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Abstract
The study explores the application of shot-peening (SP) on AISI 316L stainless steel to enhance mechanical properties. It 
focuses on optimizing SP parameters—coverage percentage (C) ranging from 100 to 4500% and shot velocity (P) between 
1.5 and 6 bar while other SP factors were maintained constant—using response surface methodology (RSM) entails creating 
a mathematical model to analyze data accurately. This model explores interactions among initial configurations to optimize 
mechanical properties and enhance the performance of the current steel after the SP surface treatment. These properties 
evaluated include cumulative compressive residual stress (CCRS), cumulative full-width at half-maximum (CFWHM) new-
fangled factors for researchers to analyze, austenite transformation to martensite, micro-hardness, and surface roughness. 
Through the RSM model, increasing P leads to an increase in all response values in each one, except for microhardness, 
which registers a minor decrease from 1.5 to 6 bar. Elevating C promotes responses, excluding roughness, decreasing until 
2300% and reaching its minimum. At 4500% C, roughness peaks, exceeding the initial amount at 100% C. In the optimi-
zation section, it seeks a passable value for each parameter. Desired responses involve maximizing CCRS, CFWHM, and 
micro-hardness while minimizing martensite and roughness. For interactions in all responses, at P = 6 bar and C = 1860%, 
values for each response were CCRS = 218 (MPa.mm), CFWHM = 0.6871 (°.mm), micro-hardness = 394 (HV), martensite 
conversion = 48 (%), and roughness = 5.45 (µm). Response reassessment in the real tests by comparison RSM model in 
optimal points showed a minimum error of 4.05 for roughness and a maximum error of 12.09 for CCRS. Other responses 
contained errors between this spectrum.

Keywords  Shot peening · Coverage percentage · Optimization · Response surface method (RSM) · Cumulative 
Compressive Residual Stress · Cumulative FWHM

Abbreviation
CCRS	� Cumulative Compressive residual stress
CFWHM	� Cumulative full-width at half-maximum
CRS	� Compressive residual stress
SP	� Shot-peening
CSP	� Conventional shot-peening
SSP	� Severe shot-peening
GS	� Grain size
RSM	� Response surface methodology
CCD	� Central composite design

DOE	� Design of experiment
XRD	� X-ray diffraction
P	� Pressure
C	� Coverage

1  Introduction

AISI 316L stainless steel finds extensive application across 
diverse industries owing to its exceptional corrosion resist-
ance, weldability, conformability, and mechanical character-
istics. [1]. Nevertheless, notwithstanding these advantageous 
characteristics, there remains space for enhancing the mate-
rial’s performance by employing surface treatment systems 
[2]. SP is applied not only in conventional production meth-
ods but also in emerging manufacturing techniques like the 
3D printing process, contributing to the improvement of 
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AISI 316L stainless steel [3]. SP is a method that bombards 
a surface with small particles, like metal or ceramic, using 
compressed air or a centrifugal wheel. This creates small 
deformations on the treated surface and slightly below, 
depending on initial factors and the material used [4]. The 
collision of the particles induces compressive residual 
stresses on the metal surface, enhancing the material’s 
endurance, resistance to wear, and overall strength [5]. SP 
also initiates work hardening, leading to heightened surface 
microhardness and an additional improvement in its local-
ized mechanical properties. Furthermore, SP can enhance 
both the mechanical characteristics and corrosion resistance 
of AISI 316L stainless steel [6]. The effectiveness of SP 
relies heavily on the chosen process parameters. These fac-
tors, like particle size, velocity, peening coverage, and dura-
tion, significantly influence the outcomes of the SP treat-
ment. Careful adjustment and optimization of these 
parameters are essential for achieving desired improvements 
in mechanical properties and surface characteristics, particu-
larly in materials such as AISI 316L stainless steel [7, 8]. 
Determining the ideal parameters for SP in AISI 316L stain-
less steel is vital to reach the optimized mechanical proper-
ties for espesefic applications so that to be in a acceptable 
range. Nevertheless, established optimization methodologies 
are based on trial-and-error, single-factor adjustments, 
meanwhile full factorial designs may not be efficient to cover 
all spectrum of variations and incur high costs and fail to 
yield the most optimal solution [9]. To confront this specific 
challenge, academicians have employed analytical and math-
ematical models as a strategic approach [10]. These models 
serve as systematic tools to better understand and address 
the complexities inherent in the optimization process. By 
leveraging mathematical frameworks and analytical tech-
niques, scientists aim to provide a more nuanced and data-
driven perspective, enhancing the precision and effective-
ness of the optimization strategies applied to the given 
problem. Bisen et al. have examined how ultrasonic shot-
peening (USP) impacts 316L stainless steel through experi-
ments and analysis. Varied peening parameters were tested 
for optimal coverage. Tests showed improved hardness and 
residual compressive stress after peening. An analytical 
model predicting impact frequency was introduced and vali-
dated, proving its efficiency in optimizing process parame-
ters [11]. In addressing these challenges, some researchers 
employ analytical models. To overcome these challenges, 
the scientific community has turned to RSM, a statistical 
tool for experimental aspects. RSM encompasses the design 
of experiments, response modeling, and parameter optimiza-
tion to achieve desired outcomes. By fitting a polynomial 
equation to experimental data from selected runs, RSM 
effectively reduces the number of necessary experimental 
iterations while providing an accurate and robust process 
model. Additionally, RSM enables the exploration of 

interactions among multiple variables, a capability not fea-
sible with traditional optimization methods. This method has 
found diverse applications in mechanical and materials sci-
ence. For instance, Saravanan Ravichandran and colleagues 
applied RSM for the multi-response optimization of tool and 
formability, aiming to enhance the ultimate strength and 
ductility of AA8011 under axial compression [12]. Farasati 
and colleagues applied this approach to enhance the laser 
micromachining of Ti–6Al–4V [13]. Similarly, it found 
application in incremental forming to achieve reduced spring 
back and increased formability of aluminum 5083 [14]. Fur-
thermore, it was utilized in the friction stir welding of alu-
minum 6061-T6, incorporating water cooling to attain the 
optimal microstructural and mechanical properties, as illus-
trated by the research conducted by Fathi, Jalal, and their 
colleagues [15]. Additionally, Bideskan and collaborators 
utilized RSM in the production of bi-layer PMMA and alu-
minum 6061-T6 laminates through laser transmission, aim-
ing to identify the optimal adhesive conditions for this bima-
terial [16]. RSM also played a crucial role in the assessment 
of friction stir additive manufacturing, particularly in 
enhancing ABS by incorporating nano-silica, as demon-
strated by Shirkharkolaei et al. [17]. Although RSM has been 
increasingly employed to optimize the SP process for vari-
ous materials in recent years [18], the majority of studies 
have concentrated on optimizing individual responses, such 
as residual stress or fatigue strength. Few investigations have 
delved into the impact of SP on multiple mechanical proper-
ties, and even fewer have considered the surface morphology 
of the shot-peened material [19]. Consequently, there exists 
a need for a more comprehensive examination of the SP 
approach applied to AISI 316L stainless steel to optimize 
the process for multiple mechanical properties and surface 
morphology. The efficacy of SP on AISI 316L can be 
enhanced by meticulous control of parameters, encompass-
ing the size, shape, and velocity of shot particles, as well as 
the coverage and duration of the peening process. This opti-
mization should also consider the initial state of the steel, 
including its hardness and grain size (GS). Unal and Okan 
employed RSM to explore surface roughness and hardness 
as output factors, incorporating input factors like air pres-
sure, shot diameter, and peening duration [20]. The refined 
parameters derived from this optimization can be applied to 
enhance the performance of AISI 316L stainless steel across 
various industrial applications, including aerospace, automo-
tive, biomedical, and oil and gas industries [21]. Some inves-
tigations have employed the RSM method to fine-tune SP 
parameters for Steel 316L, aiming to achieve desired 
mechanical properties and microstructural conditions. 
Because of the high costs and time demands associated with 
experimental tests focused on mapping residual stress 
throughout a material’s depth from the surface, investigators 
are increasingly turning to finite element methods. This shift 
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allows for a more streamlined and efficient process, utilizing 
computational simulations to gain insights into the distribu-
tion of residual stress within the material. By adopting this 
approach, analysts aim to overcome the limitations of tradi-
tional experimental testing while optimizing both time and 
resources in the study of residual stress [22]. However, while 
these numerical methods have their advantages, they also 
come with limitations in accurately capturing specific inher-
ent material characteristics, such as phase transformations 
resulting from heat treatments or mechanical processes. To 
address this gap, researchers turned to SP with tailored char-
acteristics aimed at enhancing the mechanical properties of 
materials. Scholars in SP have various input factors such as 
velocity, ball properties, distance, angle, and duration. 
Although it is feasible to employ all parameters for extensive 
optimization, practical limitations frequently prompt scien-
tists to opt for two to three factors or specific factors instead 
of utilizing all in real-world applications. This limitation is 
more pronounced in practical laboratories compared to 
numerical methods, which are not as restricted. For example, 
Li et al. optimized SP parameters for AA7B50-T7751, focus-
ing on fatigue life by adjusting velocity, nozzle distance, and 
coverage through the finite element method (FEM) [23], and 
Hassanzadeh’s team used a statistical model for multi-objec-
tive optimization of SP’s parameters, considering shot veloc-
ity, diameter, coverage, and sample thickness. Residual com-
pressive stress and roughness were response variables [24]. 
In this context, pressure (correlated with velocity) and cover-
age percentage (correlated with time) have been chosen as 
variable factors. Experts often avoid varying all factors due 
to the intricate relationship between input and output factors, 
particularly with novel responses (CCRS and CFWHM) that 
involve time-consuming and costly processes. As these new 
parameters are still in the early stages of introduction for 
subsequent evaluations, the authors chose to employ only 
two primary parameters as input factors for this study (pres-
sure and coverage), constrained by the existing laboratory 
equipment and limitations. Here are introduced novel met-
rics, including cumulative compression residual stress 
(CCRS) and cumulative full-width at half-maximum 
(FWHM). These metrics offer deep insights into the build-up 
of residual energy and crystalline hardening throughout the 
material depth due to SP. CCRS finds practical applications 
in both science and industry: fatigue life improvement and 
wear resistance enhancement, stress corrosion cracking 
(SCC) mitigation, aerospace structural integrity, residual 
stress measurement, manufacturing process optimization, 
metal forming, and joining. Overall, CCRS is versatile in 
improving material properties and durability across different 
applications. By leveraging these innovative metrics, it 
becomes possible to quantitatively measure the extent of 
these elements following rigorous SP processes. In a related 
study, Neto et al. explored the cumulative strain effects on 

fatigue life. Their findings revealed that crack propagation 
within the compressive residual stress field resulted in a 
notable decrease in the fatigue crack growth (FCG) rate. 
This emphasizes the importance of understanding and opti-
mizing SP parameters to achieve enhanced material perfor-
mance, particularly in terms of fatigue resistance [25].

The uniqueness of this investigation lies in its focus on 
exploring the impacts of cumulative compression residual 
stress (CCRS) rather than cumulative strain effects, despite 
the limited data available in the literature for cumulative 
observations such as strain and stress. During the optimi-
zation phase, the objective of the study is to attain maxi-
mum CCRS and cumulative full-width at half-maximum 
(CFWHM), elevated micro-hardness, reduced surface rough-
ness, and precise control over the austenite-to-martensite 
phase transformation for steel AISI 316L. The research 
encompasses a meticulously designed series of experi-
ments to scrutinize how the mentioned shot-peening (SP) 
parameters influence the mechanical and microstructural 
attributes of the steel. A visual representation of the study’s 
progression is illustrated in Fig. 1 through a comprehensive 
flowchart.

2 � Experimental approach

2.1 � Material and specimens

The experimentation was performed on an AISI 316L stain-
less steel. This steel is broadly used in many industrial appli-
cations due to its excellent corrosion resistance [26], fairly 
high-temperature resistance, and good mechanical proper-
ties. On the other hand, its biocompatibility and weldabil-
ity [27] make it an ideal material in multiple applications. 
Table 1 shows the chemical composition of the AISI 316 
steel grade.

Cylindrical samples of hot rolled AISI 316L steel bars 
with a diameter of 30 mm and length of 400 mm were 
employed. Figure 2a displays the steel microstructure. It is 
a non-homogeneous microstructure, with many slip bands, 
deformation twins, and segregation zones [28]. The samples 
were submitted to a solution annealing treatment at 1050 °C 
for 60 min and quenched in water [29]. A stress-relieved heat 
treatment was finally applied to remove residual stresses. 
Figure 2b shows the steel microstructure after the above-
mentioned heat treatments. It corresponds to a fully recrys-
tallized austenitic microstructure.

2.2 � Shot‑peening treatments

Small samples were cut from the recrystallized AISI316L 
cylindrical bars with dimensions of 30 mm in diameter and 
8 mm in height. The surfaces of the samples were ground 
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with 120 grit size abrasive paper before been submitted to 
the SP process. The specifications for the shot balls (beads) 
are presented in Table 2.

All samples underwent SP treatments at ambient tempera-
ture using an air blast SP apparatus (Guyson Euroblast 4 PF 
laboratory machine). The conditions of the particular SP 
elements employed in the current study to attain the targeted 

SP process refer to Table 3. Coverage (C) and air pressure 
(P) were the criteria modified in the applied treatments.

2.3 � Optical microscope (OM) observations

First at all, it was essential to determine the duration 
required to achieve the complete coverage (98%) under 
all specific air pressures. Each sample underwent a one-
second SP at a designated pressure, and the resulting sur-
face coverage percentage was measured using an optical 
microscope. The images were subsequently analyzed using 
image processing to determine the achievable coverage 

Fig. 1   Outline of the methodol-
ogy employed in this study

Table 1   Chemical composition 
of AISI 316 stainless steel in 
weight percentage (%wt)

C Si Mn Cr Ni Mo

0.08 1 2 17 12 2.25

Fig. 2   AISI 316L stainless steel 
bar: a hot rolled and b annealed 
and stress relieved
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percentage. The shot-peened surface of the sample after a 
one-second treatment at a pressure of 1.5 bar displays in 
Fig. 3. For microstructural observation the specimens were 
subjected to an etching process using Kalling’s No.2 solu-
tion (2 gr CuCl2 + 40 ml HCl + 50 ml ethanol) for a period 
of 125 s [6]. Coverage (C) was evaluated by the Avrami 
equation (Eq. 1) [30]. Time corresponding to attain 100% 
coverage was determined and results obtained at different 
air pressures are presented in Table 4.

Figure 4 shows the affected area due to SP for 1.5 bar 
air pressure under 2300% coverage. Severe plastic defor-
mation is appreciated in a depth of approximately 100 �m.

2.4 � Response surface method (RSM)

Response surface method (RSM) is popularly used in engi-
neering, chemistry, physics, and other fields to optimize 
features s and develop predictive models. Central com-
posite design (CCD) is a popular RSM used for designing 
experiments, modeling the response surface, and finding the 

(1)C(%) = 100[1 − exp(−Ar ⋅ t)]

optimal combination of parameters. CCD is a useful RSM 
that allows for the efficient and effective optimization of 
parameters and the development of predictive models. Its 
ability to detect curvature and interactions makes it a valu-
able tool for engineers and scientists in a wide range of fields 
[31]. Within this investigation, the controlled SP technique 
was employed to study the SP process. To establish practi-
cal equations for aforementioned indicators using RSM, a 
set of experiments was conducted based on CCD. In order 
to ensure the effectiveness of SP, certain limitations were 
imposed on the design area. Three levels of pressure were 
selected along with three levels of coverage. Table 5 presents 
these variations.

Design Expert 13, a commercial statistical package, was 
employed for model development. Table 6 presents the 
design matrix and the corresponding measured values on 
the different treated surfaces.

2.5 � Roughness measurement

Surface roughness evaluations were conducted on all speci-
mens utilizing a Diavite DH-6 roughness tester. For each 
sample, measurements were conducted at five randomly 
selected positions and directions, spanning a length of 4.8 
mm. The measurements were performed with a cut-off 
length of 0.8 mm, according to the DIN 4786 standard [32].

2.6 � X‑ray diffraction analysis

2.6.1 � Measurement of residual stresses and full‑width 
at half‑maximum (FWHM)

The residual stress field induced by the applied SP treat-
ments was assessed using XRD analysis performed with 

Table 2   Characteristics of the peening medium

Shot type Material Nominal diameter (mm) Hardness (HB)

Spherical shape, SS 0.6 Austenitic stainless steel 0.6 150

Table 3   Shot-peening parameters. *Peening flux rate is controlled by 
means of the peening valve opening in the aforementioned Guyson 
Euroblast 4PF laboratory machine

Coverage time (s) Pressure (bar) *Peening flux rate Peening nozzle Distance 
(mm)

Peening angle (°)

Variable Variable 2 turns 230 90

Fig. 3   Estimating the coverage factor on AISI 316L stainless steel for 1.5 bar pressure. a Surface appearance after a one-second shot-peening 
treatment (100x). b Image processed picture (100x). c Extent of surface coverage, in percentage (%)
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a Stresstech 3000-G3R X-ray diffractometer. The {220} 
gamma lattice plane was examined under a 2θ angle of 
128.8º, utilizing the Kα chromium wavelength (0.2291 nm). 
The sin2ψ technique was employed to determine residual 
stresses [33], following the equation (Eq. 2):

Here, 'E' and 'ν' represent the elastic modulus and Pois-
son coefficient of AISI316L steel in the measured crystal-
lographic plane, respectively, with values of 211,000 MPa 
and 0.3. 'd' denotes the interplanar distance of the selected 
diffraction plane (hkl), 'ψ' is the tilt angle, and 'Ø' repre-
sents the angle in the sample plane. The diffraction peak was 
detected at five positions of the tilt angle, ranging from − 45º 
to + 45º, with an exposure time of 40 s for each position. The 
working parameters utilized for measuring residual stresses 
after the conventional and severe SP treatments are outlined 
in Table 7. Furthermore, to enable in-depth measurements 
of residual stresses (residual stress evolution along sample 
depth), material from the top surface of the shot-peened 
samples was removed prior to each measurement. To delin-
eate comprehensive residual stress profiles, successive layers 
of material were selectively removed through electropolish-
ing using a Buehler PoliMat machine. The electropolish-
ing process employed a solution comprising 94% acetic 
acid and 6% perchloric acid, with an applied voltage of 4 V. 
The width of each removed layer was gauged using a Mitu-
toyo micrometer, and this process iterated until the residual 
stress was completely eliminated. These measurements also 
provided the full-width at half-maximum (FWHM) param-
eter, which gives insights into grain distortion, dislocation 

(2)�∅ =
(

E

1 + ν

)

(hkl)

(
1

d∅0hkl

)(
�d∅ψhkl

�sin2ψ

)

density, and residual micro-stress state. It is usually consid-
ered as an indicator of work hardening [34].

The assessment of residual stress in the conducted tests 
within this exploration employed the CCRS methodology. 
To determine these value, compressive residual stress 
curves were generated, spanning from the shot-peened 
surface to a specific depth, where an stress near zero was 
measured. However, due to the discrete availability of test 
data points, achieving a smooth and accurate curve, as 
well as calculating the area through conventional math-
ematical methods, posed challenges. To overcome these 
obstacles, curve fitting was performed using polynomial 
equations to boost the smoothness of the measured curves. 
Figure 5 shows examples of the residual stress evolution 
measured in the non-peened sample (reference material) 
and in some of the shot-peened samples. Curve fitting was 
accomplished using the “MATLAB R2023a” software, 
enabling the derivation of pertinent equations for each 
dataset. The polynomial equations extracted by MATLAB 
were determined based on the values of R-squared and 
other statistical elements to minimize errors due to fitting 
process. Through MATLAB coding and programming, the 
area between the fitted curve and the x-axis (representing 
depth, in mm) and y-axis (representing stress, in MPa) was 
also calculated for each specific curve. For example, the 
results of three tests and their orders and specifications of 
the optimal error are listed in Table 8. Similarly, the same 
procedure was conducted for the remaining tests, and a 
specific polynomial curve was fitted for each test. Subse-
quently, the area below the residual stress-depth curves was 
calculated using MATLAB programming. The CCRS are 
shown in Table 6.

Table 4   Time needed to get 100% coverage for each air pressure

Pressure (bar) 1.5 2.25 3.75 5.5 6

Time (second) 6.26 5.22 3.32 2.05 1.94

Fig. 4   a Optical microscope 
surface image at 200 × after 
achieving 2300% coverage 
at 1.5 bar. b SEM image at 
500 × under the same conditions

Table 5   Process factors and corresponding levels

Factors Symbol Unit -alpha Levels  + alpha

0

Pressure P bar 1.5 3.75 6

Coverage C % 100 2300 4500
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Figure 6 displays a collection of randomly two chosen 
curves corresponding to test cases specified in Table 8, 
which have been incorporated to facilitate a comprehen-
sive understanding of the unsmoothed characteristics of 
the extracted compressive residual stress curve along the 
vertical axis of the sample. The inclusion of these curves 
aims to improve the comprehension of the uneven distribu-
tion of compressive residual stress throughout the depth of 
the sample. Table 6 presents all the resultant CCRS final 
values obtained after curve fitting and area calculation. 
CCRS is a unique quantitative measure of the residual 
stress state produced by SP and denotes the intensity of 
the SP treatment.

The evolution of the FWHM with depth provides valu-
able insights into specific material properties associated 
with crystalline hardening and structural refinement [35]. 
A FWHM profile was conducted on a cross-sectioned sam-
ple in Fig. 6, accompanied by SEM observations (Fig. 7). 
In this figure, two distinct areas are evident: the upper 
layer exhibits a finer microstructure attributed to grain 
refinement and the formation of sub-grains induced by the 
SSP. However, the inner area retains the coarser original 
microstructure. The determination of GS following the 
SSP treatment may involve using Scherrer’s equation [36] 
(Eq. 3), especially when anticipating a nanocrystalline 
GS [37, 38]. Previous studies [39] employed similar SP 
parameters to achieve a nanocrystalline GS.

where ‘λ’ is the radiation wavelength (λ chromium = 0.2291 
nm) and ‘FHHM’ is the full width at half maximum. The 
most intensive first-order peak {211}2θ = 156.4° of the 
XRD patterns was taken. ‘θ’ represents the diffraction angle 
(θ = 1.36 rad in {211} 2θ = 156.4°). Based on these values, 
a nanocrystalline GS can be obtained mainly in different 
FWHM the GS should be changed, for higher FWHM (shot-
peened face) the GS would be smaller than core of sample 
(Inner part far from treated face). The GS corresponding 
to the original microstructure (inner part) was analyzed by 
SEM analysis (Figs. 7 and 8).

(3)GS =
0.9.�

FWHM ⋅ cos�

Table 6   Matrix of in-put and 
out-put values

In-put factors Out-put factors

Pressure Coverage Martensite trans-
formation

Roughness Cumulative
Compress. Residual Stress

Cumulative FWHM Micro-hardness

No (Bar) (%) ( %) Ra (µm) (MPa × mm) (° × mm) (HV)

1 5.5 744 29 6.31 189 0.6417 362

2 2.25 3855 49 3.88 118 0.5641 476

3 3.75 2300 52 5.11 165 0.5958 418

4 3.75 2300 51 5.21 168 0.6047 421

5 6 2300 53 5.1 222 0.6851 399

6 5.5 744 32 6.4 191 0.6397 364

7 3.75 2300 50 5.19 166 0.6089 417

8 3.75 4500 58 7.99 178 0.6484 421

9 6 2300 51 4.98 229 0.6828 402

10 3.75 4500 56 7.82 180 0.6501 425

11 3.75 2300 49 5.17 167 0.6107 419

12 3.75 100 17 5.88 151 0.4977 343

13 2.25 744 22 5.31 105 0.4963 460

14 3.75 2300 52 5.2 169 0.607 422

15 5.5 3855 62 5.55 205 0.6575 418

16 3.75 2300 55 5.17 153 0.6101 427

17 5.5 3855 64 5.65 211 0.6549 420

18 3.75 100 18 6.25 148 0.5098 340

19 1.5 2300 42 3.01 91 0.4239 536

20 2.25 3855 51 3.79 124 0.5553 471

21 1.5 2300 44 3.12 87 0.4221 539

22 2.25 744 24 5.45 110 0.4909 458

Table 7   Experimental parameters for residual stress and FWHM 
measurements

Measurement mode Modified χ

Maximum voltage (kV) 30

Exposure time (s) 40

Tilt ψ (º) 5 points between − 45°/ + 45°

Noise reduction Parabolic

Filter of the Kα radiation Vanadium

Maximum intensity (mA) 6.7

Collimator diameter (mm) 2

Goniometric rotation (measurement direction) Ø (º) 0

Peak adjustment Pseudo-Voigt
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The GS, calculated using Eq. 3, is presented in Table 9. 
For case No. 12 (taken from Table 6 and illustrated in 
Fig. 8 with the yellow curve), measurements were taken 
from both the SP surface and the depth to 0.25 mm, utiliz-
ing the respective CFWHM curve.

Figure 8 illustrates the FWHM graphs evaluated along 
the depth of the samples, starting from the shot-peened 
face and progressing towards the sample interior, under 
the different shot-peening conditions. Employing the 
same analysis procedure as mentioned earlier for the 
cumulative residual stress determination, it becomes 
possible to quantify the degree of crystalline hardening 
and refinement occurring within the material during the 
shot-peening technique under the applied conditions.

To quantitatively evaluate these material changes, the 
cumulative FWHM values were measured in (degree*mm) 

units, integrating the area below the FWHM curves. Larger 
area values indicate a more pronounced level of refine-
ment and hardening achieved through shot-peening. The 
obtained cumulative FWHM values were also presented 
in Table 6.

Surface austenite phase transformation  Comparing the 
diffracted austenite peak intensity to the ferrite peak allows 
to determine the austenite transformation into martensite 
produced in the surface of the treated samples [40]. An 
X3000 diffractometer with the CrKα radiation was used.

The fundamental equation for calculating the martensite 
fraction, Vm, based on measured diffracted intensity data is 
as follows (Eq. 4)

(4)Vm = 1 − Vc − Vγ = 1 − Vc −

(
1∕q

q∑

j=1

(
Iγj

Rγj
)

)
∕[(1∕p

p∑

i=1

Iαj∕Rαj) +

(
1∕q

q∑

j=1

Iγj

)
]

Fig. 5   Experimental residual 
stress values versus sample 
depth in the non-peened sample 
(reference value) and after some 
shot-peening processes

Table 8   Fitted equations in 
MATLAB for tests numbered 
12, 13, and 15 to demonstrate 
different conditions for each 
equation

(1) The sum of squared errors (SSE) is a measure of the discrepancy between the actual values (observed 
values) and the values predicted by the model. It is calculated by taking the squared difference between 
each observed value and its corresponding predicted value, and then summing up all these squared differ-
ences
(2) The degrees of freedom for error (DFE) represents the number of observations minus the number of 
parameters estimated from the model. In polynomial regression, the number of parameters estimated 
depends on the degree of the polynomial. For a polynomial of degree ‘n,’ there are ‘n + 1’ coefficients to 
estimate (including the intercept term)
(3) The root mean square error (RMSE) is a measure of the average error of the model. It is calculated by 
taking the square root of the average of the squared differences between the actual and predicted values. It 
gives you an idea of how spread out the errors are

Test no Polynomial order SSE(1) R-square DFE(2) Adj R-sq RMSE(3)

12 6 11932 0.9783 4 0.9459 54.6162

13 4 11461 0.9722 5 0.95 47.8769

15 5 12745 0.983 8 0.9702 39.9141
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In Eq. (3), the following variables are used: Vγ: volume 
fraction of austenite phase, Vc: volume fraction of carbides, 
q: number of austenite peaks (hkl), Iγj: Integrated intensity 
of specific (hkl) austenite peak, Rγj: parameter relative to 
the theoretical integrated intensity, influenced by factors 
like interplanar spacing, Bragg angle, crystal structure, and 
phase composition, p: number of ferrite peaks (hkl), Iαj: 
integrated intensity of ferrite phase, and Rαj: parameter for 
integrated intensity of ferrite phase. No carbides have been 
considered (Vc = 0). Table 10 gives the diffraction planes, 
Bragg angles, and corresponding R values used in the deter-
mination of martensite content. Following shot-peening 
under a range of boundary conditions, a certain fraction of 
austenite undergo a transformation into martensite in vary-
ing degrees, depending on the intensity of the treatment [41]. 
Applying Eq. (3), the martensite percentage was calculated 
and recorded in Table 6.

2.7 � Micro‑hardness measurement

To determine intensity of the hardening caused by the plastic 
deformation induced by shot-peening treatments, Vickers 
microhardness was measured on the top face of the samples. 
The microhardness testing was conducted using a “Buehler 
Micromet 2100” microhardness tester, applying a force of 
300 gf for 15 s, following the method outlined in reference 
[42]. Table 6 presents the microhardness results correspond-
ing to each test condition.

3 � Development of mathematical model

3.1 � Mathematical model

The main objective of this study is to fit the SP parame-
ters to a mathematical model using the RSM to predict key 

results, including cumulative residual stress and FWHM, 
martensite percentage, micro-hardness, and surface rough-
ness. To assess the influence of shot-peening (SP) variables 
on critical quality factors, including the minimization of 
“roughness” and “martensite percentage conversion,” as 
well as to maximize “cumulative residual stress,” “full-
width at half-maximum (FWHM),” and “micro-hardness,” 
predictive models were established. The parametric effect 
of SP variables was analyzed using plots derived from these 
models. RSM was employed to create mathematical models 
to predict output parameters corresponding to the applied 
input parameters (air pressure and coverage percentage). The 
construction of these models was facilitated using the sta-
tistical software package mentioned earlier. The validity of 
full models was assessed through analysis of variances and 
coefficient of determination (R2). For the martensite percent-
age prediction, linear regression (without any transformation 

Fig. 6   Two selected fitted 
graphs obtained using MAT-
LAB software for tests num-
bered 17 and 22. Additionally, 
the area inside these polynomial 
curves is calculated, represent-
ing the cumulative residual 
stress characteristic for each test 
condition

Fig. 7   SEM analysis of a cross-sectioned sample following an SSP 
treatment (refer to Case No. 22 in Table 6)
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function) was used, and the best-fitting model was found to 
be quadratic, as indicated by (Eq. 5).

To assess the validity of the model, the analysis of 
variance (ANOVA) was conducted, and the results are 
provided in Table  11. The model F-value of 228.37 
implies the effect of in-put values is significant. There 
is only a 0.01% chance that an F-value as large as this 
one could occur due to noise. p-values less than 0.05 
indicate model terms are significant. In this case, P, C, 
P2, and C2 are significant model terms. The lack of fit 
F-value of 2.33 implies the lack of fit is not significant 
relative to the pure error. There is a 12.25% chance that 
a lack of fit F-value as large as this one could occur due 
to noise. Non-significant lack of fit is good—wanted the 
model to fit. Meanwhile, the predicted R2 of 0.9742 is in 

(5)

���������� ����������% = −2.95592 + 7.81434P + 0.0210861C

+ 0.000555556PC − 0.864198 × P2

− 3.02169e − 06C2

reasonable agreement with the adjusted R2 of 0.9819, i.e., 
the difference is less than 0.2.

To validate the accuracy of the model, Fig.  9a 
clearly demonstrates the capability of the developed 
mathematical model to precisely predict the percentage 
of martensite transformation. The combined effect of 
air pressure and coverage on the austenite transforma-
tion is seen in graph (b), enabling a comprehensive 
assessment of their joint impact on the final surface 
martensite content. Upon analyzing these graphs, it 
becomes evident that when both factors (P and C) 
reach their highest values, the conversion to martensite 
attains maximum levels (more than 60%). However, it 
is important to note that the coverage factor (C) holds 
greater significance in this conversion compared to the 
pressure factor (P).

Regarding now the roughness, an inverse function was 
employed, and through careful analysis, it was determined 
that the most suitable model is a modified quadratic func-
tion, which corresponds to (Eq. (6)).

(6)(
1

Roughness − 0.5

)
= +0.086225 + 0.0525335 × P + 0.000122635 × C − 3.55127e − 05 × PC − 0.00764876 × P

2

− 4.87957e − 09 × C
2 + 3.83909e − 06 × P

2C − 5.15467e − 09 × PC2 + 8.92381e − 10 × P
2
C
2

ANOVA was also performed to assess model reliabil-
ity Table 12. The model F-value of 151.04 indicates sig-
nificance, with a mere 0.01% chance of noise-induced 

occurrence. P-values below 0.05 suggest significance of P, 
C, P2, C2, P2C, PC2, and P2C2 model terms.

Figure 10a validates the refined model by visually com-
paring actual response values with model predictions, now 
regarding final roughness. In the same way already men-
tioned, the effect of air pressure and coverage on roughness 
results is appreciated in graphs (b), (c), and (d). It is seen 
that an increase in pressure leads to a proportional increase 
in roughness, while an increase in coverage results in an 

Fig. 8   FWHM scatter points 
from experimental tests corre-
sponding to various conditions. 
Note that only a subset of the 
data is presented here

Table 9   GS estimation for 
sample No.12 taken from 
Table 6 and Fig. 8 (θ = 1.36 rad 
in {211} 2θ = 156.4°)

Near to surface In-depth 0.25 mm

GS (nm) 3.75 7.64
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inverse effect. Interestingly, the graphs highlight that the 
minimum roughness value corresponds to maximum cover-
age degrees and minimum air pressure.

In relation to the CCRS, a power function was utilized. 
Upon thorough examination, it was concluded that the linear 
model, represented by (Eq. 7), best fits the process.

(7)

(|Cumulative Residual Stress|)1.5 = −176.761 + 532.265

× P + 0.112433 × C

ANOVA was conducted to evaluate model dependability 
(Table 13). The model F-value of 531.93 is highly signifi-
cant. p-values much below 0.05 confirm significance of air 
pressure and coverage model terms. The lack of fit F-value 
of 2.65 indicates a 6.65% chance of noise-induced occur-
rence, indicating model fit.

Figure  11a shows the model’s precise prediction of 
cumulative residual stress variations and its effectiveness 
in analyzing the shot-peening (SP) process. Similar graphs 
than in the precedent figures were also provided in this case. 
Both, air pressure and coverage, exhibit a proportional linear 
increase in cumulative residual stress as they grow. Never-
theless, it is evident that pressure has a greater impact on 
this variation.

For the CFWHM, a power function was chosen and, after 
thorough analysis, a modified quadratic, denoted by (Eq. 8) 
was seen to be the most suitable.

(8)
(Cumulative FWHM − 0.4)2 = 0.0605372 − 0.0388363 × P − 4.94174e − 05 × C + 2.91682e − 05 × PC + 0.00673312

× P2 + 4.68314e − 09 × C2 − 3.05556e − 06 × P2
C − 1.5578e − 09 × PC2

An ANOVA analysis was performed to assess the reli-
ability of the model Table 14. The model F-value of 688.15 
indicates significant model importance. p-values below 0.05 
suggest significance of P, C, PC, C2, P2C, and PC2 model 
terms. The lack of fit F-value of 1.31 suggests a 27.33% 
chance of noise-induced occurrence.

Figure 12 presents similar representations used with pre-
vious outputs. Proportional increases in cumulative FWHM 

with the increase of air pressure and coverage is appreciated. 
Interestingly, maximum values occur at maximum coverage 
degrees and air pressure. The increase is slightly higher for 
pressure compared to coverage.

In the case of micro-hardness, a power-law function was 
selected and, upon comprehensive analysis, a modified quad-
ratic function, represented by (Eq. 9), was established as the 
most appropriate. 

(9)
(�������������)2 = 370, 587 × 120, 863 × P + 63.94 × C + 1.54083 × PC + 13, 851.2

× P
2 − 0.0192915 × C

2 − 1.95539 × P
2
C + 0.00351777 × PC

2

Table 10   The calculated theoretical R parameters obtained using 
CrKα radiation [40]

hkl 2ϴ R

Ferrite (Martensite) 200 106.1 20.73

211 156.4 190.8

Austenite 200 79.0 34.78

220 128.3 47.88

Table 11   ANOVA results of 
martensite transformation 
percentage

Source Sum of squares Degree of freedom Mean square F-value p-value

Model 4222.16 5 844.43 228.37  < 0.0001 Significant

P (pressure) 276.02 1 276.02 74.65  < 0.0001

C (coverage factor) 3327.07 1 3327.07 899.8  < 0.0001

P × C 15.13 1 15.13 4.09 0.0602

P2 54.04 1 54.04 14.62 0.0015

C2 603.93 1 603.93 163.33  < 0.0001

Residual 59.16 16 3.7 - -

Lack of fit 20.66 3 6.89 2.33 0.1225 Not significant

Pure error 38.5 13 2.96

R2 = 0.9862 R2 adjusted = 0.9819 R2 predicted = 0.9742
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An ANOVA analysis was performed to assess the reliability 
of the model Table 15. The high model F-value (1075.73) means 
this model is accurate. In this case, P, C, PC, P2, C2, P2C, and 
PC2 have very low values, meaning they are important factors. 

The small lack of fit F-value (0.29) means the lack of fit is not 
important compared to random errors (59.78% chance).

Figure 13 represents microhardness prediction and the 
effects of air pressure and coverage in surface microhardness. 

Fig. 9   Visual representation of martensite transformation, includ-
ing a actual response values and their corresponding predictions, b 
combined effect of air pressure and coverage on martensite transfor-

mation, c individual effect of both inputs on final surface martensite 
content, and d 3D plot illustrating the effect of air pressure a coverage 
on martensite transformation

Table 12   ANOVA results of 
Roughness

Source Sum of squares Degree of freedom Mean square F-value p-value

Model 0.0239 8 0.003 151.04  < 0.0001 Significant

P (pressure) 0.003 1 0.003 151.43  < 0.0001

C (coverage factor) 0.002 1 0.002 101.81  < 0.0001

P × C 6.21E − 06 1 6.21E − 06 0.3148 0.5843

P2 0.0021 1 0.0021 108.53  < 0.0001

C2 0.0076 1 0.0076 387.22  < 0.0001

P2 × C 0.0039 1 0.0039 198.27  < 0.0001

P × C2 0.0001 1 0.0001 7.11 0.0194

P2 × C2 0.0001 1 0.0001 6.05 0.0286

Pure error 0.0003 13 0 - -

R2 = 0.9894 R2 adjusted = 0.9828 R2 predicted = 0.9589
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It is seen that pressure inversely affects microhardness, while 
coverage has a proportional effect. These graphs also high-
light maximum microhardness values correspond to the 
minimum air pressure and maximum coverage degrees.

The accuracy of the developed modified models, assessed 
through Eqs.  5, 6, 7, 8, and 9, is clearly depicted in a 

graphical representation provided in Fig. 14. This visual 
comparison between the real values of responses and the 
models’ predictions, accompanied by the noticeable scatter 
band for each run, is emphasized. Figure 14 unequivocally 
illustrates the models’ effectiveness in predicting param-
eters like “CCRS,” “CFWHM,” “austenite percentage 

Fig. 10   Visual representation of roughness evolution, including a 
actual response values and their corresponding predictions, b com-
bined effect of air pressure and coverage on roughness, c individual 

effect of both inputs on final roughness, and d 3D plot illustrating the 
effect of air pressure a coverage on roughness

Table 13   ANOVA results of 
CCRS

Source Sum of squares Degree of freedom Mean square F-value p-value

Model 1.20E + 07 2 5.98E + 06 531.93  < 0.0001 Significant

P (pressure) 1.15E + 07 1 1.15E + 07 1020.33  < 0.0001

C (coverage factor) 4.90E + 05 1 4.90E + 05 43.53  < 0.0001

Residual 2.14E + 05 19 11,245.27

Lack of fit 1.18E + 05 6 19,588.73 2.65 0.0665 Not significant

Pure error 96,127.73 13 7394.44

R2 = 0.9825 R2 adjusted = 0.9806 R2 predicted = 0.9766
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Fig. 11   Visual representation of CCRS evolution, including a actual 
response values and their corresponding predictions, b combined 
effect of air pressure and coverage on CCRS, c individual effect of 

both inputs on CCRS, and d 3D plot illustrating the effect of air pres-
sure a coverage on CCRS

Table 14   ANOVA results of 
CFWHM

Source Sum ofs Degree of freedom Mean square F-value p-value

Model 0.0135 7 0.0019 688.15  < 0.0001 Significant

P (pressure) 0.0064 1 0.0064 2295.22  < 0.0001

C (coverage factor) 0.0026 1 0.0026 942.41  < 0.0001

P × C 0 1 0 14.66 0.0018

P2 6.28E-06 1 6.28E-06 2.25 0.156

C2 0.0001 1 0.0001 31.76  < 0.0001

P2 × C 0.0006 1 0.0006 207.16  < 0.0001

P × C2 0.0001 1 0.0001 51.48  < 0.0001

Residual 0 14 2.80E-06

Lack of fit 3.58E − 06 1 3.58E-06 1.31 0.2733 Not significant

Pure error 0 13 2.74E-06

R2 = 0.9971 R2 adjusted = 0.9957 R2 predicted = 0.9941
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Fig. 12   Visual representation of cumulative FWHM, including a 
actual response values and their corresponding predictions, b com-
bined effect of air pressure and coverage on cumulative FWHM, c 

individual effect of both inputs on cumulative FWHM, and d 3D plot 
illustrating the effect of air pressure a coverage on cumulative FWHM

Table 15   ANOVA results 
related to microhardness

Source Sum of squares Degree of freedom Mean square F-value p-value

Model 4.28E + 10 7 6.11E + 09 1075.73  < 0.0001 Significant

P (pressure) 1.65E + 10 1 1.65E + 10 2905.43  < 0.0001

C (coverage) 3.88E + 09 1 3.88E + 09 683.06  < 0.0001

PC 4.58E + 08 1 4.58E + 08 80.58  < 0.0001

P2 6.33E + 09 1 6.33E + 09 1113.93  < 0.0001

C2 2.46E + 09 1 2.46E + 09 433  < 0.0001

P2C 2.37E + 08 1 2.37E + 08 41.72  < 0.0001

PC2 7.34E + 08 1 7.34E + 08 129.1  < 0.0001

Residual 7.96E + 07 14 5.68E + 06

Lack of fit 1.75E + 06 1 1.75E + 06 0.2924 0.5978 Not significant

Pure error 7.78E + 07 13 5.99E + 06

R2 = 0.9981 R2 adjusted = 0.9972 R2 predicted = 0.9960
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transformation to martensite,” “micro-hardness,” and surface 
“roughness” with an impressive degree of precision. The 
robust agreement between the actual and predicted values 
underscores the reliability and effectiveness of the developed 
mathematical models. The high level of accuracy establishes 
these models as valuable tools for conducting a thorough 
analysis of the SP process, providing with reliable insights 
and optimization capabilities.

3.2 � Optimization

The optimal parameter combination that maximizes the 
cumulative residual stress, cumulative FWHM, and micro-
hardness, while minimizing martensite transformation and 
roughness was finally looked for. This technique involves 

combining multiple responses into a dimensionless measure 
of performance called the overall desirability function [43]. 
The desirability functions for minimum and maximum goals, 
along with the overall objective functions, were calculated 
using (Eqs. 10, 11, and 12), respectively.

(10)di = {

0 Yi < Lowi

(
Yi−Lowi

Highi−Lowi

)
w
Lowi < Yi < Highi

1 Yi > Highi

(11)di = {

1 Yi < Lowi

(
Yi−Lowi

Highi−Lowi

)
w
Lowi < Yi < Highi

0 Yi > Highi

Fig. 13   Visual representation of surface microhardness, including a 
actual response values and their corresponding predictions, b com-
bined effect of air pressure and coverage on microhardness, c individ-

ual effect of both inputs on microhardness, and d 3D plot illustrating 
the effect of air pressure an coverage on microhardness
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In the provided equation, "Y" represents the given 
response, and “Low” and “High” refer to the minimum 
and maximum values of the response, respectively. The 

(12)D = (

n�

i=1

d
ri
i
)

1∑
r1

variable “r” denotes the number of responses, and “w” 
is the weight factor, which varies within the range of 
0.1 to 10. To conduct multi-characteristic optimiza-
tion using the desirability approach, the optimization 
criteria were initially identified. Table 16 outlines the 
defined criteria for optimization. The optimization way 
was performed using Design Expert statistical software. 
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The significance assessment for each result outlined in 
Table 16 follows the criteria laid out in this table, with 
a rating of 3 out of 5 assigned to all items except for 
CCRS, which receives a maximum rating of 5 out of 5. 
The solution that simultaneously maximizes the cumula-
tive residual stress, cumulative FWHM, micro-hardness, 
and minimizes austenite transformation and roughness 
was achieved using a pressure value of 6 bar and 1860% 
coverage.

Figure 15 illustrates the factor ramps, providing a graphi-
cal representation related to the optimal solution. Figure 15 
depicts the plotted limitations for each item, with precise 

post-optimization points representing the targeted out-
comes. This figure displays the optimal values, as well as 
the lower and upper ranges, for each factor. It is crucial to 
emphasize that these values were chosen from the solutions 
extracted by the software using (Eqs. 9, 10, and 11).

To validate the obtained optimal results and demonstrate 
the applicability of the proposed methodology, a confirmatory 
experiment was conducted under the aforementioned opti-
mized conditions. Experimental measurements for the CCRS, 
cumulative FWHM, micro-hardness (maximized parameters), 
and martensite percentage and roughness (minimized param-
eters) were made and compared with the predicted values in 
Table 17. It is worth noting that the relative error values for 
the different aspects are between 4 and 12%.

These error values confirm the accuracy of the proposed 
methodology in identifying the optimal solution. In con-
trast, the larger error observed for CCRS and CFWHM may 
be attributed to limited measurement accuracy, character-
ized by a relatively small number of recorded tests, along-
side potential artifacts introduced during data smoothing 
using MATLAB software. Nevertheless, it is worth not-
ing that within this range, the optimization criteria for all 

Table 16   Constraint table

Name Goal Lower limit Upper limit Importance

A:P (pressure) (bar) is in range 1.5 6 -

B:C (coverage) (%) is in range 100 4500 -

Martensite (%) minimize 17 64 3 out of 5

Roughness (µm) minimize 4.11 7.99 3 out of 5

CCRS (MPa × mm) Maximize 87 229 5 out of 5

CFWHM (° × mm) Maximize 0.4221 0.6851 3 out of 5

Micro-hardness (HV) Maximize 340 539 3 out of 5

Fig. 15   The ramps shape for all factors. The red points indicate the optimal factor settings, while the blue points represent the corresponding 
predicted response values
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parameters, achieved by altering two input factors, remains 
within an acceptable range.

3.3 � Discussion

The primary purpose of calculating CCRS and CFWHM 
in this context is to quantify the residual stress and esti-
mate the microstructure of the metal following the SP 
operation. In real-world applications, samples are sub-
jected to various conditions post-SP operation, including 
static and dynamic loading or a combination of both. In 
industrial settings, for samples experiencing dynamic con-
ditions, surface smoothness is a crucial factor, as rougher 
surfaces tend to have lower durability against fatigue and 
dynamic forces. While SP enhances fatigue conditions 
by inducing residual stress on the surface and slightly 
beneath, it also results in a rougher surface due to the 
formation of micro-cracks, which can diminish the effec-
tiveness of SP and lead to worsened fatigue conditions for 
shot-peened specimens, particularly in certain types of 
shot particles with more acute shapes [44, 45]. To address 
this, industries may employ post-processing techniques 
such as lapping, polishing, or electrochemical polish-
ing after SP [46]. However, understanding the depth and 
volume of residual stress is vital to ensure the effective 
retention of residual stress during secondary operations. 
The aim is to optimize the output parameters to maxi-
mize CCRS while minimizing surface roughness, thereby 
enhancing the component’s fatigue performance. In gen-
eral, stainless steel with a finer grain size tends to have 
better fatigue resistance compared to stainless steel with 
larger grain sizes [47, 48]. Finer grain sizes result in a 
more uniform microstructure with fewer grain boundaries, 
which helps to distribute stresses more evenly throughout 
the material. This leads to improved fatigue strength and 
resistance to crack initiation and propagation. Addition-
ally, finer grain sizes typically exhibit higher hardness 
and tensile strength, contributing further to enhanced 
fatigue performance. Therefore, stainless steel with a fine 
grain size is often preferred in applications where fatigue 
resistance is critical. In this regard, the CFWHM value 
serves as a distinctive indicator ensuring the preserva-
tion of grain refinement post any previously mentioned 

post-processing procedures. Moreover, in applications 
involving corrosion, minimizing surface roughness is 
crucial for achieving optimal performance. However, the 
discussion regarding grain refinement and its impact in 
the context of corrosion remains controversial according 
to existing literature is not only impacted by roughness 
and grain size but other factors should be investigated, 
specifically for steel AISI 316L [49, 50].

4 � Conclusions

In this empirical investigation, a specialized protocol was 
utilized to achieve specific surface mechanical character-
istics using shot-peening (SP). Two key variables, namely, 
air pressure (linked to shot velocity) and shot-peening time 
(represented as coverage percentage), were adjusted. The 
study aimed to predict five output variables, aiming to 
maximize cumulative compressive residual stress, cumu-
lative full-width at half-maximum (CFWHM), and micro-
hardness, while minimizing martensite transformation 
and surface roughness. CCRS and CFWHM values were 
computed using smoothing techniques, specifically polyno-
mial functions, indicating distance per millimeter alongside 
CRS per megapascal and degree of crystalline hardening, 
respectively. These parameters are crucial for evaluating 
sample durability during fatigue testing and subsequent 
post-processing steps. Higher CCRS and CFWHM values 
suggest better performance under real-world mechanical 
conditions. Mathematical models were developed to ana-
lyze each element independently and explore interactions 
among input variables. In the optimization phase, a pres-
sure of 6 bar and 1860% coverage were identified as the 
optimal combination for minimizing roughness and mar-
tensite transformation while maximizing CCRS, CFWHM, 
and microhardness. Acceptable error tolerances were 
achieved. Increasing the number of factors in the response 
surface methodology (RSM) model beyond the 22 tests 
conducted in this study would lead to a more refined test-
ing process and reduced errors. By grasping the concept 
of multi-response optimization, a more accurate estimation 
of material behavior across different practical applications 
can be achieved compared to the previous single-response 

Table 17   Comparison between results obtained by design expert based on the identified criterion and the experimental test performed using an 
air pressure of 6 bar and a coverage degree of 1860%

Relative error (%) = (|real test value—model value| / |real test value|) * 100

Martensite (%) Roughness (µm) Cumulative residual stress (MPa x mm) Cumulative FWHM (° × mm) Micro-hardness (HV)

Model estimated 47.78 5.45 218 0.687 394

Experimental results 44 5.68 248 0.629 372

Relative error (%) 8.59 4.05 12.09 9.22 5.91
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approach. In this context, five key factors have been iden-
tified, each potentially exerting a significant influence on 
specific scenarios. For instance, the quantity of martensite 
following cold-working (in this case, SP) is expected to 
affect the fatigue and corrosion characteristics of AISI 
316L. This approach facilitated the identification of trends 
among observed factors and enabled the attainment of 
desired target values through the optimization process.

5 � Code availability (software application 
or custom code)

In this investigation, the corresponding author will be able 
to present provided codes or data around the reasonable 
request.
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