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Abstract
The electro-discharge machining (EDM) process is investigated using deterministic and stochastic methods to determine and 
model the effects of process parameters on machining performance. The workpiece utilized for the investigation was an LM25 
aluminum alloy reinforced with vanadium carbide (VC), processed through a stir casting technique. EDM process parameters 
like peak current, discharge voltage, and pulse on-time are considered to analyze material removal rate, electrode wearing 
rate, and surface roughness. This study applied four multi-criteria decision-making (MCDM) and analytical methodologies 
to evaluate EDM performance. Then, the MCDM scores were compared using two objective verification mechanisms. In this 
case, the teaching-learning-based optimization (TLBO) technique delivered the best-desired results relative to the VIKOR, 
Grey relational grade (GRG), and the response surface method (RSM). Also, the RSM and analytical methods are simpler 
than the other methods, though they produced nearly identical results as the sophisticated MDCM and deterministic methods.

Keywords Multi-objective optimization · VIKOR · Vanadium carbide · Processing parameter · Analytical modeling · 
Material removal rate · Surface roughness

1 Introduction

The electro-discharge machining process (EDM) is a non-
conventional and non-contact machining operation that is 
used in industry for high-precision products, especially in 
manufacturing industries, automotive industries, aerospace, 
communication, and biotechnology industries [1–3]. The 
majorities of those industries utilized materials with superior 
properties like high wear and corrosion resistance, low cost, 
low weight, and good strength to produce their products. In 
the same way, they are favored in some high-strength and 
high-temperature material applications. However, it is diffi-
cult to see the aforementioned properties in a single material, 

and to cope with the obvious limitations of single materials, 
composite materials were proposed by different researchers 
[4–8]. Aluminum alloys are ideal engineering materials for 
different applications when supported by heat-refractory and 
hard materials. Vanadium carbide (VC) is a hard refractory 
material, and the cost of the reinforcement in comparison 
with other materials is very nominal [9, 10]. VC particu-
late reinforcements help to improve the aluminum matrix 
in terms of hardness, heat refraction, strength, and wear 
resistance [11]. In fact, extremely high hardness will lead to 
machinability challenges. When it comes to the machining 
of difficult-to-machine and/or hard materials, then selection 
and optimization of the appropriate machining techniques 
are of prime importance. In addition to their unique charac-
teristics, most modern materials need special manufacturing 
processes to enable them to be machined with ease [12]. 
EDM, a thermo-physically based material ablation technol-
ogy is a cutting-edge machining technique with a remarkable 
ability to machine extremely hard and brittle materials with 
complicated three-dimensional structures [13].

Studies show that the material removal rate decreased and 
the electrode wear increased with an increase in reinforc-
ing quantity in the matrix phase [14, 15]. Some researchers 
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[16–19] have analyzed the feasibility of the composite mate-
rials in the EDM process and found that reinforcing con-
stituents in the matrix obstruct effective sparking and reduce 
matrix phase erosion. To enhance the performance metrics 
of the EDM process, abundant sensitivity analysis and opti-
mization of process variables with various high-strength and 
harder materials were also performed by different research-
ers [20–23]. According to different experimental findings, 
the results revealed that pulse current and discharge time 
significantly varied all the performance metrics (material 
removal rate and tool erosion rate) linearly with a gradual 
change [24, 25]. When milling NiTi alloy, Daneshmand 
et al. [26] focused on improving EDM process parameters 
to enhance the material removal rate. Voltage and current 
are the two most important elements influencing surface 
roughness [27]. Material removal rate rises with increasing 
current, surface roughness increases with increasing voltage 
and current, and white layer thickness grows with increasing 
voltage [28]. Most researchers [29–32] wanted to look into 
the effects of EDM parameters like discharge current and 
voltage, as well as the length of time between each off time 
and pulse on, relative electrode wear, the rate of material 
removal, and the surface roughness of different alloys.

In real applications, EDM process is complex, has time-
varying characteristics, and stochastic [33]. The primary 
idea behind the EDM technique is to remove material from 
a workpiece using periodic electric discharges and thermo-
electric power from an uncontacted electric electrode. To 
immerse the tool and workpiece, a pressured dielectric fluid 
is applied between the gap. Plasma channels emerge as a 
result of electron’s avalanche motion and positive ions dur-
ing spark generation. Ion collisions cause the formation of a 
high-temperature plasma channel [34]. Due to quick melting 
and evaporation, the material is removed from workpiece in 
the high-temperature zone [35]. Moreover, output results are 
drastically changed with process parameters such as work-
piece properties (conductivities, ionization), machining set-
tings (pulse on-time, pulse interval, flushing pressure, feed, 
etc.). The adaptation and control of process parameters to the 
machining situation depend on the analysis or identification 
of all these parameters. These variables can be analyzed by 
analytical and stochastic methods. The analytical method is 
a deterministic approach in which outcomes are determined 
through known relationships among state variables without 
room for random variation. However, the results provided 
by analytical models may or may not be accurate, depending 
on the assumptions that have been made in order to create 
the model. In many cases, it is difficult to model multiple 
variables at the same time using analytical models [36]. 
Stochastic analysis is one of the promising tools used for 
multi-criteria decision-making and then taking the neces-
sary measures to improve existing deficiencies. On the other 
hand, stochastic analysis is a mathematical and statistical 

representation of MCDM mode that allows random alterna-
tive solutions. In fact, stochastic multi-objective approaches 
also have difficulties achieving many goals at the same time 
[37–40]. Various approaches such as metaheuristics, Pareto-
based strategies, teaching-learning-based optimization 
(TLBO), and multi-model independent direction are used 
to address the challenges.

Analytical modeling and MCDM analysis help decision 
makers for diversification or modification of the process 
parameters. Also, both models play a pivotal role in under-
standing process parameters and predict the performance 
of EDM with substantial quality machining of newcomer 
materials with greater flexibility to respond to demands of 
competitiveness and customer satisfaction. Rao et al. [41] 
employed a multi-objective TLBO algorithm with Grey rela-
tion grade (GRA) for EDM parametric optimization. Pratap 
et al. [42] also opted for the stochastic TLBO optimization 
technique to obtain the optimized process parameters for 
EDM EN31 machining. TLBO is a very frequently used 
technique in the multi-objective optimization. Likewise, 
optimization of the EDM process parameters by using 
VIKOR method during EDM process of titanium alloy was 
implemented by Manish and Pradhan [43]. VIKOR is a com-
promise solution for a problem with conflicting criteria that 
can help the decision makers to reach a final decision [44]. 
Karthikeyan et al. [45] and Kama et al. [46] used response 
surface methodology (RSM) and the VIKOR methods to 
obtain multi-objective optimization parameters for setting 
Al-SiC metal matrix composites (MMC) during EDM oper-
ation, and they suggested that these multi-objective optimi-
zation techniques are well suited to optimize the process 
parameters during any machining conditions. Optimization 
of process parameters in EDM process of Ti-6Al-4V alloy 
using hybrid Taguchi-based stochastic MOORA method 
was analyzed by Srikanth et al. [47]. It is widely used as a 
statistical approach for finding the best alternative solution 
from the various other alternatives available for the deci-
sion-making criteria. Tiwari et al. [48] attempted to find out 
the optimal combination of EDM process parameters using 
Taguchi fuzzy-based approach. Recently, uncertainties of 
input process parameters and heterogeneities of EDM pro-
cess responses have been discussed in the literature from 
different perspectives [49–53]. The investigation of electro-
discharge machining can nevertheless be broadly classi-
fied into two basic approaches: (1) analytical or stochastic 
approach, which includes experimental observation, and (2) 
theoretical calculations, ranging from electron physics to 
thermal conduction.

Furthermore, EDM process variables were optimized 
using different optimization techniques like Taguchi, the 
technique for order of preference by similarity to the ideal 
solution (TOPSIS), RSM, and GRA [54–59]. As a result, 
using various multi-standard methodologies may result in 
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varied choices. However, most of the approaches offered 
some unique advantages and also had deficiencies of one 
sort or another. On the other hand, the choice of those opti-
mizer methods is based on the knowledge of researchers 
and professionals in the specific domain. In addition, the 
ML25Al/VC hybrid composite in the machining process 
is not yet fully understood due to the likely utilization of 
various materials for numerous non-convectional machin-
ing applications such as electrochemical machining, abra-
sive machining, and chemical machining. In addition, 
there is very little literature among the research done on 
the ML25Al/VC hybrid composite. Even it is possible to 
say that there are no works done on the ML25Al/VC under 
machining processes. While summarizing the advancements 
in using MCDM approaches, RSM, GRA, TLBO, and the 
VIKOR method are considered in this work with different 
weighting metrics for genuine factories and place options 
based on alternative ranking and instructional recorded in 
terms of quality from a multifaceted perspective.

The main objective of this study is increasing the mate-
rial removal rate (MRR), minimizing surface roughness (Ra), 
and electrode wear rate (EWR) for composite aluminum 
alloys with vanadium carbide (LM25Al/VC) under EDM 
processes. The various EDM input parameters such as gap 
voltage, peak current, pulse on-time and pulse off-time, and 
VC weight percentage of reinforcement materials are con-
sidered in the analysis. Towards the end, the work focuses on 
deterministic and stochastic optimization, considering ana-
lytical modeling and MCDM optimization. The consistency 
and accuracy of the optimization capabilities depend on the 
quality of the assumptions made either during the definition 

of the conditions or the solution process of the basic para-
metric relation with adequate information. To improve or 
accept the existing optimization methods, detailed analysis 
is important in a particular set of circumstances in order 
to properly describe the machinability of LM25Al/VC 
under the EDM process. This decision or selection should 
be based on a comparative evaluation of the model and its 
optimization capabilities. In addition to the dependence of 
the models on variations in the operation parameters, the 
initial assumptions should also be closely considered and 
understood. The work reported in this paper is organized as 
follows: Section 2 presents the methods and experimental 
design, considering base metal and reinforcement, analyti-
cal models, material removal, and product quality. Section 3 
covers about multi-objective optimization, while Section 4 
confirms the tests to validate the proposed models and opti-
mization techniques based on considered parameters and 
the results obtained. The models and parametric relations 
describing input parameters and the performance of EDM 
are presented in Section 4.2. Finally, the conclusions drawn 
from the study are presented in Section 5.

2  Material and methods

In this work, analytical methods are considered before the 
generic form of experimental stochastic MCDM, VIKOR, 
and TLBO analysis. Analytical methods are fundamen-
tal to understanding the physics of the EDM process and 
its consequences. Figure 1 shows the procedure by which 

Fig. 1  Conceptual outline of the 
research methods
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the experimental work and electrical discharge machining 
parameter optimization are done.

2.1  Analytical modeling of material removal 
and product quality

In EDM process, the metal is removed from the workpiece 
and the tool electrode. MRR depends not only on the work-
piece material but also on the tool electrode material and 
the machining variables such as electrode polarity, pulse 
conditions, machining medium, and plasma channel. Mate-
rial removal mainly occurs due to intense localized heating 
almost by point heat source for a relatively short time. Such 
heating leads to melting and crater formation, as shown in 
Fig. 2.

The molten crater can be assumed to be hemispherical 
with a radius r which forms due to a single spark:

Then, single-spark energy content in plasma channel can 
be given by

where Vg is the voltage between the gap, Ip is the peak 
current, and ton is the pulse on-time. In plasma channel 

(1)� =
2

3
�r3

(2)Es = VgIpton

processing, spark energy gets lost due to dielectric medium 
heating, and the rest of the energy is distributed between the 
ions and impinging electrons [60]. Thus, the energy avail-
able to heat the workpiece is given by

In the same way,

where H and G are the material constants. Now MRR is the 
ratio of material removed in single-spark energy per cycle 
time and expressed as

where Mt is the machining time and toff is the pulse off-time. 
As indicated in Fig. 2, the radius of the hemispherical crater 
(r) is equal to height (h). Thus,

The stochastic nature of the EDM process results in the ran-
dom effect of discrete spark arcing and so on, which generates 
a rough surface and number of crater. On the other hand, the 
spark-machined surface consists of a multitude of overlapping 
craters that are formed by the action of microsecond duration 

(3)Ew � Es, Ew = HEs

(4)Ew � Es � �, then � = GEw = GVgIpton

(5)MRR =
�

Mt

=
GVgIpton

ton + toff

(6)h � (�)1∕3�
(
VIpton

)1∕3
;then h = K

(
VIpton

)1∕3

Fig. 2  Conceptual sketch of EDM process and product quality
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spark discharges. Arithmetic mean surface roughness (Ra) is 
type of surface parameter and used to describe an amplitude 
feature, which converts to roughness of the surface finish, 
which can be calculated using Eq. (7):

where L is the sampling length of machined part, x is the 
profile direction, and A is the profile curve. In this work, 
the periodic profile and the arithmetic mean roughness is 
proposed with following relation:

With such high sparking frequencies, the combined effects 
of the individual sparks give substantial MRR. Likewise, 
sparking energy occurred randomly so that, over time, one gets 
a uniform average and total MRR over the whole workpiece 
cross section that can be calculated from

where k is the assumed material constant and Ns is the 
number of pulses per second. Further review was done to 
investigate the existing analytical models in the literature; 
no model has been found that is repeatable and gives better 
predictions than others at the level of mathematical models. 
After the preliminary investigation and tests, the exponen-
tial power function methods are proposed in this work for 
electrode wear (EWR) and surface roughness. The investiga-
tion indicates that power functions have a better correlation 
with experimental results. The variables of a, b, and c with 
EDM process parameters were formulated mathematically 
by using multi-objective power functions in the following 
forms:

(7)Ra =
1

L ∫ ∣ A ∣ xdx

(8)Ra =
h

4
=

K
(
VgIpton

)1∕3

4

(9)MRRtotal = Ns ×
GVgIpton

ton + toff

(10)Ra = MIp
a1ton

b1Vg
c1

(11)EWR = N
Ip

a2ton
b2Vg

c2

Tm

(12)Tr = Q.
EWR

MRR

where M, N, and Q are assumed material constants and 
Tm (°C) is the melting point of the tool electrode (cop-
per). Likewise, a1, b1, c1, a2, b2, and c2 are constants. To 
obtain the values of assumed variables, python program 
was developed using curve fitting method corresponding to 
the experimental data. The estimated values and developed 
program are given in Appendix A. EWR depends on physi-
cal and mechanical properties, discharge energy, and pulse 
duration. The melting point is the most important factor in 
determining tool wear. Electrode wear in EDM has many 
forms, such as end wear, side wear, corner wear, and volume 
wear (Fig. 2). Electrode wear depends on a number of factors 
associated with the EDM, such as voltage, current, electrode 
material, and polarity [61].

2.2  Base metal and reinforcement

In this work, the LM25 Al alloy was considered the base mate-
rial. To enhance the material characteristics of the LM25 Al 
alloy, vanadium carbide was used, whose chemical composi-
tion is shown in Table 1. Tests with VC often involve an oxide 
debasement. VC is produced by heating vanadium oxides with 
carbon to roughly 1000 °C in a cupola furnace. Despite being 
thermodynamically stable, VC can be transformed to V2C at 
temperatures over 1000 °C. VC particles are extremely strong 
at high temperatures and have a high oxidation capability [63]. 
As a result, it is used for a variety of high-temperature appli-
cations. The metal network composite used in this investiga-
tion was joined using a mix-projecting method. To combine 
the composite, a mix-projection arrangement comprised an 
obstruction stifle heater and a hardened steel stirrer was used. 
The stirrer assembly consisted of a stirrer connected to a vari-
able-speed vertical boring machine with a range of 80 to 1400 
rpm through a steel shaft. The stirrer had three edges that were 
spaced by 120°. Within this approach, the liquid aluminum 
mixture (Al-LM25) was liquefied at a clear temperature near 
780 °C in the silent heater (furnace), and then a warmed sup-
port material with 3% wt of VC was blended with the liquid 
compound, and the mixture was mixed using the stirrer. The 
photographs of the fabricated composite samples are shown in 
Fig. 3. To achieve consistent composite characteristics, mix-
ture composite was stirred at 800 rpm for 8 min. By control-
ling the stirring speed and cooling the casted material in the 
furnace by turning off the furnace, homogeneous of micro-
structure and mechanical properties can be improved. In addi-
tion, improvement depends on the amount and uniformity of 

Table 1  Chemical composition 
of base metals (LM25 AL and 
VC) [62]

Chemical composition Cu Mg Si Fe Mn Pb Ni Zn Ti Al

LM25 Al alloy 0.1 0.2–0.6 6.5–7.5 0.5 0.4 0 0.1 0.1 0.2 Bal.
VC Cu Cr Si Fe C Pb O N Al V

0.003 0.006 0.005 0.005 0.01 0.001 0.025 0.006 0.005 Bal.
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distribution of reinforcements, and the strength of the particle 
matrix boundary and the mechanical properties of the matrix. 
Subsequently, to investigate the effect of 3wt% VC in LM25 
Al alloy, Brinell hardness as per ASTM E10 is 363 ± 16 BNH 
obtained. When compared with the plain LM25 Al alloy, the 
hardness of synthesized composite increased up to 186%. This 
enhancement in hardness and strength value of LM25Al/VC 
are associated with the presence of VC as load bearing con-
stituent in LM25 Al matrix during loading conditions. Similar 
phenomenon was reported in [63]. Table 2 shows the proper-
ties of the workpiece and electrode materials.

Before starting the machining of LM25Al/VC, energy-
dispersive spectrometer (EDS) analysis was carried out to 
ensure the presence of reinforcement (VC) in the matrix 
phase, as shown in Fig. 4. It is observed from Fig. 4 that 
chemical constituents (Al, Si, Mn, Fe) of Al7075 were fol-
lowed by the reinforcement elements such as V and C. This 
confirms the presence of VC particulates in LM25Al alloy 
matrix. ELEKTRA PLUS Spark EDM PS 50 ZNC series 
machine was used to conduct experimental work and the 
schematic diagram of EDM process, which is elucidated 
in Fig. 5, and machine specification are given in Table 3. 

Fig. 3  Photograph view of sample produced as workpiece at different 
speeds and temperatures

Table 2  Thermal and 
mechanical properties of EDM 
electrode (copper) and material 
considered in this process 
(where data are collected from 
different literature and manuals)

An asterisk is considered in this table to indicate the evaporation of Al at 3200 C under the EDM process 
in which the properties deferment from the usual thermal properties of metals

Serial no. Properties Copper Aluminum LM25 Vanadium 
carbide

1 Melting point, °C 1083 700 2730
2 Boiling point, °C 2580 3200* 3900
3 Thermal conductivity, W/m•K 398 150.62 168
4 Electrical conductivity, Ag = 100 97 39 --
5 Thermal expansion, per °C ×  10−6 16 22 8
6 Compressive strength, MPa 45 120 607
7 Modulus of elasticity, GPa 124 71 420
8 Hardness, Rockwell A 35 55 91

Fig. 4  EDS graph of LM25Al/
VC before machining
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In the same way, copper electrode and kerosene dielectric 
are used in this study. EDM process is influenced by both 
electrical and non-electrical parameters such as pulse on-
time, flushing pressure, polarity, discharge current, electrode 
material, pulse interval, and open discharge voltage. It is 
difficult to examine the impact of all process parameters on 
performance characteristics at the same time due to different 
constraints. Thus, major influencing electrical parameters, 
namely, peak current Ip, voltage gap Vg, and pulse on-time 
ton, were considered in this work. Because material removal 
rate is directly proportional to the amount of energy deliv-
ered, the peak current and the length of pulse on-time should 
be suitably managed [64, 65].

2.3  Experimental design

The experiments were accomplished using three input 
parameters deferred at five levels, as shown in Table 4. 
The central composite design method of RSM is used in 
this research work to formulate the experimental trials 
using Minitab 21.2 software. Twenty runs were formulated 
by the Minitab software, and the number of trials purely 
depends on the number of process parameters and the five 
ranges selected in the experimental runs. The experimental 
runs comprised 8 factorial points (±1 level), 6 star points 
(±1.68 level), and 6 center points. Tests were carried out 
in a randomized way, and the weighted age of chosen EDM 
methodology variables on performance metrics, namely, 
material removal rate, tool electrode wear rate, and sur-
face roughness, are considered responses. The independent 
inputs and their varying levels are delineated in Table 4. In 
the same way, fixed parameters are described in Table 5.

In addition, different combinations of process variables 
and their measured responses are delineated in Table 6. 
Analytical balance digital electronic A GN precision 
weight was used to measure the workpiece and electrode. 
The machinability of the processes is calculated by deter-
mining the material ablation rate, surface unevenness, and 
electrode erosion rate. The formulas used for measuring 
MRR and EWR are the following:

Fig. 5  Schematic representation 
of EDM process

Table 3  ELEKTRA PLUS Spark EDM PS 50 ZNC process param-
eter specifications

*  To show the maximum surface finishing from the machine specification

Parameters in EDM/EDM PS 50 ZNC Specification range

Spark gap 10–125 μm
Spark frequency 200 to 500 kHz
Applied voltage 40 to 300 V
Peak voltage across the gap 30 to 250 V
Maximum material removal rate 0.6 g/min
Best surface  finish* 0.8 μm
Pulse on-time 2 to 2400 μs
Peak current 0.5 to 70 A

Table 4  Experimental factors 
with five levels

Variables Levels

Symbols Units 1.682 −1 0 1 1.682

Peak current Ip A 5 6 8 10 11
Pulse on-time ton μs 70 135 150 200 250
Voltage between the gap Vg V 45 50 60 70 75
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where win is the weight of the workpiece before machin-
ing, wfi is the weight of the workpiece after machining, WEin 
is the weight of the electrode before machining, and WEfi 
is the weight of the electrode after machining. The surface 
roughness is measured using Mitutoyo (SURFTEST SJ-210) 
surface roughness tester. It is important to state that when 
discharge current levels are less than 5 A, there is no much 
change in workpiece material ablation. In addition, higher 
levels of current greater than 15 A are not considered in 
order to facilitate stable machining and keeping parameter 
range consistence. To achieve the optimized parameter for 

(13)MRR =
Win −WFi

Mt

( g

min

)

(14)Electrode wear rate =
WEin −WEfi

Mt

( g

min

)

pulse on-time, a wide range has been chosen based on the 
machine capacity.

2.4  Regression modeling and checking its adequacy

Quadratic model suggested by fit summary method is uti-
lized for prediction of MRR, EWR, and Ra. The ANOVA 
test results of MRR, EWR, and Ra are shown in Table 7. In 
ANOVA analyzing Pi-value helps to define the significance 
of the results in a statistical test. On the other hand, it shows 
the influence of the particular variable (factor) in terms of 
percentage on the response of the process. If P-value of the 
model is less than 0.05, then the model is ultimately speci-
fied as significant. Thus, the findings from ANOVA test on 
MRR data reveal that Ip, ton, I2

p, t2on, and Ip × ton are essential 
variables to control MRR because their P-values fall below 
0.05. The variables Ip, ton, Vg, I2

p, t2on, V2
g Ip × ton, Ip × Vg, and 

ton × Vg are the significant controllable parameters for EWR. 
Likewise, Ip, ton, and t2on are significant variables for Ra. The 
model F-values obtained for MRR, EWR, and Ra are 32.77, 
356.43, and 16.93, respectively. This F-ratio value shows 
that the formed performance models are outstanding since 
values greater than 0.05. Another possible way to confirm 
adequacy of the models is R-sq values and the evaluation 
represents the percentage of variation in a response variable 
that is explained by its relationship with predictor variables. 
In this case, R-sq values obtained for MRR, EWR, and Ra are 

Table 5  Fixed process parameters during machining process

Serial no. Fixed parameters Quantity

1 Working time 10 min
2 Flushing pressure 196 kPa
3 Anti-arc sensitivity 5
4 Servo sensitivity 6
5 Duty cycle 70%

Table 6  Experimental trials and its responses

Experiment no. Peak current, Ip 
(A)

Pulse on-time, ton 
(μs)

Voltage, Vg (V) Material removal rate, 
MRR (g/min)

Electrode wear rate, 
EWR (g/min)

Surface roughness, 
Ra (μm)

1 10 70 70 0.0295 0.0047 5.0572
2 8 135 60 0.0488 0.0060 4.0566
3 8 135 75 0.0540 0.0063 5.3428
4 6 70 50 0.0101 0.0013 7.1276
5 8 70 60 0.0106 0.0033 5.9171
6 10 200 50 0.0980 0.0086 3.7319
7 8 250 60 0.0694 0.0095 5.3777
8 10 70 50 0.0203 0.0048 4.9205
9 8 150 60 0.0651 0.0071 4.0487
10 6 200 50 0.0498 0.0063 4.8526
11 11 135 60 0.1085 0.0089 3.9106
12 5 135 60 0.0556 0.0053 5.2487
13 6 70 70 0.0191 0.0020 6.6376
14 6 200 70 0.0622 0.0090 6.3274
15 8 150 50 0.0594 0.0056 4.1176
16 8 135 45 0.0502 0.0045 4.7052
17 8 135 70 0.0587 0.0063 4.5427
18 10 200 70 0.0858 0.0097 4.0685
19 8 135 50 0.0533 0.0051 4.7225
20 8 135 70 0.0510 0.0067 4.1501
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96.72%, 99.68%, and 93.84%, respectively. The lack-of-fit 
tests compare the residual error to the pure error from rep-
licated design points. A lack-of-fit error significantly larger 
than the pure error for all responses indicates that non-sig-
nificant of lack of fit is good. This obviously confirms that 
the developed second-order response models through RSM 
are sufficient and appropriate to predict the responses with 
minimized error. In general, the following equations charac-
terize RSM’s second-order surface interactions:

Thus,

(15)
Response =a

0
+

∑j

n=i
angn +

∑j

n=i
anng

2

n

+

∑

n<m
anmgngm + error

(16)

MRR = −0.126 − 0.0304 Ip + 0.001157ton

+ 0.00544Vg + 0.002485I2p − 0.000003t2on

− 0.000030V2

g + 0.000049 Ip × ton

− 0.000152 Ip × Vg − 0.000004 ton × Vg

(17)

EWR = −0.02284 + 0.000307Ip + 0.000055ton + 0.000576Vg

+ 0.000097 I2p − 0.000000t2on − 0.000004 V2
g

− 0.000003Ip × ton − 0.000014Ip × Vg + 0.000001ton × Vg

Figures 6, 7, and 8 show the interaction plots for MRR, 
EWR, and Ra, respectively, as a function of the correspond-
ing input variables. The results show that process param-
eters such as pulse on-time, peak current, and gap volt-
age influence the performance of the machine in different 
ways. Similarly, Figures 9, 10, and 11 show the predicted 
values for MRR, EWR, and Ra, respectively, function of the 
corresponding actual values. All of the data lies along a 
straight line, indicating that the model is acceptable.

At the end, corresponding to the number of experimen-
tal runs 3D profiles of MRR, EWR, and Ra were computed 
and shown in Fig. 12. The results show that random pro-
cess parameter input for EDM can generate random per-
formance output.

3  Multi‑objective optimization

Surface response method experimental philosophy is 
focused on optimizing the process parameters in the per-
spective of a single quality criterion which does not give 

(18)

Ra = 16.99 − 0.680Ip − 0.0752ton − 0.101Vg

+ 0.0245I2p + 0.000170t2on + 0.00072V2

g

+ 0.000426Ip × ton − 0.00173 Ip × Vg

+ 0.000260 ton × Vg

Table 7  ANOVA table results for MRR, EWR, and Ra

Common variance Analysis of variance for MRR Analysis of variance for EWR Analysis of variance for Ra

Source DF Adj SS Adj MS F-value P-value Adj SS Adj MS F-value P-value Adj SS Adj MS F-value P-value

Model 9 0.0128 0.0014 32.77 0.000 0.0001 0.0000 356.43 0.000 13.705 1.523 16.93 0.000
 Linear 3 0.0058 0.0019 44.45 0.000 0.0001 0.0000 681.19 0.000 4.600 1.533 17.05 0.000
  Ip 1 0.0027 0.0027 61.56 0.000 0.0000 0.0000 329.14 0.000 4.236 4.236 47.1 0.000
  ton 1 0.0031 0.0031 71.66 0.000 0.0000 0.0000 1498.23 0.000 0.123 0.123 1.36 0.27
  Vg 1 0.0000 0.0000 0.18 0.677 0.0000 0.0000 227.99 0.000 0.238 0.238 2.64 0.135
 Square 3 0.0029 0.0010 22.25 0.000 0.0000 0.0000 47.04 0.000 5.235 1.745 19.41 0.000
  Ip × Ip 1 0.0009 0.0009 21.89 0.001 0.0000 0.0000 44.05 0.000 0.093 0.092 1.03 0.335
  ton × ton 1 0.0019 0.0019 43.91 0.000 0.0000 0.0000 52.03 0.000 5.031 5.031 55.95 0.000
  Vg × Vg 1 0.0001 0.0001 1.57 0.239 0.0000 0.0000 37.75 0.000 0.040 0.040 0.44 0.522
 2-way interaction 3 0.0004 0.0001 3.42 0.061 0.0000 0.0000 31.7 0.000 0.264 0.088 0.98 0.441
  Ip × ton 1 0.0003 0.0003 7.57 0.02 0.0000 0.0000 37.71 0.000 0.025 0.024 0.27 0.613
  Ip × Vg 1 0.0001 0.0001 1.7 0.221 0.0000 0.0000 20.06 0.001 0.010 0.010 0.11 0.751
  ton × Vg 1 0.0000 0.0000 0.99 0.342 0.0000 0.0000 37.33 0.000 0.230 0.230 2.56 0.141
Error 10 0.0004 0.0000 0.0000 0.0000 0.899 0.090
 Lack-of-fit 8 0.0004 0.0000 1.52 0.562 0.0000 0.0000 0.51 0.803 0.873 0.097 3.74 0.382
 Pure error 2 0.0000 0.0000 0.0000 0.0000 0.026 0.026
Total 19 0.0132 0.0001 14.605
R-sq 96.72% 99.69% 93.84%
R-sq (adj) 93.77% 99.40% 88.30%
R-sq (pred) 75.16% 98.52% 55.16
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sufficient idea about the influence on other performance 
characteristic involvement [66]. Surface response meth-
ods cannot solve a multi-response optimization problem. 

On other the hand, RM technique is often combined 
with multi-objective optimization techniques to switch 
a multi-decision making technique to a single-objective 

Fig. 6  Interaction and effect of input variables Ip, ton, and Vg values on MRR results

Fig. 7  Interaction and effect of input variables Ip, ton, and Vg values on EWR results
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optimization problem. Hence, multi-objective optimiza-
tion techniques are implemented where the quality char-
acteristics are optimized and the results for the best levels 
are obtained. In this work, Grey relational grade (GRG) 
and VKOR are considered to resolve problems using com-
plex inter-relationships among the multiple performance 

characteristics. In fact, Grey relational grade technique 
provides an approach to create an idea about the system 
which is indecisive, incomplete, and not apparent. The 
procedure of GRG includes the consideration of differ-
ent output parameters that may have different character-
istics. Thus, by performing GRG on such problems, the 

Fig. 8  Interaction and effect of input variables Ip, ton, and Vg values on Ra results

Fig. 9  Material removal rate 
residual diagrams
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multi-objective is converted into a single objective as 
given in Table 8. Steps involved in GRA are the following:

Step 1: Normalization of the performance measures 
from 0 to 1.

Fig. 10  Electrode wear rate residual diagrams

Fig. 11  Surface roughness residual diagram
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Step 2: The Grey relational coefficient (GRC) establishes 
the correlation between the normalized experimental 
response that is desired and the actual response. The value 
of GRC is calculated using the relation provided in Eq. 19.

where, Δ(G) is the deviation sequence, 𝑖.𝑒., ∆oi(G) = |𝑔𝑖(G) 
− 𝑥𝑖(G)|; 𝜑 is the unique coefficient which sustains between 0
and 1 (usually assumed as 𝜑 = 0.5); (G) is a GRC; Δ𝑚𝑖𝑛 (least 
deviation sequence) is the lowest value of ∆oi(G); and Δ𝑚𝑎𝑥 
(highest deviation sequence) is the highest value of ∆oi(G).

Step 3: Grey relational grade is found out by averag-
ing the Grey relational coefficient values; best value of 
GRG is obtained in experiment run 11 and the optimal 
combination of peak current 11 A, pulse on-time 135 
μs, and gap voltage 60 V. For further optimization, GRG 
is considered an output response, and RSM parametric 
optimization is done on GRG. For a better maximization 
characteristic, the predicted input parameters are peak 
current of 11 A, pulse time of 175 μs, and gap voltage of 
45 V, which maximize MRR and minimize EWR and Ra.

3.1  VIKOR

VIKOR means multi-criterion optimization and comprising 
solution. The VIKOR technique focuses on positioning and 
picking an ideal substitute from a set of options and gives 
compromise answer for an issue with clashing measures 
and hence coming to a last arrangement. It is a powerful 

(19)�i(G) =
Δmin + �Δmax

Δoi(G) + �Δmax

apparatus for the advancement of machining activity which 
comprises different reactions [67]. The proposed technique 
contains the following steps:

Step 1: Development of selection framework that com-
prises all the data about the traits and the options of the 
interaction. Here, the potential options are addressed in 
line (i = 1, 2...m) and all credits connecting with every one 
of the choices are portrayed in the section (j = 1,2... n).
Step 2: Get the normalization choice framework utilizing the 
formulae given underneath, where xij is the standardize choice. 
The normalized decision matrix grid can be addressed.

Step 3: Acquire the weighted standardized choice network 
by assigning the heaviness of each property as {wj, j = 1, 
2....n}. It may be very well resolved utilizing the formulae 
given underneath (Eq. (21)):

where wj is assigned a value as weight for responses and the 
sum of assigned values should be equal to 1. Thus, weights 
of 0.35 are assigned to MRR and EWR, and weight 0.3 is 
assigned to Ra.

Step 4: Standardize the choice lattice amounts somewhere 
in the range of 0 and 1. The information standardization is 
done utilizing the accompanying condition. The normal-
ized choice grid can be composed as formulated in Eqs. 
(22) and (23):

(20)
Xij =

xij
�

∑n

i=1

�
Xij

�2

(21)Wij = wj × Xij

Fig. 12  The 3D responses pro-
file (MRR, EWR, and Ra) versus 
number of experiment run
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Table 8  Grey relational analysis from experiment results (as initial random population for TLBO also)

Experimental 
run

Normalization Deviation sequence Grey relational coefficient (GRC) Grade analysis 
grade

MRR EWR Ra MRR EWR Ra MRR EWR Ra GRG Rank

1 0.1974 0.5910 0.6097 0.8026 0.4090 0.3903 0.3838 0.5501 0.5616 0.4985 15
2 0.3929 0.4385 0.9044 0.6071 0.5615 0.0956 0.4516 0.4710 0.8395 0.5874 6
3 0.4462 0.4054 0.5256 0.5538 0.5946 0.4744 0.4745 0.4568 0.5131 0.4815 18
4 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.3333 1.0000 0.3333 0.5556 8
5 0.0057 0.7613 0.3565 0.9943 0.2387 0.6435 0.3346 0.6769 0.4373 0.4829 17
6 0.8931 0.1324 1.0000 0.1069 0.8676 0.0000 0.8239 0.3656 1.0000 0.7298 2
7 0.6024 0.0282 0.5153 0.3976 0.9718 0.4847 0.5571 0.3397 0.5078 0.4682 19
8 0.1034 0.5875 0.6500 0.8966 0.4125 0.3500 0.3580 0.5479 0.5882 0.4981 16
9 0.5593 0.3156 0.9067 0.4407 0.6844 0.0933 0.5315 0.4222 0.8427 0.5988 5
10 0.4039 0.4061 0.6700 0.5961 0.5939 0.3300 0.4561 0.4571 0.6024 0.5052 14
11 1.0000 0.0981 0.9474 0.0000 0.9019 0.0526 1.0000 0.3567 0.9047 0.7538 1
12 0.4622 0.5236 0.5533 0.5378 0.4764 0.4467 0.4818 0.5121 0.5282 0.5073 13
13 0.0917 0.9149 0.1443 0.9083 0.0851 0.8557 0.3550 0.8545 0.3688 0.5261 12
14 0.5291 0.0922 0.2357 0.4709 0.9078 0.7643 0.5150 0.3552 0.3955 0.4219 20
15 0.5006 0.4884 0.8864 0.4994 0.5116 0.1136 0.5003 0.4943 0.8149 0.6031 4
16 0.4075 0.6253 0.7134 0.5925 0.3747 0.2866 0.4577 0.5716 0.6356 0.5550 9
17 0.4939 0.4043 0.7612 0.5061 0.5957 0.2388 0.4969 0.4563 0.6768 0.5434 11
18 0.7693 0.0000 0.9009 0.2307 1.0000 0.0991 0.6843 0.3333 0.8346 0.6174 3
19 0.4388 0.5544 0.7083 0.5612 0.4456 0.2917 0.4712 0.5288 0.6315 0.5438 10
20 0.4158 0.3641 0.8768 0.5842 0.6359 0.1232 0.4612 0.4402 0.8024 0.5679 7

Table 9  Optimization of parameters utilizing VIKOR optimization technique

Experimental 
run

Normalized decision mat Weight standardization Standardized ideal VIKOR file

MRR EWR Ra MRR EWR Ra Yi Ri Qi Rank

1 0.1121 0.1639 0.2325 0.2809 0.1431 0.1381 0.5622 0.2809 0.6172 13
2 0.1852 0.2086 0.2063 0.2125 0.1965 0.0818 0.4908 0.2125 0.3176 4
3 0.2051 0.2182 0.1996 0.1938 0.2081 0.0674 0.4693 0.2081 0.2749 10
4 0.0382 0.0443 0.3079 0.3500 0.0000 0.3000 0.6500 0.3500 0.9416 19
5 0.0404 0.1141 0.2668 0.3480 0.0835 0.2118 0.6433 0.3480 0.9264 20
6 0.3722 0.2981 0.1683 0.0374 0.3037 0.0000 0.3411 0.3037 0.3757 11
7 0.2635 0.3286 0.2425 0.1391 0.3401 0.1595 0.6388 0.3401 0.8970 17
8 0.0769 0.1650 0.2219 0.3138 0.1444 0.1152 0.5734 0.3138 0.7290 15
9 0.2474 0.2445 0.1826 0.1543 0.2395 0.0307 0.4245 0.2395 0.3044 6
10 0.1893 0.2180 0.2188 0.2086 0.2078 0.1086 0.5251 0.2086 0.3542 10
11 0.4122 0.3082 0.1763 0.0000 0.3157 0.0173 0.3330 0.3157 0.3996 12
12 0.2111 0.1836 0.2367 0.1882 0.1667 0.1470 0.5020 0.1882 0.2622 3
13 0.0725 0.0692 0.2993 0.3179 0.0298 0.2816 0.6293 0.3179 0.8188 16
14 0.2361 0.3099 0.2657 0.1648 0.3177 0.2094 0.6919 0.3177 0.9056 18
15 0.2254 0.1940 0.1857 0.1748 0.1791 0.0374 0.3912 0.1791 0.0811 9
16 0.1906 0.1539 0.2122 0.2074 0.1311 0.0943 0.4328 0.2074 0.2219 2
17 0.2229 0.2186 0.2048 0.1772 0.2085 0.0786 0.4642 0.2085 0.2690 5
18 0.3259 0.3369 0.1835 0.0807 0.3500 0.0326 0.4634 0.3500 0.6816 14
19 0.2023 0.1747 0.1994 0.1964 0.1560 0.0669 0.4193 0.1964 0.1710 1
20 0.1938 0.2303 0.1946 0.2045 0.2226 0.0565 0.4835 0.2226 0.3370 8
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Step 5: Register the gainful (ideal) and non-valuable 
(non-ideal) arrangements. These qualities can be deter-
mined utilizing the conditions indicated underneath:

Step 6: Decide the utility measure and the lament meas-
ure by utilizing the accompanying conditions. Towards 
the end, the VIKOR file (Qi) is generated utilizing the 
condition given underneath (Eq. 11), where Qi signi-
fies the VIKOR file esteem i = 1, 2…n; likewise, v 
addresses the heaviness of the most extreme gathering 
utility (in this work, v is 0.5).

Here Yi − max is the maximum value of Yi and Yi − min is 
the minimum value of Yi; Ri − max is the maximum value of 
Ri, and Ri − min is the minimum value of Ri.

Step 7: Ranking the acceptance choice with the cases:

• Case 1: Q(a2) − Q(a1) ≥ 1/(n − 1) (depending on the 
objective faction preference) and

• Case 2: acceptance stability likewise Qj is ranking by Yi 
and or Ri with v ≥ 0.5 in light of VIKOR file Qi.

The option with the biggest Qi esteem is considered in this 
work as the best arrangement and result generated in Table 9.

The result obtained from VIKOR optimization technique 
and portrayed in Table 9 fulfilled the first case of accept-
able advantage criteria from Qi file. The optimal condition 
is analyzed using closeness to the ideal solution and rank; 
best value of VIOR is obtained in experiment run 19 and the 
optimal combination of peak current 8 A, pulse on-time 135 
μs, and gap voltage 50 V. In the same way, further minimi-
zation characteristics are applied using the RSM optimizer, 
and the predicted input parameters are obtained, like a peak 
current of 10 A, a pulse time of 168 μs, and a gap voltage 
of 48 V for maximum MRR, and minimum EWR and Ra.

(22)
Yi

+ =

n∑
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Wj

[(
Xij

)
max
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Xij

)]
∕
[(
Xij

)
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−
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Xij

)
min

]
,

for beneficial attribute

(23)
Yi

− =
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∕
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(25)

Qi =
v
((
Yi − Yi−min

))

((
Yi−max − Yi−min

)) + (1 − v)

(( ((
Ri − Ri−min

))

((
Ri−max − Ri−min

))

))

3.2  TLBO algorithm

Teaching learning-based optimization (TLBO) is population-based 
algorithm inspired by learning process in a class room between stu-
dents and teacher [41, 68]. The output in TLBO algorithm is con-
sidered in term of results or grade of the learners which depends 
on the quality of teacher. The current work was centered on maxi-
mization of MRR, and minimization of EWR and Ra. The detailed 
steps of TLBO algorithm are delineated in Fig. 1. Additionally, 
the parametric bounds are delineated in the following equation:

Step 1: Parameter bounds

Step 2: Select the size of the population (number of experi-
ments), Np = 20
Step 3: The teaching process can be formulated as fol-
lows:

where Xij is the inputted parameter as learners’ subjects. 
Xbest is the result of the best parameter (i.e., the teacher) in 
the GRG. Tf is the teaching factor which decides the value 
of mean to be changed and ri is the random number in the 
range [0,1]. Tf is not a parameter in this TLBO algorithm and 
its value can be either 1 or 2. The value of Tf is randomly 
decided as

Step 4: Calculate the new response and then apply greedy 
selection. At the end, accept Xnew _ ij if it gives a better 
solution and Xtnew _ ij failed between bounded values; oth-
erwise, repeat the step in Eq. (28).
Step 5: This phase of the algorithm simulates the process 
parameters as learners through mutual interaction among 
themselves. Students can also enhance their knowledge by 
discussing or interacting with other students. This learn-
ing phenomenon can be expressed as follows:

For maximization with greedy selection,

(26)Peak current ∶ 5 ≤ Ip ≤ 11

(27)Pulse on − time ∶ 70 ≤ ton ≤ 250

(28)Gap voltage ∶ 45 ≤ Vg ≤ 75

(29)Xtnew_ij = Xij + ri
(
Xbest − Tf .Xmean

)

(30)Tf = round [1 + rand(0, 1){2 − 1}]

(31)
Xlnew_ij = Xij + ri

(
Xij − Xp

)
if Response i > Response p

(32)
Xlnew_ij = Xij − ri

(
Xij − Xp

)
if Response i < Response p
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For minimization target,

(33)
Xlnew_ij = Xij + ri

(
Xij − Xp

)
if Response i < Response p (34)

Xlnew_ij = Xij − ri
(
Xij − Xp

)
if Response i > Response p
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where Xp is a partner solution. The new individual with 
improvements after learning will be accepted; otherwise 
rejected. In this work, a Python program was developed to 
compute the TLBO system for various values of the input 
parameters. The code of the program is given below, and the 
results are shown in Tables 10, 11, 12, and 13.

4  Confirmation test

The optimized parameter settings for maximum MRR, mini-
mum EWR, and Ra from analytical, RSM, GRA, and TLBO 
with experimental validations are done for the final optimal 
factors to assess the accuracy level and the results are shown 
in Table 14. The obtained error averages of RSM and GRA-
TLBO are ±8.886% and ±1.38433%, respectively, which 
are acceptable among the other methods. This implies that a 
novel hybrid technique, i.e., TLBO, is more reliable to pre-
dict the desired responses than other techniques. The reason 
TLBO is identified as delivering the best-desired results 
in comparison to other methods is due to its unique capa-
bilities for handling multi-objective optimization and the 
larger solution space within given constraints. TLBO offers 
several advantages over other methods, such as uniform 

results, better handling of noisy data, and greater robustness 
to changes in problem parameters. Analytical methods are 
very simple representations, but linear relationships are not 
observed in practice for surface roughness. Because molten 
material is deposited back on the crater for a very short 
period of time, the integral effect of many thousands of 
discharges per second affects the surface finish. However, 
analytical models can capture the complexity of EDM in a 
very efficient manner. In practice, MRR does increase with 
an increase in peak current, pulse on-time, and gap voltage 
and decreases with an increase in pulse off-time.

4.1  Scanning electron microscopy analysis

The field emission scanning electron microscopy (FESEM) 
image of the surface finishing is processed by setting the 
optimal values obtained from the analytical model and 
TLBO techniques, as delineated in Figs. 13 and 14, respec-
tively. In Fig. 13, the controlled current value obtained from 
GRA-TLBO algorithm resulted in better surface finish than 
that of the value obtained from analytical optimization. The 
result shows that the formation of craters, porosity, and 
other surface defects depend on input parameters. Also, the 
presence of VC resulted in the generation of a recast layer 
in which the vanadium and carbon elements remained as 

Table 10  Teacher phase-
updated process parameter and 
response

Run no. Input parameters Bounded input parameters New responses Grade analysis 
grade

Ip ton Vg Ip ton Vg MRR EWR Ra GRG Rank

1 10 70 70 9.48 70.00 59.86 0.0291 0.0070 5.2540 0.4939 15
2 8 135 60 6.79 119.73 49.84 0.0457 0.0079 5.0306 0.5145 8
3 8 135 75 5.09 134.98 49.78 0.0574 0.0085 5.5116 0.5556 7
4 6 70 50 10.80 200.00 51.00 0.1384 0.0178 3.6546 0.6528 2
5 8 70 60 8 158 53 0.0751 0.0125 4.1456 0.5145 8
6 10 200 50 7 125 63 0.0583 0.0104 4.8445 0.6528 2
7 8 250 60 10 224 48 0.1239 0.0180 4.1194 0.5145 8
8 10 70 50 7 208 66 0.0836 0.0190 5.0251 0.6528 2
9 8 150 60 8 143 73 0.0693 0.0133 4.5363 0.5145 8
10 6 200 50 7 172 54 0.0741 0.0133 4.4594 0.6528 2
11 11 135 60 6 178 57 0.0756 0.0143 4.8923 0.5145 8
12 5 135 60 9 156 70 0.0852 0.0150 4.0934 0.5145 8
13 6 70 70 8 173 59 0.0835 0.0148 4.1749 0.4939 15
14 6 200 70 10 193 58 0.1186 0.0178 3.7716 0.4939 15
15 8 140 60 8 77 45 0.0110 0.0045 5.8443 0.5145 8
16 8 135 45 5 159 53 0.0706 0.0115 5.3184 0.7778 1
17 8 135 70 7 230 57 0.0828 0.0192 5.1382 0.4939 15
18 10 200 70 10 192 75 0.1081 0.0193 4.2752 0.4939 15
19 8 135 50 8 71 58 0.0181 0.0056 5.7194 0.6528 2
20 8 135 70 6 155 62 0.0720 0.0130 4.9888 0.4939 15
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residuals because of its poor conductivity. This phenomenon 
may be due to the breakdown of dielectric medium at high 
temperature. The high temperature during machining is the 
major reason for the formation of debris and surface con-
taminants. In EDM, elevated temperatures are unavoidable, 
and controlled current applied for proper pulse duration can 
reduce defects due to the elevated temperatures.

4.2  Effect of input parameters

Representative input process parameter analysis results 
are shown in Figs.  15, 16, and 17. The performance 
of EDM is sufficiently predicted by the input process 
parameters. The regression equations developed through 

Table 11  Combined population Run no. Combined input parameter New response Grade analysis 
grade

Ip ton Vg MRR EWR Ra GRG Rank

1 10 70 70 0.0295 0.00474 5.15718 0.535733 24
2 8 135 60 0.04875 0.00603 4.57566 0.568331 17
3 8 135 75 0.054 0.00631 4.4276 0.582127 12
4 6 70 50 0.01007 0.00128 6.82762 0.555556 19
5 8 70 60 0.01063 0.00399 5.91705 0.505189 28
6 10 200 50 0.098 0.00862 3.73189 0.706179 2
7 8 250 60 0.06938 0.009501 5.3777 0.494795 31
8 10 70 50 0.02025 0.00477 4.92045 0.543096 21
9 8 150 60 0.06513 0.00707 4.04873 0.625675 6
10 6 200 50 0.04983 0.006304 4.85258 0.54408 20
11 11 135 60 0.10852 0.00891 3.91064 0.695002 3
12 5 135 60 0.05557 0.00531 5.24866 0.542198 22
13 6 70 70 0.0191 0.002 6.63757 0.541016 23
14 6 200 70 0.06216 0.00896 5.892738 0.470673 39
15 8 140 60 0.05935 0.00708 4.117629 0.610284 8
16 8 135 45 0.05019 0.00445 4.70524 0.587577 10
17 8 135 70 0.05869 0.00632 4.54267 0.576243 14
18 10 200 70 0.08581 0.00974 4.06848 0.619579 7
19 8 135 50 0.05327 0.00505 4.4225 0.602986 9
20 8 135 70 0.05101 0.00666 4.31501 0.585318 11
21 9.48 70.00 59.86 0.02911 0.00704 5.25405 0.492765 32
22 6.79 119.73 49.84 0.04567 0.007864 5.03057 0.507559 27
23 5.09 134.98 49.78 0.05742 0.008532 5.51155 0.485745 36
24 10.8 200 51 0.138438 0.01777 3.654642 0.784569 1
25 8 158 53 0.07511 0.012452 4.14565 0.571288 16
26 7 125 63 0.05833 0.010425 4.84447 0.504317 29
27 10 224 48 0.12390 0.017994 4.11942 0.64646 5
28 7 208 66 0.08361 0.018986 5.02507 0.471153 38
29 8 143 73 0.06926 0.013252 4.53629 0.517964 26
30 7 172 54 0.07412 0.013346 4.45944 0.530274 25
31 6 178 57 0.07560 0.014274 4.89228 0.492305 33
32 9 156 70 0.08516 0.014968 4.09342 0.575715 15
33 8 173 59 0.08347 0.014846 4.17485 0.563744 18
34 10 193 58 0.11859 0.017781 3.77157 0.682917 4
35 8 77 45 0.01095 0.004456 5.84429 0.498231 30
36 5 159 53 0.07063 0.011489 5.31841 0.481195 37
37 7 230 57 0.08276 0.019242 5.13820 0.462219 40
38 10 192 75 0.10810 0.01933 4.27518 0.577062 13
39 8 71 58 0.01814 0.005599 5.71941 0.486248 35
40 6 155 62 0.07202 0.012967 4.98878 0.490125 34
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Table 12  Candidate solution 
based on the non-dominance 
rank

Run no. Combined input param-
eter

New response Grade analysis 
grade

Ip ton Vg MRR EWR Ra GRG Rank

1 10.8 200 51 0.138438 0.01777 3.654642 0.784569 1
2 10 200 50 0.098 0.00862 3.73189 0.706179 2
3 11 135 60 0.10852 0.00891 3.91064 0.695002 3
4 10 193 58 0.11859 0.017781 3.77157 0.682917 4
5 10 224 48 0.12390 0.017994 4.11942 0.64646 5
6 8 150 60 0.06513 0.00707 4.04873 0.625675 6
7 10 200 70 0.08581 0.00974 4.06848 0.619579 7
8 8 140 60 0.05935 0.00708 4.117629 0.610284 8
9 8 135 50 0.05327 0.00505 4.4225 0.602986 9
10 8 135 45 0.05019 0.00445 4.70524 0.587577 10
11 8 135 70 0.05101 0.00666 4.31501 0.585318 11
12 8 135 75 0.054 0.00631 4.4276 0.582127 12
13 10 192 75 0.10810 0.01933 4.27518 0.577062 13
14 8 135 70 0.05869 0.00632 4.54267 0.576243 14
15 9 156 70 0.08516 0.014968 4.09342 0.575715 15
16 8 158 53 0.07511 0.012452 4.14565 0.571288 16
17 8 135 60 0.04875 0.00603 4.57566 0.568331 17
18 8 173 59 0.08347 0.014846 4.17485 0.563744 18
19 6 70 50 0.01007 0.00128 6.82762 0.555556 19
20 6 200 50 0.04983 0.006304 4.85258 0.54408 20

Table 13  Learner phase—new 
process variables and objective 
values after interaction

Run no. New input 
parameter

Bounded input param-
eter

New response Grade analysis grade

Ip ton Vg Ip ton Vg MRR EWR Ra GRG Rank Interaction

1 10.8 200 51 8.29 200.00 50.09 0.0899 0.0154 4.1715 0.5906 6 1 and 20
2 10 200 50 6.24 122.86 50.00 0.0475 0.0079 5.1921 0.5069 20 2 and 19
3 11 135 60 9.89 153.71 59.47 0.0998 0.0146 3.6774 0.7096 2 3 and 18
4 10 193 58 8.19 166.57 57.47 0.0825 0.0141 4.0901 0.5908 5 4 and 17
5 10 224 48 9.51 190.64 53.99 0.1081 0.0164 3.8107 0.7057 3 5 and 16
6 8 150 60 8.00 145.45 60.00 0.0724 0.0125 4.2443 0.5631 10 6 and 15
7 10 200 45 10.00 193.17 48.21 0.1164 0.0158 3.7238 0.7716 1 7 and 14
8 8 140 60 8.00 136.17 67.12 0.0680 0.0123 4.4194 0.5380 14 8 and 13
9 8 135 50 8.00 135.00 73.73 0.0649 0.0124 4.6044 0.5149 17 9 and 12
10 8 135 45 8.00 135.00 52.87 0.0634 0.0105 4.3335 0.5577 11 10 and 11
11 8 135 70 8.00 135.00 72.06 0.0658 0.0124 4.5524 0.5210 16 11 and 10
12 8 135 75 8.00 135.00 70.75 0.0664 0.0124 4.5151 0.5256 15 12 and 9
13 8 135 70 9.03 167.50 72.26 0.0887 0.0162 4.1859 0.5806 8 13 and 8
14 10 192 75 8.32 152.92 68.71 0.0778 0.0142 4.2691 0.5574 12 14 and 7
15 8 135 60 8.42 135.85 60.15 0.0708 0.0119 4.1908 0.5718 9 15 and 6
16 9 156 70 8.96 156.99 65.19 0.0872 0.0147 3.9829 0.6136 4 16 and 5
17 8 158 53 8.00 171.31 55.34 0.0816 0.0140 4.1322 0.5838 7 17 and 4
18 8 173 59 6.49 102.93 50.06 0.0347 0.0063 5.5109 0.5091 18 18 and 3
19 6 70 50 6.00 70.60 50.00 0.0105 0.0032 6.6975 0.5556 13 19 and 2
20 6 200 50 6.28 181.17 54.45 0.0746 0.0140 4.7536 0.5073 19 20 and 1
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stochastic methods and the analytical models for MRR are 
compared in Fig. 15.

The results show a linear relationship between material 
removal rate and peak current, while pulse on-times of 
135 μs, 200 μs, and 250 μs and gap voltages of 50 V, 65 
V, and 75 V are considered. This is mainly because of rise 
in energy concentration of the sparks produced between 
the workpiece and electrode, which in current increases 
thermal energy. As a result, more melting and vaporiza-
tion occurs at the higher levels of current relative to low 
levels of current. In addition, similar increasing trend for 
MRR has been obtained by increasing the sparking time. 
This phenomenon is mainly related to the situation of high 
perforation duration of heat energy into the workpiece. 
Likewise, effect of input process parameter for electrode 
wear rate is analyzed in Fig. 16, while pulse on-times of 
135 μs, 200 μs, and 250 μs and peak current of 6 A, 9 A, 
and 11 A are considered.

It is noted that material loss in the electrode is in direct 
proportional relationship with pulse duration and current. 
This is because of the effect of flow of charged particles 
between the electrodes with rise in current, which in turn 
causes high tool wear at high-current condition. Also, 
there is a loss in weight of the electrode due to an increase 
in voltage gap, and due to an increase in operation dura-
tion, the electrode material gets softened, which leads to 
material loss. In fact, electrode wear is affected by differ-
ent mechanisms; knowing the evolution of electrode wear 
gives a better estimation of its service life. As a result, 
more melting and vaporization occurs at the higher levels 
of current relative to low levels of current. In addition, 
similar increasing trend for MRR has been obtained by 
increasing the sparking time. This phenomenon is mainly 
related to the situation of high perforation duration of 
heat energy into the workpiece. Likewise, effect of input 
process parameter for electrode wear rate is analyzed in 
Fig. 16, while pulse on-times of 135 μs, 200 μs, and 250 
μs and peak current of 6 A, 9 A, and 11 A are considered. 
It is noted that material loss in the electrode is in direct 
proportional relationship with pulse duration and current. 
This is because of the effect of flow of charged particles 
between the electrodes with rise in current, which in turn 
cause high tool wear at high-current condition. Also, loss 
in weight of the electrode due to increase in pulse dura-
tion are due to increase in operation duration; as a result, 
electrode material gets softened and leads to material loss.

It is proven that the electrode wear depends on the energy 
of the electrical discharges (input parameters) and the den-
sity of the electrode. Deterministic model validation has 
been done by comparing the predicted surface roughness 
with the stochastic results. Figure 17 shows the compari-
son between analytical surface roughness and stochastic 
values. The results show that the analytical model has no Ta
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linear relationship with practical observation. The surface 
roughness of the resulting craters usually represents the 
peak-to-valley roughness. The maximum depth crater of the 
damaged or machined layer is taken as 2.5–4 times the aver-
age surface roughness Ra. It is well known that the melted 
material is not fully flushed from the crater; a considered 
amount of melted material again solidifies in the crater in 
the form of a recast layer. As a result, wider and deep cra-
ters are produced on the harsh surface finishing. Indeed, this 
phenomenon can be reduced through good flushing pressure 
to particles and reduced intensity of thermal energy with 
increase in pulse interval.

The machinability of the developed LM25Al/VC 
composite was evaluated using spark EDM by vary-
ing the process variables. The machining metr ics 
(i.e., material removal rate, electrode erosion rate, 
and surface roughness) were measured and optimized 
using different optimization methods like RSM, GRG, 
VIKOR, and TLB. In the same way, phenomenological 
three-dimensional representations of these optimizer 
methods are shown in Fig. 18. The three-dimensional 
result shows that TLBO learner methods give con-
sistent GRG output among other optimizer indexes. 
Figure 18 shows a decreasing trend in TLBO learners’ 

Fig. 13  FESEM micrograph 
of surface finishing using opti-
mized factors from analytical 
model

Fig. 14  FESEM micrograph 
of surface finishing using opti-
mized factors from TLBO
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Fig. 15  Material removal rate 
versus peak current with dif-
ferent pulse on-time and gap 
voltage

Fig. 16  Electrode wear rate ver-
sus gap voltage with different 
pulse on-time and peak current

Fig. 17  Surface roughness ver-
sus pulse on-time with different 
peak current and gap voltage
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output responses with iteration in interaction and pro-
cess parameters. This is mainly due to the increased 
consistency of output responses.

5  Conclusion

In this work, analytical model and four decision-making 
multi response optimization techniques (RSM-coupled 
GRG, VIKOR, and TLBO) have been adopted to optimize 
the process parameters using performance characteris-
tics, viz., EWR, MRR, and Ra, during EDM operation of 
LM25AL/VC composite with copper electrode. Based on 
the above investigation, the following conclusions have been 
drawn:

1. Analytical models are very simple, less cost-effective, 
and time-effective, among other techniques, but linear 
relationships are not observed in practice for surface 
roughness. Because the melted material solidifies again 
on the crater and forms the recast layers, however, these 
simplified models can capture the complexity of EDM in 
a very efficient manner with effective engineering judg-
ments. Especially, the analytical approximation of the 
MRR and TWR is a promising method for approximating 
process performance analysis.

2. The validation tests were carried out to find the effec-
tiveness of the developed models. In that, TLBO learner 
phase-coupled GRG offered good predicting ability of 

the responses with lesser error average of ±1.384% 
among other predictor (error average).

3. Confidence level (R-sq) of 96.59% and 99.6% for 
MRR and EWR, respectively; ANOVA results show 
that pulse on-time and peak current are the most 
significant parameters for the responses using the 
RSM method.

4. EDS graph of unmachined LM25AL/VC showed that 
the constituents of base metal and reinforcement are 
uniform distributed in matrix material.

5. The pulse current was the most dominating parameter 
that effects on MRR and EWR and then followed by 
pulse duration

6. In terms of dimensional deviation, a lower Ip and ton 
with a higher gap voltage can be compensating. How-
ever, the less material removed and the finer surface 
finishing.

7. In terms of EWR, the lower the pulse on-time and 
high peak current, the better the solution. It has been 
discovered that high temperatures cause the electrode 
to erode and melting more quickly; resulting EWR is 
fast. Because of the strong current, high temperatures 
occur, causing additional erosion of the electrode sur-
face.

8. The present study has been attempted considering Ip, 
ton, and Vg as input parameters. However, more number 
of process inputs can be included in the future research 
based on the availability and functionality of the EDM 
setup. The present work was limited to the EDM of 
LM25Al/VC composite considering advance composite 
material in manufacturing industries.

Fig. 18  The 3D profile of opti-
mizer methods (TLBO learner 
GRG, RSM-coupled GRG, 
and VIKOR) versus number of 
experimental run
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Appendix A

Optimization parameters that obtained from curve-fitting 
through python programming

G=0.00025, M=36.991, a1=-0.5018, b1=-0.2417, c1= 
0.04579, N= 0.00357, a2=0.6384, b2=0.7848, c2=0.5708

* Python program to solve problems, for example. In 
fact, the method is the same for EWR.

import numpy as np
from scipy.optimize import curve_fit
import pandas as pd
#Surface Roughness
df = pd.read_excel("experimentaldataRa.xlsx")
# Extract the data into separate arrays
Ip =x1= df['x1'].values
ton=x2=df['x2'].values
Vg=x3 = df['x3'].values
Ra =y= df['y'].values
# Define the model function
def model(x, M, a1, b1, c1):
return (M * (x1 ** a1) * (x2 ** b1) * (x3 ** c1))
#Fit the model into data
popt, _ = curve_fit(model, (x1, x2, x3), y, p0=(1, 1, 1, 1))
#Extract the optimized parameters
M_opt, a1_opt, b1_opt, c1_opt = popt
#Print the optimized parameters
print(f"M_opt: {M_opt}")
print(f"a1_opt: {a1_opt}")
print(f"b1_opt: {b1_opt}")
print(f"c1_opt: {c1_opt}"
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