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Abstract
We report on the optimization of the surface roughness of hybrid additive manufactured Ni superalloys, combining a conven-
tional laser powder bed fusion process with in situ high-speed milling. This remarkable hybrid approach has only recently
been applied to different steel types and barely to Ni superalloys which opposite to steel appear to be challenging for milling
processes, particularly within the powderbed of laser powder bed fusion. Different influencing factors on the surface rough-
ness are varied in this study, following the Taguchi method. Their effect is evaluated with respect to the average surface
roughness and the maximum surface roughness. The signal-to-noise ratio for the varied parameters infeed, z-pitch, feed rate,
and spindle speed is calculated, determining their relevance on the surface roughness, and defining an optimal parameter
combination. As the surface quality is optimized to Ra = 0.47µm, the definition of the optimal parameter combination is
of the highest relevance for the application of this novel manufacturing approach for Inconel. Using linear regression, the
resulting surface roughness of these parameters is predicted, getting validated by the experimental evaluation. Due to a further
analysis, including EDX analysis and a quantitative element analysis at different positions of the flank of the milling cutter,
wear characteristics as well as the dissipation of the coating of the milling cutter are detected. The flank wear and the resulting
breakage of the cutting edge are defined as the main reasons of a rising surface roughness.

Keywords Hybrid laser powder bed fusion · Surface roughness · Taguchi method · High-speed milling · Inconel 718 ·
EDX analysis

1 Introduction

As the number of industrial applications of laser powder bed
fusion (PBF-LB/M) continues to grow, inherent challenges
of this technique remain. On the one hand, the advantages of
the PBF-LB/M are employed to create new applications, e.g.,
including complex and lightweight structures [19, 47] aswell
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as prototypes for aeronautics and aerospace [37], both being
inspired by the freedom of design of additive manufacturing
and a diverse material selection accessible for PBF-LB/M
[23]. On the other hand, still disadvantages are limiting its
extended use. Firstly, inferior geometrical accuracy rejects
the use for high-precision components [8]. Secondly, the
inferior surface quality in comparison to conventional man-
ufacturing technologies necessitates a post-processing [27],
for which general 3D-printing aspects such as build orien-
tation [15] and design of support structures [42] as well as
the influence of post machining parameters on the mechan-
ical properties have been comprehensively investigated [7,
13, 30]. To promote 3D-production technologies, certain
post-processing approaches have been integrated into entire
process chains or into single 3D printers to form a hybrid
approach, as, e.g., integrating subtractive processes into PBF-
LB/M systems [20, 22]. This allows to apply the advantages
of additive manufacturing, while eliminating its disadvan-
tages. Popular examples are the combination of, e.g., arc
welding to CNC machines, low-cost hybrid techniques have
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already been realized industrially [14], and combinations of
laser cladding and high-speedmilling offer a post-processing
5-axis machining [16, 26, 38]. In this respect, an innovative
hybrid approach has recently been designed, as PBF-LB/M
and high-speed-milling are combined [29, 36], introducing
the powderbed-based additive manufacturing into the hybrid
additive manufacturing.

Using this hybrid approach, the geometrical accuracy can
be improved, ensuring a fitting accuracy similar to conven-
tional processes [40]. In addition, the surface roughness can
significantly be reduced as compared to sole PBF-LB/M, as
the surface profile is flattened, as shown by Atabay et al. [2].
While this approach to implement high-speed milling into
the PBF-LB/Mmachine shifts the milling post-processing in
situ, it allows to machine contours during the overall build
process and thus facilitates to mill inner contours and under-
cuts, which might be inaccessible after the complete build
job [39]. This provides attractive opportunities to foster such
applications of PBF-LB/M that demand for superior fitting
and surface properties [5].

Among other high-performance metals, Inconel superal-
loys have also attracted considerable interest in PBF-LB/M
applications [10, 18]. While for Inconel machinability in
general is challenging [17], the same holds for milling as
a post-process for PBF-LB/M [4, 9]. As the integrated high-
speed milling process within the hybrid approach studied
here represents a unique process, the challenges excel the
ones affecting conventional milling, and new knowledge has
to be gained to understand and optimize this new manufac-
turing approach. Due to the powder bed-based process, e.g.,
no cooling lubricant can be used, raising wear character-
istics, reinforcing diffusion, and deteriorating the resulting
surface roughness [28, 45]. For this, different parameters of
the milling process can be modulated, leading to lower wear
characteristics as well as to an increased surface quality.

Against this background, we report on a study about the,
novel to Inconel, optimization of surface roughness with a
hybrid additive manufacturing approach, combining conven-
tional laser powder bed fusion with a high-speed milling
process. As this approach has not been used for a processing
of IN718 yet, we specifically study the surface roughness in
dependence on different milling parameters, which are sys-
tematically varied.

For this purpose, a design of experiment (DoE) is per-
formed, following the Taguchi method to reduce the number
of experiments without missing the impact of single param-
eters. The varied parameters of the integrated high-speed

milling process are feed rate, the performed rotations per
minute, the infeed, and the used z-pitch, quantifying the
changes with the resulting surface roughness. Using analysis
of mean (ANOM) and analysis of variance (ANOVA), the
optimal individual parameters and parameter combinations
as well as the significance of the parameters are determined.
In addition, a linear regression is performed for the prediction
of the surface roughness of the optimal parameter combina-
tion, getting validated by a final study. Furthermore, the flank
wear progress is evaluated, affected by the surrounding pow-
der bed, and the dissipation of coating elements is shown by
SEM imaging and EDX analysis.

The results are of utmost importance for a processing of
IN718 by this innovative manufacturing approach. Present-
ing an optimal process window and the achievable surface
roughness, this research study paves the way to exploit this
novel manufacturing approach for a fabrication of high-
performance components.

2 Materials andmethods

2.1 Powder properties

In this study, Inconel 718, a nickel superalloy (Heraeus Hold-
ing, Hanau, Germany) is processed, exhibiting high strength,
good mechanical properties, and corrosion resistance. The
used powder material exhibits a particle size distribution
between 15 and 45µm, and the chemical composition is listed
in Table 1.

2.2 Machine

For the hybrid approach, we employed a Lumex Avance-25
(Matsuura Machinery, Wiesbaden, Germany), that combines
standard PBF-LB/Mand an integrated three-axismilling sys-
tem, as schematically illustrated in Fig. 1 and depicted in
Fig. 2.

For the PBF-LB/M process, the machine is equipped with
an ytterbium fibre laser (SPI Lasers, Southampton, UK) with
an operating wavelength of 1070nm and a nominal spot size
of 200µm at focus position. Used PBF-LB/M parameters are
summarized in Table 2, the layer height is set to 50µm, and
the maximum build volume is 250 × 250 × 185 mm3 in
width, depth, and height. An alternating diagonal scanning

Table 1 Chemical composition
of Inconel 718 powder

Element Ni Cr Nb Mo Ti Al C Mn Si Fe

Wt% 50–55 17–21 4.8–5.5 2.8–3.3 0.7–1.2 0.2–0.8 <0.1 <0.4 <0.4 Balance
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Fig. 1 Schematic illustration of
the hybrid additive
manufacturing unit

strategy is used, using a contour vector for the optimization
of the geometrical accuracy. The process is conducted under
a nitrogen atmosphere, and the build plate is kept at 50 ◦C,
avoiding thermal stress and deformation.

The high-speed milling process, directly integrated into
the PBF-LB/M process, operates with a three-axis high-
speed spindle with up to 45,000 rotations per minute and
a maximum turning moment of 1.31 Nm. The high-speed
milling process does not differ from industrial standard and
is equipped with a 20-fold tool magazine, enabling a tool
change during operation. The usedmilling cutters are double-
edged solid carbide cutting tools with a cutting radius of
1mm and a nano-coating, consisting primarily of aluminium
and titanium (Mitsubishi Materials Corporation, Meerbusch,
Germany). Due to the integration into the PBF-LB/M pro-
cess, directly machining within the powder bed, no cooling
lubricant can be used (Fig. 3). Subsequently, the wear char-
acteristics get reinforced by the dry milling process and the
consequentially rising temperature of themilling cutters [34].

Fig. 2 Hybrid additivemanufacturing unit, depicting the recoater, build
plate, and the integrated high-speed milling spindle

For the in situ machining, the PBF-LB/M process is inter-
rupted after ten built layers, with a layer height of 50µm each.
Within the PBF-LB/M, a total material allowance of at =
250µm is added onto the constructed geometry of the com-
ponents, getting removed gradually by themilling process, as
illustrated in Fig. 4a.While the roughing cutter detaches a1 =
130µm of the added material in the first step (cf. Fig. 4b), the
semi-finishing step removes a2 = 90-110µm, preparing the
surface texture for the finishing process (cf. Fig. 4c). In a
final step, the finishing cutter dissipates the remaining mate-
rial allowance of a3 = 10-30µm, ensuring the best surface
quality and superior geometrical accuracy. While the param-
eters for the finishing process are varied for the optimization
of the surface roughness, the adjustments for the roughing
as well as for the semi-finishing process are left constant,
following Table 3.

The roughing process as well as the semi-finishing step
are conducted from the top of the component to the bottom,
using a roughing cutter. To avoid residual stress and defor-
mation during the milling process, the finishing cutter starts
at lower built layers, moving to the top, sparing the last built
layers for the next process cycle (cf. Fig. 4 a and d). Using
a customized milling cutter with an increased neck diameter
(cf. Fig. 3), a collision is excluded, even though a part of the
allowance is spared. Due to this procedure, heat dissipation
is optimized, ensuring the best geometrical accuracy and sur-

Table 2 PBF-LB/M parameters

Laser power (W) Scan speed
(mm/min)

Hatch distance
(μm)

Area 320 700 0.12

Contour 320 1400 -

Support 320 700 0.12
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Fig. 3 a Overview of the
finishing cutter and b cutting
head (d=2 mm)

face quality. The PBF-LB/M process generates a heat input,
inducing a thermal gradient from the last built layers to the
already cooled down parts of the component underneath [3,
31]. Due to the thermal conditions of the PBF-LB/M process,
the start of the finishing process at the bottom layers, work-
ing upward, is recommended, sparing the last built layers [24,
25].

2.3 Design of experiment

The high-speed milling process is governed by several
parameters, influencing the surface roughness directly by
virtue of a geometrical impact or indirectly as a process
parameter, leading to a difference in the surface roughness by
variation [1, 11]. Geometrical milling parameters, varied in
this study, are the z-pitch of the milling cutter, directly gener-
ating awaviness, and the infeed, defining the load, themilling
cutter faces during machining. Milling process parameters,
modified for the optimization of the surface roughness, are
the feed rate v f , and the spindle speed n of the milling cutter.

Both can be summarized with the number of cutting edges z
quantitatively within the feed per tooth, following Eq.1:

fz = v f

z ∗ n
(1)

As the feed per tooth is, in general, the decisive factor for the
high-speed milling process, several studies particularly refer
to this. For the micro-milling of Inconel 718, various levels
for the feed per tooth are found in literature, optimizing the
surface roughness of conventionally or additively manufac-
tured specimens [12, 21, 35, 43].

However, a full factorial study of four parameters with
three different levels would lead to 34 = 81 experiments
[46]. Using the Taguchi method, a L9 (34) orthogonal array
is designed, significantly reducing the number of experi-
ments significantly to nine experiments [44], as shown in
Table 4. The used parameters for the optimization of the sur-
face roughness are, asmentioned before, infeed, z-pitch, feed
rate, and spindle speed, respectively. The different levels are
depicted in Table 5 and lead to a feed per tooth between 4
and 25 µm/tooth.

Fig. 4 Process cycle of the hybrid additive manufacturing, integrating an in situ milling process with the a PBF-LB/M, b roughing, c semi-finishing,
and d finishing process
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Table 3 Process parameters for the roughing and semi-finishing pro-
cess

Infeed
(µm)

Z-pitch
(µm)

Spindle
speed
(rot/min)

Feed rate
(mm/min)

Roughing 130 150 4800 240

Semi-finishing 90–110 100 4800 240

The influence of the different parameters is evaluated with
the signal-to-noise ratio η (S/N ratio), calculated by the fol-
lowing Eq.2 with the measured value y and the number of
runs for an experiment n, as the surface roughness should be
minimized:

ηi = −10 ∗ log10(
1

n
∗

n∑

i=1

y2i ) (2)

In addition, the weighting of the single parameters is cal-
culated, using an ANOM analysis, comparing the means of
the different levels of the parameters. The significance is
analyzed by an ANOVA approach, pointing out the decisive
factors for the optimization of the surface roughness dur-
ing high-speed milling. According to this, the biggest delta
within the different levels of the parameter indicates the sta-
tistically most important parameter, while the highest value
for the S/N ratio depicts the optimal level for the parameter.
As the optimal levels for every parameter are determined,
the resulting average surface roughness Ra can be predicted
due to linear regression. According to Eq.3, the coefficients
b for the parameters x are calculated, constituting a weighted
impact of the parameters on the resulting surface roughness
y. A final study can be performed afterwards, applying the
optimal parameter combination, validating the statistically
predicted value.

y = b0 + b1 ∗ x1 + b2 ∗ x2 + b3 ∗ x3 + b4 ∗ x4 (3)

Table 4 Orthogonal array for
four parameters with three levels
each

No. A B C D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 5 Different levels of the varied milling parameters

Parameter Code Level 1 Level 2 Level 3

Infeed (µm) A 30 20 10

Z-pitch (µm) B 80 100 120

Feed rate (mm/min) C 240 200 160

Spindle speed (rot/min) D 4800 9600 19200

2.4 Experimental setup

The experiments are conducted with new milling cutters for
every step of the process, excluding any potential effects of
tool wear. As test specimens, cubes with 10mm edge length
are fabricated. For every set of parameters, three specimens
are built, and the surface roughness of every vertical flank is
measured to get a mean for every experiment.

The surface roughness, in detail the average surface
roughness Ra and the maximum surface roughness Rz ,
is measured using a laser scanning microscope (VK-200,
Keyence, Osaka, Japan) with a 20× magnification, using an
adjustment of inclination to ensure the best results for the
measurement. The measurement is conducted, in accordance
with ISO4288 for geometric product specifications—surface
textures, above 4.8 mm, and the L-Filter is set to 0.8 mm.

A closer examination of surface textures is obtainedwith a
scanning electronmicroscope (SEM) (Maia-3, Tescan, Brno,
Czech Republic) using the secondary electron detector and a
SEM voltage of 5kV. Further, element analysis is performed
with energy-dispersive X-ray spectroscopy, using a VK4
detector (Oxford Instruments, Abingdon, UK) with 15kV
SEM voltage and a beam intensity of 20pA. The focus of the
analysis is set to the elements, utilized for the coating and the
shaft, excluding defective signals within the emission spec-
trum.

3 Results and discussion

The results of the optimization of the surface roughness
are summarized in Table 6, revealing an average surface
roughness Ra between 0.5 and 0.85µm (for reference, Rz

is provided additionally). Following Eq.2, the S/N ratio of
every observation is determined in relation to Ra , highlight-
ing the influence of the different parameters on the surface
roughness.

Apparently, for the optimization of the surface rough-
ness, the infeed is the most important factor, showing the
biggest deviation between the different levels, as shown in
Table 7. Following theANOM, the parameter with the largest
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Table 6 Process parameters and
the resulting surface roughness
for the studies

No. Infeed Z-pitch Feed rate Spindle speed Ra Rz
(µm) (µm) (mm/min) (rot/min) (µm) (µm)

1 30 80 240 4800 0.69±0.09 5.27±0.47

2 30 100 200 9600 0.78±0.07 6.11±0.61

3 30 120 160 19,200 0.84±0.08 7.12±0.86

4 20 80 200 19,200 0.61±0.04 4.57±0.42

5 20 100 160 4800 0.59±0.07 4.55±0.49

6 20 120 240 9600 0.52±0.07 4.27±0.48

7 10 80 160 9600 0.51±0.05 4.01±0.48

8 10 100 240 19,200 0.61±0.06 4.64±0.42

9 10 120 200 4800 0.57±0.10 4.26±0.60

delta represents the biggest impact on the resulting value. As
shown in the main effect plot for S/N ratios in Fig. 5, the best
level for the infeed is a3 = 10µm with a S/N ratio of 4.990,
while the infeed of a3 = 30µm shows a S/N ratio of 2.319,
getting validated by p ≤ α. However, as the infeed defines
the load, the milling cutter faces during processing, a smaller
infeed provides a lower impact on the milling cutter, lead-
ing to slighter tool wear and superior surface roughness. At
the manufacturing of IN718, the infeed directly affects the
flank wear, whereby it is clarified as a determinant for the
generation of a good surface quality [6].

As the secondmost important parameter, the spindle speed
is defined with a delta of 1.201 between the different levels.
It turns out that 9600 rot/min is an optimal value for the opti-
mization of the surface roughness. Due to the higher load
at minor rotational velocities, the flank of the milling cutter
cracks, directly affecting the quality of the finished surface.
At higher rotations, the coating of the milling cutter gets
burned in consequence of the rising temperature develop-
ment, leading to an inferior performance as well. As the flank
of the milling cutter, especially the finishing cutter, depicts
a critical point within the milling process, the spindle speed
must be selected well. Unadjusted parameters lead to higher
wear characteristics, affecting the resulting surface quality
negatively, as a new cutting edge is formed by the abrasion
[43].

As mentioned before, the z-pitch directly generates a
waviness at the surface profile, minimizing with smaller z-
pitches. With that, the optimal surface roughness develops at
a z-pitch of 80µm with a S/N ratio of 4.497. Following this,

Table 7 S/N ratio of the varied milling parameters

Level Infeed Z-pitch Feed rate Spindle speed

1 4.990 4.497 4.013 4.211

2 4.834 3.636 3.754 4.567

3 2.319 4.009 4.376 3.365

Delta 2.671 0.861 0.623 1.201

Rank 1 3 4 2

the z-pitch can be further reduced for the minimization of
the surface roughness marginally, yet in turn increasing the
manufacturing time.

Finally, the feed rate provokes the smallest impact on the
surface quality, getting optimal results at v f = 240mm/min.
As shown in Eq.1, combined with the spindle speed, the feed
rate defines the feed per tooth fz as a decisive factor. In this
respect, the impact of the feed rate can be diminished by the
elevated importance of the spindle speed, both leading to the
same quantitative result in interaction [41]. At the application
of milling technologies, a compromise must be found for
those two parameters for the best combination.

Flank wear is generally considered a measurable indica-
tor of tool wear, reported before by several studies [11, 32,
33]. Figure6 shows one flank of the finishing cutter for every
experiment after about 120min of operation. The extent of
the flank wear is compared, occurring by virtue of the dif-
ferent parameter combinations of the studies. Apparently,
the flank of all finishing cutters shows wear mechanisms,
leading to an abrasion of the coating as well as to a cob-
bling of the solid carbide underneath for some cutters. Due
to different wear mechanisms, the coating of the flank gets
dissipated, causing flank wear in various peculiarities. For
higher rotational velocities combined with a high feed rate,
diffusion reinforces wear characteristics in consequence of
the elevating temperature (cf. No. 3 andNo. 4). At lower rota-
tional velocities with an unadjusted feed rate, the mechanical
load exceeds the mechanical resistance of the milling cutter,
resulting in disruptions of the flankwear (cf. No. 1 andNo. 9)
[11].

Figure7 summarizes the SEM analysis of the milling cut-
ter, detailing the effects of the flank wear, the removal of the
coating, comparing these with an unused milling cutter. The
unusedmilling cutter shows the coating, consisting primarily
of titanium and aluminium nitrate, as further elements are not
depicted for a well-arranged depiction. Please note that the
milling cutters get grinded after coating for an increased neck
diameter, required for the finishing process. Thus, the coat-
ing of the unused milling cutter is removed at the edge of the
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Fig. 5 Main effect plots for the analysis of the S/N ratio of the different process parameters

neck, showing the base material, comprised out of tungsten
carbide (cf. Fig. 7a).

At the used milling cutter of study No. 8 (cf. Fig. 7b),
the coating is removed partly at the edge of the flank, get-
ting dissipated by the common wear characteristics and the
elevating temperature, resulting out of a high spindle speed.
The remaining flank is still coated, and a further flank wear
is acceptable, still expecting a good surface quality.

In turn, the flank of the milling cutter, used in study No.
9, is worn, a part of the flank is busted, and the coating is,
obviously, removed (cf. Fig. 7c). By virtue of the low spindle
speed and the incidental higher load for the milling cutter,
the flank wear increases, leading to a breakout, as shown in
detail in Fig. 7 d, e, and f. As depicted in the EDX map-
ping, worn parts of the flank only show tungsten and carbon,
excluding the elements of the coating at this position. Quan-
titative element analysis shows the characteristic peaks for

tungsten and carbide, detecting only a weak signal for the
coating elements. Tungsten, used as a backingmaterial due to
its hardness, predominates the spectral analysis (cf. Fig. 7g),
proving a complete removal of the coating, evidently caused
by the breakout.

At point 2, labelled in Fig. 7e, the coating still exists and
is not dissipated by the flank wear. The spectrum for the
element analysis is partitioned between the different coating
elements, primarily showing peaks for aluminium and nitro-
gen, getting completed by titanium and chromium as well as
by nickel and traces of iron and niobium (cf. Figure7 h).

The best milling parameters, transpired out of the opti-
mization of the surface roughness, are a3 = 10μm for the
infeed, a z-pitch of ae,z = 80μm, a feed rate of v f =
240mm/min, and n = 9600 rot/min for the spindle speed
(cf. Table 8).According toEq.3, the resulting average surface
roughness can be predicted, using the calculated coefficients.

Fig. 6 Flank wear analysis for the finishing cutters
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Fig. 7 SEM images with a distribution of elements of a new finishing cutter, b finishing cutter No. 8, c finishing cutter No. 9, d–f SEM images of
the outbreak of the finishing cutter No. 9, and element spectrum for g outbreak (point 1) and h coating (point 2)

Following Eq.4, the average surface roughness results to
Ra = 0.5045μm.

Ra = 0.356 + 0.01017 ∗ a3 + 0.00108 ∗ ae,z

− 0.000455 ∗ v f + 0.000005 ∗ n (4)

To validate this prediction, the derived optimized param-
eter combination, as summarized in Table 8, is employed in

a further print and milling process. The resulting specimen
exhibits a surface roughness of Ra = 0.47μm and excels the

Table 8 Optimized process parameters for the finishing process

Infeed
(µm)

Z-pitch
(µm)

Feed rate
(mm/min)

Spindle speed
(rot/min)

Finishing process 10 80 240 9600
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predicted optimized value slightly. For the maximum surface
roughness, a value of Rz = 3.73μm is investigated, depict-
ing the minimum for the study as well.

4 Conclusion

Within this study, the surface roughness of hybrid addi-
tive manufactured Ni superalloy was optimized. Using an
in situ milling process and the difficult-to-machine material
IN718, challenges of this innovative approachhave to bemas-
tered, resulting in an advanced surface quality for 3D-built
components. Compared to maraging steel, concerned in pre-
vious studies, the machining of IN718 faces increased wear
characteristics, necessitating a detailed study of the process
parameters.

Based on the Taguchi method, the relevant influencing
parameters on the milling process were varied. As a result, a
set of optimized milling parameters is determined that leads
to a superior surface roughness of Ra =0.47µm and Rz =3.73
µm.Using linear regression, the achievable surface roughness
could be predicted to Ra =0.50µm. In comparison to sole
PBF-LB/M-built components, the surface roughness is low-
ered significantly, leading to superior geometrical accuracy
and suitability for industrial applications with strict toler-
ances.

Furthermore, the flank wear was analyzed for every
parameter combination, revealing different wear characteris-
tics, caused by, e.g., low spindle speed and subsequently high
rising load for the milling cutter. As the flank of the milling
cutter gets worn, an EDX analysis was used to qualify the
dissipation of the coating and the subsequent reveal of the
backing material.

Within the following research, a closer examination of
changes in microstructure can be done, qualifying the impact
of the subsequent machining process for the Ni superalloy.
Furthermore, the usage of differentmaterials like, e.g., Ti and
Al alloys can be interesting, as the wear characteristics and
the resulting surface quality can be fundamentally different.
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