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Abstract
Aluminium 6061 (Al6061) is a widely used material for various industrial applications due to low density and high strength. 
Nevertheless, the conventional machining operations are not the best choice for the machining purposes. Therefore, amongst 
all the non-conventional machining operations, electric discharge machining (EDM) is opted to carry out the research due 
to its wide ability to cut the materials. But the high electrode wear rate (EWR) and high dimensional inaccuracy or overcut 
(OC) of EDM limit its usage. Consequently, nanopowder is added to the dielectric medium to address the abovementioned 
issues. Nanopowder mixed EDM (NPMEDM) process is a complex process in terms of performance predictability for dif-
ferent materials. Similarly, the interactions between the process parameters such as peak current (Ip), spark voltage (Sv), 
pulse on time (Pon) and powder concentration (Cp) in dielectric enhance the parametric sensitivity. In addition, the cryogenic 
treatment (CT) of electrodes makes the process complex limiting conventional simulation approaches for modelling inter-
relationships. An alternative approach requires experimental exploration and systematic investigation to model EWR and 
overcutting problems of EDM. Thus, artificial neural networks (ANNs) are used for predictive modelling of the process which 
are integrated with multi-objective genetic algorithm (MOGA) for parametric optimization. The approach uses experimental 
data based on response surface methodology (RSM) design of experiments. Moreover, the process physics is thoroughly 
discussed with parametric effect analysis supported with evidence of microscopic images, scanning electron microscopy 
(SEM) and 3D surface topographic images. Based on multi-dimensional optimization results, the NT brass electrode showed 
an improvement of 65.02% in EWR and 59.73% in OC using deionized water. However, CT brass electrode showed 78.41% 
reduction in EWR and 67.79% improved dimensional accuracy in deionized water. In addition to that, CT brass electrode 
gave 27.69% less EWR and 81.40% improved OC in deionized water compared to kerosene oil.
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Nomenclature
Al6061	� Aluminium 6061
EWR	� Electrode wear rate
SR	� Surface roughness
NT	� Non-treated

Ip	� Peak current
Pon	� Pulse on time
RLT	� Recast layer thickness
CMM	� Coordinate measuring machine
ANN	� Artificial neural network
SEM	� Scanning electron microscopy
CCD	� Central composite design
EDM	� Electric discharge machining
OC	� Overcut
MRR	� Material removal rate
CT	� Cryogenic treatment
Cp	� Powder concentration
Sv	� Spark voltage
ANOVA	� Analysis of variance
R2	� Coefficient of determination
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RSM	� Response surface methodology
MOGA	� Multi-objective optimization genetic algorithm

1  Introduction

Aluminium alloys, particularly Al6061, has great popular-
ity in the field of aircraft, marine, automotive and medical 
sectors. Such an extensive prominence of aforementioned Al 
alloy is due to its phenomenal characteristics including low 
density, high electro-thermal conductivities, superb form-
ability, excellent malleability and non-corrosive nature [1, 
2]. However, machining of said alloy is really troublesome 
when conventional processes are used because it prone to 
chips adhesion and edge deformation. This can result in 
high surface roughness (SR), electrode wear rate (EWR) 
and overcut (OC) [3–5]. SR evaluates the surface quality 
and EWR defines the electrode wear per unit time, while 
OC justifies the proper dimensional accuracy. Therefore, a 
non-conventional technique, such as EDM, has been selected 
for the cutting of Al 6061. EDM die sinker is a stochastic 
process that is applied to cut electrically conductive materi-
als [6, 7]. Irrespective of taking the mechanical features, 
EDM can develop intricate geometry with precise toler-
ances and reproducibility [3, 8–10]. The fundamental prin-
ciple of die sinker EDM revolves around eroding material 
from the specimen by means of repetitive electric sparks 
that are generated in the region of electrode (usually acts as 
cathode) and workpiece (usually acts as anode) [7, 11]. At 
first, high-voltage pulses are produced by a power supply. 
When the voltage reaches a certain threshold, the dielectric 
fluid breaks down and spark occurs between the two conduc-
tive surfaces, vaporizing a trace amount of material from 
both specimen and electrode. The removed debris are then 
resolidified over the machined cavity by a dielectric fluid 
[12]. Conventionally, kerosene oil is engaged as dielectric 
medium, but it emits hazardous gases, vapours and fumes 
which cannot only affect the human health but also disturb 
the environment [13]. This happens due to inherent proper-
ties of kerosene oil, such as high flammability, greater toxic-
ity, non-biodegradability and low viscosity [14]. Different 
studies have been found on the issues associated with the 
kerosene oil. For example, Ming et al. [15] studied that EDM 
under kerosene oil releases toxic fumes and aerosol products 
which simultaneously affect the operator’s health and air 
quality. Thus, kerosene oil is not conductive for attaining 
sustainable and green EDM. Tonshoff et al. [16] mentioned 
that hydrocarbon-based dielectric (kerosene oil) gives harm-
ful substances, i.e. aliphatic hydrocarbons, benzene, aerosol, 
dust and volatile particles. Moreover, excessive break down 
of kerosene oil yields carbon particles which adhere to the 
surface of electrode, causing hindrance in the normal dis-
charge process. A similar findings have been reported by 

Singh et al. [17], Sivapirakasam et al. [18], Radu et al. [19] 
and Dhakar et al. [20] Keeping in view the consequences of 
kerosene oil, deionized water has been utilized in this article 
for the EDM of Al 6061.

Although EDM offers many benefits, however its use 
for the fabrication of Al6061 is curtailed due to low MRR, 
EWR, poor surface finish and high geometric OC [21]. 
The solution to the given problem has been put forward by 
researchers, suggesting to mix nanopowder in the dielectric 
oil [22, 23]. The role of nanopowder in the dielectric oil 
plays a very crucial role for improving the said responses. 
The nano-additives available in the dielectric medium gener-
ate a large number of ionized particles upon the application 
of high voltage. These particles are accelerated and move 
randomly, causing dispersion in the electric discharges and 
widening the work-electrode distance. The increased dis-
tance leads to a bridging phenomenon, where the current’s 
path meshes, resulting in a stable machining operation. As 
an outcome, machining rate is augmented [24, 25]. In the 
current study, alumina (Al2O3) nanopowder has been utilized 
in the deionized water while EDM of Al 6061. Despite the 
significance of PMEDM, it is not without its drawbacks, as 
it can lead to agglomeration and suspension in the dielectric 
medium, resulting in arcing and loss of process stability. To 
address this problem, researchers have recommended the 
addition of a surfactant [26]. Therefore, this study probed 
the impact of different process parameters on EWR and OC 
using a surfactant (Span 20)-powder mixed dielectric during 
the EDM of Al 6061. The aforementioned responses have 
great importance in terms of deciding the process perfor-
mance. Such as EWR is essential to justify the dimensional 
accuracy and surface finish of the machined object, whereas 
OC is principally needed to ensure the accurate functionality 
of the end product. For instance, Chaudhari et al. [27] opti-
mized the machining parameters during PMEDM of nitinol 
shape memory alloy (SMA). The authors used Al2O3 powder 
with the EDM oil. Three input variables, namely, pulse-on 
time (Pon), pulse-off time (Poff) and Cp, were considered to 
examine MRR, SR and RLT. A particular multi-objective 
teaching-learning-based optimization (TLBO) was applied 
to find the single feasible solution. They found significant 
improvement in the values of performance variables due 
to the presence of Al2O3 powder in the EDM oil. Hosni 
and Lajis [28] assayed the effect of chromium (Cr) Cp and 
surfactant (Span-20) concentration (Cs) on AISI D2 steel 
by employing response surface methodology (RSM) during 
EDM process. The authors revealed that Cp was the most 
contributing factor in terms of improving the MRR, EWR 
and SR output parameters. They also noticed that optimal 
values for both Cp and Cs were 2.155 g/l and 10.000 g/l, 
respectively. In the context of EDM process, Abbas et al. 
[29] utilized the same workpiece material, surfactant and 
powder as stated in the previous study. They selected copper 
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as the electrode material to examine the SR of AISI D2 steel 
against three factors: Cp, Cs and Pon. A comparative assess-
ment was conducted between the findings of Cp and Cs. The 
study demonstrated that higher Cp and Ton values signifi-
cantly reduce the SR as compared to the behaviour of Cs. 
The researchers obtained the minimum SR under optimal 
settings of Cp (2 g/l) and Ton (20 µs).

Kolli and Kumar [30] proposed surfactant and graph-
ite powder-assisted EDM for titanium alloy. Analysis was 
performed on dielectric fluid behaviour, MRR, SR, RLT, 
surface topology and energy-dispersive X-ray spectroscopy. 
They claimed that addition of surfactant (Span-20) not only 
improved the responses by reducing abnormal sparks but 
also minimize the agglomerated particles and suspension in 
the dielectric medium. Paswan et al. [31] conducted a study 
to investigate the effect of deionized water mixed with gra-
phene nanopowder on the machining performance of Inconel 
718 during EDM. The study examined the MRR, SR and 
TWR of the material in relation to three design parameters: 
Ip, Pon and gap voltage (Vg). The researchers used RSM 
to optimize the machine variable settings based on these 
parameters and also conducted waveform analysis to exam-
ine the spark phenomena. The results indicated a significant 
improvement in the magnitude of responses, with values 
of MRR, TWR and SR improving by 20.1%, 2% and 14%, 
respectively. Moreover, the waveform analysis demonstrated 
that the discharge was more stable in the nanographene 
mixed dielectric as compared to conventional EDM. The 
study conducted by Rouniyar and Shandilya [32] investigates 
OC in magnetic field assisted powder mixed (MFAPM)-
EDM of Al 6061 alloy to enhance the process stability. Al 
powder was mixed with EDM oil as the dielectric. Process 
parameters such as discharge current (DC), Cp, Pon, Poff and 
magnetic field strength were varied during experimenta-
tion using Box-Behnken design. A semi-empirical model 
was formulated using dimensional analysis to predict OC 
and found better than the RSM model. Optimum process 
parameters for minimal OC were determined using the desir-
ability function approach of RSM, and DC was found to be 
the most important one. Confirmatory experiments showed 
good correlation between optimal and experimental out-
comes. The investigators sought to examine the standalone 
performance of powder type, surfactant type and CT effects 
on various workpiece surfaces during the machining process. 
The appraisal of EDM’s effectiveness is determined by the 
influence of CT on the electrodes. It has been noted that the 
introduction of CT to the electrodes induces an enhancement 
in grain structure, consequently improving responses such as 
thermal and electrical conductivities of the electrode [33].

Utilizing CT stands out as a recognized method to 
enhance electrode conductivity, marking a hallmark of mate-
rial refinement. This process contributes to the improvement 
of material properties such as hardness, toughness, grain 

size, thermal conductivity and electrical conductivity. The 
underlying rationale for these improvements is linked to the 
contraction of material microstructures when exposed to 
liquid nitrogen at − 184 °C for a specified duration. Sub-
sequently, a reverse process, tempering, is executed, lead-
ing to an increase in the aforementioned material properties 
[34, 35]. An investigation by Ozdemir [36] revealed that the 
shallow CT at − 84 °C resulted in improved hardness, wear 
and toughness properties of high Fe-Cr steel. The author 
further concluded that shallow CT also positively influenced 
the microstructure. In a study by Senthilkumar and Rajen-
dran [37] on En 19 steel, shallow CT demonstrated a 114% 
increase in wear characteristics compared to the untreated 
material. Choudhary et al. [38] employed Taguchi’s L18 
orthogonal array with CT and NT copper electrode on Has-
telloy C-4 as the EDM base material. They studied SR and 
EWR concerning input parameters like spark duration, cur-
rent and gap voltage. The findings indicated that cryo-treated 
copper electrodes exhibited lower EWR and superior SR 
compared to untreated ones. EDM machining efficiency was 
investigated by Thanigaivelan et al. [39] using cryogenically 
treated copper, brass electrodes and simple brass electrodes. 
The study revealed a 24% improvement in EWR and a 2.5% 
enhancement in OC value by adjusting the input parameters 
with CT electrodes. Papazoglou et al. [7] determined the 
cutting ability of EDM in the machining of Ti alloy grade 
2 in a dielectric medium. The authors concluded that MRR 
was largely influenced by Ip, and EWR was impacted by the 
spark-on time during the EDM machining process.

Teimouri and Baseri [40] reported about magnetic field 
assisted EDM performance in terms of EWR and OC by 
employing rotary electrode. They conducted experiments 
under three different regimes: (i) low energy, (ii) mid-
dle energy and (iii) high energy. Three input parameters, 
namely, current, rotational speed of electrode, Pon and Poff, 
were taken into account. They found that EWR upsurges 
with the increase in current and tool rotational speed. How-
ever, for the high energy regime, minimum EWR has been 
achieved due to protective layer of carbon over the tool sur-
face. Kumar and Sharma [41] also conducted their research 
on magnetic field assisted EDM of EN-31 for assessing the 
three responses, namely, MRR, EWR and OC. Likewise pre-
vious study, current, Pon and Poff were taken as input param-
eters. Their research concluded that maximum MRR and 
minimum TWR and OC were found when Pon, Poff, current 
and magnetic field set at 10 μs, 10 μs, 3.18 A and 0.3 T, 
respectively. Rashedul et al. [42] discussed the impact of 
various electrodes, namely, Ti-alloy (TC4), stainless steel 
(SS304), Cu-W alloys (W70Cu30, W80Cu20, W90Cu10) 
and brass, on the electrochemical discharge machining 
(ECDM) performance. They examined MRR, EWR and 
OC. Amongst all the mentioned electrodes, researchers 
obtained the better results of MRR, EWR and OC with the 
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Cu-W electrode (W70Cu30). This was happened because 
of its high thermal conductivity than rest of the electrodes. 
Meena et al. [43] performed multi-response optimization by 
grey relational analysis (GRA) for the EDM of commercially 
pure (CP) Ti-alloy. The MRR, EWR and OC were calculated 
against three input parameters (current, frequency and pulse 
width). They declared current as most affecting parameter. 
The GRA suggested that values of MRR, EWR and OC are 
0.006495 mm3/min, 0.005959 mm3/min and 0.048 mm, at 
optimized parametric setting (frequency = 125 kHz, cur-
rent = 35 A and pulse width = 1 μs), respectively. Ramas-
wamy and Perumal [44] machined hybrid composite LM13 
Al alloy to optimize the machining parameters through EDM 
setup. They varied current, Pon and Poff for the evaluation of 
MRR, EWR and OC. After applying ANOVA, researchers 
found that current and Pon are most contributing factors for 
MRR, EWR and OC, respectively. The desirability function 
of RSM technique was applied for the optimization of con-
flicting parameters. They noted that, at parameter setting of 
current (19.99 A), Pon (4.85 μs) and Poff (7.99 μs), 1.2830 
mm3/s, 0.3441 mm/s and 0.0607 mm values were recorded 
for MRR, EWR and OC, respectively.

After a thorough literature review, it has been observed 
that there is extensive research on surfactant and PMEDM 
of various alloys. However, the effect of NT and CT brass 
electrodes with Span-20 and alumina blend with deion-
ized water has not yet been investigated for Al6061 alloy. 
Therefore, the main objective of this study is to analyse the 
machine learning assisted PMEDM with four multivarious 
input factors—Ip, Sv, Pon and Cp(s)—on EWR and OC by 
using a mixture of Span-20 and Al2O3 nano-additives in 
deionized water during EDM of selected Al alloy with NT 
and CT brass electrode. The findings have been explained 
by incorporating the microscopic, SEM and 3D profilometry 
images. ANOVA has also been conducted to find out the sig-
nificant input parameters which directly influenced the EWR 
and OC for both the NT and the CT brass electrodes. An 

ANN has also been constructed to predict the magnitudes of 
response measures. Moreover, a comparison of experimen-
tal, RSM and ANN predicted values of EWR and OC has 
also been made for both the NT and CT brass electrodes for 
the selected Al6061 material during the machining process. 
In addition to that, a MOGA has also been performed for the 
optimal settings of input parameters where the best response 
measures have been achieved. However, a comparison has 
also been built for the deionized water and conventional 
dielectric (kerosene) for sustainable EDM.

2 � Materials and methods

The workpiece material chosen for assessing the cutting per-
formance of the mentioned Al alloy was Al6061. The cut-
ting performance of Al6061 was evaluated by measuring the 
EWR and the degree of dimensional inaccuracy. To serve as 
a dielectric fluid, deionized water was used in a specialized 
container. The chemical composition of Al6061 was ana-
lysed using spectrometry and is listed in Table 1; however, 
the physical properties are presented in Table 2 [45]. The 
workpiece has the dimensions of 60 mm × 60 mm × 5 mm.

To evaluate the cutting performance, brass with a diam-
eter of 9 mm was employed as the electrode against Al6061 
alloy, both in NT and deep CT conditions. The physical and 
electrical properties of the brass electrode can be found in 
Table 3 [46]. The deep cryogenic treatment was carried out 
in a cryogenic chamber, where the brass electrode was sub-
jected to a temperature of − 184 °C at the rate of 1 °C/min in 
liquid nitrogen for 24 h. After the cooling procedure in the 
cryogenic chamber, the electrode was subjected to tempering 
of 150 °C at the same rate at which cooling was performed 

Table 1   Chemical composition 
of Al6061

Element Wt. %

Al 95.85–98.56
Mg 0.8–1.2
Si 0.4–0.8
Cu 0.15–0.4
Pb 0.05
Ti 0.15
Zn 0.25
Fe 0.7
Cr 0.04–0.35
Ni 0.05
Sn 0.05
Mn 0.15

Table 2   Physical and electrical properties of Al6061

Sr. no Property Value

1 Density (g/mm3) 0.0027
2 Electrical resistivity (Ω·m) 4 × 10−8

3 Melting point (°C) 5.2 × 106

4 Specific heat capacity (J/g °C) 0.89
5 Thermal conductivity (W/mK) 1.66 × 102

Table 3   Physical properties of the brass electrode

Properties (units) Value

Density (g/mm3) 8.55 × 10−3

Electrical resistivity (Ω·m) 4.7 × 10−7

Melting point (°C) 990
Specific heat capacity (J/g °C) 0.380
Electrical conductivity (S/m) 16 × 106



5645The International Journal of Advanced Manufacturing Technology (2024) 130:5641–5664	

(1 °C/min). At the end, the electrode was cooled at the room 
temperature. Later the deep CT, the grain size of the brass 
electrode was improved by up to 7.89%, whereas the con-
ductivity improved by 10.70% [47]. In order to address the 
limitations of low cutting rates in EDM, three different con-
centrations (0.5, 1, 1.5 g/100 ml) of alumina (Al2O3) were 
added to the deionized water, based on preliminary trials and 
a literature review. The parametric levels used in this study 
are presented in Table 4, while the physical and chemical 
properties of alumina nanopowder are outlined in Table 5 
[48]. In order to avoid the agglomeration during the EDM 
process, a fixed concentration (6% by volume) of Span-20 
was utilized.

The experimental design employed in this study utilized 
a RSM approach known as the CCD. The experimentation 
was carried out using the EDM (Model RJ: 230) machine, as 
depicted in Fig. 1. The EWR (mm3/min) was determined by 
measuring the weight difference before and after the EDM 
process and calculating it using Eq. 1. On the other hand, the 
OC was measured using a CMM and computed using Eq. 2.

where WA and WB are the weights of the electrode before 
and after the machining, respectively, though, tm shows 
the machining time. However, in Eq. 2, Dcavity and Dtool 
are the diameters of machined profiles and the electrode, 
respectively.

The illustration outlining the OC is presented in Fig. 2. 
To determine the most effective parametric configurations 
for achieving minimal EWR and OC, preliminary experi-
ments were conducted. Parameters that exhibited less EWR 
and greater dimensional accuracy in these initial trials were 
chosen for the final workpiece experimentation involving 
both NT and CT electrodes. The selection of these defini-
tive parameters not only contributed to less EWR and high 
dimensional accuracy but also minimized the risk of over-
processing costs or tool and workpiece burning during EDM 
operations. Another vital step involved determining the sur-
factant content in the deionized dielectric. While an initial 
reference was obtained from the literature, the ultimate deci-
sion was based on preliminary experimental tests aligned 

(1)EWR =
WB −WA

tm

(2)OC =
Dcavity − Dtool

2

Table 4   Levels of input parameters

Parametric 
levels

Ip (A) Sv (V) Pon (µs) Cp (g/100 ml)

1 5 2 50 0.5
2 15 4 100 1.0
3 15 6 150 1.5

Table 5   Electrical and physical properties of alumina powder

Sr. no Properties (unit) Value

1 Density (g/cm3) 0.97
2 Electrical resistivity (µΩm) 14.2 × 10−2

3 Melting point (°C) 2045
4 Thermal expansion (K−1) 2.81 × 10−3

5 Thermal conductivity (W/mK) 35

Fig. 1   Working of EDM
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with the specified selection criteria. Initial results suggest 
that a surfactant concentration of 6% meets the requirements. 
A motorized stirrer tank was engineered to blend the sur-
factant and deionized water dielectric. The complete meth-
odology of this study is illustrated in Fig. 3.

3 � Results and discussion

Table 6 presents the experimental results of the machining 
process involving Al6061 alloy with both non-treated and 
CT brass electrodes, focusing on the measurements of EWR 
and OC. The findings and discussions are supported by the 
utilization of 3D surface plots, microscopic images and SEM 
analysis. Additionally, statistical significance analysis, ANN 
modelling for response prediction and MOGA were carried 
out.

3.1 � Parametric effect analysis

The analysis of parametric effects was conducted to examine 
the influence of NT and CT brass electrodes on the EWR 
and dimensional inaccuracy (OC) in the EDM of Al6061. 
The effects of varying process parameters (Ip, Sv, Pon and 
Cp) on the response variables were investigated using 3D 
surface plots. It is important to note that the 3D surface plots 
illustrate the impact of two parameters within their speci-
fied ranges, while the remaining parameters are kept at their 
mid-levels.

3.1.1 � Electrode wear rate

The EWR was evaluated under various process param-
eters using both NT and CT brass electrodes in the EDM 
of Al6061. Figure 4a illustrates the EWR determination 
using the NT brass electrode with the process parameters 
Ip and Sv. As shown in Fig. 4a, an increase in Ip and Sv led 
to an increase in EWR. This can be attributed to the higher 
spark density at higher Ip and Sv values, causing some of the 
discharge heat to melt and vaporize the electrode material. 
However, when the CT brass electrode was used during the 
machining process, a reduction in EWR was observed across 
all levels of process parameters, as shown in Fig. 4b, com-
pared to the NT electrode. CT offers the significant advan-
tage of improving the wear characteristics of the electrode 
[36]. This improvement can be attributed to the enhanced 
grain size and atom packing resulting from CT, which ulti-
mately leads to improve wear properties and a decrease in 
EWR.

Figure 4c presents the surface plot depicting the relation-
ship between the EWR and the process parameters Ip and Pon. 
It can be observed that both Ip and Pon have a direct impact 
on the EWR. An increase in the magnitude of these process 
parameters leads to the generation of higher discharge heat 
for a longer duration, causing some of the discharge energy 
to melt and vaporize the electrode material. However, when 
the CT brass electrode is utilized in the EDM of Al6061, the 
wear properties are improved, resulting in lesser erosion of 
the electrode material, as shown in Fig. 4d. One of the main 
reasons for the reduction in EWR is the increase in thermal 

Fig. 2   Schematic for dimensional inaccuracy or OC
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conductivity of the electrode due to CT, in accordance with 
the Wiedemann-Franz-Lorenz law. The enhanced thermal 
conductivity facilitates rapid heat transfer from the electrode 
to the workpiece material, thereby reducing the EWR [47].

The EWR was also assessed by varying the levels of Ip 
and Cp of Al2O3, as depicted in Fig. 4e and f, for the EDM 
of Al6061 using both NT and CT brass electrodes. Figure 4e 
shows that an increase in the magnitude of Ip leads to high 
EWR. However, alumina concentration up to an optimal 

level (1 g/100 ml) results in an increase in EWR, but after 
that a depreciation was found in the magnitude of EWR. 
This is due to the fact that the highest Cp formed agglomera-
tion, due to which no heat energy transfer to brass electrode 
and hence, a drop was recorded in EWR. However, when the 
CT brass electrode is used instead of the NT brass electrode, 
a decrease in EWR is observed at every level of process 
parameters (Ip and Pc), as shown in Fig. 4f. This decrease 
can be attributed to the improved wear characteristics of the 
CT brass electrode. The CT enhances the thermal conductiv-
ity of the brass electrode, leading to improved heat dissipa-
tion and reduced heat trapping in the electrode. As a result, 
the EWR decreases [49, 50].

3.1.2 � Overcut

Figure 5a illustrates the impact of Ip and Sv on the OC dur-
ing the machining of Al6061 using the NT brass electrode. 
It can be observed that an increase in either Ip or Sv leads 
to an increase in OC. This is because the higher discharge 
heat generated during the spark causes an increase in OC. 
Figure 6a–d provide a schematic representation of the gen-
eration of plasma channels at different magnitudes of Ip and 

Fig. 3   Research methodology of this study

Table 6   Experimental results of response measures

Machining responses

Non-treated brass Treated brass

EWR OC EWR OC

mm3/min mm mm3/min mm

Mean 8.27 0.18 6.44 0.15
Median 8.23 0.18 6.235 0.16
Std. Dev 2.22 0.04 2.29 0.04
Minimum 3.67 0.09 1.62 0.04
Maximum 12.11 0.26 10.11 0.24
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Sv. At lower values of these process parameters, as shown 
in Fig. 6a, the width of the plasma channel is narrower com-
pared to Fig. 6b. However, as the values of Ip and Sv increase, 
the width of the plasma channel also increases. The increase 
in plasma channel width leads to a higher discharge heat dur-
ing the EDM process, resulting in the melting and vaporiza-
tion of the workpiece material, thus causing a higher OC. 
On the other hand, when the CT brass electrode is used with 
Al6061, regular sparking is observed even at high values of 
the input parameters. This leads to a reduction in OC com-
pared to the NT electrode, as the regular sparking prevents 
excessive material melting and vaporization, resulting in a 
decreased OC.

Figure 5c presents the evaluation of OC by varying the 
levels of Ip and Pon during the EDM of Al6061 using the 
NT brass electrode. It can be observed from Fig. 5c that an 
increase in the magnitude of Ip and Pon leads to an increase 
in OC. This is attributed to the higher magnitude of process 
parameters, which results in an increased plasma channel, as 
depicted in Fig. 6a–d. However, when the CT brass electrode 
is utilized for the machining of Al6061 in the presence of 
deionized water, Fig. 5d shows a decrease in OC compared 
to the NT brass electrode shown in Fig. 5c. The improved 
performance of the CT brass electrode can be attributed to 
the reduction in grain size and the prevention of irregular 
sparking, resulting in a more controlled and precise machin-
ing process, hence leading to a decreased OC.

The OC was examined with various input parameters 
(Ip and Cp) using both the NT and CT brass electrode dur-
ing the machining of Al6061 in the presence of deionized 
water. Figure 5e demonstrates that an increase in Ip leads 
to an increase in OC, while the addition of alumina up to a 
concentration of 1.0 g/100 ml increases OC, but a decline 
is observed thereafter. This can be attributed to agglomera-
tion occurring beyond the optimal concentration of alumina, 
which hinders the widening of the plasma channel, result-
ing in a decrease in OC at higher alumina Cps. However, 
when the CT brass electrode is used instead of the NT brass 
electrode, Fig. 5f illustrates a decrease in OC compared to 
Fig. 5e. This is because the spark density generated by the 
CT brass electrode is more uniform in comparison to the NT 
brass electrode. The grain size refinement achieved through 
CT facilitates regular and consistent sparking, leading to 
improved dimensional accuracy and a decrease in OC.

3.2 � Surface topographic analysis

Surface topographic analysis has been investigated for EWR 
and OC in the EDM process of Al6061. This analysis was 
conducted using both NT and CT brass electrodes. The 

effects of variations in input parameters (Ip, Sv, Pon and Cp) 
on the output variables have been examined through micro-
scopic and SEM images. Additionally, 3D surfaces profilom-
etry images have been included to assess the surface texture 
of the machined profiles.

3.2.1 � Overcut

The diametric error for EDMed surface has been presented 
in Fig. 7a and b due to NT and CT brass electrodes. The 
NT brass electrode gave the highest OC magnitude due to 
irregular and uneven sparking. However, if the CT brass 
electrode has been engaged, then OC magnitude has been 
reduced due to grain size refinement of brass electrode as 
presented in Fig. 7b. In order to further explore the diamet-
ric error profiles, SEMs have been performed to study the 
recast layer. Thereof, if a NT brass electrode engaged for 
the machining purposes of Al6061, then it gave the highest 
melts redeposited during the sparking phenomenon. This is 
due to the fact that the irregular and uneven spark did not 
expel the debris properly from the workpiece surface and 
hence during the pulse off duration these debris redeposited 
on the workpiece surface and results in the increase of OC 
as shown in Fig. 8a. However, when CT brass electrode was 
engaged then due to grain size refinement, regular and even 
sparking expelled the debris in more refined way and results 
in better dimensional accuracy as shown in Fig. 8b.

3.2.2 � Electrode wear rate

Figure 9a displays a microscopic image revealing shallow 
and small craters on the machined profile of an NT brass 
electrode when process parameters are set at small magni-
tudes. The 3D surface topography of the machined specimen 
demonstrates small-heightened peaks and valleys, indicating 
a low EWR. This low EWR can be attributed to the use of 
low process parameter values, resulting in a low-intensity 
spark density that only partially melts the brass electrode. 
Since the surface of the workpiece reflects the electrode, 
SEM analysis of the machined specimen (Fig. 10a) confirms 
the presence of shallow and small craters. Conversely, when 
the NT brass electrode is employed to machine Al6061 at 
higher process parameter magnitudes, deep and wide craters 
are formed on the machined surface as shown in Fig. 9b. The 
3D surface topography exhibits heightened peaks and val-
leys compared to those observed at low process parameter 
magnitudes. The formation of these deep and wide craters 
is attributed to the generation of a wider plasma channel. 
SEM analysis performed shown in Fig. 10b under high pro-
cess parameter magnitudes reveals the presence of deep and 
wider craters on the surface of Al6061. It can be inferred that 
these deep craters are also present on the surface of the brass 
electrode due to the high intensity of the plasma channel.

Fig. 4   The 3D surface plots of EWR at different processing param-
eters using a, c, e NT brass electrode; b, d, f DCT brass electrode

◂
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The utilization of a CT brass electrode leads to a reduc-
tion in EWR even at low process parameter magnitudes. 
Figure 11a displays a microscopic image depicting shal-
low and small craters on the brass electrode’s surface, 
indicating minimal erosion of the electrode material. 
Additionally, the 3D surface topographic view reveals 
short-heightened peaks and valleys, signifying improved 
surface generation and a smaller heat-affected zone. The 
decrease in EWR for the brass electrode can be attributed 
to the increased thermal conductivity resulting from CT. 
This treatment prevents the trapping of heat generated 
during the spark and facilitates its immediate transfer to 
the workpiece. The rapid heat transfer from the electrode 
to the base material contributes to the reduced EWR. To 
examine the surface of machined Al6061, SEM analy-
sis was performed on the Al alloy (Fig. 12a) machined 
at low process parameters. Shallow and small craters are 
observed on the machined specimen, and these craters 
are smaller in comparison to those created by the NT 
brass electrode. On the other hand, when the CT brass 
electrode is employed against the base material at high 
process parameter magnitudes, shallow and wide craters 
form on the brass electrode’s surface (Fig. 11b). The shal-
low craters indicate minimal material erosion from the 
electrode. The 3D surface topographic view demonstrates 
short-heightened peaks and valleys, albeit smaller in com-
parison to those formed when using the NT brass electrode 
for machining Al6061. The reduced EWR can be attributed 
to CT, which enhances the thermal conductivity of the 
brass electrode, prevents heat from getting trapped within 
the electrode and promotes rapid heat transfer to the base 
material. At high process parameter magnitudes, SEM 
analysis (Fig. 12b) reveals deeper and smaller craters on 
the surface of Al6061, further supporting the notion that 
the CT brass electrode generates smaller craters.

3.3 � Parametric significance analysis

The adequacy of the generated models was assessed using 
the ANOVA technique. ANOVA was employed to evaluate 
the statistical significance and examine the effects of pro-
cess parameters and their interactions on each individual 
response. The significance of the parameters was deter-
mined by analysing their p values, while the percentage 
contribution was determined based on the F values. By 
comparing the R2, adjusted R2 and predicted R2 values, 
ANOVA was used to determine the statistical adequacy 
of the produced models.

3.3.1 � Electrode wear rate

Table  7 presents the ANOVA results for EWRNT and 
EWRDCT, obtained by utilizing the NT and CT brass elec-
trodes, respectively. For EWRNT, all main effect input 
parameters exhibit p values lower than 0.05, indicating their 
significance as model terms. Additionally, the parametric 
interaction of Sv × Pon is also found to be significant. Fur-
thermore, the quadratic effect (Cp

2) demonstrates a p value 
below 0.05, indicating its significant parametric nature. As 
for EWRDCT, the main input parameters Ip2, Sv2 and Pon2 are 
significant, while the p values for the interaction combina-
tions Ip × Sv and Sv × Pon are also below 0.05, suggesting their 
significance as model terms. Similar to EWRNT, the quadratic 
effect (Cp

2) remains significant for EWRDCT. The adequacy 
measures R2 for both response measures exceed 0.9, indicat-
ing a high level of reliability. Moreover, the S/N ratios of 
13.9073 and 14.6646 signify an adequate signal, allowing 
the empirical models to be employed for predicting EWRNT 
and EWRDCT values using Eqs. 3 and 4, respectively.

3.3.2 � Overcut

Table 8 displays the results of the ANOVA performed using 
an NT and CT brass electrode for OCNT and OCDCT within 
the specified range of input variables. For OCNT, all main 
effect parameters exhibit p values below 0.05, indicating 
their significance as terms in the model. Additionally, the p 
values for interaction combinations such as Sv × Pon, Sv × Cp 
and Pon × Cp are also below 0.05, indicating their signifi-
cance as model terms. The quadratic effect (Cp

2) is also 
found to be a significant model term. In the case of OCDCT, 
all main effect parameters, interaction effects (Ip × Sv, Sv × Pon 

(3)

EWRNT = −6.68368 + 0.369211 × Ip − 0.439430 × Sv

+ 0.045741 × Pon + 19.01242 × Cp − 0.017000 × Ip

× Sv − 0.000388 × Ip × Pon − 0.039750 × Ip

× Cp + 0.005600 × Sv × Pon − 0.077500

× Sv × Cp − 0.010850 × Pon × Cp − 0.003157 × Ip
2

+ 0.101075 × Sv
2 − 0.000142 × Pon

2 − 9.02281 × Cp
2

(4)

EWRDCT = −9.85804 + 0.333678 × Ip − 0.100986 × Sv

+ 0.049863 × Pon + 19.59620 × Cp − 0.027781

× Ip × Sv − 0.000466 × Ip × Pon − 0.028875

× Ip × Cp + 0.005994 × Sv × Pon − 0.131875

× Sv × Cp − 0.008375 × Pon × Cp − 0.000585

× Ip
2 + 0.089123 × Sv

2 − 0.000167 × Pon
2

− 9.27404 × Cp
2

Fig. 5   The 3D surface plots of OC at different processing parameters 
using a, c, e NT brass electrode; b, d, f DCT brass electrode

◂
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Fig. 6   Schematic of plasma generation and OC

Fig. 7   Diametric error of machined profiles using a NT brass electrode; b DCT brass electrode
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Fig. 8   Recast layer of melted debris on workpiece using a NT brass electrode; b DCT brass electrode

Fig. 9   Micrographs of machined NT brass electrode at a small magnitudes of process parameters; b high magnitudes of process parameters
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Fig. 10   SEM of machined specimen for EWRNT at a small magnitudes of process parameters; b high magnitudes of process parameters

Fig. 11   Micrographs of machined DCT brass electrode at a small magnitudes of process parameters; b high magnitudes of process parameters
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and Pon × Cp) and the quadratic effect (Cp
2) demonstrate sig-

nificant model terms, as indicated by the respective p values. 
As presented in Table 8, the adequacy measure R2 exceeds 
0.93, signifying a high level of reliability. Moreover, the 

adequacy precision values of 14.9966 and 17.5218 indicate 
a strong signal, allowing the empirical model to be utilized 
for estimating the values of the selected response measures, 
namely, OCNT and OCDCT, using Eqs. 5 and 6, respectively.

Fig. 12   SEM of machined specimen for EWRDCT at a small magnitudes of process parameters; b high magnitudes of process parameters

Table 7   ANOVA for EWRNT and EWRDCT

EWRNT EWRDCT

Source F value p value Source F value p value

Model 13.60  < 0.0001 Model 14.94  < 0.0001
Ip 40.96  < 0.0001 Ip 42.77  < 0.0001
Sv 35.61  < 0.0001 Sv 44.81  < 0.0001
Pon 33.13  < 0.0001 Pon 39.82  < 0.0001
Cp 6.56 0.0217 Cp 3.59 0.0777
Ip × Sv 2.57 0.1298 Ip × Sv 7.00 0.0184
Ip × Pon 0.8343 0.3755 Ip × Pon 1.23 0.2845
Ip × Cp 0.8779 0.3636 Ip × Cp 0.4726 0.5023
Sv × Pon 6.97 0.0186 Sv × Pon 8.14 0.0121
Sv × Cp 0.1335 0.7199 Sv × Cp 0.3943 0.5395
Pon × Cp 1.64 0.2204 Pon × Cp 0.9939 0.3346
Ip2 0.3587 0.5582 Ip2 0.0126 0.9122
Sv2 0.5883 0.4550 Sv2 0.4666 0.5050
Pon2 0.4553 0.5101 Pon2 0.6430 0.4351
Cp

2 18.31 0.0007 Cp
2 19.73 0.0005

Lack of fit 2.87 0.1279 Lack of fit 29.56 0.0008
Model summary

  Std. Dev 0.8485 R2 0.9270 Std. Dev 0.8401 R2 0.9331
  Mean 8.28 Adjusted R2 0.8589 Mean 6.44 Adjusted R2 0.8706
  C.V. % 10.25 Predicted R2 0.7396 C.V. % 13.04 Predicted R2 0.6888
  Adequacy precision 13.9073 – – Adequacy precision 14.6646 – –
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(5)

OCNT = −0.172098 − 0.001120 × Ip + 0.012928 × Sv

+ 0.002193 × Pon + 0.418516 × Cp − 0.000125

× Ip × Sv + 0.000012 × Ip × Pon − 0.000250

× Ip × Cp − 0.000125 × Sv × Pon + 0.010000

× Sv × Cp − 0.000850 × Pon × Cp + 0.000111

× Ip
2 + 0.000285 × Sv

2 − 3.54386E − 06

× Pon
2 − 0.195439 × Cp

2

3.4 � Predictive model development using machine 
learning

A multilayer perceptron, also known as an ANN, is a power-
ful tool for mapping process variables to output responses 
and making forecasts. This method is capable of effectively 
capturing complex non-linear and quadratic interactions in 
high-dimensional input spaces, even in systems with weakly 
defined relationships [51, 52]. In this study, the ANN is uti-
lized to investigate two response measures, namely, EWR 
and OC, using both NT and CT brass electrodes. The ANN 
operates in a similar manner to the human brain, capable of 
performing highly non-linear tasks through the manipulation 
of bias and weight values. The error back propagation train-
ing algorithm (EBPTA) is employed to model the response 

(6)

OCDCT = −0.263363 + 0.002732 × Ip + 0.061897 × Sv

+ 0.001198 × Pon + 0.379671 × Cp − 0.000625

× Ip × Sv + 0.000015 × Ip × Pon − 0.000750

× Ip × Cp − 0.000113 × Sv × Pon + 0.007500

× Sv × Cp − 0.000800 × Pon × Cp + 0.000073

× Ip
2 − 0.004430 × Sv

2 + 9.12281E − 07

× Pon
2 − 0.170877 × Cp

2

Table 8   ANOVA for OCNT and OCDCT

OCNT OCDCT

Source F value p value Source F value p value

Model 17.35  < 0.0001 Model 20.36  < 0.0001
Ip 57.39  < 0.0001 Ip 73.71  < 0.0001
Sv 36.36  < 0.0001 Sv 52.27  < 0.0001
Pon 20.10 0.0004 Pon 23.23 0.0002
Cp 8.63 0.0102 Cp 10.00 0.0064
Ip × Sv 0.4302 0.5218 Ip × Sv 10.21 0.0060
Ip × Pon 2.69 0.1218 Ip × Pon 3.68 0.0745
Ip × Cp 0.1076 0.7475 Ip × Cp 0.9188 0.3530
Sv × Pon 10.76 0.0051 Sv × Pon 8.27 0.0116
Sv × Cp 6.88 0.0192 Sv × Cp 3.68 0.0745
Pon × Cp 31.09  < 0.0001 Pon × Cp 26.13 0.0001
Ip2 1.38 0.2578 Ip2 0.5608 0.4655
Sv2 0.0145 0.9058 Sv2 3.32 0.0884
Pon2 0.8750 0.3644 Pon2 0.0550 0.8177
Cp

2 26.61 0.0001 Cp
2 19.31 0.0005

Lack of fit 0.9527 0.5589 Lack of fit 2.00 0.2292
Model summary

  Std. Dev 0.0152 R2 0.9418 Std. Dev 0.0156 R2 0.9500
  Mean 0.1847 Adjusted R2 0.8876 Mean 0.1567 Adjusted R2 0.9033
  C.V. % 8.26 Predicted R2 0.7074 C.V. % 9.99 Predicted R2 0.7413
  Adequacy precision 14.9966 – – Adequacy precision 17.5218 – –

Fig. 13   Structure of present ANN study
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measures in this investigation [53]. Figure 13 illustrates the 
structure of the ANN used in the current study.

Figure 13 demonstrates the utilization of a three-layered 
ANN in the current study. The first layer represents the input 
layer, consisting of four process parameters (Ip, Sv, Pon and 
Cp). The second layer, known as the hidden layer, contains 
a variable number of neurons ranging from 3 to 10, selected 
to optimize the performance of the ANN model. By appro-
priately adjusting the complexity of the model’s architecture, 
better performance and more accurate predictions along the 
curve can be achieved. It is important to strike a balance, as 
an overly complex architecture may hinder the model’s abil-
ity to generalize, while too few neurons may result in poor 
fitting and inaccuracies across the data. Hence, the range 
for the ideal number of neurons is carefully chosen, typi-
cally ranging between 1 and 2.5 times the number of input 
variables [54]. The third and final layer is the output layer, 
comprising four response measures (EWRNT, EWRDCT, OCNT 

and OCDCT). During the training process, 80% of the avail-
able data is used, while 10% is allocated for both testing and 
validation of the ANN model, respectively. Figure 14 high-
lights the cumulative regression coefficient R value of the 
ANN modelling, which is 0.98797, indicating a close rela-
tionship between the target and output values. The regres-
sion plot for the predicted ANN is also depicted. The R2 is 
an essential metric for evaluating the training performance 
of machine learning models [55]. It quantifies the proportion 
of the variance in the target variable that can be explained by 
the model. The mathematical expression of R2 is given as:

Here, yi is the actual value of output variables whereas 
ŷi is the model-predicted value of the output variable; yi 

(7)R2 = 1 −

∑N

i
(yi − ŷi)

2

∑N

i
(yi − yi)

2

Fig. 14   ANN predicted EWR 
and OC for training, testing and 
validation
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Fig. 15   Comparison of EWR and OC in experimental, ANN and RSM magnitudes using a, c NT brass electrode; b, d DCT brass electrode

Fig. 16   Working schematic of 
MOGA
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is the mean of yi and i = 1, 2, 3…, N equal to the total 
number of observations. R2 is a measure of accuracy and 
varies from zero (poor prediction performance) to one 
(perfect degree of fit).

As it is mentioned earlier that the ANN model is used 
to predict the values of response measures and the R2 in 
each of response measure is greater than 0.98. Herein, a 
comparison is developed amongst the values of response 
measures obtained using the experimental values and 
the predicted values using the ANN and RSM model as 

shown in Fig. 15a–d. The ANN model performed well in 
predicting the values of response measure in each case, 
i.e. EWRNT, EWRDCT, OCNT and OCDCT. Thereof, it is 
concluded that the ANN model is the comparatively bet-
ter performing model to estimate the value of response 
measures.

Table 9   Optimal solutions suggested by MOGA

Sr. no EWR_NT 
(mm3/min)

OC_NT (mm) EWR_DCT 
(mm3/min)

OC_DCT (mm) Ip (A) Sv (V) Pon (µs) Cp (g/100 ml)

1 3.6690 0.1583 4.7631 0.0947 8.941 2.215 60.580 0.938
2 3.6710 0.1581 4.7405 0.0941 8.935 2.184 60.593 0.939
3 4.2485 0.1038 2.2602 0.0808 9.202 2.125 65.716 1.499
4 4.8029 0.1130 2.4706 0.0390 8.814 3.779 59.850 0.536
5 3.6742 0.1475 4.2628 0.1122 9.447 3.652 59.341 0.734
6 4.4297 0.1217 2.8927 0.0476 8.861 3.631 60.160 0.594
7 3.6700 0.1620 4.0180 0.0943 9.054 2.685 61.990 0.688
8 5.1536 0.1119 2.4370 0.0428 8.819 3.938 59.977 0.516
9 5.0079 0.1120 2.3976 0.0401 8.819 3.875 60.040 0.516
10 4.1496 0.1463 3.3855 0.0655 9.038 2.993 61.440 0.626
11 4.3262 0.1088 2.0922 0.0884 11.340 2.139 63.930 1.499
12 4.2360 0.1047 2.1825 0.0773 9.173 2.139 62.198 1.488
13 3.7758 0.1391 3.6007 0.0766 9.057 3.425 59.743 0.666
14 4.5348 0.1196 2.9876 0.0494 9.186 3.689 59.375 0.594
15 3.6690 0.1583 4.7631 0.0947 8.941 2.215 60.580 0.938
16 4.1600 0.1410 3.2362 0.0598 9.017 3.027 60.414 0.615
17 4.1490 0.1325 3.5660 0.0740 9.329 3.650 59.690 0.657
18 4.5619 0.1332 2.7185 0.0460 8.912 2.549 60.461 0.542

Fig. 17   Comparison of MOGA suggested optimal solutions of response measures a EWR; b OC
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3.5 � Multi‑dimensional optimization 
through genetic algorithm

The MOGA is an evolutionary algorithm that can tackle 
optimization problems with multiple objectives. Since these 
objectives may conflict with each other, MOGA attempts 
to find a trade-off between them. The algorithm simultane-
ously searches for multiple solutions using genetic operators 
such as mutation and crossover. Each solution is evaluated 
based on its objectives, and the best solutions are selected for 
the next generation. The top solutions are then combined to 
produce even better ones, and this process is repeated until 

a satisfactory solution is reached. The working schematic of 
MOGA is presented in Fig. 16.

In this study, MOGA is used to optimize the magnitudes of 
input variables for optimal solution of EWR and OC in both 
cases, i.e. NT and CT brass electrodes. Equation 8 highlights 
the objective function used to optimize the values of input 
variables, whereas Eq. 9 depicts the constraints for the objec-
tive function.

Once MOGA is executed within the specified constraints, 
Table 9 indicates the multiple solutions for both input vari-
ables and output responses are successfully obtained.

The algorithm determined that to minimizing the EWR 
and OC, cryogenic treatment with process parameters, i.e. 
Ip, Sv, Pon and Cp values of 9.173 (A), 2.139 (V), 62.198 
(µs) and 1.488 (g/100 ml), respectively, should be employed. 
As a result, multi-objective function suggests the EWRNT 

(8)Objective function ∶ f =

{
Minimize EWR

Minimize OC

(9)Constraints ∶

⎧
⎪⎨⎪⎩

5 ≤ Ip ≤ 25

2 ≤ Sv ≤ 6

50 ≤ Pon ≤ 150

0.5 ≤ Cp ≤ 1.5

Table 10   Detailed information needed for confirmatory experiments

Response meas-
ures

DOE 
response 
magnitude

MOGA sug-
gested confirma-
tory results

% improve-
ment from DOE 
results

EWRNT (mm3/
min)

12.11 4.2360 65.02%

OCNT (mm) 0.26 0.1047 59.73%
EWRCT (mm3/

min)
10.11 2.1825 78.41%

OCCT (mm) 0.24 0.0773 67.79%

Table 11   Comparison of 
current findings with the 
existing literature

References Alloys EWR_NT OC_NT EWR_CT OC_CT

Current study Al6061 3.67 0.09 1.62 0.04
Bains et al. [56] Ti-6Al-4 V 0.4260 – – –
Papazoglou et al. [7] Ti-6Al-4 V Gr2 0.5350 – – –
Perumal et al. [57] Ti-6242 0.0033 0.82 – –
Choudhary et al. [58] Ti-6Al-4 V Gr5 – – 3.1 –

Fig. 18   Comparison of the deionized water and kerosene oil in terms of a EWRNT, EWRDCT; b OCNT, OCDCT
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of 4.2360 mm3/min and 2.1825 mm3/min for EWRDCT, as 
shown in Fig. 17a. However, the magnitudes suggested 
by MOGA for OCNT and OCDCT are 0.1047  mm and 
0.0773 mm, respectively, as shown in Fig. 17b. However, 
the confirmatory results of response measures have been 
presented in Table 10.

Table 10 highlights the results for confirmatory experi-
ments obtained using MOGA for both the EWR and OC in 
the case of NT and CT brass electrodes. It has been found 
that NT brass electrode gave 65.02% and 59.73% improve-
ments in EWR and OC, respectively, when experimental 
unoptimized settings are compared with MOGA sug-
gested values of response measures. However, significant 
improvements in EWR of 78.41% and OC 67.79% have been 
recorded, when CT brass electrode is engaged for EDM of 
Al6061. It is worth noting that the confirmatory results of 
CT brass electrode for both the EWR and OC are better than 
that of results NT brass electrode. However, the comparison 
of current study with the literature is presented in Table 11.

A comparison has been developed of EWR and OC 
obtained in deionized water to the conventional dielectric 
fluid by incorporating both the NT and CT brass electrodes 
as shown in Fig. 18a and b. If NT brass electrode employed 
to machine the Al6061, then an improvement of 30.47% in 
EWR and 12.5% in OC was found when deionized water 
used compared to kerosene oil. However, CT brass electrode 
gave 27.69% less EWR and 81.40% improved OC in deion-
ized water compared to kerosene oil.

4 � Conclusions

The multi-dimensional evaluation of Al6061 against dif-
ferent performance measures is carried out comprehen-
sively. The experimental results have been explained with 
the microscopic, SEM and 3D surface topographic images. 
Analysis of variance was performed significant input param-
eters. Along with that, the machine learning is used for pre-
dictive modelling of the process. Moreover, the comparison 
has been built for the experimental, RSM and ANN pre-
dicted values for EWR and OC for both the NT and CT brass 
electrodes. Later, the multi-objective optimization through 
genetic algorithm has been executed for optimal parametric 
settings. The process science is thoroughly discussed using 
parametric effect analysis. After the detailed analysis, the 
key conclusions drawn from study are as follows:

•	 The minimum magnitude of EWR (1.26 mm3/min) has 
been obtained with the CT brass electrode which is 
65.66% better than the lowest value of EWR (3.67 mm3/
min) obtained by the NT brass electrode in deionized 
water during the EDM of Al6061. CT brass electrode 
showed a decrease in EWR is observed at every level of 

process parameters (Ip and Cp), as compared to NT brass 
electrode. This decrease is mainly because of improved 
wear characteristics of the CT brass electrode.

•	 In the same way, the lowest OC (0.04 mm) magnitude has 
been recorded with CT brass electrode, which is 55.55% 
better than the lowest value of OC (0.09 mm) gained by 
engaging the NT brass electrode. An increase in Ip leads 
to an increase in OC. Similarly, the addition of alumina 
up to a concentration of 1.0 g/100 ml increased OC, but 
a decline is observed thereafter. The decline is attributed 
to agglomeration occurring beyond the optimal concen-
tration of alumina, which hinders the widening of the 
plasma channel, resulting in a decrease in OC at higher 
alumina Cps.

•	 Cryogenic treatment greatly impacts on the microstruc-
ture and the grain size refinement of the brass electrode. 
The NT brass electrode resulted in the highest OC mag-
nitude due to irregular and uneven sparking. However, 
the CT brass electrode has shown that OC magnitude is 
significantly reduced due to grain size refinement of brass 
electrode.

•	 For OCNT, all main effect parameters exhibit p values 
below 0.05, indicating their significance as terms in the 
model. In the case of OCDCT, all main effect parameters, 
interaction effects (Ip × Sv, Sv × Pon and Pon × Cp) and the 
quadratic effect (Cp

2) demonstrate significant model 
terms, as indicated by the respective p values.

•	 The cumulative regression coefficient R value of the 
ANN modelling, which is 0.98797, indicates a close 
relationship between the target and output values.

•	 The multi-objective optimization through genetic algo-
rithm has revealed that NT brass electrode gave 65.02% 
and 59.73% improvements in EWR and OC, respectively, 
when experimental unoptimized settings are compared 
with MOGA suggested values of response measures. 
However, significant improvements in EWR of 78.41% 
and OC 67.79% have been recorded, when CT brass elec-
trode is engaged for EDM of Al6061.

•	 Based on multi-dimensional optimization results, the 
NT brass electrode showed an improvement of 30.47% 
in EWR and 12.5% in OC using deionized water as 
compared to kerosene oil. However, CT brass electrode 
showed 27.69% better or less EWR and 81.40% improved 
OC in deionized water compared to kerosene oil.
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