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Abstract
Tools for implementing a systematic quality management are necessary for the use of material extrusion as an additive manu-
facturing process for products with high quality requirements. Well-defined quality classes are crucial for ensuring that the 
requirements for a product can be communicated transparently and that the existing properties can be evaluated. Furthermore, 
there is a lack of capable measurement equipment for the acquisition of process data during the production process. To address 
these challenges, the present paper introduces an image processing system that determines quality indicators for individual 
layers in terms of imperfect surface percentages and the number of imperfections. The central element of the hardware is an 
adaptive darkfield illumination, which leads to high-contrast images. In addition, five types of layer subareas are identified in a 
segmentation step. Unsupervised machine learning methods are then used to detect imperfections in each layer subarea. In the 
segmentation, the current layer can be distinguished from irrelevant image background regions with an F-measure of 0.981. 
For the layer-wise measurement of the quality indicators, relative measurement errors with standard deviations of 25 to 76.1% 
are found. After evaluating the capabilities of the image processing system, a proposal for limits of quality classes is derived 
by monitoring several material extrusion processes. For this purpose, three quality classes for each of the five layer subareas 
are deduced from the process scatter measured by the image processing system. The results are an important contribution 
to the industrialization of material extrusion in safety–critical areas such as medical technology or the aerospace industry.

Keywords Additive manufacturing · Material extrusion · Fused deposition modeling · Quality classes · Image processing · 
Process monitoring

1  Introduction1

Material extrusion (MEX) is used in a wide range of appli-
cations [2–4]. However, to be able to additively manufacture 
products with high quality requirements, tools for systematic 
quality management must be available [5, 6]. This involves 
sophisticated monitoring technologies to collect quality data 

during the manufacturing process. In addition, definitions are 
needed to evaluate the collected quality data in a generally valid 
and comprehensible way [7, 8].

Requirements for a MEX product are to be defined in 
terms of surface, geometry, mechanical properties and feed-
stock materials [9]. With regard to the mechanical proper-
ties, for example, there are a large number of part-specific 
studies (e.g. [10, 11]). Additionally, for MEX plastic parts, 
quality classes with respect to relative part density, dimen-
sional accuracy and mechanical properties are defined in 
ISO/ASTM DIS 52924:2020–05. These apply to the entire 
part [12]. Generally, a classification of parts into three qual-
ity classes is proposed for MEX [13]. However, there are no 
definitions for quality indicators or limits for quality classes 
that allow a high-resolution evaluation of MEX manufactur-
ing processes (e.g., individual layers or subareas of layers) 
and that are usable in more than one individual application 
[8]. Therefore, the objective of this work is to derive gener-
ally applicable quality classes for specific quality indicators 
from empirical investigations of the MEX process.
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Manufacturing a part using MEX involves melting a feed-
stock with a moving extrusion head and depositing it layer 
by layer onto a substrate in the form of beads [14, 15]. A 
wide variety of imperfections can occur during this process, 
for example stringing [16], scars [16], underfill and overfill 
[17], discolorations [18] or incorrect bead deposition posi-
tions [19].

The MEX layer surfaces are never completely planar. 
Depending on the process parameters, a regular surface 
profile is formed. Therefore, a promising way to evaluate 
layer surfaces is the detection of imperfections as deviations 
from the dominant regularity [20, 21]. In this work, quality 
indicators are used which are a measure for the regularity of 
layer surfaces. The quality classes are intended to be derived 
from the scatter of quality indicators in real MEX production 
processes and therefore must be collected with an appropri-
ate monitoring system.

Technologies for the acquisition of condition data 
have already been in the topic of investigation of many 
studies. Temperature sensors, vibration sensors, acoustic 
emission analysis, measurements of electrical quantities, 
as well as force and pressure sensors are mainly used to 
monitor mechatronic components of the MEX machine 
[7, 8].

Scheffel et al., for example, use vibration sensors 
mounted on machine frame, build platform and extrusion 
head. The authors utilize a convolutional neural network 
to analyze the collected data. The system achieves an 
accuracy of 97.7% when differentiating between produc-
tion sequences that can be assigned to normal process 
states on the one hand and crack formation between adja-
cent layers on the other [22]. Other approaches that use 
vibration sensors deal with the determination of an effec-
tively existing nozzle diameter [23, 24] or the detection of 
faulty mechanical components of the MEX machine [25]. 
Furthermore, Xu et al. use an acoustic emission sensor 
placed on the build platform to categorize different sever-
ity levels of warpage with a decision tree and distinguish 
them from a defect-free process [26]. Acoustic emission 
sensors can also be applied to analyze part detachment 
from the build platform and part deformation [27, 28] or 
the condition of the extruder [29].

In contrast, image processing systems, optical 3D meas-
urements and thermographic methods enable the direct 
acquisition of part quality data [7, 8]. These approaches 
are particularly promising, because the entire part can be 
inspected with just one sensor if the individual layers are 
the target of the analysis.

A widely used approach is to analyze the layer surface 
with cameras attached to the extrusion head. For example, 
liu et al. detect overfilling and underfilling using two digital 
microscopes [30, 31]. Brion und PattinSon also implement 
a camera attached to the extrusion head, with its viewing 

axis focused on the nozzle tip. They train an artificial neural 
network to classify the parameters filament flow rate, extru-
sion head lateral speed, Z offset of nozzle tip and hotend 
temperature into three categories: “low”, “good” and “high”. 
The in total 81 possible parameter combinations can be iden-
tified by the system with an average accuracy of 84.3% [32].

Other promising concepts for MEX process monitoring 
are those developed by PetSiuk und Pearce. The camera is 
mounted on a tripod in front of the MEX machine. A ring 
light arranged around the build platform is moved by a motor 
to set a constant distance to the current layer. A model of 
the layer geometry is derived from the G-code. This ena-
bles a comparison with acquired layer images to determine 
geometric deviations of the layer outer edges and defects in 
the layer structure. In addition, an unsupervised machine 
learning method based on texture analysis is investigated to 
detect faulty infills [33, 34].

Besides monitoring individual layers, image processing 
systems are also used to inspect the side walls of parts. In 
this technical variant, the camera axis is often perpendicular 
to the normal vector of the build platform. Saluja et al. use 
this hardware setup to detect detachment of the part from the 
build platform using a convolutional neural network. The 
manufacturing processes of cuboids, prisms and cylinders 
are classified with an accuracy of 99.3% when assessed layer 
by layer [35]. rill-García et al. investigate the inspection 
of side walls during the production of large-format MEX 
parts and evaluate the quality of deposited material beads 
during the processing of concrete [36]. A monitoring con-
cept by henSon et. al is based on three cameras arranged 
around the build platform. Defects are detected by deriv-
ing simulations of images that correspond to the camera 
perspectives from the digital part data. These synthetic ref-
erence images can be compared with the captured camera 
images [37].

caltaniSSetta et al. have developed a solution for large-
format MEX in which the cooling characteristics of depos-
ited material beads can be analyzed with a thermographic 
camera and local temperature deviations can be detected. 
These are a signal for underfilling and overfilling, incor-
rect extrusion temperatures and porosity [38]. To precisely 
assign acquired temperature data to the part elements of the 
CAD model, Binder et al. use perspective transformations. 
In addition, filters are used to exclude the visible extrusion 
head from the analysis [39].

3D data of the layers produced can be determined using 
a structural light scanner and cameras, for example [40]. 
lyu und Manoochehri, on the other hand, record layer 
data with a laser triangulation sensor and analyze it with 
a convolutional neural network. The four states “normal 
print”, “over extrusion”, “under extrusion” and “severe 
under extrusion” can be distinguished with an accuracy of 
90.1%. Moreover, a mechanism for controlling the process 
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has been implemented [41]. In this context, a study by 
kline et al is relevant. The authors aim to compare part 
data, which are firstly recorded with a computer tomo-
graph and secondly with a laser triangulation sensor. The 
subject of the analysis is the characteristics of voids [42].

Despite the large number of existing approaches to 
monitor the MEX process, no industrial implementation 
of a capable monitoring system has been realized yet, 
as the current systems are not able to monitor complex 
and varying parts. Furthermore, they are usually only 
designed for specific types of defects and no project is 
pursuing a high-resolution inspection of the entire manu-
facturing process, including all layer subareas. The meas-
urement of quality indicators as summarizing metrics for 
part quality is also not considered in any publication. In 
addition, there are fundamental deficits regarding the 
systematic and comprehensive investigation of devel-
oped process monitoring systems. For example, meas-
urement uncertainties are generally not determined (see 
also reviews [7, 8]). Therefore, this work uses a novel 
image processing system. This is used for layer-by-layer 
data acquisition and is intended to enable high-resolution 
evaluation of part qualities during manufacturing.

In Sect. 2, the developed image processing system is 
presented. On the one hand, this includes the hardware 
and the methods for layer-wise image acquisition. On the 
other hand, innovative approaches for the segmentation of 
the layer images as well as for the detection of anomalies 
are presented. Section 3 includes experimental investiga-
tions on the capabilities of the image processing system. 
The proposal for quality classes is presented in Sect. 4. 
Finally, Sect. 6 summarizes the main conclusions of the 
study.

2  Image processing system

Figure 1 shows the structure of the subchapters and the 
functional concept of the image processing system. The 
individual function modules generate analysis results, 
which serve as input information for subsequent process-
ing steps. All function modules as well as the interfaces 
for data transfer are implemented in the programming lan-
guage Python. Central for the realization of the required 
functions is the integration of the open-source libraries 
Matplotlib [43], NumPy [44], OpenCV [45], pandas [46], 
PyOD [47], scikit-image [48] and SciPy [49].

2.1  Image acquisition

Figure 2 shows the hardware of the image processing sys-
tem as a CAD model. The industrial MEX machine utilized 
is the Kühling & Kühling HT500.3, with a build platform 
of 200 mm × 180 mm and a build height of 290 mm. Fur-
thermore, the monochrome camera Basler acA4572 17um 
is used. The Kowa LM35HC lens with a fixed focal length 
of 35 mm is mounted on it. Also included in the equipment 
is the round darkfield illumination IDRA-T450DWHV 
from the manufacturer Leimac Ltd. which has an inner 
diameter of 414  mm. The darkfield illumination is 
arranged around the build platform.

The principle for image acquisition is that layer images 
are taken under darkfield illumination directly after com-
pletion of a layer. A camera is mounted vertically above 
the build platform for this purpose. Specific key com-
mands are inserted into the G-code at the end of each layer. 

Fig. 1  Functional concept of the 
image processing system
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These cause the extrusion head to move to the side after 
the completion of a layer and to clear the viewing axis of 
the camera. Additionally, the camera and the power supply 
of the darkfield illumination are triggered.

2.2  G‑code analysis

For each layer, the G-code is analyzed to create two dif-
ferent layer models. Firstly, a geometry model specifies 
the geometric properties of the layer (Fig. 3 center). Sec-
ondly, an illumination model is used to determine illumina-
tion angles that result in ideal image contrasts. To realize 

varying illumination angles in the manufacturing process, 
the height of the build platform is changed before image 
acquisition. The position of the darkfield illumination 
remains unchanged. If the build platform moves upward, for 
example, the light falls flatter on the layer surface. The verti-
cal distance between the current layer surface and the plane 
of the darkfield illumination is called the illumination height 
(Fig. 3 left). To determine locally ideal illumination heights, 
geometric influences of the part as well as influences on the 
radiant energy of light beams are represented in the model.

The images on the right side of Fig. 3 illustrate that ideal 
illumination heights depend on the local layer geometry. For 

Fig. 2  CAD model of the image 
processing system
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example, at the cylindrical recess, edges of the layers that 
are located deeper are visible at a large illumination height 
(44 mm). For high contrast imaging of edges of the manu-
factured digit “0”, however, exactly this large illumination 
height is required. The smaller illumination height (7 mm) 
leads to darkening of the digit “0” and prevent high contrast 
imaging. Depending on the layer geometry, it is therefore 
often necessary to acquire several images with varying illu-
mination heights for one layer.

2.3  Segmentation

Segmentation aims to identify zones of the image that con-
tain material of the current layer. To implement an effective 
segmentation, the layer edges are detected algorithmically. 
These are imaged brightly and with high contrast due to the 
darkfield illumination. Edge detection is based on a water-
shed algorithm with actively placed markers (see [50]). Two 
types of markers specify points that can be reliably assigned 
to either the current layer or the background. They are placed 
based on the geometry model of the layer and, in the case of 
filigree layer structures, using a local thresholding method 
(e.g., in grid infills).

The geometry model may describe the layer geometry 
inaccurately due to various influencing variables. Therefore, 
in a first step, an edge detection takes place, in which it is 
accepted that the layer edges are partially not detected cor-
rectly. Subsequently, based on an image registration, devia-
tions between the layer models and the real layer are mini-
mized with an iterative closest point algorithm (see [51]). 
This allows all layer edges to be correctly localized during a 
second edge detection. As exemplified in Fig. 4, the identified 
layer surface is finally divided into the following homogene-
ous layer subareas by masking with the geometry model:

• perimeter (outer shell)
• solid infill inner area

• solid infill border area (extension equals 12 times the 
bead width starting from the boundary of solid infill)

• grid infill inner area
• grid infill border area (grid elements whose centers are 

placed no further than 75% of the diagonal extent of a 
grid element from boundary of grid infill)

2.4  Anomaly detection

Anomaly detection involves inspecting the layer subareas 
isolated from each other for imperfections (Fig. 5). Unsu-
pervised machine learning algorithms are used to determine 
anomaly scores as a measure of the irregularities associated 
with single data points. Generally, no separate data set is 
required for the training of the machine learning methods. 
The image processing system takes a limited number of 
images during ongoing production and uses them to train 
the anomaly detection. This involves deriving models of the 
normal surface properties from the acquired layer images. 
These models represent the dominant data structure.

Feature extraction is the first step and is used to focus the 
anomaly detection on characteristic properties. For perim-
eters and solid infills, a computation of feature vectors takes 
place in the local neighborhoods of pixels. For grid infills, 
geometric features of the contours of individual grid ele-
ments are analyzed. The individual features are listed in 
Fig. 5.

A large variety of algorithms exists in the area of unsu-
pervised machine learning and anomaly detection (e.g., [52, 
53]). In this work, an isolation forest (see [54, 55]) is used 
for solid infills (inner area and border area), perimeters and 
grid infills in the inner area. An isolation forest shows very 
good classification performance over a wide range of appli-
cations and is also time efficient [56–58]. In the border areas 
of grid infills, the feature vector consists of only one feature 
and the deviations from the median (see [59]) are used as 
anomaly scores.

Fig. 4  Isolation of layer 
subareas by masking with the 
geometry model

Geometry modelSegmentation Isolation layer subareas

perimeter

solid infill

border area

grid infill

border/inner area

15 mm



1590 The International Journal of Advanced Manufacturing Technology (2024) 132:1585–1598

Figure  6 illustrates determined anomaly scores 
exemplarily for two images showing layer surfaces 
with manually inserted imperfections (manipulated 

G-code). In order to make visualization uniform, the 
anomaly scores are normalized to the value range from 
zero to one.

Fig. 5  Functional structure of 
anomaly detection anomaly scores
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2.5  Quality indicators measurement

The final step of image processing involves determining 
quality indicators. This requires binarization of the anomaly 
scores with an individual threshold for each layer subarea 
(Fig. 6 right). Binarization consists of deciding whether a 
data point is normal or anomalous. To identify imperfections 
consisting of multiple image points, neighboring anomalous 
data points are interpreted as connected image regions.

As already suggested in [8], the characterization of imper-
fections of the layer surface is based on ISO 8785:1999–10. 
In accordance with the aforementioned standard, a measure-
ment of the following quality indicators is implemented in 
the image processing system for each layer subarea [60]:

• percentage of imperfect area IA
• number of imperfections per area IN

3  Capability of the image processing system

The image processing system is used to empirically derive 
quality classes for MEX. Therefore, the capabilities of the 
image processing system must be investigated with respect 
to the functions for segmentation and measurement of qual-
ity indicators. The data set used for this purpose is presented 
in Sect. 3.1. Subsequently, the results of the analysis are 
described in Sect. 3.2 and Sect. 3.3

3.1  Data set

The material ABS Fusion + (color gray) from the manufac-
turer BASF SE was used to produce parts. The layer height 
had a value of 0.2 mm and the bead width was 0.44 mm. 
Acquired layer images were evaluated both by the image 

processing system and manually. In this way, the analysis 
results of the image processing system can be compared with 
a manual reference.

Since imperfections occur rarely in some cases, a speci-
men (Fig. 7 top left) was manufactured several times with 
different synthetic imperfections by modifying the G-code. 
The imperfections introduced are voids, underfills, overfills, 
stringing, impurities and scratches. In addition, the data set 
contains images of layers that have not been actively modi-
fied. With respect to the specimen, these are ten layers cov-
ering characteristic geometric constellations. Furthermore, 
three layers were randomly selected from each of the other 
parts shown in Fig. 7. The three components of the glasses 
were produced in a single manufacturing process. In total, 
the data set contains images of 46 layers.

3.2  Segmentation

The average symmetric surface distance (see [61]) between 
the edge points of an image processing system segmentation 
and the associated manual reference segmentation is used as 
a first object of investigation. The F-measure (see [62]) is 
used as a second object of investigation and is determined 
by identifying the true-positive, false-positive and false-
negative pixels of the image processing results.

In Fig. 8, the qualitative results of two segmentations 
are presented as examples. For layer external edges, aver-
age symmetric surface distances to the manual reference 
segmentations of 56 µm are obtained as the mean of the 
46 considered layer images. Grid infill edges exhibit aver-
age symmetric surface distances of 18 µm. For the over-
all segmentation, average symmetric surface distances of 
43 µm and an F-measure of 0.981 can be determined. In the 
field of MEX research, no results exist for a direct compara-
tive assessment. However, evaluations of similar complex 

Fig. 7  Data set consisting of test 
specimen and realistic parts
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segmentation tasks in the field of medical (e.g., [63]) and 
biomedical (e.g., [64]) image processing show that the seg-
mentation quality achieved at this point is very high.

3.3  Quality indicators measurement

In order to be able to detect anomalies, the machine learn-
ing methods are trained based on the entire data set and the 
measured values of quality indicators are then determined 
for each layer separately. The scatter of measured values 
serves as a target value for the analysis and is an indicator 
for the uncertainty of the measurement results. In the con-
sidered data set, the characteristics of imperfections to be 
measured vary. Therefore, the relative error Drel between a 
manually determined reference measurement value xref  and 
the measurement value given by the image processing sys-
tem ximg is calculated:

Negative values of Drel describe measurement values that 
are too small and positive values represent results that are 
too large. If the image processing system measures imperfec-
tions despite manually determined freedom from defects, the 
result is Drel = 100%. The standard deviations of Drel over all 
46 layers serves as the objective for evaluating the capability 
of the image processing system. Thresholds of the anomaly 
scores, which lead to minimum standard deviations, specify 
the operation points of the image processing system.

Qualitative results are visualized in Fig. 9 as an exam-
ple. The results shown in the bottom line demonstrate that 
true-positive regions (green) occur in every case and that 

(1)Drel =

{ ximg−xref

xref
⋅ 100%, xref ≠ 0

100%, ximg ≠ 0 ∧ xref = 0

the imperfections are thus correctly indicated by the image 
processing system. However, the false-negative (blue) and 
false-positive (red) zones illustrate that the determined areas 
of the imperfections deviate from the real geometries.

Table 1 lists the standard deviations of Drel . Large stand-
ard deviations of Drel occur especially in border areas of 
solid infill and grid infill. The uncertainties are smaller for 
grid infill in the inner area. Nevertheless, it can be stated that 
there are always geometrical errors in the measurement of 
imperfections, which cannot be compensated systematically. 
The reason for this is the shape misinterpretations as well 
as subdivisions of single imperfections into several defects 
shown in Fig. 9.

As an example, a standard deviation of around 39% can 
be determined for perimeters in Table 1 when measuring 
the percentage of imperfect area IA . If the measured value 
of IA is 1%, the conventional true value lies in the inter-
val from 0.61 to 1.39% with a probability of 68.27%. For 
a measured IA of 10%, on the other hand, the conventional 
true value is in the interval from 6.1 to 13.9% with a prob-
ability of 68.27%. This example illustrates that the deter-
mined uncertainties have to be interpreted in the context of 
the magnitude of the quality indicators, as they are relative 
values. Large measured values lead to large absolute scatter. 
Small quality indicator values are associated with only small 
absolute scatter.

4  Derivation of quality classes

To derive quality classes, the quality indicators are measured 
in different MEX manufacturing processes. The procedure 
for generating a realistic data set is presented in Sect. 4.1. 

Fig. 8  Qualitative results for 
the segmentation of the layer 
images of a gear (left) and a 
motor mount (right)
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Subsequently, in Sect. 4.2, a proposal for the definition of 
quality classes is deduced based on a process scattering 
analysis.

4.1  Data set

The determination of quality indicators in accordance with 
ISO 8785:1999–10 (see [60]) is based on the assumption 
that the quality classes are valid independently of the part 
and layer geometry. To take this into account, a data set 
containing varying layer constellations is required. There-
fore, the five parts shown in Fig. 7 as well as the single 
component of a 6-axis robot and the gear wheel of an iris 
diaphragm were manufactured. From each part, the relevant 
layers are randomly selected, resulting in a total of 89 layer 
constellations. To consider the scatter of the manufacturing 
process and the measurement results, the parts are produced 

five times each, leading to a data set consisting of data from 
35 parts and 445 layers.

4.2  Quality classes

Figure 10 shows the acquired layer data. The arithmetic 
mean of all layers describes an averaging over the 89 lay-
ers for each of the five production runs. Consequently, the 
blue box plots are derived from five values each. In contrast, 
the arithmetic mean of the individual layers corresponds to 
an averaging over the five identical layer constellations. In 
this case, the corresponding orange box plots consist of 89 
individual data sets.

The scatter of the measured values for the arithmetic 
mean of all layers is reduced compared to the analysis of 
the individual layers. This indicates that the individual layer 
constellations have an influence on the occurrence of imper-
fections and consequently on the magnitude of the quality 
indicators. A definition of quality classes, which is valid 
independently of the layer constellation, must therefore con-
tain large ranges of tolerances.

Furthermore, the scatter of IA is increased for borders 
of solid and grid infills compared to the respective inner 
areas (Fig. 10 left). The reason for this is presumably that 
the layer geometry has a direct influence on the properties 
of the layer surface in border regions. In the inner regions, 
on the other hand, the influence of the layer constellation is 
much less important.
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Fig. 9  Qualitative results when detecting imperfections

Table 1  Standard deviations of relative errors D
rel

 in the different 
layer subareas

Percentage of 
imperfect area IA

Number of imper-
fections per area 
IN

Solid infill inner area 51.0% 53.3%
Solid infill border area 54.9% 76.1%
Perimeter 39.1% 25.0%
Grid infill inner area 32.7% 31.9%
Grid infill border area 65.5% 53.6%
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Furthermore, the high medians of the quality indicators 
for solid infill border areas compared to inner regions are 
remarkable. This is due to imperfections caused by direc-
tional changes and accelerations of the extrusion head. In 
addition, perimeters show relatively high medians of the 
quality indicators. This can partly be explained by down-
times of the extrusion head movement, which leads to local 
material accumulation (e.g., during layer changes).

Since the objective is to determine quality classes with a 
validity for each single layer, an analysis of the arithmetic 
means of the individual layers must be done (orange box 
plots in Fig. 10). The resulting proposals for limits of quality 
classes are shown in Table 2. Three quality classes — A, B, 
and C — are listed for each layer subarea.

The MEX machine used in combination with the selected 
process parameters represents a medium quality compared 

to other MEX processes. Therefore, it can be assumed that 
most of the measured values can be assigned to the qual-
ity class B. Only outliers belong to quality classes A and 
C. Therefore, the limits of quality class B correspond to 
the whisker expansions of the box plots in Fig. 10. Quality 
class A includes all values that are smaller than the whisker 
expansions at the bottom. The upper limits of quality class 
C are estimated by doubling the maximum values of qual-
ity class B. For solid infill border areas, imperfections are 
always permissible according to the results for IA in quality 
class C. This definition is also applied to the quality indica-
tor IN for reasons of consistency.

Table 2 shows that the sizes of the tolerance ranges vary 
depending on the layer subareas. For example, the permissi-
ble values of IA for perimeters are two times higher than the 
one for solid infill inner areas. Furthermore, the permissible 

Fig. 10  Box plots used to derive 
quality classes. The length of 
the whiskers is limited to 1.5 
times the interquartile range

Table 2  Proposal for limits of quality classes

Percentage of imperfect area
IA [%]

Number of imperfections per area
IN [items/mm2]

A B C A B C

Solid infill inner area Not permissible 0 < IA
 ≤ 14

14 < IA
 ≤ 28

Not permissible 0 < IN
 ≤ 0.08

0.08 < IN
 ≤ 0.16

Solid infill border area IA ≤ 5 5 < IA
 ≤ 73

Always permissible IN ≤ 0.02 0.02 < IN
 ≤ 0.11

Always permissible

Perimeter IA ≤ 1 1 < IA
 ≤ 28

28 < IA
 ≤ 56

IN ≤ 0.01 0.01 < IN
 ≤ 0.12

0.12 < IN
 ≤ 0.24

Grid infill inner area Not permissible 0 < IA
 ≤ 2

2 < IA
 ≤ 4

Not permissible 0 < IN
 ≤ 0.003

0.003 < IN
 ≤ 0.006

Grid infill border area Not permissible 0 < IA
 ≤ 5

5 < IA
 ≤ 10

Not permissible 0 < IN
 ≤ 0.014

0.014 < IN  ≤ 0.028
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magnitudes of the quality indicators in border subareas are 
generally larger than in inner areas. It is noticeable that in 
quality class A, no imperfections are permitted for inner sub-
areas of solid infill and in general for grid infills. In contrast, 
in quality class C, imperfections are always permissible in 
the border areas of solid infills. This wide range of permis-
sible quality indicator values depending on the layer subarea 
and the quality class reflects the highly variable properties 
of the MEX.

The measurement uncertainties listed in Table 1 (standard 
deviations of Drel ) are reduced by the repetitive production 
of the layer constellations in combination with the described 
averaging. The scatter of a mean value is reduced by the 
square root of the number of individual values compared to a 
single measurement [65]. Interpreting the measurements on 
the five similar layer constellations as measurement repeti-
tions leads to the rough assumption that the random scatter 
of measurement results is cut in half.

5  Significance of the research results

The research results presented in the previous sections are 
summarized in Table 3. They are associated with different 
advantages and limitations. These are described below to put 
the significance of the findings into context.

5.1  Advantages

It was possible for the first time to measure MEX qual-
ity indicators as condensed metrics for production quality 
separately for the different layer subareas. Quality classes 
determined with the image processing system are therefore 
an important contribution to creating an understanding of 
MEX quality and can be a basis for standardizing quality 
requirements.

Furthermore, the system enables the monitoring of MEX 
processes of complex parts and their termination if the qual-
ity does not meet the requirements. New, safety–critical 

fields of application, such as medical technology or the 
aerospace industry, can be opened for MEX, as trust in the 
manufacturing process and the products is established and 
product characteristics can be documented.

If safety–critical parts are to be manufactured, one pos-
sible method is to manually evaluate part regions displayed 
by the image processing system using the captured layer 
images. Critical imperfections can be identified with a high 
degree of probability in this way.

The machine learning algorithms work unsupervised and 
learn normal layer characteristics autonomously. This makes 
it unnecessary to parameterize the image processing system 
manually when MEX process parameters are changed (e.g. 
feedstock materials). This enables low-cost operation. A 
further advantage is that no parts need to be manufactured 
solely for training the system. Manual classification of refer-
ence images is also not necessary.

The hardware used consists of inexpensive industrial 
standard components and is therefore well suited for practi-
cal use. With minor adjustments to the mechanical structure, 
similar concepts for the integration of camera and darkfield 
illumination can therefore be implemented in many MEX 
machines.

The high capability of the functions for segmenting the 
layer images should also be emphasized at this point. With 
an F-measure of 0.981 and average symmetric surface dis-
tances to manual reference segmentations of 43 µm, layer 
edges can be detected highly accurately despite low contrasts 
and challenging image scenes. These results go beyond the 
current state of the art and are the basis for the effective 
detection of imperfections. At the same time, this results in 
potential applications for the automated evaluation of part 
and layer geometries during the MEX process.

5.2  Limitations

It was possible to provide proof of function for an image 
processing system that evaluates MEX layers based on self-
learning anomaly detection algorithms and an analysis of the 

Table 3  Summary of research objectives and key results

Research objective Key results

Development of the image processing system - adaptive lighting for image acquisition
- utilization of digital part information
- self-learning system
- measurement of imperfections based on quality indicators (imperfect surface per-

centages, number of imperfections)
Evaluating the capability of the image processing system - comprehensive data set based on practice-oriented parts

- layer images segmentation with average symmetric surface distances = 43 µm and 
F-measure = 0.981

- relative measurement errors with standard deviations of 25% to 76.1%
Empirical study for the derivation of quality classes - three quality classes with tolerance limits for each of five layer subareas and each of 

two quality indicators
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digital part information. However, additional developments 
and further investigations are required in order to further 
increase the maturity of the system with regard to the uncer-
tainties in the measurement of quality indicators. This con-
cerns systematic analyses on the optimal design of the meth-
ods for feature extraction and classification. For example, 
Nguyen et al. explain that a variety of artificial intelligence 
methods are used in the field of additive manufacturing and 
that neural networks are particularly promising for predict-
ing part and production process characteristics [66].

Valid quality classes are normally based on many years of 
research into a manufacturing process and a wide range of 
experience from industrial applications [67]. Furthermore, 
the determined tolerance limits depend on many influenc-
ing variables (e.g. feedstock material). Despite the extensive 
investigations, the determined quality classes are therefore to 
be understood as an initial proposal and do not replace further 
analyses and specifications subject to the specific application.

It should also be noted that measured quality indicators 
and derived quality classes depend on the measurement 
process itself and are therefore only suitable to a limited 
extent for statements regarding the true properties of layer 
imperfections. This is particularly relevant for unsupervised 
machine learning methods, as the characteristics of normal 
layer surfaces are learned autonomously.

The data set used is practice-oriented and covers a large 
number of varying part configurations. However, the data set 
is limited in quantity, as the manual assessment of a single 
layer image takes several hours. In addition, the evaluation 
of layer images by a human is not error-free and is not com-
pletely reproducible [61, 68]. The determined capabilities of 
the image processing system are therefore subject to uncer-
tainties regarding the general validity and reproducibility.

The results show that the image processing system 
can be used for manufacturing processes of complex part 
geometries. It is therefore possible to use the system in the 
manufacturing of bionic structures, as described for example 
by Nguyen-Van et al. [69] and Peng et al. [70]. However, 
mechanical properties are particularly relevant for the indus-
trialization of these parts and the image processing system 
cannot be used to derive them directly.

6  Conclusion

Quality classes for quality indicators and monitoring tech-
nologies for the acquisition of MEX process data are essential 
for the implementation of a systematic quality management. 
Experiments with a variant-rich data set show for the devel-
oped image processing system that an F-measure of 0.981 can 
be achieved in the segmentation step. Furthermore, relative 
measurement errors with standard deviations of 25 to 76.1% 
are found for the layer-wise measurement of quality indicators.

Empirical investigations on real manufacturing processes 
have made it possible to derive quality classes for MEX 
experimentally for the first time. This involves acquiring 
MEX quality indicators as condensed features for the pro-
duction quality separately for five different subareas of a 
layer. The quality classes and the image processing system 
are an important contribution to the deeper understanding of 
the MEX and can be a basis for the standardization of quality 
requirements as well as the further industrialization of the 
MEX in safety–critical areas. However, the determined qual-
ity classes are subject to a relatively high uncertainty due to 
the measuring principle and should therefore be understood 
as a proposal.

Despite the knowledge gained, there is still potential for 
research and development. The review and further develop-
ment of the determined quality classes within a framework 
of industrial benchmark studies is the next logical step. It 
is also feasible to extend the existing investigation to other 
feedstock materials. In addition, the functions of the image 
processing system for measuring quality indicators can be 
optimized in order to minimize measurement uncertainties. 
One possibility is to classify types of imperfections. In this 
way, separate measurement processes can be designed and 
parameterized for each type of imperfection.
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