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Abstract
This paper focuses on optimising pick-and-place tasks performed by a dual-arm collaborative robot in a specific shoe manu-
facturing industry environment. The robot must identify the pieces of a shoe placed on a tray, pick them up, and place them
in a shoe mold for further processing. The shoe pieces arrive on the tray in random positions and angles and can be picked up
in a different order. Optimising these tasks could increase the assembly speed of each unit and improve shoe production. To
achieve this goal, a mathematical model based on binary integer linear programming (BILP) has been developed. This model
determines the optimal sequence for picking and placing the shoe pieces in the mold, thus minimising the time required for
picking and decision-making. The effectiveness of this approach has been tested using two 3-piece unit shoe models: one for
training and another for validation. These models encompass a total of 500 trays. An analysis of the results reveals that BILP
offers advantages for task motion planning in complex environments with multiple trajectories and the potential for collisions
between arms. The model’s generalizability to shoes with n assembly pieces further confirms its robustness for various piece
counts.

Keywords Global optimization · Binary Integer Linear Programming (BILP) · Pick-and-place · Robotics

1 Introduction

The footwear industry is currently dominated by manual
production lines, resulting in low levels of automation and
high resource consumption. This presents an opportunity to
reduce resource consumption by implementing more auto-
mated technologies. However, automation in this industry is
challenging due to the complexity of the tasks involved and
the materials used.
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Unlike other industrial sectors, the footwear industry
has not followed the same automation path. The article
“Automation Issues inMarking andHandling in theFootwear
Industry” [1] addresses one of the main barriers to achieving
automation in this industry.

However, there are significant advances that are helping
to improve innovation and automation in the footwear man-
ufacturing sector, as described in the article referenced as
[2]. These systems and technologies are helping to increase
efficiency and productivity in footwear manufacturing.

1.1 Automation in the shoe industry

Some technologies, such as knitting [3], where the upper of
the shoe is made in one piece, the knitting machine is loaded
with polyester, nylon, or spandex fibres; 3DPrinting [4], this
technology is also used to print some pieces of the shoe in
plastic; direct injection moulding [5] of shoe pieces easily
automates this stage.

3DBonding [6] technology allows different pieces of
material to be bonded together by injecting a polymer into
a series of channels in a mould to produce the shoe. One of
the key benefits of this technology is the reduction in mate-
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rial usage, as the pieces do not overlap during the bonding
process, both for the fabric and the leather of the footwear.
It also eliminates a number of traditional operations, such
as sewing, helping to reduce lead times and manufacturing
costs.

A highlight of 3D bonding technology is its ability to
enable automation and robotics in the manufacturing pro-
cess. In other words, the main process is reduced to the task
of selecting and placing the pieces in amould, where the shoe
is created in a matter of seconds after the polymer injection.

1.2 Multi-robot systems

The increasing use of multi-robot systems in industry is
driven by the need to handle flexible pieces and achieve more
accurate piece positioning. In this context, dual-arm robots
are becoming increasingly important because of their ability
to meet these requirements effectively. When using a dual-
arm robot, a simple solution is to stop one armwhile the other
performs a specific path, such as a pick-and-place task [7].
However, the most productive strategy is to move both arms
simultaneously, which reduces waiting times and improves
system efficiency. This strategy of moving both arms simul-
taneously increases the complexity of planning due to the
possibility of collisions between them.

Several lines of research are developing algorithms to inte-
gratemultiple robots into industrial tasks. In [8] amulti-robot
task allocation strategy based on particle swarm optimisation
and greedy algorithms is presented. This strategy aims to
improve the resource utilisation of heterogeneous multi-robots
by minimising the multitasking time, effectively maintain-
ing the load balancing of robot resources, and finding a
near-optimal solution for collaborative scheduling. In [9], a
multi-objective optimization in amulti-robot task assignment
environment is presented. Themethod includes the definition
and construction of the robot energy utility function.

In [10] a reference trajectory optimisationmethod is devel-
oped for dual-arm robots in industrial tasks. Both arms work
in the same workspace, so each arm has to consider the posi-
tion of the other arm as an obstacle and change its trajectory
if necessary. In [11] an investigation on a solution to make
the optimisation in robotic manipulation in the presence of
obstacles is presented.

Up to now, pick-and-place robotic systems have been
the subject of much research. In [12], the authors study the
problem of sequencing operations in machines and apply it
to a controlled system in a large electronic card assembly
facility through routing heuristics. In [13], a triple objec-
tive function with the Chebychev dynamic pick-and-place
approach is developed to optimise the sequential pick-and-
place machines and minimise robot assembly times, feeder
movements, and PCB tables. Furthermore, the problem can

be tackled using an iterated hybrid local search algorithm
[14], where a relative optimal result can be found quickly.

In [15], the authors develop amodel-free iterative learning
control (ILC) strategy in non-repetitive trajectories, applied
to robotic manipulators. The model is verified in pick-and-
place operations. In the same line, the research [16] presents
a fuzzy sliding mode variable structure control to maximise
speed in pick-and-place operations.

The authors in [17] develop a modular robotic task
sequencing and motion coordination for multi-arm systems.
The module for solving two-arm RTSPs (Robotic Task
Sequencing Problems) presents a novelmethod developed by
considering the generalised problem of multi-arm RTSPs. It
uses a clustering-based algorithm to decompose the problem
into several subproblems that are solved independently.Other
studies focus on assembly-oriented task sequence planning,
in [18] a dual-arm task sequence planning based on environ-
mental constraints is presented. This method used the Monte
Carlo method, the Gaussian Mixture Model, and the binary
functions to develop the task.

1.3 Trajectory optimization

Time optimisation in robotmanipulator trajectory planning is
a topic that has been widely studied in the literature. Several
solutions have been proposed to solve this problem.

In [19], a new mathematical model is proposed to formu-
late the pick-and-place operation in the food industry. The
Hungarian algorithm is used to optimise the total distance
travelled by the robot during the operation. The cited works
[21, 22] and [23] present a solution to a similar problem by
using a greedy algorithm for forward speed planning and cal-
culating smooth trajectories in minimum time. In [24] and
[25] an approach based on the Travelling Salesman Prob-
lem (TSP) and a Genetic Algorithm (GA) is proposed. These
approaches seek to find the best sequence of pieces to opti-
mise the time of the pick-and-place task.

Some work focuses on making the robot learn the optimal
trajectory. In [26], a hybrid imitation learning (HIL) frame-
work combining behavioural cloning (BC) and state cloning
(SC) methods is used to improve learning efficiency in robot
manipulation tasks.

Another approach is the use of genetic algorithms (GA)
as described in the work of Goldberg [28] and Holland [29].
In [30] a combined real-time method using simulation and
genetic algorithms is proposed to optimise the trajectory of
collaborative robots. In [31] they focus on optimising the
transport time using optimised trajectories. Furthermore, in
[17], an assignment optimisation module is presented that
uses a heuristic method to distribute a set of tasks among
robotic systems by assigning the most appropriate configu-
ration to each task.
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It is true that the problem of evaluating and optimising
the performance of pick-and-place tasks in real time has not
been widely studied in the literature. However, there are a
number of relevant works that have addressed this problem.

In [33], the development of an algorithm to perform a safe
control task in real-time imageprocessing is discussed. Although
this work does not focus specifically on pick-and-place tasks,
it addresses the challenge of performing real-time tasks and
could be relevant for optimising performance in this type of task.

In [34], the authors combine the metaheuristic prob-
lem with real time, allowing each robot to perform the
assigned pick-and-place operations in real time to maximise
throughput. Although no specific details of the algorithm or
methodology used are given, this research is an example of an
approach that considers real-time performance optimisation.

1.4 Dual-arm robots

The complexity of industrial tasks and the need to reduce the
time required to perform them has led to the development
of robots that are increasingly human-like. This has made
it possible to automate industrial tasks without affecting
the configuration of these tasks. For this reason, anthropo-
morphic and bipedal robots have been extensively studied
in recent years. In [35] we explore the features that make
dual-arm robots complex, such as coordination between the
arms, real-time path planning to avoid collisions, and the
constraints needed to ensure task success.

This research is carried out on an ABBYuMi robot, which
is a dual-arm collaborative robot with 7 degrees of freedom
(DOF) on each arm, giving the robot a total of 14 DOF.
In [36] and [37] two different approaches to the kinematic
solution and control of the robot are presented. Furthermore,
[38] presents a specific kinematic analysis of the ABBYuMi,
while [39] presents a more complex control approach based
on dual quaternions for the YuMi.

The problem addressed in this research focuses on a
pick-and-place task for the shoe assembly process, using a
dual-arm robot with the aim of transporting pieces and opti-
mising the pick-and-place distance by taking advantage of
both arms working simultaneously. In this context, there are
pieces that only require the intervention of one arm to per-
form the pick-and-place operation, while other pieces, due to
their size, require the collaboration of both arms. Therefore,
this research focuses on the optimisation of the sequence and
trajectories in the robotic phase of the shoe manufacturing
process, in order to automate and optimise the whole task. It
also mentions the 3D binding phase, which is integrated into
the process to improve the automation and optimisation of
the footwear assembly.

This article is structured in the following way. In the fol-
lowing section, the methodology and materials are given, but

first, the necessary procedure and guidelines are presented in
Section 2.1. The mathematical model based on BILP is pre-
sented in Section 2.2. The viability and robustness of the
method suggested is supported by the simulation results in
Section 3. In this section, the overall results achieved in Sec-
tions 3.1 and 3.2 are presented and argued and in Section 3.3 a
comparative is introduced. Finally, some concluding remarks
are given in Section 4.

2 Methodology andmaterials

In the next section, a detailed description of the system to be
used in the study is presented, followed by the development
of amathematicalmodel tominimise the distance of the pick-
and-place task. The ABB IRB14000 dual-arm collaborative
robot, also known as YuMi [40], is used in this research. This
robot is specifically designed to work with human operators
in industrial environments.

2.1 System description

Theuseof adual-armrobot implies theneed for precise control to
avoid collisions between the arms while working in the same
workspace. To achieve this, it is essential that the trajectories
of the two arms are synchronised and that their movement is
controlled in real time to avoid any possible collisions.

The arms are constantly monitored to obtain information
about their position and, if necessary, to recalculate the tra-
jectory to avoid collisions. In addition, reference points are
set along the trajectory where both arms are synchronised to
ensure the correct transport of pieces that require the use of
both arms. The distance between the arms is also set accord-
ingly to ensure the correct transport of pieces that require the
use of both arms.

In the context of pick-and-place operations, accurate
camera calibration is crucial as mislocalisation can nega-

Fig. 1 Real prototype system: ABB YuMi robot, camera, shoe mold,
and tray
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tively affect task performance. In the work presented in
[41], a markerless hand-eye calibration method specifically
designed for the pick-and-place task is proposed and devel-
oped using non-linear iterative optimisation techniques. The
vision system used consists of an ABB industrial camera
connected to the robot, which provides the necessary data
for further processing.

The vision program developed is capable of recognising
the different pieces and determining their position in the XY
plane, as well as their orientation in the Z axis. Once the
pieces have been identified and located in the plane, the posi-
tion and orientation data is sent to the robot, which begins
the task of picking and placing the pieces.

In addition, the YuMi robot is equipped with a wrist-
mounted camera, known as an eye-in-hand camera. This
provides greater flexibility for viewing tasks. After com-
pleting the pick-and-place task, the robot performs a quality
control task to verify that all the pieces have been placed cor-
rectly. This task is performed by the camera on the robot’s
wrist. Figure1 shows the complete industrial system, includ-
ing the dual-arm robot, the camera, the tray, and the mould
used in the task.

In this study, two shoe models from different manufactur-
ers are considered, each consisting of four pieces. Three of
these pieces require the use of only one arm, while the fourth
piece requires the use of both arms. Images of each shoe are
taken at random positions in order to evaluate the mathemat-

Fig. 2 Shoe models: a shoe
model of four pieces produced
by Manufacturer 1, b shoe
model of four pieces produced
by Manufacturer 2, c array of
random trays
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ical model developed. Figure2 shows the shoe models and
the images taken for the research analysis.

Certain constraints have been established based on expe-
rience. In particular, piece 4 always requires both arms to
be carried, so its time is added to the total time of the task,
as no other action can be performed simultaneously. It has
also been decided that the double-armed piece will always be
picked up last. For single arm pieces, it is common practice
to use the nearest available arm to pick up the piece that is
out of reach of the other arm.

The process of picking and placing pieces in an industrial
environment beginswhen the pieces arrive in the robot’swork
area. The first step is to take a photo to locate the pieces. This
data is sent for external processing via socket communication
between the robot and a Python program. Using a Binary
Integer Linear Programming algorithm, the best sequence for
picking and placing the pieces is calculated and sent to the
robot. In the robot program, the paths are pre-programmed
to avoid collisions and are executed in the order given by the
optimal sequence algorithm.

2.2 Mathematical optimization problem

To solve the problem, a model is used that considers three
pieces that require the use of only one arm and one piece that
requires the use of both arms. This implies the existence of
three pick-up nodes and three place nodes. In addition, a start
node is added for each arm, giving a total of eight nodes in
the Cartesian plane used to solve the problem. A summary of
the notation used in the Binary Integer Linear Programming
(BILP) model is given in Table 1.

During the pick-and-place task, the robot’s workspace
must be taken into account, when the piece rotation is

Fig. 3 Diagram with all possibilities. S are the home position for each
arm.The i nodes are the pick positions and j nodes are the place positions

between 90 and 270◦ a pre-rotation is necessary because the
pick-up of the pieces is performed at an angle of approx-
imately 30o with respect to the XY plane, so if the piece
pick-up point is oriented out of the robot workspace it is
possible that the robot wrist is out of the workspace.

Table 1 BILP model notation
T Tray nodes (pieces) set is referenced. All of them have an assigned and known position.

Each node will be represented by the letter i: 1,2,3

M Mold nodes (pieces) set is referenced. All of them have an assigned and known position.
Each node will be represented by the letter j: 1,2,3.

K Arms set is referenced. There will be as many as arms. Each arm will be represented by
the letter k: 1,2

S It refers to the set of available arms in each case. Each initial position will be represented
by letter s: 1,2

Xki j It is a binary variable. Its value in the solution determinate which route is developed by
each arm. If this variable is 1, that is, it is activated, it indicates that arm k will run
through the movement described by the consecutive nodes i-j, where i is the initial
node and j is the end node. On the other hand, if the value is 0, this trajectory will not
take place in the task.

Di j It refers to the Euclidean distance between node i and node j. This distance is calculated
from the piece position in the Cartesian plane of the considered problem. For each
movement i-j another movement j-i exists such that Di j = Dji . All distances must be
positive and the distances between incompatible nodes are not considered. This vector
is of 3(s+p)+2(s·p) order, where p is the number of single arm pieces to be transported
and s is the number of robotic arms.
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This is especially relevant in the case of two-armed pieces,
as an out-of-space rotation could lead to collisions between
the arms.

Figure3 shows a graph with all problem possibilities. In
black color, the trajectories which are mandatory after visit-
ing the picking node are represented. In blue, the trajectories
that can be made are represented. This problem is solved as
a (BILP) and it consists of many elements:

min
∑

k∈K

∑

i, j

Di j Xki j (1)

s.t.
p∑

i=1

Xksi = 1 ∀k = s, k ∈ K , s ∈ S (2)

2∑

k=1

Xki j = 1 ∀i = j, i ∈ T , j ∈ M (3)

p∑

j=1

Xkjs = 1 ∀k = s, k ∈ K , s ∈ S (4)

2∑

k=s=1

Xksi +
2∑

k=1

∑

j=i

Xk ji = 1 ∀i ∈ T (5)

p∑

i= j=1

Xki j ≤ p − 1 ∀k ∈ K (6)

2∑

k=s=1

∑

i �= j

Xk ji +
2∑

k=s=1

Xkjs = 1 ∀ j ∈ M (7)

∑

i �= j

Xk ji + Xkjs − Xkhj = 0 ∀ j ∈ M, k = s, h = j, h ∈ T (8)

p∑

j=1

Xkji + Xksi − Xkih = 0 ∀i ∈ T , k = s, h = i, h ∈ M (9)

• Objective function (1): The objective function is defined
by the addition of all distances run by both arms in order
to place the single pieces from the tray to the mold.
Therefore, the optimization problem should optimise the
function:

Constraints

• Initial constraints (2): The arm must start from the initial
node. Therefore, the path from the initial node to tray
node i ∈ T can only be given once. There will be as
many type constraints as arms (s).

• Placement constraints (3): Each piece can only go to one
place on the mold so this movement has to be performed
compulsory by one arm. All movements can only be per-
formed as maximumby one arm, even theremay be move-
ments not crossed by any arm. Therewill be p constraints.

• Return of the arm to the initial position (4): Each arm
must come back to home position (initial node s) once it
has finished the task, that is, each arm can only go once
from a j node to initial node s. There will be as many type
constraints as arms (s).

• Tray nodes are only visited once (5): Each tray node i
∈ T is only visited once. These nodes can be reached
from the initial node s ∈ S, if it is the first time, or from a
j ∈ M node if it is after the place of another piece. There
will be p constraints.

• The case of one arm that cannot pick all pieces (6): It
is given as a condition that one arm cannot transport all
pieces. It seems logical to think that if pieces are trans-
ported between both arms, the total task time will be
minimised. There will be as many type constraints as
arms (s).

• From each mold node, only one arm comes out once
(7): The j ∈ M node is the placing node for each piece,
therefore, only one piece per node can be placed, so it
can be visited only once considering all arms. If one arm
has picked or placed a piece on a node, the same arm or
the other one will be unable to do so again. There will be
p constraints.

• Entry and exit of a node from the mold (8): If one arm
arrives at any placing node j ∈ M , it is mandatory that
the arm goes out from it to go to the next picking node i
∈ T or initial node s ∈ S if it has finished its task. There
will be p constraints.

• Entry and exit of a node from the tray (9): If one arm gets
to any picking node i ∈ T is mandatory that the arm goes
out from it to go to the analogy placing node j ∈ M . It
can be reached from the initial node of the arm or from a
previous picking node. There will be p constraints.

3 Results and discussion

In order to assess the feasibility of the model, tests were car-
ried out using 250 trays of the Manufacturer 1 model and
a further 250 trays of the Manufacturer 2 model, for a total
of 500 cases evaluated. Each tray was configured with ran-
dom positions for the three pieces, always within the robot’s
workspace. In this way, the vastmajority of possibilities were
taken into account.

The Binary Integer Linear Programming (BILP) model
was implemented in the R language using the lpsolve library.
In the case studied in this work, which consists of 3 pieces
and 2 arms, 27 constraints were established.

3.1 Manufacturer 1 andManufacturer 2models
results

The trajectory for each arm is analysed for each tray. Fig-
ure 4 (top row) shows the arms trajectory for three randomly
selected trays of the Manufacturer 1 model. The body of the
robot is positioned at position (250,0) and its end effectors

123

4226 The International Journal of Advanced Manufacturing Technology (2024) 130:4221–4234



Fig. 4 Optimal solutions for different pick positions. Top row for Manufacturer 1 model shoe. Down row for Manufacturer 2 model shoe

are positioned in S1 and S2. Nodes i1, i2, and i3 represent the
picking positions and nodes j1, j2, and j3 represent the place
positions. Red lines represent the right arm trajectories and
blue lines represent the left arm trajectories.

Figure 4 (down row) represents the solution of three ran-
domly selected trays of Manufacturer 2 model. The greatest
difference lays in the node j1.

Two strategies have been implemented in the robot pro-
gramme to avoid conflicts and collisions during the execution
of the trajectories, as shown in Fig. 4. The first strategy is
to include synchronisation points where both arms must be
placed simultaneously to ensure that there are no collisions.
The second strategy is to give a higher speed to the arm that
performs most of the pick-and-place operations, to ensure
that both arms start and finish at the same time.

Analyses were performed on the data from the Manu-
facturer 1 and Manufacturer 2 models and the results are
presented in the boxplot and density plot as shown in Fig. 5.
For the Manufacturer 1 model, the box in the boxplot repre-
sents 50% of the central data and the red line indicates the
median with a value of 1973.2 mm. The mean is 1971.9 mm
and a 95% confidence interval has been calculated between

1952.1 and 1991.7 mm. The density plot shows the distribu-
tion of the total distances for all trays and it can be seen that
most of the data is concentrated in a small interval, suggesting
the robustness of the model.

The results for theManufacturer 2model are similar to the
Manufacturer 1 model. The median is 1971.9 mm, the mean
is 1948.4 mm and the 95% confidence interval is between
1930.8 and 1965.9 mm. As with the Manufacturer 1 model,
the majority of the data falls between 1900 and 1980mm.

Comparing the twomodels, it can be seen that bothmodels
have three pieces and show some similarities in the results.
Table 2 summarises the main data for each model. There
is a slight difference in the mean and median values due
to the position of piece 1 in the fitting task. However, in the
Fabricator 2model the data aremore clustered, with a smaller
standard deviation. At the 95% confidence interval there is a
difference in the absolute values, but the interval is narrow.
This indicates that the vast majority of the data falls within
this interval, confirming the robustness of the model.

In the comparative analysis between both boxplots with
their 95% confidence interval, as already discussed before,
Manufacturer 2 model has more compact data than Manu-
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Fig. 5 Boxplot and density graph for both Manufacturers

facturer 1 model and the values of ot are higher due to the
place position of piece 1 which is different for each model.

Figure6 represents the pick-and-place task for Manufac-
turer 1. The BILP model has been tested in experimental
scenarios to validate it.

3.2 Computational cost

The time taken to compute the best sequence is an impor-
tant consideration, since if the time taken to find the fastest
sequence is greater than the gain obtained by using such a
sequence over a random sequence, the model would not be

useful. It is therefore important to examine the computational
cost involved.

A box plot showing the time taken to compute the best
sequence for both models is shown in Fig. 7. In the case of
theManufacturer 2 model, there is an outlier of 0.04 seconds,
but this value is not significantly different from the average of
all cases. The graph shows that the vast majority of the data
for both trays do not exceed 0.03 seconds in the sequence
calculation. The average time is 0.0201seconds for the Man-
ufacturer 1 model and 0.0181seconds for the Manufacturer
2 model. These times confirm the speed of the best sequence
calculation for both models, which supports the efficiency of
the proposed solution.

Table 3 shows the main feature for both models, where
for Manufacturer 1 model has an average time of 0.0201, a
standard deviation (Sd) of 0.0102 secs., a median time of
0.0200, a minimum time of <0.0001 and a maximum time
of 0.0500. Manufacturer 2 has an average time of 0.0181,
a standard deviation of 0.0075, a median time of 0.0200, a
minimum time of 0.0100, and a maximum time of 0.0400.
It is clearly appreciated that Manufacturer 2 model data are
more compacted as indicated by a low standard deviation.

In Fig. 8, an analysis of the computational cost with the
increase of the trays analyses is presented, in order to estab-
lish if the model has a linear, exponential, or logarithmic
behavior. The analysis was developed with both models.
Therefore, the behavior of both models is linear, having sim-
ilar time values to calculate the best sequence.

Therefore, this data supports the research done because the
time spent in calculating the best sequence for three pieces
in the pick-and-place task has a lower mean of 0.025 secs.

3.3 Comparative between decision treemodel
and BILPmodel

The research conducted in the article [35] presents a decision
tree model designed to optimise task execution time. This
model reduces all possible sequences to a limited number of
branches in the tree, which helps to minimise the computa-
tional cost.

To compare the twomodels, the optimal sequences of [35]
corresponding to simulation 13 (where piece 1 is picked up
by the left arm and pieces 2 and 3 are picked up by the right
arm) and simulation 17 (where piece 3 is picked up by the
right arm, piece 1 by the left arm and piece 2 by the right
arm) of the decision tree model were selected. The distance

Table 2 Features of optimal
sequence for Manufacturer 1
and Manufacturer 2

Mean Sd 95%CI Median Min Max

Manufacturer 1 1971.9 159.9 1952.1−1991.7 1973.2 1634.5 2356.4

Manufacturer 2 1948.4 141.4 1930.8−1965.9 1971.9 1563.5 2220.8
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Fig. 6 Pick-and-place task in an
experimental scenario

that the arms have to travel in the BILP model presented in
this study was then calculated, using the same positions of
the pieces in the tray.

The information obtained is shown in Fig. 9, which rep-
resents the distance travelled by the arms for each of the
simulations and manufacturers, compared to the distance
obtained by the BILPmodel. The red line represents the mid-
points between the two models when the distance travelled
is the same.

For theManufacturer 1model, themean distance travelled
in simulation 13 is 2111.1 mm with a standard deviation
of 163.8 mm. In simulation 17 the mean distance travelled
is 2148.3 mm with a standard deviation of 156.6 mm. For
the Manufacturer 2 model, the mean distance travelled in
simulation 13 is 2128.4 mm with a standard deviation of
147.86 mm. In simulation 17 the mean distance travelled is
2173.5 mm with a standard deviation of 171.4 mm.

The results show that by using the BILP model, an
improvement in the average distance travelled per tray of

Fig. 7 Computational time
boxplot for Manufacturer 1 and
Manufacturer 2
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Table 3 Features of computational times(secs.) forManufacturer 1 and
Manufacturer 2

Mean Sd Median Min Max

Manufacturer 1 0.0201 0.0102 0.0200 <0.0001 0.0500

Manufacturer 2 0.0181 0.0075 0.0200 0.0100 0.0400

9.0% is achieved for the Manufacturer 1 model and 11.6%
for the Manufacturer 2 model. These results demonstrate the
effectiveness and advantages of the BILP model in reducing
the distance travelled during the pick-and-place task.

These results support the validity of the decision tree-
based approach and show that the new approach significantly
reduces task execution times at negligible computational
cost. Itwaspossible to reduce thenumberof trajectories required
by a dual-arm robot to place all the pieces in the mould.

It is important to note that the pick-and-place process
accounts for approximately 83%of the total assembly time of
a shoe. With this proposed approach, an approximate reduc-
tion of 7.1% and 9.0% of the total time is achieved compared
to the decision tree model. The average times for the Man-
ufacturer 1 and Manufacturer 2 models in the decision tree
model are 15.14 s and 15.51 s respectively. In addition to the
pick-and-place process, there is a start time of 1.5 seconds
and an end time of 5 seconds. This gives a total task time
of 21.64 s for the Manufacturer 1 model and 22.01 s for the
Manufacturer 2 model.

Considering that a dual-arm robot can handle 1308moulds
in an 8-h working day, and that it takes an average of
21.64 seconds to handle a mould with the Manufacturer 1

model, the total assembly time for all the trays could be
reduced by 42.46minuntes for the Manufacturer 1 model.
This means that, using the proposed BILP model, 129 addi-
tional moulds could be assembled for the Manufacturer 1
model and 171 additional moulds could be assembled for the
Manufacturer 2 model in the same period of time.

As can be seen, the points shown in Fig. 9 are always above
the red line, at most with the decision tree model, the same
distance moved is obtained. So the BILP model is always
equal to or better than the decision tree model in distance
minimization.

3.4 BILPmodel for n pieces

After developing the mathematical model to optimise the
pick-and-place sequence, a problem was identified when
increasing the number of pieces to obtain the optimal
sequence. Loops were observed between two pieces, result-
ing in the corresponding arm not reaching its final position.
To avoid these loops and ensure correct execution, it was
decided to introduce the following constraint into the model.

∑

j=1

Xki j +
∑

j �=1

Xki j < p ∀i ∈ T , k = s, j ∈ M (10)

Loops (10). It is not possible to generate a path that creates
a closed loop between two pieces without ending or starting
at the starting point. There must be 3(p-2) constraints. Tests
were carried out to check the robustness of the algorithm for
4, 5, 6, and 7 pieces. In each case, 250 trays were produced
and the optimal solution was obtained. Figure10 shows the

Fig. 8 Computational cost in
function of number of trays for
both models
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Fig. 9 Comparative between
decision tree model and BILP
model

graph of the sequence of a tray for each of the cases. The
right arm is represented with red lines and the left arm with
blue lines.

In the analysis carried out for the different numbers of
pieces, the average optimal distance and the computational
cost were obtained, as can be seen in Fig. 11. In the case of
the optimal distance, it follows a proportional function that
increases with the number of pieces, while the computational
cost increases exponentially, due to the fact that the number
of constraints increases exponentially with the number of
pieces.

4 Conclusions

This paper presents the results of a BILP algorithm for the
pick-and-place task in shoe manufacturing using a dual-arm
collaborative robot. One of the main advantages of the pro-
posed approach is the simplificationof themulti-robotmodel.
Tests were carried out on two different shoe models consist-
ing of three pieces to be picked up by one armand one piece to
be picked up by both arms. In total, more than 500 cases were
solved to test the model and in all of them, a valid solution
with an optimal trajectory for both arms was obtained.
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Fig. 10 Optimal solutions for
different number of pieces. Blue
line is for red arm and blue line
is for left arm

Fig. 11 Medium optimal distance and computational cost for different
number of pieces

It is important to note that the piece requiring two arms
contributes to the total time, so in this research, it is consid-
ered at the end of the sequence. This piece is not included
in the mathematical model for the reasons given above. The
model focuses on pieces that are picked up by a single arm.
Consequently, the model from Manufacturer 1 moves an
average distance of 4185.9 mm, while the model from Man-
ufacturer 2 moves an average distance of 4327.5 mm. This
difference in distance is mainly due to the variation in the
position of piece 1.

The results obtained for the 500 trays demonstrate the
robustness of the model. No data was found outside the
workspace and all trajectorieswere optimally calculated, giv-
ing consistent results. Another important point to note is the
time taken to calculate the optimal sequence. The results
show an average time of 0.02 seconds to calculate each tray.
This time increases linearly with the number of trays. There-
fore, the proposed approach offers a significant advantage as
the time taken by the model to determine the best sequence
is minimal.

The BILPmodel is compared with the decision treemodel
presented in the article [35], which shows an improvement in
minimising the distances while having a significantly lower
computational cost. In all the trays presented, theBILPmodel
outperforms or at least equals the distance in the trajectory of
the robotic arms when performing the pick-and-place task.

The present BILP model has been tested with the two
models mentioned and the next step will be to test it with
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models containing more pieces to see if the results obtained
can be extrapolated to any model and even to other pick-and-
place systems. Furthermore, the number of robots has been
considered as a parameter, so that the removal or addition of
one of them does not affect the BILP model presented in this
research.

Finally, the model has been tested for n pieces, obtaining
data that confirms the robustness of the model, increasing
the optimised distance proportionally and the computational
cost exponentially as the number of pieces increases.
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