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Abstract
The purpose of this paper is to study the optimization of the cutting performance of three different cutting inserts, during 
the machining operation of titanium alloy (Ti6Al4V) by making use of the response surface methodology (RSM) on a com-
puter numerical control (CNC) milling. The cutting tools employed for the optimisation of the cutting performance during 
machining operation are silicon, aluminium, oxygen, nitrogen (SiAlON), cubic-boron nitride and carbide cutting inserts. 
Scanning electron microscope (SEM) was used for the determination of the tool wear for the cutting inserts being compared 
during machining of Ti6Al4V, and the cutting parameters, which are cutting speed (Vc), feed per tooth (fz) and depth-of-cut 
that were evaluated from the cutting tools as per the manufacturer’s design specifications. The determination of the tool 
wear on the cutting inserts was achieved by using the SEM, while the machining operation for the experimental trails was 
performed from the CNC milling machine, where face milling operation was executed. The optimization process showed 
that carbide cutting inserts yielded the best performing results and were considered the most significant choice of cutting 
insert in machining Ti6Al4V when compared to SiAlON and CBN cutting inserts. This choice was from the cutting tool 
life obtained where a cutting tool life of 29 min was obtained from a use of carbide cutting inserts; 28 min resulted from a 
use SiAlON cutting inserts and 26 min from a use of CBN cutting inserts. This work finds appropriate value in assisting the 
machinists in the selection of the best most performing and cost-effective cutting tool.
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1 Introduction

Ti6Al4V alloy is known to be a material difficult to machine, 
Kull, Diniz [1]. This is due to its strength-to-ratio properties, 
corrosion resistance and its capability to resist high tempera-
tures. These challenges often lead to long machining times 
and high production costs [2], which might have resulted due 

to tool wear [3, 4]. Ti-alloys are widely used in the aerospace, 
biomedical, petroleum, automotive and marine industries, 
just to mention a few of its applications [5]. The machinabil-
ity of this Ti-alloy is determined from the cutting parameters 
employed, such as the cutting speed, depth-of-cut and the 
feed rate. In this study, the appropriate selection of these 
parameters is envisaged to about a tool life that will result in 
an expected and desirable response parameter. A combina-
tion of true cutting parameters should yield good response 
parameters, while the incorrect cutting parameters will have 
a negative impact towards the response parameters, and this 
will lead to a non-competitive cutting process [6]. Ceramic-
based cutting inserts are often employed in the machining of 
difficult-to-cut material due to their ability to withstand high 
temperature and a good wear resistance [7, 8].

To obtain a developed model, which is statistically 
and mathematical fit-for-purpose, the RSM technique is 
employed to give the best fit solutions in improving the 
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machining process. This method provides the suitable rela-
tionship to each of the factors employed from the experi-
mental design [9–11].

The cutting force and the associated vibration during a 
cutting exercise directly have an impact to the cutting tool 
life and the surface quality of the workpiece material being 
machined. Surface quality of the workpiece material being 
machined exhibits noticeable deterioration as wear action 
on the cutting tool is experienced. There for a prolonged 
tool life and improved surface finish, there is a need for 
improved cutting forces and vibrations [12, 13]. Milling 
machining can be optimised via the input cutting param-
eters, which include the cutting speed, feed rate, cutting 
depth, tool wear and environmental conditions, e.g. dry 
cutting or coolant application, among others. The cutting 
speed, feed rate and depth-of-cut are the most influential 
input cutting parameters in milling machining operation 
[14, 15].

A good knowledge of the workpiece material properties 
plays a vital role in the selection of cutting tools and the 
cutting parameters to consider thereof. SiAlON-based, CBN 
and carbides are among the different types of cutting tool 
materials used in the machining of titanium and its alloy. 
Carbide cutting tools are mostly used in machining Ti-alloys 
due to their toughness and hardness properties. Even though 
ceramic-based cutting tools seem to be harder than the car-
bide cutting tools, their brittleness and lack of toughness add 
to its disadvantage of not being fit and suitable choice for 
machining Ti-alloy. CBNs have the highest hardness among 
the three mentioned cutting tool materials, and this may lead 
towards its premature failure due to chipping and fracture 
[5]. During machining of Ti-alloys, the application of CBN, 
as material being removed, is too little, and it is generally 
advised in the finishing operation when compared to the 
roughening operations, where the depth-of-cuts may lead 
to the cutting tool breakage. This helps to avoid a shortened 
tool life.

A study on Nickel-based alloy Inconel 718, which has 
similar properties as Ti6Al4V, was conducted. From their 
findings, [7] observed that SiAlON ceramic cutting tool 
experienced prolonged tool life as compared to carbide cut-
ting tool. However, when the cooling method is adopted, 
carbide cutting tools outperforms SiAlON-based cutting 
tools.

The finding reported by [1] in the correlation of the tool 
life and workpiece surface roughness was that a rigid tool is 
required. This will result in a minimised cutting vibration, 
which acts negatively on the tool life and may lead to poor 
surface finish, resulting from tool wear, if neglected.

During their experimental study on the influence of tool 
wear on machining Ti6Al4V, the findings observed by [3] 
showed that the cutter tool life is affected by the cutting 
temperature. As wearing of the cutting tool increases, the 

cutting temperature also rises due to the friction generated 
at the tool-workpiece interface. It was further observed that 
an increase of the tool wear time also led to increased cutting 
forces. In a review, [16] concluded that tool life is increased 
from a use of newly used cutting insert materials, consid-
ering their coatings as well. Increased tool wear is often 
observed due to higher cutting temperatures generated in 
dry machining when compared to cooling assisted machin-
ing [17]. An application of cooling method most likely 
improves the life of the cutting tool due to reduced cutting 
temperatures in the cut area [18]. In this study, the perfor-
mance of cutting tools during Ti6Al4V milling machining is 
optimised. Cutting parameters affecting the response param-
eters are further optimised through numerical optimisation 
in order to keep the results in range and to improve the tool 
wear, which is beneficial to the prolongation of the tool life, 
and this leads to a better surface finish [13]. These results 
will assist in the selection of the best combination of cut-
ting parameters, which will also lead to the determination 
of production times and costs, vis-à-vis the effect of tool 
life and wear.

The comparison of this nature among these three cut-
ting inserts has not been sufficiently elucidated by the 
existing literature during titanium machining. Ceramic 
and carbide cutting tools were compared by [7] in their 
investigation during the machining of Inconel 718 and 
stainless steel 316L. Their focus was on tool life while 
the material being investigated was of difference from 
Ti6Al4V. [19] compared coated ceramic and CBN cutting 
inserts during their investigation of hard turning Ti6Al4V 
where their focus area did not include tool service life of 
the cutting inserts. They used Taguchi method for their 
design of experiments (DoE) where the response param-
eters involved were the surface roughness, cutting force, 
cutting temperature and cutting vibrations. A compara-
tive study was carried-out for the cutting performance of 
SiAlON ceramic, CBN and carbide cutting tools during 
titanium machining [20]. The responses for the compari-
son were the cutting force, cutting temperature, cutting 
vibration and surface roughness. In their analysis, the 
authors did not focus on the cutting tool life, and opti-
mization was also not performed. Hence, this work finds 
suitable application in Ti6Al4V machining.

2  Materials and methods

Optimization of the cutting tools performance was car-
ried-out through milling operation via experimental tri-
als. This part of the work expresses the materials and 
equipment used, including the experimental procedure, 
the experimental design and data collection along with 
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its analysis. Each cutting insert grade machined 20 work-
pieces to complete the experimental trial as highlighted 
in the DoE.

Table 1 presents the chemical composition of the mate-
rial, while Table 2 presents its mechanical and thermal 
properties. Ti6Al4V workpiece material was employed to 
conduct the experiments during a cutting exercise.

Face milling operation was performed on a DMU-
80monoBLOCK Deckel Macho CNC milling machine. A 
two-toothed Sandvik produced a cutting tool of 25 mm in 
diameter, which accommodated the round-shaped cutting 
inserts of 12 mm in diameter, and was used for the material 
removal from the workpiece material employed. The cutting 
inserts adopted for the optimization of cutting performance 
in the Ti6Al4V machining were from SiAlON-, CBN- and 
carbide-based materials.

The cutting parameters for the experimental trials are as 
indicated in Table 3, as per the manufacturer’s design rec-
ommendations. Only three dominant factors, viz. the cutting 
speed, feed per tooth and depth-of-cut, were considered for 
the data collection, in the execution of the physical experi-
mentation under dry cutting environment [21–23]. Selection 
of dry cutting environment was from the fact of support-
ing green environment and to improve cleanliness within a 
machining environment [16].

Figure 1 represents the flow diagram of the experimental 
design where the steps followed during data collection are 
specified.

The RSM procedure was employed for the prediction of 
the DoE by making use of DesignExpert software package, 
where 20 experimental trials were generated. The combina-
tion of the process parameters response of the cutting inserts 
was the tool wear, and it was measured from an applica-
tion of the SEM images. The RSM was employed since it 
is deemed appropriate for the DoE and in the investigation 
of the combined effects from the cutting parameters on the 
DoE response parameter. Additionally, the predictive model 
that relates to the DoE can be achieved [24]. The face mill-
ing operation was over a length of 50 mm, where the cutting 
took place during a machining operation. The workpiece 
was securely clamped with dog clamps during a machining 
operation.

The RSM was applied for the response parameter 
of the DoE of different cutting inserts that were used, 
wherein mathematical models were developed. The val-
idation of the numerical experiment was through the 
machining experiments on the CNC milling machine, 
which was then, followed by the modelling process, 
which was used for the predictive model to predict the 
cutter tool lives from the cutting process parameters. 
The results of the tool life of the cutting inserts used 
were derived from the equation previously used by [25] 
and [26]. The equation applied for the determination of 
tool life is as follows:

(1)T =
|
|44.85 − 0.074Vc − 61.77f − 11.29da

|
|

Table 1  Chemical composition of Ti6Al4V alloy

Element Al Fe O Ti V

Per cent weight (wt. %) 6 0.25 0.2 90 4

Table 2  Mechanical and thermal properties of Ti6Al4V alloy

S/N Properties Value

Mechanical
1 Density (kg/m3) 45,000
2 Brinell’s hardness 334
3 Yield strength (MPa) 880
4 Ultimate tensile strength (MPa) 950
5 Bulk modulus (GPa) 150
6 Modulus of elasticity (GPa) 113.8
7 Poison’s ratio 0.342
8 Shear modulus (GPa) 44
9 Shear strength (MPa) 550

Thermal
11 Specific heat capacity (J/g℃) 0.5263
12 Thermal conductivity (W/m K) 6.7
13 Melting point (℃) 1660
14 Coefficient of thermal expansion ( K−1

) 8.70

Table 3  Cutting parameters Parameter Units SiAlON CBN Carbide

Min Max Min Max Min Max

Cutting speed m/min 50 80 70 100 40 65
Feed per tooth mm/tooth 0.1 0.42 0.08 0.15 0.1 0.2
Depth of cut mm 0.5 1 0.5 1 0.5 1
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where T  represents the cutter tool life in minutes, Vc is cut-
ting speed in m/min, f  is the feed rate in mm/rev and da 
represents the axial depth-of-cut in mm.

3  Results and discussion

Data analysis, analysis of variance (ANOVA) mathemati-
cal modeling and response analysis of cutting tool life were 
presented in this section. The experimental results conducted 
were also discussed in this section.

A mathematical model was developed to determine 
the relationship of cutting tool life and the cutting param-
eter during a cutting operation for predictive purposes. 

Tables 4, 5 and 6 present the RSM process parameters 
of the SiAlON, CBN and carbide cutting inserts, where 
20 experimental runs were performed for each of the cut-
ting insert materials for the determination of the response 
parameter tool life. The results are further compared in 
Fig. 2 where the CBN cutting inserts showed shortened 
tool life results in most instances during experimental tri-
als when compared to that of SiAlON and carbide cutting 
inserts. A general trendline was used on all three cutting 
inserts to show their best fit. Microscopic analysis was later 
conducted on the cutting inserts after experiments were 
completed for the determination of tool wear by using the 
LeicaTM stereo optical microscope. Chemical elements 
contained in the cutting inserts were identified and ana-
lysed using a SEM, equipped with an X-ray spectroscopy 

Fig. 1  Experimental design 
flowchart
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(EDX) device to achieve high-resolution images. Clear and 
well-resolved images were collected from an accelerating 
voltage of 20.0 kV at a working distance of 10 mm and a 
34.9° take-off angle.

Figure 3 depicts the structural analysis of an unused car-
bide cutting insert, while that of a used carbide insert is 
shown in Fig. 4. The cutting edge is, therefore, represented, 
respectively in both figures, where there were no experi-
mental cuts on the unused cutting inserts, while all the 20 
experimental trials were performed by using a single cutting 
edge from the used cutting inserts. The SEM/EDX scanning 
line, from the cutting edge to the core of the carbide cutting 
insert, follows the cutting insert as presented in the figure, 
whereas the variation of chemical composition follows the 
SEM/EDX scanning line. This is presented in the form of a 
flow diagram by making use of an arrow as highlighted in 
Figs. 3 and 4 for both the unused and used cutting inserts. 
The chemical compositions from this cutting insert are car-
bon (C), nitrogen (N), oxygen (O), titanium (Ti), aluminium 
(Al) and tungsten (W). An unused cutting insert was covered 
with a coat of 25 µm of aluminium and oxygen. A discon-
tinuous presence of aluminium and a complete absence of 
oxygen were revealed from the scanning line, and a tool wear 
of ~ 160 µm was measured on a used carbide cutting insert, 
relative to the unused carbide cutting insert.

Table 4  RSM process parameters of the SiAlON cutting inserts

Experi-
mental 
trials

Factors Response

Cutting speed Feed per tooth Depth of cut Tool life

m/min mm/tooth mm min

1 70 0.15 1 19.115
2 85 0.115 0.75 22.989
3 85 0.115 0.75 22.989
4 100 0.15 0.5 22.54
5 100 0.15 1 16.895
6 85 0.115 0.75 22.989
7 70 0.08 1 23.438
8 59.7731 0.115 0.75 24.856
9 85 0.115 0.75 22.989
10 85 0.173863 0.75 19.353
11 100 0.08 1 21.218
12 70 0.15 0.5 24.76
13 85 0.0561373 0.75 26.265
14 110.227 0.115 0.75 21.122
15 100 0.08 0.5 26.863
16 85 0.115 0.75 22.989
17 85 0.115 1.17045 18.242
18 85 0.115 0.329552 27.736
19 70 0.08 0.5 29.083
20 85 0.115 0.75 22.989

Table 5  RSM process parameters of the CBN cutting inserts

Experi-
mental 
trials

Factors Response

Cutting speed Feed per tooth Depth of cut Tool life

m/min mm/tooth mm min

1 50 0.1 1 23.683
2 65 0.26 0.75 15.512
3 65 0.26 0.75 15.512
4 65 0.26 0.75 15.512
5 65 0.26 0.75 15.512
6 80 0.1 1 21.463
7 65 0.26 1.17045 10.765
8 80 0.1 0.5 27.108
9 65 0.529087 0.75 1.109
10 50 0.42 1 3.917
11 80 0.42 0.5 7.342
12 50 0.1 0.5 29.328
13 65 0.1 0.75 25.396
14 80 0.42 1 1.697
15 50 0.42 0.5 9.562
16 65 0.26 0.75 15.512
17 90.2269 0.26 0.75 13.646
18 65 0.26 0.329552 20.259
19 39.7731 0.26 0.75 17.379
20 65 0.26 0.75 15.512

Table 6  RSM process parameters of the carbide cutting inserts

Experi-
mental 
trials

Factors Response

Cutting speed Feed per tooth Depth of cut Tool life

m/min mm/tooth mm min

1 45 0.15 0.75 23.787
2 40 0.2 0.5 23.891
3 36.591 0.15 0.75 24.409
4 53.409 0.15 0.75 23.165
5 50 0.1 0.5 29.328
6 45 0.15 0.329552 28.534
7 45 0.15 0.75 23.787
8 45 0.15 1.17045 19.04
9 40 0.2 1 18.246
10 40 0.1 1 24.423
11 50 0.2 0.5 23.151
12 40 0.1 0.5 30.068
13 45 0.15 0.75 23.787
14 45 0.0659104 0.75 28.981
15 45 0.15 0.75 23.787
16 50 0.1 1 23.683
17 45 0.23409 0.75 18.593
18 50 0.2 1 17.506
19 45 0.15 0.75 23.787
20 45 0.15 0.75 23.787
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Structural analysis of an unused CBN cutting insert is 
presented in Fig. 5, while that of a used counterpart for the 
first 10 (1–10) experimental trials is shown in Fig. 6, and 
the last 10 trials (11–20) are shown in Fig. 7, respectively. 

The SEM/EDX scanning line from the cutting edge to the 
core of the cutting insert and the variation content in a form 
of C, N, O, Ti, Al and W from the cutting edge are also pre-
sented in Fig. 5 for the unused cutting insert, while Fig. 6 

Fig. 2  Comparison results for 
the tool life

Fig. 3  Structural analysis of an 
un-used carbide cutting insert

Fig. 4  Structural analysis of a 
used carbide cutting insert for 
the experimental trials 1–20
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is for that used for the first 10 cutting exercises, and lastly, 
the last 10 exercises are presented in Fig. 7. Predominant 
wear is observed in the last 20 experimental trials, and these 
could have resulted from the higher cutting temperatures 

produced during the cutting exercise. A coat of ~ 6 µm from 
C, Si and Al covered the unused cutting inserts, while the 
used cutting inserts show from the scanning a decrease in 
C and Si. Approximately 160 µm of wear was measured on 

Fig. 5  Structural analysis of an 
un-used CBN cutting insert

Fig. 6  Structural analysis of 
a used CBN cutting insert for 
experimental trials 1–10

Fig. 7  Structural analysis of 
a used CBN cutting insert for 
experimental trials 11–20
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a used cutting insert of the first 10 experimental trials, and 
the second set of cutting inserts for the last 10 used cutting 
operation shows wear of ~ 261 µm, relative to the unused 
cutting insert.

Figure 8 indicates the structural analysis of an unused 
SiAlON cutting insert, while the used cutting inserts for the 
first 14 cutting operations are shown in Fig. 9, and lastly, 
the inserts for the last six experimental trials are shown 

Fig. 8  Structural analysis of an 
un-used SiAlON ceramic cut-
ting insert

Fig. 9  Structural analysis of a 
used SiAlON cutting insert for 
experimental trials 1–14

Fig. 10  Structural analysis of a 
used SiAlON cutting insert for 
experimental trials 15–20
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in Fig. 10. The SEM/EDX scanning line from the cutting 
edge to the core of the of the insert and its variation content 
of C, N, O, Ti, Al and W are presented in Fig. 8 for the 

unused cutting insert, while the used cutting insert for the 
first 14 cutting trials is shown in Fig. 9. The last six experi-
ments (15–20) shown in Fig. 10, which were conducted 
by using a second set of cutting inserts, show a prevalent 
wear of ~ 276 µm, while the first set (of experiments, i.e. 
1–14), shows an approximate tool wear of ~ 124 µm relative 
to the unused SiAlON cutting insert. The cutting edge of 
the unused cutting insert was covered with a coat of ~ 6 µm 
emanating from C, Si and Al.

For the improvement of quality, increased productivity 
and cost reductions of cutting, an optimization method has 
to be implemented to achieve best cutting parameter results 
[27]. As a result, response parameters are increased at mini-
mized cutting parameters. Optimized results of the cutting 
performance for response process parameters of these cut-
ting inserts are presented in Table 7, where the best results 
are selected from the listed solutions to optimize tool 
life. Numerical optimization method was analysed for the 
selected cutting response within a selected range to avoid 

Table 7  Selected optimised results from the listed 100 solutions

SiAlON Parameters Cutting speed 70.000 (m/min)
Feed per tooth 0.080 (mm/tooth)
Depth of cut 0.500 (mm)

Response Tool life 28.649 (min)
CBN Parameters Cutting speed 50.000 (m/min)

Feed per tooth 0.100 (mm/tooth)
Depth of cut 1.000 (mm)

Response Tool life 26.005 (min)
Carbide Parameters Cutting speed 40.000 (m/min)

Feed per tooth 0.100 (mm/tooth)
Depth of cut 0.500 (mm)

Response Tool life 29.689 (min)

Fig. 11  Optimised 2D contour 
plot of the tool life for the 
SiAlON cutting inserts

Fig. 12  Optimised 3D contour 
plot of the tool life for the 
SiAlON cutting inserts
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causing problems. The optimized range of process parameter 
and their experimental response were tabulated for different 
cutting tool material used as shown in Table 7. These results 
were selected from the 100 listed solutions of numerical 
optimization for the selection of optimal results, and the best 
optimised value of them all was being selected and tabu-
lated as per cutting insert material. The desirability for all 
optimised values is 1. These solutions from Table 7 further 
showed improved cutting performance results, whereby the 
cutting tool life also increased.

Optimized results of the cutting tool life of SiAlON 
cutting inserts are presented in Figs. 11 and 12 in the form 

of 2D and 3D contour plots. Figures 13 and 14 depict 
the 2D and 3D contour plots for the CBN cutting inserts, 
while carbide cutting inserts contour plots are shown in 
Figs. 15 and 16. The figures highlight the relationship 
of the feed per tooth and the cutting speed towards the 
cutting tool life. From the graphs, it is observed that a 
shortened tool life resulted from the lower feed per tooth 
and increased cutting speeds, and it is further observed 
that an increase in the feed per tooth and the cutting speed 
also led to a shortened tool life [28]. Furthermore, it is 
observed that low cutting speeds and increased feed per 
tooth led to a shortened tool life, while increased cutting 

Fig. 13  Optimised 2D contour 
plot of the tool life for the CBN 
cutting inserts

Fig. 14  Optimised 3D contour 
plot of the tool life for the CBN 
cutting inserts
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speeds and feed per tooth show similar results. These 
observations show that both the cutting speeds and feed 
per tooth have a negative impact on tool life because when 
either of both parameters is increased, kept a constant or 
reduced, a reduction in tool life also results. This is due 
to the friction and heat generated in the cutter-workpiece 
contact area where cutting operation takes place. Tool life 
was reduced from ~ 28 to ~ 23 min as the cutting param-
eters of the cutting speed and the feed per tooth were 
increased, as shown in Figs. 11 and 12. An increase in 
the cutting speed and the feed per tooth in the application 
of the CBN cutting inserts, as shown in Figs. 13 and 14, 

led to a reduction of the tool life from ~ 26 to ~ 5 min. It is 
further observed that the tool life was reduced from ~ 29 
to ~ 24 min, as presented in Figs. 15 and 16 when carbide 
cutting inserts were used for the face milling operation on 
the workpiece material.

4  Conclusion

In this study, cutting tool performance during the Ti6Al4V 
milling machining has been optimized for three cutting 
tool insert materials. DoE was performed via the RSM by 

Fig. 15  Optimised 2D contour 
plot of the tool life for the car-
bide cutting inserts

Fig. 16  Optimised 3D contour 
plot of the tool life for the car-
bide cutting inserts
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using the DesignExpert software. The conclusions from 
the study are as follows:

1. An increase in the input cutting parameters resulted in a 
shortened tool service life.

2. Input cutting parameters affected negatively the service 
tool life; therefore, for an increased tool life, the true 
cutting parameter values should be assigned.

3. The optimized response results recorded are viz. a cut-
ting tool life of 29 min, resulting from the use of carbide 
cutting inserts, 28 min with SiAlON cutting inserts and 
26 min from the CBN cutting inserts.

4. It can, therefore, be concluded that carbide cutting 
inserts exhibited the best results since they outperformed 
the SiAlON and CBN cutting inserts.
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