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Abstract
In the power diode laser beam machining (DLBM) process, the kerf width (KW) and surface roughness (SR) are important factors 
in evaluating the cutting quality of the machined specimens. Apart from determining the influence of process parameters on these 
factors, it is also very important to adopt multi-response optimization approaches for them, in order to achieve better processing of 
specimens, especially for hard-to-cut materials. In this investigation, adaptive neuro-fuzzy inference system (ANFIS) and genetic 
algorithm tuned ANFIS (GA-ANFIS) were used to predict the KW on a titanium alloy workpiece during DLBM. Five machining 
process factors, namely power diode, standoff distance, feed rate, duty cycle, and frequency, were used for the development of 
the model due to their correlation with KW. As in some cases, traditional soft computing methods cannot achieve high accuracy; 
in this investigation, an endeavor was made to introduce the GA-assisted ANFIS technique to predict kerf width while machining 
grooves in a titanium alloy workpiece using the DLBM process based on experimental results of a total of 50 combinations of 
the process parameters. It was observed that FIS was tuned well using the ANN in the ANFIS model with an R2 value of 0.99 for 
the training data but only 0.94 value for the testing dataset. The predicting performance of the GA-ANFIS model was better with 
less value for error parameters (MSE, RMSE, MAE) and a higher R2 value of 0.98 across different folds. Comparison with other 
state-of-the-art models further indicated the superiority of the GA-ANFIS predictive model, as its performance was superior in 
terms of all metrics. Finally, the optimal process parameters for minimum KW and SR, from gray relational–based (GRB) multi-
response optimization (MRO) approach, were found as 20 W (level 2) for laser power, 22 mm (level 5) for standoff distance, 
300 mm/min (level 5) for feed rate, 85% (level 5) for duty cycle, and 18 kHz (level 3) for frequency.
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1  1. Introduction

The accelerated progression of technological advance-
ments, coupled with the rising demand for superior prod-
ucts and novel materials, has culminated in the evolution 
and refinement of production methodologies [1]. Although 
conventional machining processes such as turning, mill-
ing, and drilling were used for over a century in various 
demanding tasks in the manufacturing industry and many 
advancements, such as the use of advanced coolants and 
cooling methods, the use of specially designed tools or 
assistive technologies has been developed in order to alle-
viate some of the common issues restricting the high per-
formance of these processes such as tool wear, machining 
chatter and chip control, improvement of their efficiency is 
still limited. Especially, non-conventional processes have 
shown to be especially suited for efficient machining of 
difficult-to-cut materials, including hardened steels, tita-
nium alloys, and nickel superalloys as well as ceramics and 
composite materials. A particularly interesting non-con-
ventional method is laser beam machining (LBM), which 
is a cutting-edge manufacturing process that employs a 
high-energy laser beam to sculpt materials with intricate 
precision, often dealing with variables that are nonlinear, 
imprecise, and multifaceted in nature [2]. Due to its non-
conventional nature, LBM does not require physical con-
tact between the workpiece and the tool, reducing the need 
for expensive and complex tooling for the machining setup 
and also eliminating the drawback of cutting tool wear 
during conventional machining processes [3].

LBM is a sophisticated subtractive manufacturing tech-
nique, whose efficacy is governed by intricate interrela-
tionships among several key parameters, relevant to both 
the machine tool employed and the workpiece material, 
namely laser power, laser beam spot size, feed rate, use of 
assisting gas, thermo-mechanical properties of the work-
piece, etc [4]. The laser’s power dictates the energy inten-
sity imparted, while its pulse duration and frequency mod-
ulate the temporal distribution of this energy [5, 6]. Spot 
size, derived from the focal length of the employed lens, 
determines the spatial concentration of the laser beam, 
influencing the resolution and precision of machining [7, 
8]. The feed rate represents a balance between achieving 
desired material removal rates and minimizing thermal 
effects [9]. Assisting gases not only influence the ejection 
of molten material but can also chemically interact with 
the workpiece, affecting surface characteristics [10]. Mate-
rial-specific properties, such as thermal conductivity and 
reflectivity, play pivotal roles in the beam-material inter-
action dynamics [11]. Ambient conditions, particularly 
temperature and humidity, might subtly influence beam 
propagation and absorption. Understanding and calibrating 

these parameters, in harmony, are paramount for ensuring 
optimal, reproducible, and scientifically consistent results 
in LBM applications [12].

Based on the mentioned above complex LBM physical 
phenomena, an optimization of these parameters is crucial to 
increase the precision and minimize the energy and materials 
waste [7, 13]. Apart from experimental work and statistical 
analysis of the findings based on methods such as ANOVA, 
addressing the complexities inherent in this process requires 
advanced computational tools, and this is where the Adap-
tive neuro-fuzzy inference systems (ANFIS) comes into play 
[14]. ANFIS, an innovative model that blends the adaptive 
capabilities of artificial neural networks (ANN) [15] with 
the logical reasoning of fuzzy inference systems (FIS) [16], 
is uniquely poised to understand and model the nuanced 
parameters of LBM. By exploiting the individual strengths 
of ANN and FIS, ANFIS offers a compelling strategy for 
function approximation and system modeling, especially 
relevant in the dynamic world of laser manufacturing. From 
an engineering viewpoint, the brilliance of ANFIS resides in 
its adeptness at navigating the challenging terrains of nonlin-
earities and imprecisions, thereby paving the way for more 
accurate and efficient laser machining outcomes [17].

The efficacy of LBM is deeply contingent upon its input 
parameters, and for this purpose many researchers have 
conducted comprehensive experimental and numerical 
studies in order to determine the correlation between these 
parameters and some of the outcomes of LBM. It is widely 
accepted that a paramount machining performance metric is 
surface roughness [18]. To delineate the correlation between 
surface quality and these parameters in LBM drilling, Muth-
uramalingam et al. [19] undertook an optimization study on 
a titanium grade 5 alloy utilizing a  CO2 laser. Through the 
Taguchi gray relationship analysis (GRA), it was discerned 
that the laser power (LP) and stand-off distance (SoD) sig-
nificantly influence the surface roughness (SR) [19]. Specifi-
cally, a higher LP combined with a reduced SoD results in 
a diminished SR. Chatterjee et al. [20] in their study used 
artificial intelligence techniques to predict the quality char-
acteristics of Ti6Al4V and AISI 316 after laser hole drill-
ing. From the analytical evaluation, it is discerned that the 
Multi Gene Genetic Programming (MGGP) model exhibits 
a diminished root mean square error (RMSE) relative to the 
ANFIS model when evaluating performance metrics. This 
data suggests that MGGP holds a heightened potentiality and 
robustness in prognosticating the performance parameters 
associated with the laser beam micro-drilling operation. 
Conclusively, the MGGP models manifest superior predic-
tion fidelity in juxtaposition with the ANFIS model. Numer-
ous researchers have endeavored to devise an AI algorithm 
tailored for predicting and optimizing process outcome such 
as material removal rate (MRR) and kerf width in LBM, 
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especially given that a reduced kerf width is integral to 
ensuring optimal cut quality [21].

Campanell et al. [22] used an ANN model to identify the 
values of scan speed and pulse frequency that correlate with 
a predetermined depth of MRR, thereby enhancing the effi-
ciency of the process of laser milling. The results show that 
there is an inverse relationship where scanning speed (V) 
decreases with a rise in the ablation depth. Ablation depths 
below 2.5 μm correspond with higher velocities, approaching 
the upper limit of 2000 mm/s considered in this study. Con-
versely, greater ablation depths exceeding 10 μm align with 
scan speeds in the 460 to 510 mm/s range. Rajamaniaet al. 
[23] performed an ANFIS modelling and whale optimization 
algorithm to predict the MRR, kerf taper angle, and SR dur-
ing a fiber laser cutting of Hastelloy C276. The results show 
that ANFIS model, having the least prediction errors, is more 
efficient than the multiple linear regression models approach. 
Whale optimization algorithm proves to be the best method 
for optimizing the LBC process, with optimal parameters 
being 3 bar of gas pressure, 319.8 mm/min cutting speed, 
5.93 J pulse energy, and 2.97 mm stand-off distance. Finally, 
Bakhtiyari et al. [24] employed ANN and ANFIS algorithms 
to represent the cadmium plasma attributes under conditions 
of local thermodynamic equilibrium during laser ablation. 
The study results indicate that the suggested machine learn-
ing algorithms proficiently create precise models to fore-
cast the temporal and spatial changes of the laser-induced 
plasma (LIP). The need of implementing the diode-based 
LBM (DLBM) process is increasing predominantly [25]. 
The higher laser-power diode can increase the plasma energy 
developed across the machining zone [26].

Apart from surface quality and MRR, the kerf width (KW) 
is also an important quality metric on accessing the cut-
ting quality of LBM process, as it indicates not only the 
material wastage but also the cutting dimensional accuracy 
[27]. More specifically, Löhr et al. [28] performed a compre-
hensive analysis of the deviations of the kerf profile during 
 CO2 laser processing of PMMA workpieces, showing also 
that focal point position, cutting speed, and laser power are 
the most important parameters regarding kerf width. Pra-
manik et al. [29] investigated the effect of various param-
eters, including sawing angle, laser power, duty cycle, pulse 
frequency, and scanning speed on the kerf quality during 
fiber laser micro-machining of Ti-6Al-4 V. Comparable 
results on the effect of process parameters on kerf quality 
were also obtained in another study by the same authors on 
stainless steel workpieces, who analyzed also the kerf taper 
angle [30]. Analysis of experimental data indicated that all 
parameters were statistically significant but pulse frequency, 
duty cycle, and scanning speed were the most important. 
Son and Lee [31] correlated the kerf width with volume 
energy during LBM and found that higher kerf widths are 
produced under higher volume energy and that laser power 

has a more significant effect on kerf width than cutting 
speed. Naskar et al. [32] conducted experiments on LBM of 
aluminum alloy 7075 and analyzed the effect of laser power, 
pulse frequency, and assist gas pressure on kerf width and 
heat-affected zone (HAZ). It was found that all parameters 
were important and that kerf width is minimized at low laser 
power due to less thermal energy incorporation, moderate 
assist gas pressure, and higher pulse frequency.

Bakhtiyari et al. [7] analyzed comprehensively the influ-
ence of several parameters during LBM, underlined the 
importance of kerf width as a quality indicator, and men-
tioned that high laser power leads to increase of kerf width as 
well as waviness of the produced profiles whereas increased 
cutting speed reduces the kerf width. Genna et al. [33] con-
ducted experiments under five different parameters, such as 
workpiece thickness, feed rate, assist gas pressure, and focus 
position, and argued that increased cutting speed reduces kerf 
width due to the reduced irradiation time and lower energy 
but the increase of kerf width observed in some cases can be 
attributed to the change in cut front inclination. Lind et al. 
[34] studied the effect of beam shape on kerf geometry dur-
ing LBM and developed a model for determining the maxi-
mum possible cutting speed depending on the geometry of 
kerf. Kusuma and Huang [35] conducted a comprehensive 
comparison of different soft computing models for kerf width 
prediction during LBM, showing that a random forest model 
was able to achieve the lowest MAPE in both training and 
testing. Khoshaim et al. [36] performed laser machining 
experiments on PMMA sheets and found out that kerf devia-
tion was mostly affected by workpiece thickness and cutting 
speed. Increased cutting speed as well as gas pressure and 
laser power increased the achieved kerf width [37, 38].

Even though several research efforts were performed on 
the prediction of LBM process quality metrics, only less 
research attention was provided on enhancing the process 
of the diode-based LBM, and also few amounts of attention 
were given to the prediction of KW during the machining 
process by appropriate soft computing models [39]. As KW 
indicates the overcut made during the cutting process and 
indirectly represents materials wastage that happened during 
the machining process [40], apart from reducing the surface 
roughness, it is essential to reduce KW as much as possible 
due to the high cost of titanium alloy specimens. Hence, it 
needs to be predicted before the machining process for choos-
ing the optimal process parameters. Moreover, it is important 
that the influence of the DLBM process factors on KW and 
surface roughness has to be investigated for achieving better 
quality during diode laser machining. Thus, in the present 
work, a comprehensive experimental work based on Taguchi 
orthogonal array design is conducted in order to investigate 
the influence of process parameters on kerf width and surface 
roughness of DLBM processed specimens at first and then, 
an ANFIS-based predictive model and a GA-ANFIS model 
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for KW obtained during DLBM were developed based on the 
experimental data and evaluated regarding their capabili-
ties, in comparison with other established methods, such as 
regression methods and regression tree models. Finally, an 
optimization procedure by the gray relational–based (GRB) 
multi-response optimization method was carried out in order 
to determine the optimum conditions for obtaining the high-
est quality of the produced features based on the minimiza-
tion of both kerf width and surface roughness values.

2  Experimental methodology

In this work, the effect of using advanced AI methods for the 
prediction of kerf quality during laser machining of titanium 
alloy is investigated, along with the determination of opti-
mum process parameters values which can lead to reduced 
kerf width and surface roughness. A comprehensive experi-
mental work is conducted, taking into account five different 
process parameters under multiple levels each and then the 
correlation of these parameters with kerf width and surface 
roughness is determined. In order to improve the precision 
and robustness of the prediction of kerf width, apart from 
the usually developed regression models, several AI models, 
namely decision trees (DT), adaptive neuro-fuzzy inference 
system (ANFIS), and a hybrid genetic algorithm - adap-
tive neuro-fuzzy inference system (GA-ANFIS) model, are 
developed and compared based on multiple metrics in order 
to determine the most preferable approach for the specific 
problem. Moreover, the hybrid GA-ANFIS model is com-
pared to other state-of-the-art models such as support vec-
tor machine (SVM), multilayer perceptron neural network, 
Gaussian process regression, and kernel regression in order 
to further prove the superiority of this method. Finally, a 
gray relational–based optimization method is employed in 
order to provide the parameter combination which leads to 
minimum kerf width and surface roughness values.

2.1  Experimental design

The aerospace and industrial sectors make extensive use of 
titanium (Ti-6Al-4 V) alloy. Thus, due to its frequent use 
in demanding applications, it was chosen for the current 
study. In this study, the milling process was performed over 
the workpiece specimens using a customized power diode-
assisted laser beam machining process (DLBM) process 
[41]. The power supply unit (PSU) of 12 V has been con-
nected to the laser power module, which has an input elec-
trical power of 10 W and 20 W with a laser driver module 
for controlling the laser beam [42]. The process parameters 
in the DLBM process such as standoff distance (SOD), feed 
rate (FR), duty cycle (DC), and frequency (F) along with 
powder diode (PD) were selected to examine their effects 
on the thickness of the KW [27]. The range of process vari-
able settings for process factors was chosen as indicated in 
Table 1. Figure 1 shows the graphical representation of the 
laser milling.

Kerf width (KW) is the removed material width during 
the machining process, indicated in the schematic dia-
gram of Fig. 2. Celestron’s digital microscope software 

Fig. 1  Graphical representation 
of the laser milling process

Fig. 2  Schematic diagram of top and bottom kerf widths in a section 
of a cut created by LBM
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was utilized to acquire images and to measure the kerf 
width. The proposed study used a USB digital microscope 
to measure the kerf width of machined specimens. The 
digital microscope was set to a magnification of 52.834% 
to capture the top surface of the titanium workpiece. In 
this experiment, the kerf width was measured based on ten 
different positions for each test, using the ruler function 
in Celestron Micro Capture Pro. The ruler was first cali-
brated with a Vernier scale to ensure accuracy, and the ten 
sample measurements were then averaged to determine the 
kerf width of each sample. The surface roughness of the 
cut surface was quantitatively measured using an Alicona 
Infinite focus microscope by setting up lambda filter (cutoff 
wavelength) on 80 μm. Each machining trial was replicated 
two times to enhance the measurement accuracy and all the 
performance characteristic values used for analysis were 
obtained from computing the mean values of the repeated 
trials. The surface roughness was measured from scanned 
areas at the center of the machined surface.

By using an experimental design based on  L25 Taguchi 
orthogonal array for four parameters under five levels and 
duplicating the design twice, as laser power was varied at two 
levels, 50 different experimental training combinations were 
carried out in total. The number of levels for the different 
variables was determined by analyzing the literature and dis-
cussing with laser machining experts in this field. Especially 
regarding laser power, it was observed that the suggested 
two laser power values can be related to the limiting values 
for obtaining optimal values for the process. Moreover, the 
choice of laser power depends on the hardware requirements 
and commercially availability for diodes used for the same 
process. This approach not only allows a very comprehen-
sive evaluation of the effect of each parameter on kerf width 
during laser machining of titanium alloy but also maintains 
a relatively low required time and cost for the experiments.

2.2   Fuzzy inference system (FIS)–based prediction 
approach

A fuzzy inference system (FIS) is a type of artificial 
intelligence model that operates based on fuzzy logic. 
Fuzzy logic is a mathematical framework that deals with 

uncertainty and imprecision, allowing for the representa-
tion and manipulation of vague and uncertain information. 
It is particularly useful in situations where conventional 
binary logic (true/false) for decision making may not be 
suitable.

The fuzzy inference system consists of four main 
components:

Fuzzification This step involves converting crisp (exact) input 
data into fuzzy sets. Fuzzy sets are characterized by member-
ship functions that assign a degree of membership to each 
element of the set. These membership functions define the 
degree of similarity between the input data and the fuzzy sets.

Fuzzy rule base The fuzzy rule base contains a set of IF-
THEN rules that express the relationship between the fuzzy 
inputs and fuzzy outputs. Each rule consists of a condition 
(antecedent) and a conclusion (consequent) linked by lin-
guistic terms. The condition part uses the fuzzy sets obtained 
from the fuzzification step, and the conclusion part defines 
the fuzzy sets that represent the desired output.

Inference engine The inference engine evaluates the fuzzy 
rules based on the fuzzy input values to determine the cor-
responding fuzzy outputs. The degree of activation of each 
rule is determined by the membership values of the input 
data in the respective fuzzy sets.

Defuzzification In many applications, the fuzzy output 
needs to be converted back into crisp values. Defuzzification 
is the process of aggregating the fuzzy outputs and obtaining 
a single crisp output value. Various methods can be used 
for defuzzification, such as centroid, mean of maximum, or 
weighted average.

Tuning a fuzzy inference system (FIS) involves adjust-
ing its parameters and rules to optimize its performance 
for a specific task or application. Proper tuning is essential 
to ensure that the FIS can accurately model the underlying 
system, make accurate predictions, or control a process 
effectively [43]. There are several techniques for tuning 
a FIS, depending on the type of FIS and the nature of 
the problem at hand [44]. There are various algorithms 
and optimization techniques that can be used for tuning 
fuzzy inference systems. Some of the common ones are 
grid search, genetic algorithms, particle swarm optimiza-
tion (PSO), simulated annealing, differential evolution, ant 
colony optimization (ACO), and particle competition and 
cooperation optimization (PCCO). The process of tuning 
involves evolutionary learning to solve the optimization 
problem as shown in Fig. 3.

Table 1  Process factors in the DLBM study

Process factors nota-
tion

Process variables Unit

PD 10, 20 W
SOD 18, 19, 20, 21, 22 mm
FR 200, 225, 250, 275, 300 mm/min
DC 65, 70, 75, 80, 85 %
F 16, 17, 18, 19, 20 kHz
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2.3  Adaptive neuro‑fuzzy inference system (ANFIS)

ANFIS is a hybrid computational model that combines the 
capabilities of artificial neural networks (ANNs) and fuzzy 
logic to perform inference and learning tasks [13]. Fuzzy 
logic systems use fuzzy sets and rule base for inferring output 
parameters based on input data. Development of the rule base 
and structure of fuzzy systems requires an expert knowledge 
about the system. The fuzzy rules are defined based on lin-
guistic variables and membership functions, which determine 
the degree of membership of input variables to different fuzzy 
sets. An artificial neural network (ANN) is used to approximate 
the consequent part of fuzzy rules. The ANN is responsible for 
tuning the parameters (weights and biases) of the nodes in the 
output layer, which correspond to the consequent part of the 
fuzzy rules. ANFIS was developed as a tool for modelling and 
predicting complex systems based on input-output data [45].

The architecture of an ANFIS typically consists of several 
layers as shown in Fig. 4, each performing specific functions 
in the modelling and inference process [46, 47]. The func-
tions of different layers in ANFIS are listed below.

Input layer The input layer receives the crisp input variables 
or data. Each input node represents an input variable.

Membership function layer The membership function layer 
fuzzifies the crisp input data into fuzzy linguistic variables. Each 
node in this layer represents a membership function associated 
with a specific input variable. Membership functions define the 
degree of membership of an input value to a particular fuzzy set.

Normalization layer The normalization layer computes the 
normalized firing strength of each rule. It takes the fuzzy 
membership degrees from the membership function layer 
as inputs and normalizes them.

Rule layer The rule layer computes the firing strength 
(activation level) of each rule. It combines the normalized 
membership degrees from the normalization layer based 
on the fuzzy rules. Each node in this layer represents a 
specific rule.

Aggregation layer The aggregation layer aggregates the out-
puts of the rules. It combines the outputs of the rule layer 
using the firing strengths obtained in the previous layer.

Output layer The output layer provides the final output of 
the ANFIS model. It takes the aggregated outputs from the 
aggregation layer and performs defuzzification to convert 
the aggregated output into a crisp value.

Parameter learning The most important feature of the 
ANFIS algorithm is its ability to adjust the parameters 
(weights and biases) of the network to optimize the out-
put. Forward Pass Perform is a forward pass through 
the network, passing the input data through the fuzzy 
inference system. It computes the outputs of each node 
based on the fuzzy rules and membership functions. 
Error calculation compares the computed outputs with 
the desired outputs and calculate the error. Backward 
Pass (gradient calculation) propagates the error back 
through the network and calculates the gradients of the 
error with respect to the parameters. Parameters such 
as weights and biases are updated using an optimization 
algorithm (e.g., gradient descent) to minimize the error. 
This process iterates for a specified number of itera-
tions or until convergence. It allows the ANFIS model 
to adjust its parameters and improve its performance on 
the training data.

Fig. 3  Tuning process of the 
fuzzy inference system
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2.4  Genetic algorithm tuned adaptive neuro‑fuzzy 
inference system (GA‑ANFIS)

Genetic algorithm (GA) is a heuristic search and optimiza-
tion algorithm inspired by the process of natural selection 
and genetics in biology. The basic idea behind a GA is to start 
with a population of possible solutions to a problem, and then 
use a process of selection, crossover, and mutation to generate 
new solutions that may be better than the previous ones. The 
solutions are encoded as chromosomes, which are strings of 
binary or real-valued numbers that represent potential solu-
tions to the problem. The key advantages of GA are that it can 
handle a wide range of problems and search spaces, and it can 
work in parallel to generate multiple solutions simultaneously.

Genetic algorithm-tuned ANFIS is a hybrid machine 
learning approach that combines the ANFIS with GA opti-
mization to improve the performance of ANFIS as shown in 
Fig. 5. In a GA-tuned ANFIS approach, the GA algorithm is 
used to optimize the parameters of the ANFIS model, such as 
the membership functions and the scaling factors, to improve 
the accuracy of the model [48]. The GA algorithm searches 
for the optimal set of parameters by evaluating the fitness 
of different parameter sets using a fitness function, which is 
typically the mean squared error between the predicted and 

actual values. The advantage of using GA-tuned ANFIS is 
that it can improve the accuracy of ANFIS by optimizing the 
parameters more efficiently than traditional trial-and-error 
methods. It can also handle complex and non-linear systems, 
and adapt to changing environments [49].

2.5  K‑fold cross‑validation

K-fold cross-validation is a technique used in machine learn-
ing to evaluate the performance of a model. In this method, 
the dataset is divided into K equal-sized partitions, or “folds.” 
The model is then trained K times, each time using K−1 
folds for training and one fold for testing. For example, if 
we choose K = 5, the data would be split into five folds, each 
containing one-fifth of the data. The model would be trained 
five times, each time using a different fold as the test set and 
the remaining four folds as the training set. The results from 
each of the five tests are then averaged to produce a final 
evaluation metric, such as accuracy or error rate [50].

The advantage of using K-fold cross-validation is that it pro-
vides a more accurate estimate of the model’s performance than 
simply splitting the data into a single training and testing set. By 
using multiple folds, we are able to train and test the model on 
different parts of the dataset, which can help to reduce the impact 

Fig. 4  ANFIS architecture and learning process
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of any particular subset of the data having an unusual distribution. 
Another advantage of K-fold cross-validation is that it allows us 
to make better use of our limited dataset, particularly when the 
amount of data available for training is small. By repeatedly train-
ing the model on different parts of the dataset, it is possible to get 
a better estimate of the model’s true performance [51].

Finally, it is necessary to note that the performance of 
the predictive models is evaluated using several standard 
performance measures as listed below.

Mean squared error (MSE) This is one of the most common 
measures used to evaluate the accuracy of regression models. It 
calculates the average squared difference between the predicted 
values and the actual target values. MSE is given as follows:

where n is number of data samples, and ym is the experimen-
tal value, while yp is the predicted value.

Root mean squared error (RMSE) RMSE is the square root 
of the MSE. It provides a measure of the typical prediction 
error and is often preferred when the errors have significant 
magnitude variations. RMSE is given as follows:

(1)MSE =
1

n

n∑

i=1

(
ym − yp

)2

(2)RMSE =

√√√
√1

n

n∑

i=1

(
ym − yp

)2

Mean absolute error (MAE) MAE is another measure of the 
prediction error, but it takes the absolute difference between 
predicted and actual values. It is less sensitive to outliers 
than MSE.

R‑squared (R²) R-squared measures the proportion of vari-
ance in the target variable that is predictable from the input 
variables. It provides an indication of how well the model fits 
the data, with values ranging from 0 to 1. Higher R-squared 
values indicate a better fit.

3  Results and discussion

3.1  Analysis and discussion of the experimental 
results

By using an experimental design based on Taguchi  L25 
orthogonal array for four parameters under five levels 
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Fig. 5  Structure of genetic algo-
rithm–tuned ANFIS system
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and performing the same experiments with two different 
levels of laser power, 50 different experimental training 
combinations were carried out in total, as can be seen in 
Table 2. The typical KW and surface roughness (Ra) val-
ues presented in Table 2 were then thoroughly analyzed 
based on statistical methods in subsections 3.1.1 and 3.1.2 
respectively.

3.1.1  Analysis of kerf width values

At first, as can be seen from Table  2, a considerable 
amount of experimental tests has been carried out in this 
work, by varying the values of five process parameters 
within an appropriate range, relevant to the practical 
conditions often selected for this process. Furthermore, 
by observing the results of Table 2, it becomes obvious 
that the values of kerf width vary considerably within 
the range of different process parameters chosen for the 
experiment. More specifically, values as low as 0.46 mm 
up to 2.1019 mm were recorded under different conditions, 
indicating that the experimental investigation was compre-
hensive enough, as it was able to capture different probable 
cases of material removal during DLBM.

Thus, based on the analysis of the experimental results, 
the main effects plot regarding kerf width can be observed 
in Fig. 6. At first, it can be clearly observed that the largest 
variation occurs for the laser power even though its values 
vary in the range of 10–20 W, as it can induce a considerable 
variation of the produced kerf width. Furthermore, feed rate 
has also a noticeable impact on the kerf width as well as duty 
cycle, to a slightly lesser extent, whereas standoff distance 
(SOD) and frequency have a less pronounced effect on the 
variation of kerf dimension. In the case of laser power (LP), 
feed rate (FR), duty cycle (DC), and SOD, a clear increas-
ing trend can be observed as the values of these parameters 
increase, implying that it is not favorable to use high values 
of these parameters when the main objective of the investi-
gation is to achieve low kerf width, although some of these 
parameters are expected to increase the MRR. On the other 
hand, frequency exhibits a more complex trend by initially 
increasing kerf width, then decreasing its values and finally 
reaching a moderate value at the highest frequency.

The observed trends can be explained based on the 
mechanics of material removal during laser machining 
of titanium alloy. Increased laser power contributes to a 
higher amount of heat being introduced to the workpiece 
during LBM; thus, it is expected that the zone of melt-
ing and evaporation, as well as the HAZ, will be larger 
when a higher laser power is used. This is evident from 
most of the experimental works in the relevant literature 
and was particularly noted in the work of Son and Lee 
[33], who particularly correlated volume energy and kerf 

dimensions. The increase of kerf width by increase of 
SOD can be explained due to the changes in the focusing 
of the beam as well as energy distribution when it acts 
from different distances. At higher standoff distances, the 
divergence of the beam becomes higher, with the spot size 
being slightly increased. Thus, HAZ and material removal 
increase, with a wider kerf width developing.

Moreover, the trend between the cutting speed and the 
kerf width was found to be almost a linearly increasing one. 
In general, a higher feed rate is related to a shorter time of 
interaction between the laser beam and the workpiece, so 
a lower amount of energy is transmitted to the workpiece 
[52]. Thus, the increased amount of heat is not sufficient to 
evaporate or not even melt a considerable amount of mate-
rial around the irradiated region, resulting in less material 
removal and narrower top kerf width, whereas also taper 
increases due to the increased lag and larger difference 
between the size of top and bottom kerf width. However, 
in a few cases where relatively high cutting speeds were 
used, it was shown that the use of higher feed rate can lead 
to higher kerf widths [53]. This phenomenon was observed 
by Rao et al. in sheet machining and was attributed to higher 
vibrations observed in the direction perpendicular to the 
cutting direction. A non-linear correlation of cutting speed 
and kerf width at different ranges of cutting speed was also 
noted by Darwish et al. [54] and Kondayya and Krishna 
[55]. A plausible explanation is relevant to the possibility of 
a “self-focusing” or “self-induced absorption” phenomenon 
due to variations in cut front formation [33], which can be 
caused especially by the formation of a dense and turbulent 
plume which leads to higher absorption [56] and eventually 
enlarges the kerf width. Moreover, this phenomenon can be 
relevant to the material properties of titanium workpiece, 
such as low thermal conductivity or higher thermal expan-
sion coefficient leading to lower heat dissipation, higher heat 
accumulation, and material distortion.

The duty factor is relevant to the ratio of the time the 
laser is operating to the total cycle time, implying that for 
higher values, the laser is operating for the larger percent-
age of the cycle. Thus, higher values of duty factor can be 
directly correlated with larger kerf width, as more energy 
is delivered to the workpiece, leading to more intense 
melting and vaporization; thus, more energy is available 
to melt the top surface of the kerf [29, 57]. Moreover, 
the pulse frequency is related to the number of laser 
pulses per unit time, so that higher frequency is related 
to smaller exposure time for each pulse and results in a 
narrower kerf width but also less uniform [29], as it was 
observed for frequencies over 18 kHz in the present study.

Regarding the relative importance and significance of 
process parameters, analysis of variance (ANOVA) was 
performed on the experimental data, as can be seen in 
Table 3. Every parameter, except from pulse frequency, 
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Table 2  Experimental results Experiment 
number

Laser power
(W)

Standoff dis-
tance (mm)

Feed rate 
(mm/min)

Duty cycle 
(%)

Frequency 
(kHz)

Kerf width
(mm)

Surface 
roughness
(µm)

1. 10 18 200 65 16 0.4680 0.524
2. 10 18 225 70 17 0.6024 0.632
3. 10 18 250 75 18 0.7594 0.758
4. 10 18 275 80 19 0.9405 0.902
5. 10 18 300 85 20 1.1475 1.068
6. 10 19 200 70 18 0.5985 0.629
7. 10 19 225 75 19 0.7615 0.759
8. 10 19 250 80 20 0.9500 0.910
9. 10 19 275 85 16 0.8883 0.861
10. 10 19 300 65 17 0.7873 0.780
11. 10 20 200 75 20 0.7500 0.450
12. 10 20 225 80 16 0.7200 0.726
13. 10 20 250 85 17 0.9031 0.872
14. 10 20 275 65 18 0.8044 0.794
15. 10 20 300 70 19 0.9975 0.948
16. 10 21 200 80 17 0.7140 0.721
17. 10 21 225 85 18 0.9037 0.873
18. 10 21 250 65 19 0.8105 0.798
19. 10 21 275 70 20 1.0106 0.958
20. 10 21 300 75 16 0.9450 0.906
21. 10 22 200 85 19 0.8883 0.861
22. 10 22 225 65 20 0.8044 0.794
23. 10 22 250 70 16 0.7700 0.766
24. 10 22 275 75 17 0.9642 0.921
25. 10 22 300 80 18 1.1880 1.100
26. 20 18 200 65 19 0.8779 0.852
27. 20 18 225 70 20 1.1064 1.035
28. 20 18 250 75 16 1.3732 1.249
29. 20 18 275 80 17 1.6812 1.495
30. 20 18 300 85 18 2.0331 1.776
31. 20 19 200 70 16 1.0998 1.030
32. 20 19 225 75 17 1.3768 1.251
33. 20 19 250 80 18 1.6973 1.508
34. 20 19 275 85 19 1.5923 1.424
35. 20 19 300 65 20 1.4207 1.287
36. 20 20 200 75 18 1.3573 1.236
37. 20 20 225 80 19 1.3063 1.195
38. 20 20 250 85 20 1.6176 1.444
39. 20 20 275 65 16 1.4497 1.310
40. 20 20 300 70 17 1.7781 1.572
41. 20 21 200 80 20 1.2961 1.187
42. 20 21 225 85 16 1.6185 1.445
43. 20 21 250 65 17 1.4601 1.318
44. 20 21 275 70 18 1.8004 1.590
45. 20 21 300 75 19 1.6888 1.501
46. 20 22 200 85 17 1.5923 1.424
47. 20 22 225 65 18 1.4497 1.310
48. 20 22 250 70 19 1.3913 1.823
49. 20 22 275 75 20 1.7215 1.527
50. 20 22 300 80 16 2.1019 1.592
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is proven to be statistically significant. This result is also 
confirmed based on the calculation of the delta factor in 
the results of the main effects plot by Taguchi analysis, as 
the most important parameter is proven to be laser power, 
whereas feed rate, duty cycle, SOD, and frequency have a 
smaller contribution to kerf width, accordingly.

3.1.2  Analysis of surface roughness values

Regarding surface roughness, it can be observed from 
Table  2 that the values of Ra vary between 0.450 and 
1.823 μm during the DLBM experiments. Thus, it is possible 
that the choice of the appropriate values of the different pro-
cess parameters can provide the desired surface roughness 
value. The results depicted in the main effects plot of Fig. 7 
present the main trends occurring for the surface roughness 
values in respect to the process parameters.

Laser power is revealed to be again a dominant factor, 
as the increase of laser power between 10 and 20 W leads 
to a radical increase of surface roughness of the specimens 
in any case. Moreover, it is shown that the feed rate is also 

an important parameter for surface roughness given that it 
contributes to an almost linear increase of surface roughness. 
The duty cycle is another important parameter for regulating 
surface roughness, with a generally positive correlation with 
Ra, except for the range [70%, 80%] when a slight decrease 
of Ra was observed. Finally, SOD and frequency are the 
least important parameters with increased SOD resulting in 
a moderate increase of Ra and frequency leading to a slight 
increase of Ra up to 18 kHz and then to a slight decrease for 
values up to 20 kHz.

These trends can also be explained based on the specific 
characteristics of the laser beam machining process. When 
laser power is high, the more intense thermal phenomena 
such as melting and evaporation result in a rougher surface 
being developed. Moreover, the increase of duty cycle also 
contributes to a higher amount of energy being introduced 
to the workpiece leading to more radical alterations of sur-
face topography, whereas the use of different frequencies 
seems to have a negligible effect on surface roughness as its 
variation is much lower than the variation induced by other 
parameters. Finally, in order to justify the importance of 
each parameter, in Table 4, the ANOVA results for surface 
roughness are depicted.

ANOVA results from Table 4 confirm the qualitative 
observations from the main effects plot for surface rough-
ness as it is determined that all parameters except from 
frequency are statistically important for surface roughness, 
with laser power being the most important, followed by 
feed rate, duty cycle, and SOD. Thus, in order to achieve 
the desired surface roughness, it is important to choose 
appropriate values mainly for laser power, feed rate, and 
duty cycle. However, as it was stressed before, in practi-
cal applications, it is crucial to take into account multiple 
objectives, such as kerf width or MRR, as it will be per-
formed in subsection 3.4.

Fig. 6  Main effects plot of kerf width

Table 3  ANOVA results for kerf width

Source DF Adj SS Adj MS F-value P-value

Regression 5 7.62817 1.52563 124.98 0.000
Laser power 1 5.65233 5.65233 463.06 0.000
SOD 1 0.23418 0.23418 19.18 0.000
Feed rate 1 1.23095 1.23095 100.84 0.000
Duty cycle 1 0.51041 0.51041 41.81 0.000
Frequency 1 0.00031 0.00031 0.03 0.874
Error 44 0.53709 0.01221
Total 49 8.16526

Fig. 7  Main effects plot for surface roughness
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3.1.3  Microscope observations of surface quality 
after DLBM

Finally, the experimental results prove the considerable 
potential of diode laser machining as the appropriate control 
of the process parameters can lead to the achievement of the 
desired kerf quality with sufficient precision. It was shown 
that the main parameters required to be varied for efficient 
regulation of kerf width are laser power and feed rate, as two 
of the main factors related to the heat input into the work-
piece. However, the exact values of process parameters for 
efficient material removal by DLBM should be selected care-
fully in accordance with other performance metrics such as 
MRR, surface roughness, or power consumption, in order to 
be able to achieve not only high quality but also high pro-
ductivity during DLBM of titanium alloys. Figure 8 shows 
SEM images of the bottom surfaces. Figure 8a is an image 
machined with 10-W laser power. It can be seen that the pres-
ence of pockmarks  may be caused by the expulsion of molten 

material or gas entrapment during the material’s solidifica-
tion. There is also the presence of microcracks caused by 
thermal stress due to the rapid heating and cooling during 
the laser milling process. On the other hand, in Fig. 8b, it is 
shown the bottom surface machined by 20-W laser power. 
This image has more rough surface with an intense presence 
of craters; these are depressions on the surface but might be 
larger and have a more defined edge. Craters can result from 
the impact of the laser pulse on the surface causing material 
removal. Additionally, there is a presence of globules which 
are spherical particles that have solidified on the surface. 
They could be remnants of molten material that cooled rap-
idly into spherical shapes due to surface tension.

3.2  Development of regression model

In order to gain further insight into the correlation of pro-
cess parameters and kerf width, it is important to develop a 
regression model, which will take into account the obtained 
experimental results. Thus, after some preliminary investiga-
tions, a non-linear regression model was developed, includ-
ing only the statistically significant terms, as follows:

This model has a MSE value of 0.0095629, RMSE value 
of 0.09779, MAPE value of 6.866%, and ΜΑΕ value of 
0.078629. The values of these metrics indicate that a suf-
ficient level of correlation between process parameters and 
kerf width can be established through this model. However, 
it is also necessary to investigate further the possibility to 

(5)
K
W
= 1.17661 ∗ 10

−6
LP

0.843893 ∗ SOD
0.798317

∗ FR
0.936836 ∗ DC

0.921306

Table 4  ANOVA results for surface roughness

Source DF Adj SS Adj MS F-value P-value

Regression 5 5.21672 1.04334 89.71 0.000
Laser power 1 3.95930 3.95930 340.42 0.000
SOD 1 0.20358 0.20358 17.50 0.000
Feed rate 1 0.80892 0.80892 69.55 0.000
Duty cycle 1 0.24157 0.24157 20.77 0.000
Frequency 1 0.00335 0.00335 0.29 0.594
Error 44 0.51174 0.01163
Total 49 5.72846

Fig. 8  SEM images that show surfaces machined by 10-W laser power (a) and by 20-W laser power (b)
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develop a more precise and robust model based on AI tech-
niques in order to be able to generalize more sufficiently and 
further reduce the errors.

3.3  Development of DT regression model

A relatively simple but useful machine learning (ML) model is 
decision tree (DT). This type of ML model not only is primar-
ily effective for classification purposes but can also be used 
for regression. Especially, regression tree (RT) is an algorithm 
pertinent to the DT methods, which can be regarded as a super-
vised learning algorithm, able to handle both numerical and 
categorical values. The algorithm of RT is relatively simple, 
as it is partitioning the feature space in a recursive way, even-
tually creating smaller subsets based on the values of input 
parameters. Each node of the tree involves a splitting criterion 
in order to split the data into child nodes in the optimum way 
until the stopping criterion is true, e.g., maximum tree depth. 
The final model has a tree structure with the leaf nodes hav-
ing the final predicted values of the target response based on 
specific values of the input parameters which lead to this node.

RT have various advantages such as direct interpretabil-
ity, given that a visual representation of the tree structure can 
be obtained in order to under the function of the model and 
identify the most important features, handling of missing 
data, as the missing values are omitted during splitting, and 
establishment of non-linear correlations but they can suffer 
from overfitting, as most ML models, and they exhibit high 
computational costs due to large datasets.

The regression tree model developed in this work has a 
depth of four levels. The predictor importance estimated by 
the model is comparable to the results of ANOVA as the rank-
ing of input variables was as follows: laser power, feed rate, 
duty factor, SOD, and frequency. Frequency had an importance 
value of 0 and was neglected in the RT model. The model 
was found to have a MSE value of 0.0148, RMSE value of 
0.1216, MAPE value of 1.1741%, and ΜΑΕ value of 0.0822. 
The values of these metrics indicate that the model was able 
to capture the correlation between input parameters and kerf 
width at a satisfactory level. However, compared to the non-
linear regression model, MSE, RMSE, and MAE values are 
slightly higher but MAPE value was considerably decreased.

3.4  Performance of developed ANFIS model

There were in total 50 machining experiments that were con-
ducted on titanium alloy specimens under various process var-
iables’ combinations, as shown in Table 2. The experimental 
values of KW which are presented in Table 2 are utilized as the 
training data in ANFIS under the aforementioned machining 
settings, and the experimental dataset was randomly divided 
into training (40 numbers) and testing (10 numbers) datasets. 
The training dataset is used to train the predictive models 
and the testing dataset is used to validate the performance of 
the models. Training an ANFIS model involves adjusting its 
parameters to fit the training data. Since the aim of the study 
is to accurately predict KW, ANFIS model is developed to 
estimate the KW based on the input factors.

In an ANFIS structure, the input membership functions 
and rule base are tuned by ANN by an iterative learning pro-
cess. ANFIS architecture and training parameters are shown in 
Table 5. So, the ANN tunes the fuzzy inference system to adapt 
to the input variables to accurately predict KW. Figure 9 shows 
the scatter plot denoting the deviation from actual experimen-
tal KW with the predicted values for both training and testing 
datasets. It is inferred from these results that the FIS is tuned 

Table 5  ANFIS parameters

Number of nodes 524
Number of parameters 1503
Number of training dataset 40
Number of testing dataset 10
Number of fuzzy rules 243
Membership function Bell
Fuzzy type Sugeno

Fig. 9  Scatter diagram between measures and predicted values for 
both training and test data for ANFIS model

Table 6  GA parameters for tuning ANFIS

Population size 25
Maximum number of iterations 150
Crossover percentage 0.8
Mutation percentage 0.8
Mutation rate 0.001
Gamma 0.65
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well using the ANN in the ANFIS model with an R2 value 
of 0.99 for the training data but have only 0.94 value for the 

testing dataset. Also, the error parameters MSE, RMSE, and 
MAE are comparatively larger for the testing dataset compared 
to the training dataset. This is mainly due to the overfitting 
issue. This justifies the requirement of an additional algorithm 
to tune the ANFIS structure to improve the prediction results.

3.5  Performance of developed ANFIS model

Using a genetic algorithm (GA) to tune an adaptive neuro-
fuzzy inference system (ANFIS) and then validating its per-
formance is a powerful approach to achieve accurate and 
adaptable modeling for predicting kerf width. The ANFIS 
structure used in this model is similar as in Table 5 and the 
settings of GA parameters used to tune ANFIS are given in 
Table 6. The initial population of chromosomes with ran-
dom parameter values is created. The crossover and muta-
tion operations are applied to generate a new population of 
chromosomes. The iteration process repeats the selection, 
crossover, and mutation steps for a defined number of gen-
erations or until the convergence criterion is met. Thus, the 
GA-ANFIS model for predicting KW has been developed. 

Fig. 10  Rule surfaces show relationship between input and output variables in the GA-ANFIS model

Fig. 11  Scatter diagram between measures and predicted values for 
both training and test data for the GA-ANFIS model
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The structure of the rule surfaces between the input and out-
put variables for the GA-ANFIS model is shown in Fig. 10. 
Figure 11 shows the scatter plot denoting the deviation from 
actual experimental KW with the predicted values for both 
training and testing datasets for the GA-ANFIS model.

The performance of GA-ANFIS is evaluated and com-
pared with the ANFIS model using the performance meas-
ures such as MSE, RMSE, MAE, and coefficient of deter-
mination (R2) as shown in Table 7. As per the results, it is 
evident that the predicting performance of the GA-ANFIS 
model is better with less value for error parameters (MSE, 
RMSE, MAE) and a higher R2 value of 0.98. This makes 

Table 7  Performance 
comparison of ANFIS and 
GA-ANFIS models

Performance index Training data Testing data
ANFIS GA-ANFIS ANFIS GA-ANFIS

MSE 0.000031 5.85094 ×  10−08 0.003694 0.000679
RMSE 0.005553 0.000241887 0.060778 0.026065
MAE 0.004720 9.43335 ×  10−05 0.035837 0.015658
R2 0.99 0.99 0.94 0.98

Table 8  Performance comparison of GA-ANFIS models with stand-
ard regression models

Model MSE RMSE MAE R2

Linear regression 0.008423 0.091778 0.066077 0.95
Non-linear regression 0.009563 0.097790 0.078629 0.94
Decision tree regression 0.014800 0.121600 0.082200 0.92
SVM 0.008898 0.094329 0.072205 0.95
Gaussian process regression 0.008586 0.092658 0.066470 0.95
Neural network 0.012346 0.111114 0.085391 0.93
Kernel regression 0.042897 0.207120 0.171918 0.89
GA-ANFIS 0.000679 0.026065 0.015658 0.98

Fig. 12  Box plot of performance metrics for different prediction algorithms in different trials of 5-fold validation



 The International Journal of Advanced Manufacturing Technology

sure that there is no or less overfitting as the prediction accu-
racy for testing data is better as compared to training data. 
In comparison with the nonlinear regression model and the 
regression tree model, both ANFIS and GA-ANFIS exhibit 
superior MSE, RMSE, and MAE values.

The performance of developed GA-ANFIS was addition-
ally compared with standard regressions models such as lin-
ear regression, support vector machine (SVM), multilayer 
perceptron neural network, Gaussian process regression, 
and kernel regression, apart from the regression models pre-
sented in subsections 3.2 and 3.3 in order to conduct a more 

comprehensive comparison with state-of-the-art models. 
These models are developed using MATLAB Regression 
Toolbox. Table 8 shows the performance comparison of the 
GA-ANFIS model with standard regression models for test-
ing data. As the GA-ANFIS model exhibits less value for 
error parameters (MSE, RMSE, MAE) and a higher R2 value, 
it can be inferred that it has better prediction characteristics.

3.6  Fivefold cross‑validation of the GA‑ANFIS model

Fivefold cross-validation is a technique used to assess the 
performance of the prediction model by dividing the dataset 
into five subsets or folds. The model is trained and evaluated 
five times, each time using a different fold as the validation 
set and the remaining folds as the training set. This method 
provides a more robust estimate of a model’s generaliza-
tion performance compared to a single train-test split. The 
dataset is randomly divided into five equal-sized subsets 
(folds). During each iteration, four folds are used for train-
ing, and the remaining fold is used for validation. Fivefold 
cross-validation provides a more reliable assessment of a 
model’s performance compared to a single train-test split, 
as it accounts for potential variations in the data distribu-
tion. It reduces the risk of overfitting or underfitting on a 
particular dataset partition. Table 9 shows the performance 
comparison of ANFIS and GA-ANFIS models for different 
trials of fivefold cross-validation. A box plot, also known as 

Table 9  Performance comparison of ANFIS and GA-ANFIS models 
for different trails of 5-fold cross-validation

Trail no. Model MSE RMSE MAE R2

1 ANFIS 0.003791 0.061571 0.03584 0.93
GA-ANFIS 0.000619 0.024880 0.01266 0.99

2 ANFIS 0.002874 0.053610 0.02312 0.96
GA-ANFIS 0.001221 0.034943 0.01766 0.99

3 ANFIS 0.003342 0.057810 0.03842 0.91
GA-ANFIS 0.000721 0.026851 0.00951 0.97

4 ANFIS 0.004180 0.064653 0.04005 0.95
GA-ANFIS 0.000539 0.023216 0.01187 0.98

5 ANFIS 0.003051 0.055236 0.02988 0.96
GA-ANFIS 0.000914 0.030232 0.01327 0.99

Fig. 13  Steps involved in GRB 
multi-response optimization

Calculation of S/N ratio:

� Smaller the better characteristics

= ― 10log
1
∑ 2

m - Number of experimental replications

Yni  - Response of nth trial of ith dependent level.

Calculation of normalized S/N ratio:
� Smaller the better characteristics

=
max ( ) ―

max ( ) ― min ( )

Zni  - Normalized of nth trial of ith dependent level.

Computation of grey co-efficient (GC):

=
( +  )

( +  )

Ψni-Grey co-efficient for nth trial of ith dependent response

δ -Distinctive co efficient which has value from 0 to 1

Computation of grey relation grade (Gn):

n

1
ni

q - Number of the performance measures
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Table 10  S/N ratio and normalized S/N ratio arrays

Experiment 
no.

Kerf width Surface roughness

S/N ratio Normalized 
S/N ratio

S/N ratio Normalized 
S/N ratio

1. 6.5951 0 5.6067 0.1114
2. 4.4023 0.1686 3.9868 0.2473
3. 2.3906 0.3233 2.4121 0.3793
4. 0.5328 0.4662 0.8920 0.5067
5. −1.1951 0.5991 −0.5714 0.6294
6. 4.4587 0.1643 4.0297 0.2436
7. 2.3666 0.3252 2.3929 0.3809
8. 0.4455 0.4729 0.8192 0.5128
9. 1.0288 0.4281 1.3036 0.4722
10. 2.0772 0.3474 2.1599 0.4004
11. 2.4988 0.3150 6.9357 0.0000
12. 2.8534 0.2878 2.7813 0.3483
13. 0.8853 0.4391 1.1849 0.4822
14. 1.8906 0.3618 2.0088 0.4131
15. 0.0217 0.5055 0.4638 0.5426
16. 2.9260 0.2822 2.8389 0.3435
17. 0.8795 0.4395 1.1801 0.4826
18. 1.8249 0.3668 1.9556 0.4176
19. −0.0916 0.5142 0.3683 0.5506
20. 0.4914 0.4694 0.8574 0.5096
21. 1.0288 0.4281 1.3036 0.4722
22. 1.8906 0.3618 2.0088 0.4131
23. 2.2702 0.3326 2.3154 0.3874
24. 0.3167 0.4828 0.7114 0.5219
25. −1.4963 0.6223 −0.8310 0.6512
26. 1.1311 0.4202 1.3879 0.4651
27. −0.8782 0.5747 −0.2998 0.6067
28. −2.7547 0.7190 −1.9282 0.7432
29. −4.5124 0.8542 −3.4926 0.8744
30. −6.1632 0.9811 −4.9912 1.0000
31. −0.8263 0.5707 −0.2554 0.6029
32. −2.7774 0.7208 −1.9482 0.7449
33. −4.5952 0.8606 −3.5671 0.8806
34. −4.0405 0.8179 −3.0692 0.8389
35. −3.0500 0.7417 −2.1886 0.7650
36. −2.6535 0.7112 −1.8392 0.7357
37. −2.3209 0.6857 −1.5476 0.7113
38. −4.1774 0.8284 −3.1918 0.8491
39. −3.2256 0.7552 −2.3438 0.7780
40. −4.9991 0.8916 −3.9317 0.9112
41. −2.2528 0.6804 −1.4881 0.7063
42. −4.1823 0.8288 −3.1962 0.8495
43. −3.2877 0.7600 −2.3988 0.7826
44. −5.1074 0.9000 −4.0297 0.9194
45. −4.5516 0.8572 −3.5278 0.8773
46. −4.0405 0.8179 −3.0692 0.8389
47. −3.2256 0.7552 −2.3438 0.7780
48. −6.4083 1 −3.9569 0.9133
49. −4.7181 0.8700 −3.6779 0.8899
50. −5.1146 0.9005 −4.0362 0.9199

Table 11  Gray relational coefficient and gray relational grade for the 
present study

Experiment 
no.

Gray relational 
coefficient

Gray relational
grade

Kerf width Surface roughness

1. 0.3333 0.3601 0.3467
2. 0.3756 0.3991 0.3873
3. 0.4249 0.4461 0.4355
4. 0.4837 0.5034 0.4935
5. 0.5550 0.5743 0.5647
6. 0.3743 0.3980 0.3862
7. 0.4256 0.4468 0.4362
8. 0.4868 0.5065 0.4967
9. 0.4664 0.4865 0.4765
10. 0.4338 0.4547 0.4443
11. 0.4219 0.3333 0.3776
12. 0.4125 0.4342 0.4233
13. 0.4713 0.4912 0.4813
14. 0.4393 0.4600 0.4497
15. 0.5028 0.5223 0.5125
16. 0.4106 0.4323 0.4215
17. 0.4715 0.4914 0.4815
18. 0.4412 0.4619 0.4516
19. 0.5072 0.5267 0.5169
20. 0.4852 0.5049 0.4950
21. 0.4664 0.4865 0.4765
22. 0.4393 0.4600 0.4497
23. 0.4283 0.4494 0.4388
24. 0.4916 0.5112 0.5014
25. 0.5696 0.5891 0.5794
26. 0.4630 0.4832 0.4731
27. 0.5404 0.5597 0.5500
28. 0.6402 0.6607 0.6504
29. 0.7742 0.7992 0.7867
30. 0.9637 1.0000 0.9818
31. 0.5381 0.5574 0.5477
32. 0.6417 0.6621 0.6519
33. 0.7819 0.8072 0.7946
34. 0.7330 0.7563 0.7447
35. 0.6594 0.6803 0.6698
36. 0.6339 0.6542 0.6441
37. 0.6140 0.6339 0.6240
38. 0.7445 0.7682 0.7564
39. 0.6714 0.6926 0.6820
40. 0.8219 0.8491 0.8355
41. 0.6101 0.6300 0.6200
42. 0.7449 0.7686 0.7568
43. 0.6757 0.6970 0.6863
44. 0.8333 0.8612 0.8472
45. 0.7779 0.8030 0.7904
46. 0.7330 0.7563 0.7447
47. 0.6714 0.6926 0.6820
48. 1.0000 0.8522 0.9261
49. 0.7937 0.8195 0.8066
50. 0.8340 0.8620 0.8480
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a box-and-whisker plot, is a graphical representation that 
displays the distribution of a dataset. It shows the median, 
quartiles, and potential outliers of the data. In fivefold cross-
validation, a box plot can help visualize the distribution of 
performance metrics MSE, RMSE, MAE, and R2 across the 
different folds as shown in Fig. 12. The GA-ANFIS model 
has less variation of the performance metrics compared to 
the ANFIS model across different folds. It infers that GA-
ANFIS for predicting kerf width model has less dependency 
on dataset, thus avoiding overfitting or underfitting issues.

3.7  Multi‑response optimization of kerf width 
and surface roughness

In the present work, an attempt was made to adopt gray rela-
tional–based (GRB) multi-response optimization (MRO) 
for optimizing kerf width and surface roughness along with 
prediction of kerf width [58, 59]. The GRB approach can 
provide better accuracy among many MRO methods. The 
steps involved in GRB approach are explained in Fig. 13.

Both kerf width and surface roughness were considered 
as the smaller the better characteristics. The surface rough-
ness of the cut surface was quantitatively measured using an 
Alicona Infinite focus microscope by setting up lambda filter 
(cut off wavelength) on 80 μm. Each machining trial was 
replicated two times to enhance the measurement accuracy 
and all the performance characteristic values used for analy-
sis was obtained from computing the mean values of the 
repeated trials. The surface roughness was measured from 
scanned areas at the centre of the machined surface [60]. 
Table 10 shows the S/N ratio and normalized S/N ratio of the 
performance measures. Table 11 depicts the gray relational 
coefficient of all the experiments conducted.

The average gray relational grade on all levels of sig-
nificant factors shows that the overall effect of responses in 
the machining process is as shown in Table 12. Therefore, 
average gray relational grade analysis was utilized to obtain 
the most optimum combination of process parameters on 
all levels. It was noted the highest average gray relational 
grade as 20 W (level 2) for laser power, 22 mm (level 5) for 
standoff distance, 300 mm/min (level 5) for feed rate, 85% 
(level 5) for duty cycle, and 18 kHz (level 3) for frequency.

The confirmation tests were carried out to ensure the 
accuracy of the optimal process parameters and optimization 

algorithm. In the confirmation experiment, the machin-
ing trial has been conducted with the computed optimum 
machining parameters and the responses have been analyzed. 
The estimated gray relational grade can provide an expected 
value of gray relational grade after the confirmation test [61]. 
It is used to statistically determine the amount of improve-
ment that can be expected by machining the material surface 
with the optimized machining parameter combination. The 
estimated gray relational grade (Gp) for the optimum level 
of process parameters is computed from Eq. 6.

Where Gm denotes the mean of the overall gray relational 
grade and Gi denotes the mean of the gray relational grade 
for each process parameter on its optimum level. The gray 
relational grade has been improved by 4.59% from the gray 
relational grade for the optimized parameters.

4  Conclusion

In this investigation, an endeavor was made to introduce the GA-
tuned ANFIS technique to predict kerf width while machining 
grooves in a titanium alloy workpiece using the DLBM process 
and use gray relational–based optimization approach in order 
to determine the optimum process parameters for minimizing 
both kerf width and surface roughness. After the experimental 
results were analyzed by appropriate statistical techniques, the 
ANFIS model and GA-tuned ANFIS model were validated by 
comparing values from prediction and experiments for analyz-
ing the accuracy of models and the GRB method leading to the 
optimum parameters for improving part quality. The following 
conclusions were made based on the observations:

• The analysis of the experimental results revealed that laser 
power plays the most significant role regarding kerf width, 
followed by feed rate, duty factor, and SOD, whereas fre-
quency is not statistically significant. Moreover, similar 
conclusions were also drawn regarding surface roughness, 
with laser power being again identified as the dominant 
parameter for regulating surface quality.

• Non-linear regression model and regression tree model 
can provide a sufficient level of accuracy for the pre-

(6)Gp = Gm +
∑

(Gi − Gm)

Table 12  Identification of 
optimal process parameters

Input factors Average gray relational grade by parameter levels Optimized parameters

Level 1 Level 2 Level 3 Level 4 Level 5

Laser power 0.4610 0.7240 N/A N/A N/A 20 W
Standoff distance 0.5670 0.5648 0.5786 0.6067 0.6453 22 mm
Feed rate 0.5038 0.5443 0.6118 0.6305 0.6721 300 mm/min
Duty cycle 0.5335 0.5948 0.5789 0.6088 0.6465 85%
Frequency 0.5665 0.5941 0.6282 0.5929 0.5808 18 kHz
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diction of kerf width with the former exhibiting lower 
MSE, RMSE, and MAE values, whereas the latter exhib-
its lower MAPE.

• The FIS was effectively fine-tuned using an artificial neu-
ral network (ANN) within the ANFIS model, yielding an 
impressive R2 value of 0.99 during training. However, this 
strong performance might suggest overfitting, as the R2 value 
dropped to 0.94 when tested on an independent dataset.

• The predicting performance of the GA-ANFIS model was 
better with less value for error parameters (MSE, RMSE, 
MAE) and a higher R2 value of 0.98. This infers that the 
problem of overfitting is reduced significantly by usage of 
genetic algorithm. Moreover, both of these networks outper-
form the non-linear regression and regression tree models.

• Additional comparison of the proposed GA-ANFIS mod-
els with various regression models such as linear regres-
sion, SVM, Gaussian process regression, multilayer per-
ceptron neural network, and kernel regression proved that 
this model outperforms every other model in terms of 
MSE, RMSE, MAE, and R2.

• In the fivefold cross-validation, the GA-ANFIS model has 
less variation of the performance metrics compared to 
the ANFIS model across different folds. This implies the 
dependency of the prediction model on the training data 
is reduced significantly by usage of genetic algorithm.

• The optimal process parameters were found as 20 W 
(level 2) for laser power, 22 mm (level 5) for standoff 
distance, 300 mm/min (level 5) for feed rate, 85% (level 
5) for duty cycle, and 18 kHz (level 3) for frequency.

Finally, it should be noted that it is planned to improve the 
prediction accuracy by implementing deep neural networks 
and other advanced machine learning algorithms in future as 
well as developing real-time online prediction and preven-
tive control system for the DLBM process.
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