = nopt were used. Training and evaluation were
performed separately for each simulation, thus maximizing
the classification capabilities on homogenous data. The bal-
anced accuracy of the classification performed by the random
forest against that obtained with the proposed methodology
is given in Fig. 11.

Table 3 Classification
performance data against true
pattern number and estimated
pattern number

Estimated pattern Total
n̂ = 1 n̂ = 2 n̂ = 3

C = 4, 141 C = 4, 798 C = 6, 203 C = 15, 142

n = 1 μBA = 0.906 μBA = 0.923 μBA = 0.917 μBA = 0.916

σBA = 0.064 σBA = 0.059 σBA = 0.062 σBA = 0.062

C = 137 C = 2, 647 C = 501 C = 3, 285

True pattern n = 2 μBA = 0.915 μBA = 0.910 μBA = 0.925 μBA = 0.913

σBA = 0.065 σBA = 0.063 σBA = 0.051 σBA = 0.062

C = 6 C = 31 C = 231 C = 268

n = 3 μBA = 0.909 μBA = 0.915 μBA = 0.918 μBA = 0.918

σBA = 0.045 σBA = 0.055 σBA = 0.056 σBA = 0.055
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Fig. 10 Cumulated distributions of balanced accuracy obtained with different half-width sequence p

The performance of the two methodologies is almost
equivalent, with the random forest performing better in cases
where the proposedmethodology is not very accurate, proba-
bly due to the specialization of the classification tree.Overall,
the effectiveness of the proposedmethodology is, on average,
at least equivalent to that of a random forest approach.

In order to compare the performance of the two meth-
ods on heterogeneous data, 100 intervals (50 production, 50
other) were selected randomly from each of the 18,695 real-
istic simulation runs, and combined together, thus obtaining
a dataset of yi,nopt and s′

y,i,nopt ,p
and the simulated machine

status values with 1,869,500 records. Again, a random forest
of 10 classification trees using cross-validation was trained
on this dataset in Matlab environment. The balanced accu-

Fig. 11 Comparison of balanced accuracy (BA) for classification of
synthetic data

racy of the random forest was 88.8% whereas that of the
proposed methodology was 91.0%.

For further reference, an ensemble of 10 neural networks
(2 inputs, 10 neurons in the hidden layer, ReLu activa-
tion function, L-BFGS-B solver, training set size 75%) was
trained on a portion of the dataset, obtaining a balanced
accuracy of 89.9%. The confusion matrices are reported in
Table 4.

In conclusion, with homogeneous data, the performance
of the proposed classification methodology is equivalent or
slightly better than a random forest approach. With hetero-
geneous data, the performance of the proposed classification
methodology evidences a higher balanced accuracy.

3.4 Estimated algorithm performance on real time
series

Ultimately, the classification algorithm was employed on the
real time series to classify the intervals and calculate their
performance indicators.

In Fig. 12, relevant quantities describing the 50 real time
series are shown. In particular, Fig. 12(a), (b), and (c) illus-
trate characteristic metrics offering insight into the dataset’s
variability and serving as a reference for subsequent dia-
grams. Here, a logarithmic scale was employed to effectively
represent a broad range of time intervals, spanning from sec-
onds to several days, and a diverse numbers of intervals,
ranging from thousands to hundreds of thousands.

As the overall sampling interval is similar for all real
time series, there is an obvious inverse correlation between
the mean interval duration and the number of intervals. In
addition, data derived from different machines appear to be
rather heterogeneous, as clearly visible in the example data of
Fig. 4. In Fig. 12(d), an estimate of the classification accu-
racy is shown. The estimation of the accuracy for the real
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Table 4 Classification
performance data of proposed
methodology against machine
learning approaches

Approach True classes Balanced Accuracy
True negative True positive

Proposed approach Negative 794,050 27,271 BA = 91.0%

Positive 140,700 907,479

Random forest Negative 813,001 89,675 BA = 88.8%

Positive 119,462 847,362

Neural network Negative 796,353 52,808 BA = 89.9%

Positive 136,110 884,229

time series was obtained by employing the weighted average
method based on the accuracies of synthetic time series. The
reciprocal of the difference between the synthetic and real
time series was used as weighting factor:

μEBA(i) =
∑18,695

j=1
BA( j)

dtss= j,tsr=i
∑18,695

j=1
1

dtss= j,tsr=i

(16)

and

σEBA(i) =

√
√
√
√
√

∑18,695
j=1

BA2( j)−μ2
BA(i)

dtss= j,tsr=i
∑18,695

j=1
1

dtss= j,tsr=i

(17)

Since the balanced accuracywas high for all synthetic time
series, the estimated accuracy was also rather high, with only

Fig. 12 Final data description
for the real time series: (a) total
number of intervals composing
the series; (b) mean and
standard deviation of the open
intervals; (c) mean and standard
deviation of the close intervals;
(d) mean and standard deviation
of the estimated classification
accuracy; (e) interval
classification; (f) estimated
OEE∗; in charts (b), (c), and (d)
standard deviations are stacked
on top of the mean values
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minimal differences. The classification of times into the six
classes is given in Fig. 12(e). The distribution of times is very
different from machine to machine. For instance, machines
37 and 46 were stopped for the largest amount of time in the
sampling interval. Long stops and speed losseswere observed
across all machines, whichwas expected given that the inves-
tigated plant was not optimized.

Finally, a variant of the OEE was calculated for all
machines as a performance indicator, and it is shown in
Fig. 12(f). Usually, OEE is calculated by evaluating three
factors [16]: availability, performance, and quality. Avail-
ability takes into account all major time losses, such as setup
time andunexpectedmaintenance operations. Performance is
related to speed losses and minor production interruptions.
Quality considers the fraction of produced goods that are
effectively compliant with specifications. To calculate the
OEE, companies require an effective production schedule,
accounting of setup and maintenance operations, and qual-
ity reports. It is usually a rather demanding task to extract
all this information from different data sources (ERP, MES,
Maintenance Management System) and compute the OEE .

In the described approach, some data are missing, thus
preventing the precise calculation of the OEE :

• No data about the production schedule were provided by
the company and the production schedule was different
for different machines and varied over time;

• No quality data were available.

Accordingly, only a partial calculation of OEE , which
did not include quality, was feasible. This variant, denoted
as OEE∗, was defined as the ratio of the sum of repetitive
intervals to the sum of intervals excluding presumed holi-
days, as follows:

OEE∗ =
∑

j∈Repeti tive x( j)
∑

j∈ x( j)
(18)

By looking at the numbers, OEE∗ ranged from 0.26 to
0.75, thus clearly distinguishing likely non-critical machines
from potential bottlenecks. As mentioned, an accurate quan-
tification of the actual OEE∗ for a detailed comparison
was unfortunately not available. However, the company con-
firmed that the computed OEE∗ values were in line with
expectations and provided a rather accurate representation of
the internal organization of the production plant. Plant man-
agers were quite impressed by the possibility of obtaining
these estimates almost automatically with such inexpensive
and non-invasive sensors and without the need to combine
sensor data with data extracted from other sources.

Clearly, these OEE∗ values cannot be considered a sub-
stitute for the conventional calculation of OEE due to the
missing quality data and other classification approximations.

Additionally, as stated in the “Introduction,” this approach
can be applied only in a semiautomatic and highly repetitive
production environment.

On the other hand, the possibility of effortlessly obtaining
an almost real-time overview of production status may be of
great value in many production environments.

4 Conclusions

In this research, a prototype IIoT device was developed and
applied to monitor the status of the main door of 50 machine
tools in a factory producing batches of automotive parts.
A preliminary analysis of the data collected from different
machines showed a high degree of heterogeneity and patterns
of open-close interval durations that clearly characterized
production activities.

An innovative statistical algorithm for automatic identi-
fication and classification of repetitive patterns of data was
developed. It was conceived to be very efficient from a com-
putational point of view and relying only on basic statistical
principles. To validate the algorithm, synthetic data provided
by a realistic simulator developed during this research were
used. All the details concerning the classification algorithm
and the simulator are reported in this manuscript.

The validation results were good, with a balanced accu-
racy greater than 90% and very low variance. In addi-
tion, a preliminary comparison revealed that the proposed
methodology exhibits advantageous classification perfor-
mance compared to conventional machine learning classi-
fication methodologies.

The classification algorithm was applied to real data to
evaluate speed losses and efficacy, and a simplified ver-
sion of the OEE indicator was computed. The classification
resultswere realistic and consistentwith factorymanagement
observations obtained using traditional methods, thus further
proving the validity and usefulness of the novel approach.

These results proved the possibility of monitoring the effi-
ciency of production plants using very simple and economic
sensors that can be easily installed on machine tools without
complex integration procedures that would require mechan-
ical or electrical modifications.

Future research will focus on comparing the algorithm
performance against advanced machine learning approaches
to investigate differences in classifying complex patterns.
At the same time, the algorithm will be further developed
to enhance analytical effectiveness and provide a valuable
tool for actively optimizing manufacturing cycles and pro-
cesses. To this aim, two primary improvement directions
are recommended. First, enhance the algorithm adaptability
to effectively handle not only on-off signals but also sta-
tuses defined by multiple non-binary sensors, thereby mak-
ing the algorithm completely independent of the specific
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characteristics of the manufacturing plant. Second, upgrade
data analysis techniques by implementing intelligent strate-
gies to enhance accuracy in pattern classification and extract
even more meaningful insights from the collected data. In
this regard, refining the algorithm based on real data from
different manufacturing plants is crucial for improving its
predictive power, while integrating anomaly detection logic
could help identify unusual patterns or events that may be
handled separately. The so-obtained information can be used
alone or together with other data from the plant monitoring
system to actively optimize manufacturing scheduling and
plant management.
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