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Abstract
In the process of rotating machinery fault diagnosis (RMFD), the lack of feature conditions leads to the problem of low 
accuracy of traditional rule-based reasoning methods FD. This paper proposed a knowledge graph (KG)-driven device FD 
method and applied it to RMFD. First, we proposed a multi-level KG construction method to get multi-source data based on 
each level and analyzed the levels that affected the system state. A single-level KG was constructed through data features, 
and a multilevel KG with a stereostructure was built using a multi-source data fusion model as data support for FD. Second, 
we proposed an approach based on multilevel KG and Bayes theory to detect the system state and located the source of faults 
by combining the KG reasoning based on relational paths, then used the relationships between the structures of rotating 
mechanical equipment for fault cause reasoning and used the KG as a knowledge base for a reason using machine learning. 
Finally, the proposed method was validated using a steelworks motor as an example and compared with other ways, such 
as rule-based FD. The results show that under the condition of missing input features, the accuracy of the proposed method 
reaches 91.1%, which is significantly higher than other methods and effectively solves the problem of low diagnostic accuracy.

Keywords Knowledge graph · Rotating machinery · Fault diagnosis · Rule-based reasoning method

1 Introduction

In the iron and steel process industry, every year, because 
of a variety of equipment failures caused by production line 
shutdowns and low production efficiency caused by substan-
tial economic losses, so to find a more accurate identification 
of equipment FD program for the production operation of 
the safety and stability and cost reduction plays an important 
role.

Traditional methods for equipment FD usually rely on 
expert experience and rule bases [1–3]. Ding et  al. [4] 
proposed a class of FD methods for triangular nonlinear 

uncertain systems by calculating the residuals between 
the model output values and the actual measured values. 
The diagnostic method requires an in-depth understanding 
of the mechanism model of the equipment failure process. 
When the analytical model deviates from the actual situ-
ation, it will cause a sizeable diagnostic deviation [5–7], 
which poorly applies to rotating mechanical equipment with 
complex mechanisms models and variable working condi-
tions, by introducing the support vector machine to monitor 
the equipment data for multi-faceted data analysis, process-
ing, extracting the fault characteristics of the equipment, and 
diagnosing the faults [8, 9]. The diagnostic method does 
not rely on precise mechanism models and combines the 
powerful computational capability of computers with FD, 
which is universal for equipment FD. Yang et al. [10] used a 
convolutional neural network to extract transferable features 
from raw vibration data and develop a regularization term 
for multi-layer domain adaptation and pseudo-label learning 
that reduces distributional differences and inter-class dis-
tances of the learned transferable features, providing higher 
diagnostic accuracy. However, the method has very high 
requirements for the accuracy of extracted fault features, 
and the interpretability of the diagnostic results is limited 
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because of the lack of fault knowledge and process knowl-
edge support [11]. Knowledge-based FD methods can solve 
this problem, which have good interpretability, do not need 
to construct complex mathematical mechanism models, and 
also can update the fault knowledge.

In recent years, KGs have attracted much attention, and 
various approaches have emerged [12], by constructing a 
graph-based data organization structure [13] that describes 
the various concepts, entities, and relationships between 
entities of a device; provides better organization, manage-
ment, and understanding of large amounts of information 
[14]; supports efficient data retrieval; and handles complex 
and varied associative representations [15] to form a KG for 
the troubleshooting of RM equipment. Fault knowledge is 
organized and stored as ternary groups to achieve semantic 
representation of faults, which is conducive to the mining 
of diagnostic knowledge [16–18], solves the problem of 
the accuracy of personnel diagnosis and decision-making, 
improves the intelligence of equipment FD, and reduces the 
occurrence of issues such as unplanned shutdowns of steel 
production line equipment. Li et al. [19] proposed an alarm 
KG based on graph neural networks to guide fault locali-
zation using network alarm knowledge. Factual knowledge 
stored in a knowledge base or KG is used as FD and inte-
grated to improve the intelligent application of the device 
[20, 21]. Although the above FD methods do not require the 
establishment of complex mechanism models for RM, and 
the results are highly interpretable, the method still lacks the 
knowledge of RM FD and its coupled knowledge linkage 
for further mining and utilization, and the accuracy of the 
diagnostic inputs is highly required.

Steel manufacturing scenarios are characterized by vari-
ous equipment types, highly complex relationships between 
equipment and failures, incomplete historical data recorded 
by maintenance personnel, and many sudden and rare failure 
phenomena that go unrecorded. Therefore, if there is a lot 
of equipment or fault-related missing data, diagnosis results 
will also appear more significant bias. To solve the above 
problems, Li et al. [22] used the limited auxiliary knowledge 
provided by the graph neural network in the test phase to 
calculate the embedding vector of the new entity and solve 
the problem of a missing feature. Tanon et al. [23] used a 
completeness-aware scoring function for relational associa-
tion rules and proposed that the rule-ranking approach had 
significantly higher accuracy in detecting missing entities. 
Xiong et al. [24] proposed a method with knowledge-based 
reasoning that uses reinforcement learning with pre-trained 
embeddings to predict whether a relationship exists between 
a head entity and a given tail entity. To improve reasoning 
scalability, the analysis in [25] further validated that distrib-
uting rule-based reasoning to the edge reduces reasoning 
latency and network bandwidth usage [26, 27] combined 
symbolic reasoning methods or Bayes modeling, deep 

representation learning techniques in KG to handle com-
plex reasoning with relational paths and symbolic logic, and 
capture uncertainty with probabilistic reasoning to improve 
the accuracy and reliability of FD. However, the method has 
rarely been applied in KG construction methods for complex 
industrial processes. Based on the above, the contributions 
of this article are summarized as follows.

(1) We propose a FD scheme based on a multilevel KG and 
Bayes theory. To better express the intricate relation-
ship between the influencing factors, this paper adopts 
the KG to construct more comprehensive information, 
and the KG is used as a knowledge base to detect the 
system state and locate the source of faults by reason-
ing using machine learning. The constructed KG is 
used as data support for subsequent FD.

(2) We propose a multi-level KG construction method to 
enable the constructed KG to provide robust data sup-
port for FD. It analyzes the layers that affect the state 
of the system, acquires multi-source data according to 
each level, construct a single-level KG based on the 
data characteristics, and then use the multi-source data 
fusion model to fuse each level’s data to form a multi-
level KG with comprehensive content coverage and 
structural stereo.

2  KG and intelligent manufacturing

In intelligent manufacturing, KGs can be utilized for various 
purposes, including data integration, knowledge representa-
tion and reasoning, and smart manufacturing visualization. 
The capacity of KGs to generate KGs offers data support and 
analytical support for manufacturing processes. KGs are able 
to semantically model and link production data from various 
sources. KGs can be used in intelligent manufacturing for 
knowledge representation and reasoning to optimize pro-
duction. They can also be used for advanced manufacturing 
visualization to help users better comprehend and analyze 
production data.

2.1  KG fundamental concepts and techniques

KG is a method for visualizing things, qualities, relation-
ships, and the connections between them so that computers 
may more readily comprehend and utilize the data. It is a 
semi-structured, semantic representation of data that can be 
used in several domains, including data mining, informa-
tion retrieval, and natural language processing. Techniques 
such as entity identification, relationship extraction [17, 28], 
knowledge representation [29–31], and reasoning [21, 32, 
33] are some methods used in KGs. Recognizing entities 
in the text is known as entity recognition while extracting 
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relationships between entities from the text that is known 
as relationship extraction. Knowledge representation is 
the representation of entities, attributes, and relationships 
in a machine-readable format. For example, it represented 
knowledge using the Resource Description Framework 
(RDF) format, reasoning is inferring new knowledge based 
on knowledge that already exists (Figs. 1, 2, and 3).

2.2  Ontology‑based knowledge representation 
methods

An ontology-based knowledge representation is a semantic 
structure that represents the associations between entities, 
concepts, and relationships. A shared conceptual model 
known as an ontology represents domain information, such 
as entities, characteristics, relationships, and constraints. 
The first-order logical formula can represent the knowl-
edge in the ontology.

For any concept c, if an instance i satisfies the definition 
of concept c, then i must belong to the set of instances I.

Alternatively, the knowledge in the ontology can be 
represented using description logic. Description logic is 
a formal language that is used to describe semantic con-
straints between concepts and relations [34].

where C1 and C2 are two concepts, respectively. r is a rela-
tionship between these two concepts; x is a variable. If a 
relation r exists such that instance x fulfills the definitions 
of concepts C1 and C2, then x must also satisfy concepts C1 
and C2.

(1)∀i, c ∶ Pc(i) → i ∈ I

(2)∃r.
(
C1 ∩ C2

)
(x) → C1(x) ∩ C2(x)

Fig. 1  A KG diagram

Fig. 2  The process of constructing a KG
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2.3  KG‑based reasoning methods

2.3.1  KG reasoning method based on relational paths

The KG inference method based on relational paths is based 
on exploring the relational ways between entities and concepts, 
getting expansion nodes for multidimensional expansion, and 
inferring the association between the two through new entities 
and concepts [24]. A relational path is a list of relationships, 
which are used to connect entities and concepts in a KG. For 
instance, A->B->C indicates that entity A and entity C are 
connected by entity B.

The KG can be seen as a directed graph G = (V, E), where 
V is the set of the graph’s nodes, and E is the set of its edges, 
with each edge indicating the connection between two 
nodes. Define the path P(v1, v2) between two nodes, v1 and 
v2, as a series of directed edges leading from a set of nodes 
v1 to v2, where the path’s length is equal to the number of 
its boundaries.

The set of paths R is the set of all possible relational 
paths, where each path r ∈ R is a sequence of relational 
types. For instance, (r1, r2, r3) is a relational path of length 
three where the nodes are connected by edges of type r1, r2 
and r3. Define the score S(P(v1, v2), r) of path P(v1, v2) as the 
sum of the scores of all edges on the path. With the help of 
statistical and machine learning techniques, edge scores can 
be learned and predicted. Examples include scores based 
on the edges’ frequency, similarity, importance, or other 
properties.

Path score computation can create KG reasoning based on 
relational paths [35]. The relational path score from node v1 
to node v2 can be calculated using all paths r in the path set 
R, given a beginning node v1 and a target node v2.

(3)S
(
v1, v2

)
= max

{
S
(
P
(
v1, v2

)
, r
)
|r ∈ R

}

where S(P(v1, v2), r) stands for path P(v1, v2, r) score, and 
the max operator implies choosing the path with the highest 
score out of all available paths. Ultimately, the links or prop-
erties between nodes using the path score were determined. 
Examples include forecasting the value of a node attribute, 
the existence of a relationship between two nodes, or the 
kind of an unidentified node.

2.3.2  Bayes‑based reasoning methods

In Bayes’ reasoning, getting or extracting state probabilities 
to satisfy conditions usually involves two steps: (1) con-
structing a Bayes network using already known data and 
prior knowledge and (2) update the probability distribution 
based on observed evidence by using Bayes’ rule.

First, build a Bayesian network, in the example of equip-
ment failure prediction, we need to collect data about equip-
ment states and failures and build a Bayesian network model. 
A Bayes network is a graph model comprising nodes and 
directed edges, where nodes represent random variables 
(e.g., equipment status, time, environmental conditions) 
and directed edges represent dependencies between these 
variables. Then, the prior probability is determined, which 
in Bayesian networks refers to the probability distribution 
in the absence of any observational evidence. These prior 
probabilities can be determined based on historical data, 
expert knowledge, or domain experience. For example, the 
a priori probability that a device works properly may be high 
because the device is usually in a normal state.

Then, observational evidence is collected. In practice, 
we collect observational evidence, such as sensor data of 
the current device state or other relevant information. This 
observational evidence will be used to update the a priori 
probability to get the posterior probabilities, i.e., the prob-
ability distributions after a particular condition is observed.

Fig. 3  The process of construct-
ing a KG
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The probability distribution is then updated using Bayes’ 
rule, which has the general form of Bayes’ rule once obser-
vational evidence has been collected:

where P(A| B) is the posterior probability of event A obser-
vation evidence B; P(B| A) is the likelihood probability of 
event A given observational evidence B; P(A) is the a priori 
probability, i.e., the probability in the absence of observa-
tional evidence; P(B) is the marginal probability of evidence 
B. By computing Bayes’ rule, we can update the prior prob-
abilities and get the posterior probabilities. This gives the 
state probabilities that satisfy the observational evidence.

Finally, prediction or diagnosis is performed, and with the 
updated posterior probabilities, we can perform fault predic-
tion or diagnosis. For example, based on the state and time 
of the device and based on new observational evidence, we 
can predict the probability of the device failing at a future 
time. In practical applications, the Bayes inference may 
require several iterations, especially when there is evidence 
from multiple observations. Each time new evidence is avail-
able to us, the probability distribution is updated to get a 
more accurate prediction or diagnosis.

3  FD method of RM based on KG

A KG is a graphical model for representing knowledge that 
represents entities, attributes, and relationships as nodes and 
edges and links them semantically. KGs are used to RMFD. 
The feature vectors of mechanical problems can be com-
pared and reasoned with the entities, attributes, and rela-
tionships in the KG to quickly identify the root causes of 
faults and provide appropriate repair solutions. KG-based 
FD techniques are more accurate and efficient than conven-
tional ones [36].

This study covers KG building in its KG-based malfunc-
tion diagnostics of RM [16]: (1) KG construction; (2) data 
acquisition and process; (3) feature match and inference; (4) 
FD and repair.

3.1  KG construction

The relevant knowledge ontology must be represented as 
graph entities and relationships to carry out KG-based defect 
diagnosis of RM. The entity includes RM (indicating the 
concept of RM), faults (indicating possible faults of RM, 
such as bearing faults, gear faults, motor faults), and sensors 
(indicating sensors used to monitor the operating status of 
RM, such as vibration sensors, temperature sensors, pressure 
sensors) [24].

(4)P(A|B) = (P(B|A) ∗ P(A))

P(B)

Relationship includes the occurrence of a fault (indicating 
that a certain fault has occurred in the RM), monitored (indi-
cating that the sensor has monitored a particular operating 
state of the RM), and causes (indicating that a specific fault 
may cause other faults to occur).

3.2  Data acquisition and process

In order to build a KG of RM, data needs to be gained from 
the operation of RM and transformed into a KG. Data pre-
processing is the processing of feature data, such as nor-
malization and standardization, to facilitate subsequent 
standardized models [37]. According to the specific data 
requirements and production process deployment of sensors, 
to get the vibration signal, temperature signal, current sig-
nal, and other information of RM, data processing, includ-
ing data clean, data label, data quality test, and other steps, 
is necessary to facilitate the subsequent construction and 
analysis of the KG.

(1) Data clean

Data clean is to complete the processing, such as the filter, 
de-noise, and error correction on the samples to ensure the 
quality and usability of the data [38]. Since the data source is 
a variety of sensor devices and the format and quality of the 
data vary, it is necessary to apply data cleaning techniques 
in a targeted manner to deal with the vast amount of RM 
operation data. First, define the error type, then identify the 
error instances, correct the errors, implement data clean, 
document the error instances and error types, and finally 
change the data collection program to reduce the occurrence 
of errors. The clean data process is:

(2) Data label

The data collection and clean after the data need spe-
cific data annotation methods to get high-quality, applicable 
labeled data of algorithms and models. In data labeling, it is 
necessary to adopt appropriate labeling methods according 
to the application scenarios of RM, different data formats, 
and different labels. In RMFD, there are more data formats 
involved. There are various sensors in the automatic acquisi-
tion of the signal data, so it is necessary to consider multiple 
data types of data labeling methods.

(3) Data quality testing

Labeled data needs to be evaluated according to specific 
quality annotations to improve the quality of data label con-
tinuously. In KG construction and intelligent service devel-
opment, because of the continuous updating of operational 
data, it is necessary to continuously adjust and optimize 
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the data collection and annotation methods in real time to 
improve the effectiveness of various subsequent models and 
algorithms.

The annotation quality assessment algorithm used in 
this paper is the majority voting (MV) algorithm. MV is a 
commonly used algorithm for labeling quality assessment. 
The basic idea is to assume that there are m labeled tasks 
t1, t2…tm, each task t1 corresponds to a binary classifica-
tion. To improve the quality of annotation and the reliability 
of annotation, the object xi to be labeled is assigned to N 
labelers (total M employees, N<M). The labeling result of 
each annotator is yj

i
∈ {0, 1} , and then, the final label of xi is 

inferred from y1
i
, y2

i
… yN

i
 , the formula is:

By obtaining large-scale labeled data that meets the data 
requirements for subsequent training of various models and 
algorithms, it realizes the construction and development of 
a RMFD-KG and provides solid and reliable data support 
for KG management and intelligent services.

3.3  Feature match and inference

The core of the overall diagnosis system is feature matching 
and reasoning for RM defect diagnosis based on KGs. This 
part comprises subsequent two phases specifically:

3.3.1  Feature matching

Feature matching is the process of matching the entities and 
relationships in the KG with the feature data to find the enti-
ties and relationships related to RM faults. Graph matching 
algorithms can carry out this procedure, and the most com-
mon algorithm is based on sub-graph isomorphism [39].

Feature extraction [40, 41] converts sensor data from 
rotating machinery into feature vectors, e.g., frequency 
domain and time domain features of vibration signals. By 
comparing the extracted feature vectors with the entities in 
the KG to determine the entities linked to RM failures, entity 
matching seeks to maximize the correlation. To identify the 
corresponding mechanical component and defect-type enti-
ties, RM feature vectors can be matched to the RM entities 
in the KG. Relationship matching is matching feature vectors 
with relationships in the KG to find relationships related to 
RM faults. In order to determine the relationships between 
mechanical components and the fault types corresponding to 

(5)yi =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1
1

N

N∑
j=1

y
j

i
>

1

2

random guess
1

N

N∑
j=1

y
j

i
=

1

2

0
1

N

N∑
j=1

y
j

i
<

1

2

them, RM feature vectors can be matched with the vibration 
feature relationships in the KG.

f = (f1, f2, ⋯fn) represents the feature vector, and n repre-
sents the features’ dimension. G(V, E) represents the KG, 
whereas V represents the collection of items and concepts. 
E stands for the collection of relationships between concepts 
and entities. vi can be used to represent an entity. The rela-
tionship can be represented as ei, j, where i, j is the entity 
number.

where vi, k is the k eigenvalue of entity vi. Entities and rela-
tionships connected to RM failures can be found based on 
the findings of the similarity calculation.

3.3.2  Reasoning

Faulty reasoning in RM is based on monitoring and analyz-
ing parameters such as vibration, sound, and temperature, 
and inferring the type and location of faults based on spe-
cific discrimination rules [42, 43]. The inference matching 
method is a model-based FD method that models the oper-
ating state of RM as a set of mathematical equations and 
solves and analyzes these equations based on actual monitor-
ing data to determine the cause of mechanical failure.

The key to the reasoning matching approach is con-
structing a mathematical model of the rotating machine 
that contains details relating to its structure, dynamics, and 
operational parameters. The equipment’s equation of state is 
produced based on this data to characterize the properties of 
the machinery, such as responsiveness and vibration under 
various fault states. For a piece of machinery that has failed, 
the actual state of the machinery is matched to a known fail-
ure model to determine the type and location of the failure.

For FD, reasoning matching techniques often employ 
probabilistic and statistical methods. Assuming that there 
are potential fault states (N) for the equipment, each failure 
is represented by a letter s1, s2, ⋯sN, and each failure state 
has a probability of P(s1), P(s2), ⋯P(sN), the sum of the fault 
probabilities is expressed as:

Suppose that M-measured parameters, x1, x2, ⋯xM, char-
acterize the machine’s state, with xk representing the param-
eter’s value (k). Suppose that the state of the machinery can 
be represented by an M-dimensional vector as:

(6)similarity
�
f , vi

�
=

n∑
k=1

fk ∙ vi,k

�
n∑

k=1

f 2
k
∙

�
n∑

k=1

v2
i,k

(7)
N∑
i=1

P
(
si
)
= 1
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where xi, k is the parameter’s value (k) in state si. According 
to the equation of the state of the machinery, the probability 
distribution function, designated as fi, k(xk), for each param-
eter in each failure state, where k = 1, 2, ⋯, M, i = 1, 2, ⋯, N.

L monitored parameters are y1, y2, ⋯, yL, where yj stands 
for the j parameter’s value. According to the monitoring 
data, the actual value of each parameter is expressed as:

where ϵj is the measurement error corresponding to the 
actual value. If the errors satisfy a Gaussian distribution and 
have a mean value of 0, it can be called Gaussian white noise 
and are assumed to be independent.

The posterior probability of each reasoned cause of fault 
is calculated by Bayes’ theorem, which is:

According to Bayes’ theorem, given the actual measured 
value as:

The posterior probability that the equipment is in fault 
state Si can be calculated as:

Hence, by bringing P
(
Si|Ŷ

)
 into the monitoring param-

eter model, it is possible to construct p
(
ŷj|X

i
, Si

)
 , which 

stands for the probability distribution function of the j moni-
toring parameter under the fault condition Si, where 
p
(
ŷj|X

i
, Si

)
 is the probability distribution function of the j 

monitoring parameter in the fault state Si. It is calculated by 
bringing fi, k(xk) into the monitoring parameter model. 
Finally, by comparing the size of the posterior probability 
P
(
Si|Ŷ

)
 , the nature and location of the mechanical break-

down can be identified. The fault type of the machinery is 
represented by the fault state Si with the highest a posteriori 
probability. The fault location of the machinery can be iden-
tified by examining the abnormal values of each parameter 
in the state vector Xi.

The reasoning above process must account for the impact 
of measurement errors, which might affect monitoring data 
and thus cause mistakes in the deduction of the mechanical 

(8)Xi =
[
xi,1, xi,2,⋯ , xi,M

]

(9)ŷj = yj + 𝜖j

(10)
P
�
Bj�A

�
=

P
�
A�Bj

�
P
�
Bj

�
n∑
i=1

P
�
A�Bi

�
P
�
Bi

�

(11)Ŷ =
[
ŷ1, ŷ2,⋯ , ŷL

]

(12)P
�
si∕Ŷ

�
=

P
�
Si
� L∏
j=1

p
�
ŷj∕Xi, Si

�

N∑
k=1

P
�
Sk
� L∏
j=1

p
�
ŷj∕Xk, Sk

�

state. Hence, when calculating p
(
ŷj|Xi

, Si
)
 , it is necessary to 

consider the impact of measurement inaccuracy. Preprocess-
ing the monitoring data with a Kalman filter is a frequently 
used strategy.

In addition, when the device has missing data, i.e., certain 
critical information is unavailable. The NP-complete prob-
lem is solved using probabilistic graphical models Bayes 
networks to model the relationship between devices and 
faults, which can handle missing data and infer unknown 
information through probabilistic inference. In addition, for 
some complex mechanical systems, it may be necessary to 
use more sophisticated FD algorithms, such as deep learn-
ing-based FD methods. In this case, deep neural networks 
can learn the complex relationship between mechanical 
states and faults while monitoring data is used to train the 
network model for eventual FD.

3.4  FD and repair

3.4.1  Fault prediction

The prediction of equipment FD using KG techniques is an 
effective method. In contrast, Bayes’ methods can be used to 
predict faults in advance considering the time factor. Bayes-
ian methods are statistical learning methods that can be used 
to update probability estimates as new information is con-
tinuously acquired. In equipment failure prediction, we can 
use Bayes methods to model failure prediction to consider 
the effect of time on the prediction results. The following is 
a primary step:

First, collect data related to equipment failures, including 
equipment operating status, maintenance records, and sensor 
data. This data is then collated into a KG, where nodes repre-
sent device states or parameters and edges represent correla-
tions between them. We create a Bayes network model using 
the collected data and KG. A Bayes network is a graphical 
model representing dependencies between random variables. 
Here, device state and time are random variables with pos-
sible probabilistic dependencies. In Bayes networks, time 
is usually introduced as a critical random variable. We can 
categorize time into different time windows, such as hourly, 
daily, or monthly, to capture changes in device status. Updat-
ing probability estimates, we can continuously update the 
probability estimates in a Bayes network over time. When-
ever there is new data or an observed change in the state of 
a device, we can use Bayes’ rule to update the associated 
probability distribution. In this way, we can more accurately 
predict equipment failure probability. Failure Prediction:

Failure prediction is possible using probability estimation 
in Bayes networks. By calculating the conditional probabil-
ity of a device failure in a time window, we can drive the 
probability that a device may fail in the future. It is impor-
tant to note that Bayes’ methods can consider the time factor 
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and incorporate other relevant factors, such as environmental 
conditions and equipment utilization, to improve prediction 
accuracy. In addition, Bayes methods can be used for FD, 
i.e., updating the probability estimates based on the observed 
state information in the event of a device failure further to 
determine the cause and location of the failure.

3.4.2  Fault classification

The relevant knowledge and rules in the KG are utilized to 
identify the types of defects and causes of faults in equip-
ment by evaluating the operation data and fault data of RM. 
Repair suggestions are made as per the findings of the diag-
nosis and the KG’s repair techniques. It may consist of repair 
techniques, tools, supplies, etc. In addition, the KG’s perti-
nent rules and knowledge are continuously updated as per 
the actual circumstances surrounding machinery operation 
and maintenance records, allowing the KG to be adjusted to 
the exact operating circumstances of machinery. The clas-
sification of fault types in this paper is based on the fault’s 
nature, cause, or effect to categorize faults that occur in 
equipment or systems. This helps to understand better the 
modes and mechanisms by which faults occur and guides 
preventing, diagnosing, and repairing imperfections. Spe-
cific fault classifications include:

Mechanical failure: refers to a malfunction caused by the 
failure or damage of a mechanical component, such as 
worn, broken, or loose parts
Electrical failure: involves the failure of electrical com-
ponents or circuits, such as shorted or open wires and 
motor failures
Electronic failure: involves the failure of an electronic 
component or electronic system, e.g., integrated circuit 
failure and electronic equipment failure
Environmental faults: failures related to external environ-
mental factors, such as excessive temperature, humidity, 
and dust accumulation

Fatigue failure: a material fatigue failure because of pro-
longed use or repetitive loading
Power failure: failures involving the power transmission 
system, such as engine failure and transmission failure

4  Instance verification

In this paper, we use a steel mill motor as an example to 
build a motor defect diagnosis KG based on the method 
mentioned above, then confirm the viability of the way, and 
test the diagnostic performance.

4.1  Motor FD‑KG construction

4.1.1  Motor FD knowledge ontology

(1) Establishment of ontology concept

The device structure class V1 is used to describe a collec-
tion of concepts for the structure of a motor. It is possible 
to determine the hierarchical structure of each subsystem, 
component, and part of the motor based on its structural 
makeup in accordance with the top-down principle. Some 
of the equipment structure concept ontology is shown in 
Table 1.

The set of concepts for each measurement point used to 
track the motor’s operational state is called the measurement 
point class V2. The measurement points can be categorized 
as temperature measurement points, vibration measurement 
points, current measurement points, etc., based on the vari-
ous monitoring status value categories. The measurement 
point class concept ontology is shown in Table 2.

Class V3 of fault phenomena is a collection of concepts 
about the different traits a motor displays when a fault 
occurs. These signs and features include changes in physi-
cal quantities, sounds, vibrations, etc. They can determine 
the type and location of a motor failure. The notion of fault 

Table 1  Equipment structure class concept ontology

Concept set Subsystems Component Part

Motor structure class Electrical subsystem Armature Iron core, winding, isolation layer, conductor
Stator Iron core and winding
Commutator Collector ring, brush holder, spring, insulating material
Brush Carbon brush head, spring, brush cover, insulating material

Mechanical subsystems Rotors Magnetic core, cladding, shaft, flywheel
Bearings Inner and outer rings, balls or rollers, end caps, coverings
Fans Blade, hood
Housing Housing, inlet and outlet ports, protective cover

Total 2 8 27
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phenomena class can be further subdivided into many cat-
egories, including high vibration, high temperature, and high 
current, based on the various features of the signs. The fault 
phenomena class concept ontology is shown in Table 3.

The fault cause class V4 is used to describe a collection 
of concepts that may lead to the cause of a motor failure. 
The repair advice class V5 is a collection of concepts that 
describe the advice given for the causes of failure. Examples 
of concept ontology for the cause of failure class and the 
maintenance recommendation class are shown in Table 4.

(2) Establishment of ontology relations

According to the representation of RMFD knowledge 
ontology, the relationships between the concepts of each 
ontology of the motor are represented, as shown in Fig. 4.

4.1.2  Representation of motor FD knowledge

Based on the established motor FD knowledge ontology, 
motor FD knowledge is obtained and expressed as a triad, 

Table 2  Measurement point 
class concept ontology

Concept level Category Measurement point

Measurement class Temperature measurement points Measurement point AGRZ134TM
Measurement point AGRZ135TM

Vibration measurement points Measurement point AGRZ651TV
Measurement point AGRZ652TV

Current measurement points Measurement point AGRZ423MC
Measurement point AGRZ424MC

Total 6 48

Table 3  Fault phenomena class concept ontology

Concept level Category Measurement point

Fault category High vibration Imbalance
Abrasion, corrosion

High temperature Bearing friction and abrasion
Motor winding overheating

High current Cable aging, poor contact
Excessive load

Total 6 56

Table 4  Example of fault cause class and repair suggestion class

Concept level Concept ontology Total

Failure cause class Broken circuit in the motor winding 24
Bearing abrasion, bearing loose, bear-

ing damage
Maintenance recom-

mendations
Shutdown inspection 24
Disassemble and replace bearings

Fig. 4  Equipment ontology 
model
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and the labels of the entities are defined. Then, a triplet rela-
tionship table to identify the relationship is created.

Neo4j, a graphical database, is used to store the data of 
the triad knowledge and finish developing the motor KG-FD 
once the entity and relational tables of the triad of motor 
FD knowledge have been established. The KG for motor 
problem diagnostics includes multiple entities, their relation-
ships, and relevant quantitative statistical information. In 
other words, it is a diagram that incorporates entity type and 
relationship type information that can help in motor trouble-
shooting. The motor KG after the construction is completed, 
with a partial relationship and node visualization diagram, 
as shown in Fig. 5.

4.2  Testing of KG‑based diagnostic methods

In order to test the diagnostic performance of the KG-based 
diagnostic method for RM, this paper is based on the histori-
cal fault case data of a steel mill motor, considering the huge 
amount of operation data, a part of data with and without 
faults was selected from 10,000 times of data according to a 
certain ratio for testing. Twenty-four fault cases with com-
plete signs were obtained, and the test cases were designed 

based on a steel mill motor’s historical fault case data. The 
test case design steps are as follows:

aaa

(1) Get the correspondence between the faults and the signs 
from the historical cases, and each fault has n signs;

(2) There are numerous different features for each sort of 
motor failure. By missing varying numbers of features, 
test cases can be generated. For example, for a fault 
with 5 different signs, test cases can be generated as 
follows:

① Missing 1 feature:

Each feature is removed from the fault feature and gener-
ates a brand-new fault feature as a test case. If there are 5 
features, 5 test cases are generated, each of which removes 
1 of the features;

② Missing 2 features:

Two features in each group are removed from the fault 
characteristics, and a new fault characteristic is generated as 

Fig. 5  Electric motor KG
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a test case. If there are 5 features, C(5,2)=10 test cases are 
generated, each of which removes 2 different features from 
each test case;

③ Missing n-1 features:

Remove all features except the last one and generate a 
new fault feature as a test case. All the remaining features 
are combined to generate a new fault feature as a test case. 
If there are 5 features, and 1 of the features and 2 of the 
features have been removed, C(5,3)=10 test cases are gener-
ated. For each test instance, 3 of these various features are 
selected.

This enables the production of several test cases encom-
passing various combinations of fault features to test the 
precision and robustness of the motor FD system.

This study uses a motor winding short circuit fault to 
illustrate the test case design. When the features of the con-
dition, namely an increase in motor temperature, abnormal 
current, motor vibration, and abnormal sound, appear, a fault 
may be present. The relationship between various features is 
a “with” connection, meaning that the motor winding short 
circuit defect can only be determined when all the features 
above occur at the same time. Information on test samples 
is used to verify diagnostic methods, as shown in Table 5.

In general, several diagnostic outcomes could occur dur-
ing a FD task, some of which could be accurate or inaccu-
rate. To evaluate the performance of a FD system, the metric 
of diagnostic accuracy can be used. The diagnostic accuracy 
is calculated as follows.

where N is the total number of samples. CP is the number of 
correctly diagnosed samples, and diagaccur is the accuracy 
rate.

The test samples are put through diagnostic verification, 
which involves fully incorporating the sign phenomena into 
the test sample. The number of accurate diagnoses was 24, 
and the number of correct diagnoses in the test cases with 
missing signs was 120. The diagnostic results are shown in 
Table 6.

(13)diagaccur =
CP

N

The FD accuracy is only 80% when the input signs are 
completed. This is because, in the constructed KG, there is 
a one-to-many mapping relationship between the fault phe-
nomenon and the cause of the fault. There is also a situation 
where the complete fault phenomenon required for diagnosis 
is satisfied by inputting one fault phenomenon.

In this instance, the method suggested in this research 
produces many outcomes for FD. If numerous diagnostic 
results cannot be further sorted according to the information 
given, it may result in inaccurate diagnostic results, lowering 
the diagnostic accuracy.

As a result, a one-to-many mapping relationship must 
be considered when creating a FD system because various 
conditions and distinct causes may generate the same defect 
phenomenon. Hence, when performing fault-cause identifi-
cation, it is vital to consider the potential causes of failure 
and deliver multiple diagnostic results under a thorough and 
integrated analysis.

This requires domain expertise, troubleshooting algo-
rithms, and practical application experience. To quickly 
repair and maintain the equipment and increase its depend-
ability and operational efficiency, test data and failure phe-
nomena are studied to identify the root cause of the failure 
and the diagnostic findings. Probabilistic models or machine 
learning techniques might be considered to address these 
issues and improve the precision and dependability of FD.

4.3  Comparison with traditional diagnosis methods

The rule-based FD approach and the KG-FD method were 
compared. Furthermore, the diagnostic performance of 
a KG-based FD method for RM was tested in the case of 
missing feature phenomena. The validity and applicability 

Table 5  Test samples Test samples Features phenomena Cause Total

Fault cause class Increase in motor temperature Motor winding short circuit 120
Current anomalies Motor winding short circuit
Motor vibration Motor winding short circuit
Abnormal sound Motor winding short circuit

Features complete Increase in motor temperature, current 
anomalies, motor vibration, abnormal 
sound

Motor winding short circuit 24

Table 6  Diagnostic results

Test samples Features complete Missing features Total

Diagnostic accuracy 
number

24102 102 126

Test cases number 30 112 142
Accuracy 80% 91.1% 88.7%
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of KG-FD methods in the absence of featureatic phenomena 
can be evaluated, and the references for further FD research 
can be provided by contrasting and analyzing the benefits 
and drawbacks of these two approaches. After that, based 
on the combined motor FD information, the motor FD rules 
were extracted. It is performed to diagnose the aforemen-
tioned 120 test cases exhibiting missing fault phenomena. 
The diagnostic results are presented in Table 7 (method 1 
is the KG-FD approach and method 2 is the rule-based FD 
method).

The results obtained in Table 7 indicate that the diagnos-
tic accuracy of method 1 using the KG was 91.1%, which 
was higher than the diagnostic accuracy of method 2. In the 
absence of features phenomena, the diagnosis based on KG 
is superior to the standard rule-based FD reasoning method. 
This can be successfully applied to solve the problem of 
making a correct diagnosis without features phenomena.

5  Conclusions and outlook

In this paper, we propose a FD method based on KG-driven 
devices, which derives the causes of faults based on the 
relationship between the known data information and the 
structure of the device when the fault data is missing, and 
the causes of the faults are eliminated or confirmed. Firstly, 
the RMFD knowledge map is constructed to model and 
describe the failure modes and characteristics of RM, organ-
ize the knowledge of various failure phenomena, causes, and 
characteristic parameters of RM into ternary groups, and 
establish the relationship between them. Then, the relation-
ship information between the structures in the KG is utilized 
to determine the fault type and location of the machinery 
through Bayes inference by probabilistic and statistical 
methods when there is a lack of fault data, which further 
improves the accuracy of FD. To prove the method’s supe-
riority, we validate the model using a steel mill motor as an 
example, and the experimental data show that the proposed 
method has high reliability and validity in real scenarios. 
In addition, it significantly improved accuracy compared to 
rule-based FD methods. In our future work, we will focus on 
developing an efficient reasoning algorithm on KG-based FD 
methods for driving devices to provide more efficient infor-
mation and extend it to other complex industrial scenarios.
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