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Abstract
In the optical scanning, the processed data are in the form of point clouds that can be organised into the triangular meshes 
and can represent the surface with the given inaccuracy of the scanner. Meshes of special surfaces (such as sphere or ball bar) 
are used for the scanner calibration, qualification and verification. These artefacts restrict the calibration process, because 
their sizes must be periodically calibrated by the relevant institutions.
The aim of this paper is to present new possibilities for optical laser scanner accuracy comparison. Three types of laser 
scanners with different accuracies were used. The calibration sphere was used to compare the results of the deviations (the 
commonly used method for scanner accuracy verification) from calibrated value with the results of new methods that use 
shape functions measuring distances, cone heights or curvatures. The measurement system analysis was used to verify that 
these functions can be used for scanners comparison. The comparison of shape distributions obtained from results of shape 
functions in the form of polylines was used to compare scanners according to their accuracies. The comparison of shape 
distribution results was done using ranges and Minkowski L

1
 norm.

Keywords Shape function · Shape distribution · Discrete curvature · Scanner accuracy

1 Introduction

Nowadays, the data are often processed by computers, for 
example in the face recognition, in the transformation of the 
written text into the digital version or in the autonomous 
driving. Also, digitisations of the surface or object need pro-
cessing of scanned data. There are many methods to do that, 
each method depends on the requirements of the applications 
and processed data.

It is also possible to construct the model from its 2D 
drawings, as shown for example in [1]. But not only the 
plane objects can be treated, frequently processed data are 
point clouds in 3D (i.e. only the set of points given by the 
coordinates). These data can be often incomplete, to which 

the different methods of classification or completion exist 
[2]. Point cloud obtained by the scanning of the given object 
is possible to use for CAD (computer-aided design) model 
creation of the object (for example in the reverse engineer-
ing, where the CAD model is not available). The creation 
can be done for example by obtaining the basic shapes and 
consecutive analysis of point deviations from the fitted refer-
ence object using histogram [3].

The point cloud can be also used for geometry reconstruc-
tion; nevertheless, if using only the point coordinates, the 
object surface is not visible. That is why the STL format 
(stereolithography, analysis of this format is described in 
[4]) is frequently used. STL format is an ordered list of mesh 
vertex coordinates and normal vectors of individual face. 
The normal vector is followed by the vertex coordinates that 
are sorted in three points each in the right-handed orienta-
tion with the outer normal vector. This format is advanta-
geous, because it defines the neighbourhood of the given 
mesh vertex through normal vectors and faces and so it can 
be used for example in discrete curvature calculation for the 
local shape definition. But it is possible to extract only the 
point cloud itself from the STL format and process only the 
point cloud.
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It is possible to compare the data obtained by the scan-
ning, to which for example the shape functions (it can be 
called also shape descriptor) and shape distributions are 
used. The shape function measures the basic geometric 
characteristics on the surface, such as distances, angles, 
areas and curvatures. Shape distribution is the representa-
tion of results obtained by the application of shape function, 
for example the polylines created from histograms of given 
results. The shape distributions then can be compared by 
different methods, such as Minkowski LN norm, that defines 
for N = 1 and two smooth functions the area between these 
function graphs.

The comparison of different shape functions and shape 
distributions is discussed in [5]. The presented function D2, 
that measures the distance between each pair of points gen-
erated on the surface, is used in [6], as well as histograms of 
shape distribution and Minkowski LN norm (especially the 
probability density function of L1 norm that is considered the 
most accurate from all Minkowski LN norms). The function 
D2 can represent the shape of the object, and subsequent 
shape distribution graph comparison can demonstrate the 
distinctness of the objects [7]. The function D2 is followed 
also in [8], where it is modified by angle; the methods are 
then called mutual angle-distance histogram and mutual 
absolute angle-distance histogram. To define the shape simi-
larity, the results are compared using L1 and L2 norms. Also 
[9] follows the [7] and uses also the value of curvature that 
is calculated by function tangents and the main curvatures, 
and histogram of these curvatures is called the curvature 
spectrum.

It is possible to determine the shape by the outlines in a 
2D picture, for example using curvature, and differentiate 
among for example a mug, a dog, a car or a tree regardless 
of the rotation [10].

In [4], three different approximations of Gaussian cur-
vature for the vertex are mentioned. Discrete Gaussian and 
mean curvatures are defined also in [11], where the discrete 
Laplace–Beltrami operator is used and calculated using 
angles, lengths and areas. These curvatures can be used for 
main curvatures calculations that are defined here, too. Main 
curvatures are the curvatures of minimal and maximal nor-
mal curvatures, so they can be used for the specification of 
the vertex type.

The measure of discrete Gaussian and mean curvatures are 
defined in [12] as the sum of individual curvatures in ver-
tices or in edges. Discrete Gaussian curvature based on the 
angle deficit is described in [13], and the neighbourhood of the 
given vertex is normalised by the area of the vertex. The mean 
curvature is established in [13] using cylindrical approxima-
tion of the edge, whereas the area content, edge length and 
angle between normals are used. By means of concentrated 
curvature of polygonal curve, the main curvatures are defined. 

Another possible approach to the discrete Gaussian and mean 
curvatures can be via the face areas quotient [14].

Another possible description of the object or its geometry 
is correlogram (it is the probability, that two vertices have the 
given distance from each other and the curvature of the given 
class). Correlogram can be used to detect the position of the 
curvature on the surface and information about its value, [15]. 
Using curvature, the developability of the discrete surface also 
can be specified, [16].

Laser scanning technology has revolutionised various 
industries, offering precise 3D data acquisition for applications 
from engineering to archaeology. In the realm of laser scan-
ners, accuracy is one of the critical factors influencing their 
effectiveness. One way to define the accuracy of the scanner 
in metrology is the form error. Metrological specification of 
the surface profile and other error characteristics are described 
in [17], where the form error is defined as maximal minus 
minimal deviation of points from the fitted profile.

The comparison of five handheld scanners is presented in 
[18], where three plaster statues were scanned six times, and 
the scanning and processing time is discussed, as well as the 
accuracy. In [19], the accuracy of 3D images among different 
scanners, scanning techniques and substrates is compared. But 
the exact scanners comparison is not included. Five digitisa-
tion techniques including laser scanners, fringe projection and 
X-ray are compared in [20] using calibrated sphere, cylinder 
and gauge block to determine the accuracy of the measure-
ment, as well as bone and automobile window winder pulley, 
to determine the quality of the digitisation. The optical and 
laser scanner are compared in [21], where the scanned object 
was designed for scanning deviations (using CAD model) and 
scanning systems comparison. But none of these articles use 
the shape function to compare scanners.

Sections of this paper describe these as follows: in 
Sect. 2, the used scanners are compared, and in Sect. 3, the 
commonly used calibration sphere is described. Section 3.1 
defines the used shape functions and the deviation that are 
compared and processed to create new method for scanners 
comparison; Sect. 3.2 describes the shape distribution that is 
the representation of the shape functions results, and Sect. 4 
is aimed at the methods for results processing and outliers 
elimination. In Sect. 5, the measurement system analysis 
(MSA) is presented, and the experimental results are intro-
duced in Sect. 6. Section 7 presents the results from MSA 
and the final comparison. The last Sect. 7.1 is dedicated to 
the conclusion.

2  Description of used scanners

In this paper, three scanners of the different types with the 
different accuracies were used to scan the calibration sphere 
(hereinafter sphere). The sphere was scanned separately ten 
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times using each scanner. So, the result is thirty meshes—
ten meshes for each scanner. One of the obtained meshes is 
depicted in Fig. 1. All outputs were in STL format.

Since three different scanner types were used, their 
first comparison through their accuracy must be specified. 
The most accurate scanner is marked S1 (it is the scanner 
type that is intended for stationary coordinate measuring 
machine, i.e. CMM), the less accurate is S2 (it is the scanner 
type intended for the manual portable CMM, i.e. measuring 
arm) and the least accurate is S3 (it is the handheld scanner).

Scanner S1 represents the automated 3D scanning and 
achieves the highest accuracy. S1 represents the top of the 
laser scanning accuracy. It is equipped with the advanced 
optics and high-level algorithms, so it delivers the highest 
precision in capturing the 3D spatial data. These scanner 
types are commonly employed in fields, where the hun-
dredths of a millimetre accuracy are required, such as aero-
space, automotive, energetics engineering and high-preci-
sion manufacturing. The technology behind these scanners 
ensures the minimal distortions and deviations, making 
them indispensable for tasks demanding the utmost exact-
ness. Important factor is that carrier of these scanners are 
stationary CMMs.

Scanner S2 represents the manual 3D scanning (meas-
uring arms) and has a balancing accuracy and efficiency. 
These scanners strike a balance between the accuracy and 
efficiency. While not reaching the exceptional precision of 
scanner S1 , they still provide the sufficient accuracy suitable 
for many applications. Their ability to give us reliable results 
within the reasonable times makes them a practical choice 
for the projects, where the high accuracy is important but 
not the sole focus. These scanners are mounted on the port-
able measuring arms, where the requirement to the program 
scanner movements is eliminated.

The last scanner S3 represents the handheld 3D scanning 
and has a versatility with moderate accuracy. These types of 
scanners prioritise versatility and accessibility over the high-
est accuracy levels. While they do not offer highest accuracy 
like S1 or S2 scanners, they provide accessible results of 
laser scanning and still offer valuable insights for various 
applications. The main advantage of these scanners is that 
they do not need to be mounted on a CMM.

A comparison of laser scanner specifications is displayed 
in Table 1. Photos of all scanners are depicted in Fig. 1. All 
specifications are taken from technical documents of equip-
ment manufacturers and are adapted from [22–24].

3  Description of the preprocessing

3.1  Calibration sphere

The calibration sphere is one of the commonly used sur-
faces for scanner calibration (where the calibrated diameter 
is compared with the scanned data). The used ceramic cali-
bration sphere has the diameter of 30.0056 mm (that is the 
value obtained by the calibration process that is carried out 
because the sizes can change by reason of extensibility of the 
material or the surface wear), whereas the nominal diameter 
was 30 mm. The obtained calibration value is used for the 
scanner calibration, qualification and verification. Then the 
deviations of the mesh vertices are calculated and evaluated. 
The obtained meshes were aligned with the centre in the 
origin, and the lower part of the sphere was trimmed in all 
meshes with the same plane.

3.2  Analysis of acquired data

This text describes the processing of the acquired data in 
detail. The entire analysis was performed in Polyworks 
metrology software.

Data collection: The experiment initiated with the collec-
tion of data using a laser scanner, which generated point 

Fig. 1  Photos of Altera, MCAxS25 and Metronor

Table 1  Laser scanners specifications

Metrology equip-
ment

Specifica-
tion (form 
error)

Test description

Scanner S1 LK Altera_L100 15 Probing form error
Scanner S2 MCAxS25 + _H120 50 Articulated loca-

tion error, optical
Scanner S3 Metronor_H120 70 Accuracy (2sigma)
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clouds representing the 3D coordinates of points on the 
scanned object including normal vectors. The calibration 
sphere was scanned from five positions as indicated in 
the figure. These five positions are ideal for capturing 
the entire shape of the sphere and are defined in the ISO 
10360 standard for verification of optical systems.
Qualification: Scanner qualification was performed to 
ensure precision. This qualification involved the thor-
ough verification and correction of internal parameters, 
including geometry and optics, to guarantee accurate data 
acquisition.
Noise reduction: Noise reduction procedures were 
employed to eliminate unwanted noise and inaccuracies 
within the point clouds. Filtering techniques, including 
averaging filters and outlier removal, were systematically 
applied to enhance data quality.
Mesh generation: To facilitate analysis and visualisation, 
the point clouds were methodically transformed into 3D 
models represented as STL (stereolithography) meshes. 
This conversion process employed triangulation tech-
niques to create cohesive surfaces from the individual 
data points.
Trimming the created meshes: In order for the data to be 
comparable, it was necessary to always select the same 
area (section) from the sphere. Each scanning technol-
ogy also contains unwanted data (calibration ball stem) 
that must be filtered out. For this reason, a macro was 
used for processing. The macro aimed to detect the base 
plane on which the calibration ball was placed. Subse-
quently, a plane parallel to the base plane was created, 
which was offset by a value of 200 mm. All data below 
this plane has been deleted. This ensured that similar data 
were always compared. The resulting trimmed data can 
be seen in Fig. 2.

4  Shape functions

To process meshes and compare scanners, different 
shape functions based on the calculation of distances 
or curvatures were used. The results of new methods 
were compared with the commonly used method based 
on the deviation calculation.

For meshes comparison and similarity measure determi-
nation, the shape function D1 from [5] was used and modi-
fied to define the deviation (or form error). The modification 
lies in the replacing of the random point on the smooth sur-
face by the mesh vertex Vi = [xi, yi, zi] , where i = 0, 1,… , n 
and n is the number of mesh vertices. The point from which 
the distance is measured was the origin of the coordinate 
system (because of the sphere meshes aligning). This func-
tion was used for the calculation of oriented deviations from 

the calibrated value, that is the sphere radius r = 15.0028 
mm, so the modification of this function was called d and 
is in the form:

where n is the number of mesh vertices and orientation is 
determined by the result sign (i.e. if the distance is bigger 
or smaller than the radius). The negative deviation of the 
vertex means that the vertex lies inside of the sphere. The 
positive sign of the deviation describes the position of the 
vertex outside the sphere.

These deviations were compared with results of function 
D1C that is again based on the function D1 and measures the 
distance of mesh vertex from the mesh centroid:

where the centroid C = [Cx,Cy,Cz] is calculated as an arith-
metic mean from the vertices coordinates.

Another used function was the discrete Gaussian curva-
ture (called here G ) defined by the angle defect ([25–27]):

where �k is the angle in the vertex Vi in the triangle contain-
ing this vertex Vi , and k is the number of triangles or faces 
containing the vertex Vi (see Fig. 3, vertex with its neighbour-
hood can represent pyramid that can be developed into the 
plane object). This curvature determined by (3) was used for 
the introduction of the new shape function h that approxi-
mates the point deviation using the cone height for 1-neigh-
bourhood of the vertex. The cone has the side equal to the 
distance si between the vertex Vi and the nearest vertex in its 
1-neighbourhood (the neighbourhood is depicted in Fig. 4). 

(1)di =

√
xi
2 + yi

2 + zi
2 − r, i = 0, 1,… , n

(2)
fi =

√(
xi − Cx

)2
+
(
yi − Cy

)2
+
(
zi − Cz

)2
, i = 0, 1,⋯ , n,

(3)Gi = 2� −
∑

k

�k, i = 0, 1,… , n,

Fig. 2  Trimmed sphere mesh
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The circumference of the cone base is equal to the length of 
the arc of a circular section determined by the centre Vi and 
radius si with the angle defined as the sum of angles from 
Gaussian curvature (see Fig. 5), so on:

The second type of the curvature, that was used here, 
is the discrete mean vertex curvature (denoted H ). The 

(4)hi = si ∙

√

1 −
(2� − Gi)

2

(2�)2
, i = 0, 1,… , n.

modification of the absolute mean curvature from [28] was 
used—the angle between two faces was replaced by the 
angle of face normals (to obtain the zero curvature for the 
plain mesh part) and the area content, that divides the sum, 
was chosen as one (to have the consistency with the Gauss-
ian curvature formula), so the resulting formula is:

where �j is the angle between the normals of neighbouring 
faces (i.e. 180◦ − � , where � is the inner angle between the 
adjacent face pair) and ej is the length of its shared edge 
(see Fig. 6).

5  Shape distribution

The shape distribution was used for the comparison of results 
obtained from the individual shape function [5]. It is a type of 
frequency histogram, represented by polylines, that are cre-
ated by connection of tops of individual histogram column. 
Frequency histogram determines the number of results that 
corresponds to the given class, so for example how many cur-
vature values are in the given interval for the given mesh. The 
class is obtained by dividing the interval into the fixed-sized 
bins. To eliminate the influence of different numbers of mesh 
vertices, the normalisation of frequencies was done by the total 
number of values.

6  2‑sigma method, Minkowski L
1
 norm 

method and range method

To avoid extreme values of outliers, that can be caused by the 
noise or reflections during the scanning, the 2-sigma method 
was applied. This method deletes the values that are out of the 
calculated interval. This interval is estimated for each mesh 
and at most 95% of values should lie in this interval. Interval 
2sigma is calculated using mean x and standard deviation �:

(5)Hi =
1

4

∑

j

ej ∙ �j, i = 0, 1,… , n

Fig. 3  Mesh vertex Vi with its neighbourhood and developed pyramid 
into the plane

Fig. 4  2-neighbourhood of the vertex Vi with 1-neighbourhood 
marked in bold

Fig. 5  Approximating cone for 1-neighbourhood of vertex Vi and its development
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where m is the number of all values xi of the given shape 
function and x is the arithmetic mean of these values.

The shape distribution, that was created from the results 
of shape functions with deleted outliers, represents the given 
surface graphically. But it is not clearly visible, which pair 
of meshes is more similar and which pair is less similar. 
That is the reason for using Minkowski L1 norm in the shape 
distributions. In the smooth version, this norm is based on 
the area between two graphs, and in the discrete version, it 
calculates the sum of differences in all columns between two 
histograms f  and g as:

where ai and bi represent the relative frequencies of results 
from the given shape function of two different meshes in the 
same class. Minkowski L1 norms were calculated for each 
pair of meshes of the given scanner for shape function H , 
because this function describes the surface shape.

To compare the deviations, distances D1C and approxi-
mations of deviations h , the ranges were calculated. In other 
words, the maximal value from all ten meshes of the given 
scanner is taken, as well as the minimal value. Then the 
maximum minus minimum is calculated and it defines the 

(6)� =

�∑m

i=1

�
xi − x

�2

m
, 2sigma = [x − 2 ∙ �, x + 2 ∙ �]

(7)D(f , g) =

m∑

i=1

||ai − bi
||,

range for the given shape function and the given scanner. 
This range method is equivalent to the surface profile of all 
ten mesh data.

7  Measurement system analysis

The measurement system analysis (MSA) is a method based 
on the various types of statistical characteristics, such as 
repeatability and reproducibility. Because the conditions of 
measurement can change (such as operator, or used method), 
the measurement repeatability and reproducibility (R&R) is 
convenient to evaluate. One of many methods, that can be 
used for R&R, is the method of means and ranges.

This method uses object parts, operators and repetitions 
for the evaluation and it is composed of the following steps: 
the calculation of ranges, means of ranges and range bounds 
and the construction of a range diagram. MSA is also used 
to determine the amount of variation in the measurement 
process.

7.1  Calculation of ranges

In MSA, the first step is the calculation of the ranges from 
the repeated scanning, where the inserted values xijk are 
sums of L1 norms calculated for the given mesh excluding 
the zero value (i.e. sum of nine values from the given row 
of the norm table, that compares the given mesh with the 
remaining nine meshes). These ranges are given by:

The next step is the calculation of the arithmetic mean for 
these ranges and all parts for each operator:

The last step is the calculation of arithmetic mean from 
the previous values marked as R . This result is the value 
of the central line CL and is used for the calculation of 
range limits UCL and LCL (UCL = upper control limit, 
LCL = lower control limit):

where D3 and D4 are the constants from the control chart 
table, where D3 = 0.223 and D4 = 1.777 for n = 10.

(8)Rij∗ = max
k

xijk −min
k
xijk.

(9)Ri∗∗ =

∑r

j=1
Rij∗

r
.

(10)CL = R =

∑h

i=1
R
i∗∗

h

(11)UCL = D4 ∙ R, LCL = D3 ∙ R,

Fig. 6  Angle in the vertex �j for discrete Gaussian curvature and 
angle between normal vectors �j for discrete mean vertex curvature
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7.2  Construction of the range diagram

To construct the range diagram that displays the control lim-
its and three polylines (one for each operator), the ranges 
Rij∗ were used on the y-axis and the order of scanners on the 
x-axis. The position of these values of polylines between 
the control limits means that the process is statistically mas-
tered, and it is influenced only by the random causes of vari-
ability. The position relative to the central line shows for the 
nearest function to this line that the given operator is the best 
for the data processing.

8  Experimental results

For the data processing, the shape function D1 from [5] 
(this shape function was previously used in [29], same as in 
[30], where it was compared with shape functions D2 and 
D3 using MSA), discrete Gaussian curvature from [25] and 
discrete mean curvature from [28] were used (with modi-
fications). The results of these functions were represented 
by the shape distribution from the frequency histogram and 
then processed by Minkowski L1 norm. Results define the 
similarity and distinctness of meshes. By evaluating these 
results, the scanner precisions can be compared.

The results from functions D1C , h and H calculated 
according to (2), (4) and (5) were compared with the point 
deviations d from a calibrated radius of the sphere calculated 
according to (1) for individual mesh. This comparison could 
show the functionality of new methods based on shape func-
tions. Moreover, the 2-sigma method was used in all results 
to remove outliers.

The method using shape functions D1C , h or H (and also 
their processing via shape distribution) is a new view on the 
scanner accuracy comparison, because the commonly used 
form error method is based on the knowledge of calibrated 
values (these values are not needed in the new methods).

As first, the data calculated from shape functions and 
deviation are presented and then the MSA results with expla-
nation are shown.

8.1  Deviations (form errors)

The values of individual deviations represented by the 
shape distribution are depicted in Fig. 7, where the rela-
tive frequencies of oriented deviations (where the range 
is equivalent to the form error) are depicted in polylines. 
On the x-axis are the values of deviations from calibrated 
value, and on the y-axis are relative frequencies that repre-
sent the percentual amount of the given value from the class 
of deviations. The peaks of graphs determine the deviation 
for the most vertices: for scanner S1 about 0.001, then for 

scanner S2 is the deviation about 0.015 and for scanner S3 
even about 0.025.

The similarity of polyline shapes means the similarity of 
meshes. The wide range means that the data has bigger (in 
positive and negative sense) deviations, and minimum and 
maximum of deviations are depicted in vertical lines.

8.2  Distance from centroid

Ranges were calculated also for the evaluation of the shape 
function D1C that if the author is known, it has not been 
used yet for the comparison of scanners (same as the other 
shape functions below). The shape distribution of this func-
tion for all scanners is depicted in Fig. 8. The shapes of 
these polylines have the same description as for the devia-
tions—similarity of graphs means the similarity of meshes 
and similarity of ranges means the similar extreme distances. 
Since the sphere has a trimmed lower part, the centroid is not 
the same as the sphere centre or the origin. The difference 
of graphs is in this case not visible from this picture, but it 
is visible from the ranges below. The similarity of graphs 
for all scanners demonstrates the fact that the same object 
was scanned.

8.3  Cone height

The new shape function, calculating the cone heights for 
1-neighbourhood of the vertex, has the graphs displayed in 
Fig. 9. The shape of graphs for each scanner displays that the 
same object was scanned. From all scanners, it is visible that 
most of vertices have a height of about 0.0038 mm. Also, 
the similarity of polylines for individual scanner means the 
similarity of obtained data.

8.4  Discrete mean vertex curvature

The discrete mean vertex curvature H is the last used func-
tion. Its shape distributions for all scanners are shown in 
Fig. 10. The similarity of meshes is visible from the similar-
ity of polylines (for individual scanner, within the scanners, 
the similarity of scanned object is obvious, as in previous 
functions) or in the tables below. Ranges are not depicted 
in these graphs, because the range method was not used for 
the evaluation of this function, but the Minkowski L1 norm 
was used.

9  MSA results and comparison

MSA was here applied on the shape function results to deter-
mine if all shape functions are competent to scanner evalua-
tion. Here, the repetition is the repeated scanning, the shape 
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functions (excluding the deviation) represent the operators 
and the parts are represented by the scanners. It means that 
for i ∈ ⟨1;h⟩ , j ∈ ⟨1;r⟩ and k ∈ ⟨1;n⟩ , are r = 3 (parts), h = 3 
(operators) and n = 10 (repetition). The resulted range dia-
gram is depicted in Fig. 11. This diagram shows that all 
functions are in the given limits, so they can be used for 
scanners comparison.

Then, the range method or Minkowski L1 norm can be 
used for the final comparison of scanner on these shape 
functions. The discrete mean vertex curvature was evaluated 
by Minkowski L1 norm. This norm characterises the measure 
of similarity between all pairs of scans for the given scanner.

The resulted range values for the deviations are visible 
from the vertical lines in Fig. 7 and numerically are as 

follows: 0.0171 for scanner S1 , compared to that, 0.06192 
for scanner S2 and for scanner S3 it is even 0.10308 . That 
shows the scanned data dispersion, therefore also the accu-
racies of scanners: scanner S1 has the lowest range and so 
it is the most accurate, S2 has the higher range and is less 
accurate and S3 is the least accurate. Since the deviation 
characterises the difference between the scanned and real 
surface, the range is the appropriate choice for results and 
scanners comparison.

The range of distance values are in Fig. 8 and numerically 
are for scanner S1 4.38436, for scanner S2 , it is 4.46125 and 
for S3 , 4.4928. So again, the range for the scanner S1 is the 
lowest one, for scanner S2 higher and for scanner S3 the 
highest, which reflects the order of their accuracies.

Fig. 7  Oriented deviations from calibrated value for scanners S1, S2 and S3
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The value ranges of the cone heights, that is the alterna-
tive for deviation, are depicted in Fig. 9, and for scanner S1, 
it is 0.00669, for S2 0.00673 and for S3 it is 0.0069. That is 
the same order as previous. Again, the similarity of graph 
shapes represents the similarity of meshes. The similarity 
of graph shapes of all scanners demonstrates that the same 
object was scanned, too.

The discrete mean vertex curvature displayed in 
Fig. 10 was processed by Minkowski L1 norm. The values 
of Minkowski L1 norms for scanner S1 are displayed in 
Table 2, for scanner S2 in Table 3 and for scanner S3 in 
Table 4. The values in these tables express the similarity 

between two scans—the lower value the better similarity. 
The sum of the values of this table that are marked in bold 
was calculated for each scanner. This sum defines the simi-
larity within the scanner—for scanner S1 , it is 4.32796 , for 
S2 is the sum 4.4933 and for S3 , it is 4.91217 . The order of 
scanners is again unambiguous and in the corresponding 
order as in the previous results.

All these results of comparisons for each shape function are 
summarised in Table 5, where the corresponding order is vis-
ible and shows that all functions are competent for the scanners 
comparison. The graph in Fig. 11 also shows that the shape 
function D1C is better for the comparison, since it has the graph 

Fig. 8  Distances from centroid for scanners S1, S2 and S3
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nearest to the central line. As regards the processing time, the 
longest computation time takes the shape function h , since it 
needs to compute Gaussian curvature at first. The shortest com-
putation time takes D1C that uses only vertices coordinates.

As regards shape function H , whatever the MSA results say, the 
graphs in Fig. 10 show the differences between scanners—scanner 
S1 has all polylines very similar and the peak of these graphs is the 
lowest, scanner S2 has higher peak and some polylines have the 
data further from the others, scanner S3 has the data further from 
each other and also the right part of the graph show the dispersion 
of the data, because some polyline ends in value 0.92 and some in 
0.97. It makes this function good for scanners comparison.

Finally, shape functions are not intended to replace the 
scanner calibration or qualification process. However, they 
can be used to compare stereolithographic meshes. The 

mesh analysis using shape functions has the potential for 
downstream operations, such as reverse engineering func-
tions, that use mathematical algorithms to fill incomplete 
meshes, mesh optimization, smoothing, etc.

10  Conclusion

In this paper, the different shape functions were used for 
new methods of scanners comparison and compared with 
the form error (deviation) to match the order of three differ-
ent types of scanners. Since the calibration value is known 
for the calibration sphere, scans of this artefact were used 
to define the deviations, as well as the order of scanner 

Fig. 9  Cone heights for scanners S1, S2 and S3
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Fig. 10  Discrete mean vertex curvature for scanners S1, S2 and S3

Fig. 11  Range diagram
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accuracy. These results were compared with the results 
obtained by the new methods based on the shape functions 
calculating the distance of vertex from centroid, discrete 
mean vertex curvature and also new function calculating 
the height of the approximating cone for the given 1-neigh-
bourhood of the vertex. To demonstrate that these functions 
can be used for scanners comparison, the MSA was used and 
the competence was verified. Then the shape function results 

were evaluated by the range method, especially the curva-
ture was evaluated using Minkowski L1 norm. The results 
were in the corresponding order as for deviations, and so the 
new methods determine the same order of scanners as the 
common method. To generalise this method, the next step 
will be the application of the method on triangular meshes 
of freeform surface. This application will be the subject of 
further research.

Table 2  L
1
norms of discrete 

mean vertex curvature for 
scanner S1

The bolded values were used for calculation of a sum

L
1
norm Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Scan7 Scan8 Scan9 Scan10

Scan1 0 0.08951 0.09276 0.10507 0.09870 0.10662 0.09048 0.10257 0.09045 0.10261
Scan2 0.08951 0 0.11363 0.08961 0.09414 0.10095 0.09685 0.10109 0.10287 0.10212
Scan3 0.09276 0.11363 0 0.10078 0.10988 0.11134 0.09220 0.11312 0.09470 0.08643
Scan4 0.10507 0.08961 0.10078 0 0.09769 0.09108 0.08696 0.09275 0.09199 0.08349
Scan5 0.09870 0.09414 0.10988 0.09769 0 0.09634 0.08059 0.09271 0.09476 0.10274
Scan6 0.10662 0.10095 0.11134 0.09108 0.09634 0 0.08884 0.10438 0.09106 0.10005
Scan7 0.09048 0.09685 0.09220 0.08696 0.08059 0.08884 0 0.09368 0.07949 0.08224
Scan8 0.10257 0.10109 0.11312 0.09275 0.09271 0.10438 0.09368 0 0.10014 0.09817
Scan9 0.09045 0.10287 0.09470 0.09199 0.09476 0.09106 0.07949 0.10014 0 0.09035
Scan10 0.10261 0.10212 0.08643 0.08349 0.10274 0.10005 0.08224 0.09817 0.09035 0

Table 3  L
1
norms of discrete 

mean vertex curvature for 
scanner S2

The bolded values were used for calculation of a sum

L
1
norm Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Scan7 Scan8 Scan9 Scan10

Scan1 0 0.10294 0.09861 0.11044 0.09658 0.09689 0.11065 0.10417 0.09540 0.10421
Scan2 0.10294 0 0.10478 0.10382 0.09490 0.10547 0.10899 0.10871 0.10726 0.10987
Scan3 0.09861 0.10478 0 0.10167 0.09306 0.09086 0.09615 0.09760 0.08346 0.08632
Scan4 0.11044 0.10382 0.10167 0 0.10452 0.12030 0.11771 0.10294 0.09254 0.08876
Scan5 0.09658 0.09490 0.09306 0.10452 0 0.08697 0.08587 0.10418 0.09442 0.10295
Scan6 0.09689 0.10547 0.09086 0.12030 0.08697 0 0.09259 0.11211 0.11215 0.10523
Scan7 0.11065 0.10899 0.09615 0.11771 0.08587 0.09259 0 0.10804 0.08487 0.10234
Scan8 0.10417 0.10871 0.09760 0.10294 0.10418 0.11211 0.10804 0 0.09041 0.08621
Scan9 0.09540 0.10726 0.08346 0.09254 0.09442 0.11215 0.08487 0.09041 0 0.08537
Scan10 0.10421 0.10987 0.08632 0.08876 0.10295 0.10523 0.10234 0.08621 0.08537 0

Table 4  L
1
norms of discrete 

mean vertex curvature for 
scanner S3

The bolded values were used for calculation of a sum

L
1
norm Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Scan7 Scan8 Scan9 Scan10

Scan1 0 0.11674 0.09771 0.09487 0.10287 0.11156 0.10597 0.08346 0.11249 0.13475
Scan2 0.11674 0 0.09997 0.11171 0.09756 0.11313 0.12112 0.09876 0.10912 0.11299
Scan3 0.09771 0.09997 0 0.09408 0.10663 0.12048 0.10423 0.08598 0.10410 0.10131
Scan4 0.09487 0.11171 0.09408 0 0.10603 0.13090 0.09483 0.07827 0.10790 0.10364
Scan5 0.10287 0.09756 0.10663 0.10603 0 0.10704 0.11915 0.09822 0.12863 0.12528
Scan6 0.11156 0.11313 0.12048 0.13090 0.10704 0 0.13842 0.11029 0.13792 0.14594
Scan7 0.10597 0.12112 0.10423 0.09483 0.11915 0.13842 0 0.08980 0.10257 0.11246
Scan8 0.08346 0.09876 0.08598 0.07827 0.09822 0.11029 0.08980 0 0.10694 0.11003
Scan9 0.11249 0.10912 0.10410 0.10790 0.12863 0.13792 0.10257 0.10694 0 0.11633
Scan10 0.13475 0.11299 0.10131 0.10364 0.12528 0.14594 0.11246 0.11003 0.11633 0
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