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Abstract
We present a machine learning workflow to discover signatures in acoustic measurements that can be utilized to create a
low-dimensional model to accurately predict the location of keyhole pores formed during additive manufacturing processes.
Acousticmeasurementswere sampled at 100 kHz during single-layer laser powder bed fusion (LPBF) experiments, and spatio-
temporal registration of pore locations was obtained from post-build radiography. Power spectral density (PSD) estimates of
the acoustic data were then decomposed using non-negative matrix factorization with custom k-means clustering (NMFk) to
learn the underlying spectral patterns associated with pore formation. NMFk returned a library of basis signals and matching
coefficients to blindly construct a feature space based on the PSD estimates in an optimized fashion. Moreover, the NMFk
decomposition led to the development of computationally inexpensive machine learning models which are capable of quickly
and accurately identifying pore formation with classification accuracy of supervised and unsupervised label learning greater
than 95% and 90%, respectively. The intrinsic data compression of NMFk, the relatively light computational cost of the
machine learning workflow, and the high classification accuracy makes the proposed workflow an attractive candidate for
edge computing toward in-situ keyhole pore prediction in LPBF.

Keywords Additive manufacturing · Laser powder bed fusion · Acoustic monitoring · Unsupervised learning · Non-negative
matrix factorization · Dimensionality reduction

1 Introduction

Additive manufacturing (AM) technology has been suc-
cessfully utilized to rapidly fabricate both prototypes and
functional production parts in applications throughout the
aerospace, biomedical, and tooling industries [1–6]. Advances
in these application areas require parts with geometric com-
plexity that can be impossible to produce using traditional
manufacturing methods [7–12]. For this reason, AM pro-
cesses such as laser powder bed fusion (LPBF), have drawn
great interest in a wide variety of industries. However,
despite the advantages offered by this and other AM tech-
nologies, process variability and lack of quality assurance
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standards continue to challenge qualification and certifica-
tion efforts for low-volume AM part production in safety- or
performance-critical applications. Defects, such as porosity,
spatter, balling, geometric deviations,microstructural hetero-
geneities, and impurities, are formed during the build process
and implicitly dependent on the thermal history of the build,
process parameter settings, and the stochastic nature of the
LPBFprocesses themselves [6, 13, 14]. Such defects can vary
in quantity and location, resulting in inconsistencies in the
mechanical performance of parts produced through LPBF.
Specifically, pores formed within the bulk material may lead
to stress concentrations within the part which can reduce the
mechanical integrity, specificallywith respect to ductility and
fatigue life, of produced parts when put into service [15, 16].

Current quality control inspections for LPBF-based AM
parts are primarily performed post-production, resulting in
wasted resources should critical defects have instead been
detected during fabrication [17]. However, LPBF processes
are highly suited for in-situ monitoring schemes due to the
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abundance of optical, thermal, and acoustic information gen-
erated during the build processes [18]. Accordingly, the
development of in-situ measurement techniques for LPBF
has seen rapid advancements over the past several years [19,
20]. However, many of the developed sensing methods
require specialized and costly imaging technologies to accu-
rately measure the thermal and optical emissions. Moreover,
these imaging methods pose a major hurdle with respect
to acquired data. That is, the data collected during imag-
ing of an AM specimen and/or process is of huge volume
(e.g., terabyte scale), costly, time-consuming, missing infor-
mation, ill-structured (e.g., misalignment among different
melt pools), and has a low signal-to-noise ratio. Hence,
there is a need for a fast, reliable, and cost-effective in-
situ quality monitoring technology and a real-time algorithm
to process the acquired data near the sensor edge. Such an
algorithm could enable potential corrective actions during
the fabrication to reduce the overall AM cost [21]. To this
end, acoustic emission monitoring combined with recent
advances inmachine learning (ML) showspromise to achieve
this grand challenge [22, 23].

Acoustic measurements have proven effective for iden-
tifying process abnormalities in a variety of lasing oper-
ations [24–27]. Recently, acoustic monitoring has been
extended to the domain of LPBF [28–32]. Typically, one
utilizes signal processing tools to featurize the acoustic
recordings and subsequently uses pattern recognition tools
such as neural networks [28, 33–35], clustering [36], or statis-
tical classifiers [29] to interpret the underlyingLPBFprocess.
Spectral representations of the acoustic data have been
demonstrated to be useful in predicting both LPBF process-
ing parameters over full-builds [28, 33, 35, 36] and localized
keyhole pores of spatio-temporally registered data [29]. The
physical connection between acoustic spectral features and
pore formation is not fully understood, although it has been
computationally demonstrated that surface oscillations of the
melt pool precedes pore formation in the vicinity of 20–50
kHz [37]. To this end, Ren et al. developed a combined com-
putational and experimental approach to accurately register
and predict pores based on thermal oscillations near the range
of 40 kHz which were shown to be induced by melt pool
instabilities at the onset of pore formation [38].

Despite the promising recent research involving acous-
tic monitoring, there are several notable challenges that limit
acousticmeasurements frombeing used to their fullest poten-
tial in practical in-situ applications. Namely, while several
studies have used acoustic information for supervised learn-
ing, the automated identification of the most informative
spectral patterns for detecting the formation of keyhole pores
has yet to be achieved. The intelligent identification of these
spectral patterns could havemeaningful implications to relate
the acoustic measurements to melt pool physics. Moreover,
there is the challenge of data storage for practical in-situ

monitoring schemes. For shorter duration builds (e.g., couple
of hours), the acquired data from of AM process monitor-
ing is not overwhelming in size and a clear advantage in
real-time processing practicality is achieved as compared
to X-ray or high-speed camera imaging methods. However,
for longer duration builds (e.g., days), the acoustic emis-
sion data acquired with sampling frequencies of O(105 - 106

Hz) is large even for 16-bit data (e.g., terabyte scale) and is
comparable to the above state-of-the-art imaging techniques.
Typically, acoustic signals can be collected and processed
in near real-time using a reasonably lower-cost computing
hardware such as a Raspberry Pi or FPGA [39] (provided the
sampling rate does not exceed the microprocessors abilities).
To this end, developing an efficient and effective means of
compressing the full acoustic signals into actionable infor-
mation at sensor edges (in a smart and automated fashion) is
of great interest for developing practical in-situ technologies.

We aim to address these challenges directly by employ-
ing the experimental framework to register acoustic signals
to pore locations presented in [40]. In prior works, this data
was featurized into massive feature banks which were later
reduced in a fully supervised feature selection and classifi-
cation framework [29, 30]. In the current paper, we present a
ML model that leverages the same spatio-temporal registra-
tion scheme of [40] with the goal to discover hidden signals
in the acoustic data, assess the dominant signal response and
associated frequencies for pore formation, and then classify
the state of the LPBF process (pore or non-pore formed at a
given location and time) with an unsupervised featurization
routine. Hence, the underlying patterns in the acoustic spec-
tra can be automatically determined rather than manually
identified based on user-defined feature spaces. Moreover,
our proposed method provides a compressed representation
of the data, greatly alleviating data storage concerns in LPBF
monitoring.

The innovative aspect of ourMLmodel is that it combines
recent advances in unsupervised and supervised learning to
quickly and accurately predict pore formation with minimal
training data. To achieve the discovery of hidden signals
or patterns in the data, we make use of an unsupervised
matrix factorization method called NMFk. NMFk is based
on non-negative matrix factorization (NMF) [41] coupled
with a semi-supervised k-means clustering algorithm [42,
43]. NMF uncovers latent representations of the data while
k-means clustering partitions the latent space to discover
underlying patterns [44]. In contrast with traditional NMF
[41, 45], NMFk allows for automatic identification of the
optimal number of signatures present in the data [42, 43].
Hence, the feature space recovered for the acoustic signals is
not only recovered blindly but it is done so in an intelligent
and optimal manner for the sake of identifying binary differ-
ences in the underlying operating state (e.g., pore forming
or non-pore forming). Moreover, NMFk produces a low-
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dimensional feature space representation of the frequency
content contained in the acoustic measurements allowing the
data to be compressedwithminimal loss of information (e.g.,
storing only decomposed matrices), perform blind source
separation andgain insights into themelt pool dynamics (e.g.,
dominant frequencies that characterize pore formation).

Accordingly, the rest of the paper is organized as follows:
Section2 provides the details of the experimental data sam-
pled forMLmodel development. This data is acquired during
an LPBF-basedAMexperiment, and the ground truth to label
the acoustic emission signals is also described in this section.
Section3 proposes theMLworkflow to develop the proposed
NMFk-based ML model. Details on the procedure to extract
dominant pore formation signatures, supervised and unsu-
pervised data labeling strategies, and pore-state classification
are also described. Section4 provides details on the classifi-
cation accuracy of the trainedMLmodel in the identification
of pores and offers a brief discussion regarding classifier
selection and computational cost. Finally, Section5 discusses
the conclusions and the potential directions for future ML
research for in-situ acoustic monitoring for AM processes.

2 Experimental measurements

Keyhole pore formation is a common defect type in LPBF
and is the focus of this study. We outline the basic mecha-
nisms of LPBF and keyhole pore formation here and direct
readers to Reference [46] for a detailed discussion. A melt
pool is formed as the laser melts the metal powder that was
spread on a solidmetal substrate. Depending on the operating
conditions, strong vaporization can occur due to laser heating
which drives a vapor recoil pressure and vapor depression in
front of the melt pool. As the depression collapses, vapor
may become trapped within the build material as the mate-
rial rapidly solidifies; this results in the formation of keyhole
pores, which are most commonly found at turn points where
the laser changes speed.

To study the formation of pores, single-layer experiments
were conducted using an Aconity3D (Aachen, Germany)
open-source platform at Lawrence Livermore National Lab-
oratory using the same optical set up described in References
[40, 47]. A 1070-nm continuous wave (CW), 400WYb-fiber
laser was used in the LPBF system producing an approxi-
mate beam diameter of 100 μm (D4σ ) at its focal point. All
experiments were conducted with 316L stainless steel (SS)
powder—produced using gas atomization by Additive Metal
Alloys (Holland, OH, USA), and sorted to contain particle
sized in the range of 15 to 45 μm—atop 316L SS substrates.
The scanswere performed in an argon atmospherewith a con-
tinuous gas recirculation to redirect the vaporization plume.
Single layer patches were melted with dimensions 2 mm ×

5mm and 1mm× 5mm. In some instances, the laser powder
was modulated near laser turn points to reduce the likelihood
of pore formation. Five experimental trials were conducted
to provide 5 data sets with the same operating parameters
detailed in [29]. The laser power was varied between 150 and
375 W and laser speed between 100 and 400mm/s respec-
tively with a 100 μm hatch spacing. The laser power and
speeds were varied randomly throughout the plate with a
majority corresponding to high volumetric energy densities
(VEDs) which are known to cause keyhole pore formation.

Acoustic data was collected by the same procedure
described in [29]. An electric microphone was secured to
the side of the build chamber above the build surface,
approximately 25cm from the center of the build plate. The
microphonewas sampled at 100 kHz, coupledwith a lowpass
filter of 6 dB, and collected at a gain of 10× using a Stan-
ford Research System pre-amplifier. The data was recorded
in-sync with measurements of the scan mirror positions,
allowing for spatio-temporal registration of the acoustic sig-
nal with the location of the laser on the build plate. Ex-situ
X-ray imaging of the build plates with the single-layer depo-
sitions revealed the pore locations providing ground truth
labels for the acoustic data. The X-ray data was acquired
at beamline 8.3.2 of the Advanced Light Source housed at
Lawrence Berkeley National Laboratory with parallel poly-
chromatic X-ray beams and a 0.5-mm thick copper plate
for removal of low-energy X-rays. The transmission images
were collected at a resolution of 2560×2160 pixels and a
1.5 s exposure time. A PCO Edge sCMOS camera with a 5×
lens was spaced approximately 100mm away from the plates
resulting in an average effective pixel size of approximately
1.3 μm.

The acoustic measurements were partitioned into win-
dows of 10 ms in duration and labeled accordingly as pore
or non-pore classes (Fig. 1). The labeling was based on the
spatio-temporal registration algorithm described in Refer-
ence [40]. For segments that include a pore, a random offset
was applied so that the pores appeared at random locations
in the window partitions to ensure that the ML model devel-
oped can be generalized. The remainder of the track was
associated with non-pores and the data was partitioned into
overlapping windows of 10 ms with up to a 0.25-ms overlap.
This resulted in a set of pore- and non-pore-affiliated acoustic
data, which can be used to train and test our MLmodels. The
data partitioning scheme provided an ensemble of time-series
signals stored in a matrix X for discovering pore formation
signatures in the acoustic data for each experiment which are
summarized in Table 1.

The recirculation mechanism for the cover gas in the
LPBF machine operates in the 0–5 kHz frequency range
which dominates the acoustic power spectra for both pore
and non-pore signals and is present even when the laser
is off.Therefore, this frequency range may be regarded as
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Fig. 1 The spatial-temporal registration scheme: a Pore location(s)
found in radiography are registered to the measured laser locations on
a x-y coordinate grid. The time(s) when the measured x and y coordi-

nates coincide with a registered pore aremarked by t∗ as the registration
time(s). b The partitioning of an acoustic signal into a pore-affiliated
segment based on the registered pore time and random offset

process-irrelevant noise, and frequencies below2.5 kHzwere
neglected.

3 Acoustic data decomposition andML
workflow

This section presents the proposed pore detection framework.
Figure 2 shows the overall ML workflow to discover hidden
signatures in acoustic data and then predict the formation of
pores during the AM process. The workflow is divided into
two main steps. In the first step, unsupervised learning based
on NMFk is used for extracting hidden signatures/features
and dimensionality reduction of the acoustic data. The data
collected during eachLPBF experimentwas assembled into a
datamatrixXwhereby each column corresponds to an acous-
tic time-series window labeled as either containing a pore or

Table 1 Details of training and testing sets separated by experimental
trial

Training data

Set Samples Pores No pore Ratio

1 370 73 297 4.1

2 222 42 180 4.3

3 703 249 454 1.8

4 415 98 317 3.2

5 806 360 446 1.2

Testing data

Set Samples Pores No pore Ratio

1 2146 749 1397 1.9

2 2295 780 1514 1.9

3 1813 573 1240 2.0

4 2101 724 1377 1.9

5 1720 462 1258 2.7

not, as described in Sect. 2. The time-series matrix X was
converted into a PSD matrix V using Welch’s method [48].
Next, V was decomposed into two non-negative matricesW
andH.W represents a dictionary of spectral patterns or hid-
den signals in the acoustic data. In other words, W forms
as a basis to reconstruct V based on the linear combina-
tion of basis vectors weighted by the coefficients H (which
is commonly referred to as the mixing matrix). The matrix
H provides information on how the discovered signals are
mixed, which is useful for test samples in the second step
of the ML workflow. The values in H also provide informa-
tion on the individual importance of each discovered signal
to reconstruct the acoustic training data.

An obvious concern is whether or not a linear decomposi-
tion (NMFk) sufficiently captures an intrinsically nonlinear
dataset (since the PSD is a nonlinear operator). However,
despite the nonlinearity introduced by the PSD, NMFk still
works for this case study since the basis vectors characteriz-
ing pores and their non-pore counterparts are well separated
in the encoded latent space. Moreover, if the measured sig-
nals are assumed to be a linear combination of sufficiently
separable sources, then their PSDs may be reconstructed as
a linear combination of source PSD signals [49]. Hence, the
NMFk decomposition can sufficiently capture the V matrix.

Once a latent space is learned, a test acoustic signal xt2n×1 ,
can be used to classify its PSD vector Vtn×1 . Namely, the dic-
tionary of spectral patterns W (generated from the training
data) provides a basis to generate the coefficients vector htk×1

to reconstruct Vtn×1 using the least-squaresmethod. The coef-
ficient vectorhtk×1 canbe treated as a feature vector to classify
the test data sample as pore or non-pore based on the patterns
of the H matrix learned from the training data. This allows
us to store important features in the high-throughput data
and their coefficients, thus leading to dimensionality reduc-
tion and data compression. Classification can be performed
by either unsupervised learning (e.g., k-means clustering) or

123

3106 The International Journal of Advanced Manufacturing Technology (2024) 130:3103–3114



Fig. 2 MLworkflow: schematic representation of our ML workflow to
discover hidden signatures in acoustic data and predict pore formation
during the AM process. The PSD of the signal windows is stored in
matrix V, which is decomposed into a basis W and coefficient matrix

H. The label vector y and coefficient matrix are used to train a classifier.
The coefficients for a test signal, ht , are computed with the PSD of the
test signal and the basis W, which can then be used for classification

using a supervised learning method (e.g., decision trees, ran-
dom forests, discriminant analysis, support vectormachines).

3.1 Non-negative matrix factorization with custom
k-means clustering (NMFk)

We have not yet addressed the dimensionality of W which
is typically a user-defined input for NMF decomposition.
Given an (n,m) matrix V, a k-dimensional basis will factor-
ize V into matrices W and H of sizes (n × k) and (k × m),
respectively as V = W × H. The variable k corresponds to
an unknown number of dominant basis signals present in the
data. To this end, NMFk estimates the optimal number of
hidden signals kopt by performing a series of NMF opera-
tions for different values of k; k = 1, 2, 3, · · · , d , where the
maximum value d cannot be expected to exceed n orm. This
is achieved by minimizing the following objective function,
L, based on the Frobenius norm for all possible values of k.

L = ‖V − W × H‖F
W,H ≥ 0 ∀ n, k, m

(1)

For each k in 1 ≤ k ≤ d , NMF is performed for 10 ran-
dom initializations ofW andH, respectively. The converged
value for L is returned for each of the 10 iterations at a fixed
dimension k. The smallest value of L over the 10 iterations

is considered the reconstruction error for the k-dimensional
factorization ε(k). The resulting (k × m)-sized H matrices
are clustered using customized k-means clustering. During
clustering,we enforce the condition that each of the k clusters
contain an equal number of members, which is equal to the
number of performed multiple random runs (e.g., 10 solu-
tions). Next, the average Silhouette width S(k) and Akaike
Information Criterion (AIC) score is computed. S(k) quan-
tifies how similar an object is to its own cluster compared
to other clusters; a low S score indicates redundancy in the
latent spacewhereas high values indicate the clusters arewell
separated. The combination of ε(k), S(k), and the AIC score
determines the optimal number of hidden signals, kopt [50].
Typically, S(k) declines sharply after an optimal number,
kopt, is reached. If k is low, the Silhouette width will be high,
but so may be ε(k) because of under-fitting, whereas a high
k may lead to redundant basis signals. So, the best estimate
for k is a number that optimizes both ε(k) and the Silhouette
width, S(k). The resultingW at kopt provides information on
the hidden signals in the acoustic PSDs.

3.2 NMFk-based pore detectionMLmodel

The coefficient vectors htk×1 extracted from a test sample
xtn×1 were compared against the library of coefficients in H
by using ML classifiers that were trained, tested, and val-
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idated using the H matrix and the ground truth (pore or
non-pore labels). The coefficient vector htk×1 from an unseen
test sample served as the input to the trained ML classi-
fiers and is representative of the so-called feature vector.
The data to train, test, and validate our NMFk-based pore
detection ML model was divided into 5 separate sets, which
coincide with 5 data acquisition trials of the same AM exper-
iment (see Sect. 2). Our training and testing schemes were set
up such that the ML models were trained on the H matrix
estimated for one of the 5 data sets, while the remaining 4
datasets were used for testing. Table 1 provides a summary
of the number of pore samples, number of non-pore sam-
ples, and class imbalance ratio for the training and testing
data of each respective set. To account for the imbalance
in the training data, we resample the training set through
under-sampling and 10-fold cross-validation during model
development.

Two different ML methodologies were implemented in
this study: supervised and unsupervised data labeling. For
supervised data labeling, the ground truth labels generated
from correlating X-ray radiography were used to label each
training and testing sample (acoustic signal) as either pore
or no pore. The alternative to this approach is unsupervised
or blind data labeling. Demonstrating the efficacy of blind
labeling is a major advantage when limited ground truth is
available, as is commonly the case for complex AM experi-
ments whereby proper registration is highly nontrivial. Note
that the NMFk algorithm is inherently a blind feature extrac-
tion technique and is, thus, a blind ML technique on its own.
By introducing blind labeling, the ML workflow becomes
fully autonomous.Theblind labelingwas achievedbyblindly
assigning class labels in the feature space H by partition-
ing the latent space into two groups with an unsupervised
k-means clustering algorithm. The blindly labeled feature
space H was then used to train ML classifiers. The resulting
MLmodelwas tested on hold-out datawhichwas not used for
blind labeling or training. Finally, the accuracy of the models
trained and tested on blindly labeled latent spaces was com-
puted by comparing the classifier predictions to the ground
truth of each observation to the classification results. In this
framework, the classifier predicts a test sample as belonging
to cluster 1 or cluster 2. These clusters were associated as
being pore or non-pore affiliated in an ad-hoc fashion.

Classification was performed using decision trees (DTR),
k-nearest neighbors (KNN), Gaussian discriminant analysis
(DSC), nonlinear support vector machine (SVM), adaptive
boosting (ADB), gentle adaptive boosting (GTB), logistic
regression boosting (LTB), robust boosting (ROB), and ran-
dom undersampled boosting (ROB). The performance of
all algorithms was compared for both accuracy and com-
putational cost in order to resolve the best suited for the
proposed ML workflow. Details pertaining to the mathemat-

ical machinery and implementation of these models can be
found in foundational pattern recognition texts [51].

4 Results

This section presents the results obtained by applying the
algorithmic workflow described in Sect. 3 to the acoustic
LPBF data. We first show that the NMFk routine produces
well-suited latent spaces for pore identification and spectrum
interpretation. We then demonstrate that this methodology
results in highly accurate and efficient ML models.

4.1 NMFk decomposition of the AM data

The PSD estimate of each analysis window was computed
for all data sets and was then split into separate training
and testing sets per Table 1. Prior to NMFk featuriza-
tion, the PSD estimates V were normalized per [lnV −
min[lnV]/max[lnV − min[lnV] to enhance the sensitivity
over the frequency range associated with the LPBF pro-
cess. This normalization produces a logarithmic scaling of
V (which is a standard scale for PSD estimates) normalized
between 0 and 1 (which is a standard normalization for ML
tasks). Figure3a shows the unnormalized signals at pore and
non-pore locations and Fig. 3b shows the normalized signals.
The solid line in Fig. 3b represents the average PSD across
all observations in training set 1, and the color band shows
the associated variance.

The NMKk algorithm was applied to the normalized PSD
estimates to return a W basis dimension k. Figure4a shows
this decomposition of data set 1, where k = 3 is indicated as
the optimal basis dimension based on the Silhouette width
S. Figure4b shows the discovered basis signalsW that mini-
mize ε(k) over the 10 independent NMF iterations computed
at k = 3. From this, it is apparent that a broadband signal
(e.g., hidden signal 1) is discovered in the data with dom-
inant frequencies between 10 and 50 kHz. Lastly, Fig. 4c
and d show the coefficients from the H matrix, which repre-
sents the training coefficients, and testing coefficients htk×1

which are obtained for test PSDs Vt by solving the least
squares problem, minht (Wht − Vt ), Fig. 4c and d depict a
clear demarcation of signal groups in both training and test
sets.

Figure 5 depicts the results of the NMFk routine applied
to all 5 training and test sets (Table 1). The left two columns
show the AIC and silhouette scores used to determine the
optimal number of signals (denoted by a green bar) as
determined by NMFk. The middle-right column shows the
discovered PSD basis signals in the training datasets with
line thickness indicating importance of the basis signal for
pore prediction as determined by the normalized impunity
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Fig. 3 Normalization of
acoustic data: PSDs for training
set 1 of the ML workflow. The
average PSD value of a
unnormalized and b normalized
to enhance the separation on a
linear scale between the
pore-affiliated and
non-pore-affiliated classes

reduction for each feature in random forest emulators using
50 trees and bootstrap samples. Lastly, the right column of
Fig. 5 shows the feature importance with error bars of depict-
ing the standard deviation of impunity reduction across the
bootstrap samples.

Several common trends arise between the data sets.
Namely, the discovered basis signals always return a sig-
nal with elevated amplitude in the 10–40 kHz range, and
another with high amplitude in the low-frequency range.
Since all PSDs in Fig. 3 have elevated energy in the low-
frequency range, the NMFk decomposition returns a signal
with low-frequency energy that all signals match with. How-
ever, pore-affiliated spectra possess a prominent elevation
in the high-frequency ranges as compared to their non-pore
counterparts. Hence, a high-frequency and broad-band basis

signal is returned fromNMFk that correlates strongly to pore-
affiliated data (i.e., has a high matching coefficient). To this
end, the broad-band signal provides the contribution to the
reconstructed spectra that signifies pore formation, which
is further supported by the fact that the broad-band signal
was found to be of high importance from the random forest
emulators. This finding is in good agreement with the iden-
tified frequency ranges reported in [29, 30, 36, 37] which
heuristically found frequencies between 10 and 40 kHz to
correspond to pore formation. We have shown here that the
same frequency range can be recovered in an automated and
optimized fashion via NMFk and have returned the underly-
ing basis of signals which allow for such distinctions in the
acoustic spectra to be possible.

Fig. 4 NMFk-based feature
analysis of acoustic data: a
Silhouette width revealing the
optimal dimension k to be 3
based on clustering, b basis
signals recovered from NMFk, c
shows the feature space H
constructed from the labeled
training data and basis signals
W, and d shows the testing data
plotted in this same H space
based on the training basis W

123

3109The International Journal of Advanced Manufacturing Technology (2024) 130:3103–3114



Fig. 5 NMFk-based discovered signals and associated feature importance: details on optimal numbers of signals k, basis signals discovered
from the training datasets, and associated feature importance of each discovered signal with respect to pore or non-pore classification

4.2 Spatial mappings of H-space

Prior to performing classification experiments, we first
explored possible spatial correlations. This is an important
step in order to ensure that the clustering of H coefficients is
not due to an artifact of the experiment, such as laser start-up
or turn points, but is rather associated with the existence of
a pore formation. This was achieved by mapping the first 3

coefficients of H matrix to the spatial location from which
the acoustic data is collected and comparing their values for
pore and non-pore labeled samples. Each dot represents a
sample of a test acoustic signal and a color value is assigned
to represent the magnitude of theH coefficient. For this case,
training data from set 2 is used to generate theWmatrix, and
the coefficients of all five experiments are superimposed in
Fig. 6. Figure6 shows that the first mixing coefficient value

Fig. 6 Spatial mappings of H coefficients: spatial correlations of the
coefficient matrix H for all pore and non-pore observations based on
the basis signals W recovered from training set 2. All tracks from the
data set are overlaid and colors are assigned based on the values of H

coefficients to indicate the correlation to the basis signals in W. Note
the x and y axes are flipped from Fig. 1 for presentation purposes. This
figure further confirms our hypothesis that the H coefficients are able
to distinguish pore and non-pore signals
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Fig. 7 Supervised and unsupervised ML model classification accuracy: classification accuracy for a suite of ML algorithms for supervised and
unsupervised ML models. Subplot a–e correspond to sets 1–5 defined in Table 1, respectively, and f shows the box-plots for all training and testing
permutations together

(H1) is on average far higher for pore data when compared to
non-pore data. Similarly, the second mixing coefficient (H2)
is higher for non-pore data than pore data. This is expected
from the results presented in Fig. 5. Moreover, the values of
the H coefficients are close to uniform across the tracks and
are largely determined by the underlying pore versus no pore
state. Hence, it is unlikely that theH clusters are formed due
to experimental artifacts. To summarize, this supports the
hypothesis that the spectral features of basis signals contain
process-relevant information for pore state detection.

4.3 Classification experiments

Each data set of Table 1 was evaluated using the ML clas-
sifiers listed in Sect. 3.2 whereby the training was used to
recoverH andW, and ht was computed to featurize each test
sample. The classification accuracy was computed based on
the number of correct predictions versus the total number
of observations, and the results for each classifier and test
set are summarized in Fig. 7. The x-axis indicates which
classifier was used, and the y-axis indicates the classification
accuracy for both supervised and unsupervised data labeling.
Among various ML algorithms investigated here, non-linear
SVM and discriminant analysis consistently return the high-
est accuracy with the scores of approximately 95% returned
for the majority of data sets when supervised labeling is
employed. When unsupervised labeling is considered, the
performance of SVM drops substantially, and discriminant
analysis is the clear front-runner. Figure7 depicts this clearly
with a boxplot comparing the performance across all data
sets. Moreover, the prediction accuracy across all classifiers
based on supervised labeling is greater 90% across the data
sets, whereas the unsupervised labeling is typically greater

85%. To summarize, all the investigated ML algorithms per-
form well, showing that the information extracted from the
NMFk decomposition leads to an effective feature space for
classification.

Lastly, it is important to note that since the NMFk proce-
dure begins with a random initialization, one should check to
what effect the initialization has on the optimal basis selec-
tion and classification performance. Moreover, one should
ensure that the number of random initializations (in our case
10) is sufficient for consistent results. We report that these
parameters did not modify the findings of basis patterns, nor
their ability to provide informative predictions.

5 Conclusions

In this work, we presented an automated workflow to
recover the spectral signatures of keyhole pore formation
during LPBF processes that lead to fast, accurate, and reli-
able models for high-throughput acoustic monitoring data.
Using five training and testing datasets of acoustic measure-
ments, which were labeled as pore and non-pore classes,
the PSD estimates of each signal class were decomposed
using non-negative matrix factorization with k-means clus-
tering, called NMFk. This matrix decomposition provided
a low-dimensional latent representation of the spectral data
(i.e., the coefficients of the H matrix) corresponding to pore
and non-pore affiliated spectral patterns (i.e., the basis sig-
nals W). Moreover, the decomposed matrices H and W for
each training set (Table 1) provided us with a dictionary of
spectral patterns that could in turn be used to develop predic-
tive ML models to classify new test samples. Classification
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of our test datasets was performed based on a supervised
(>95% accuracy) and unsupervised (>90% accuracy) train-
ing labeling schemes and using a suite of ML classifiers.
Furthermore, we discovered that simple ML classifiers such
as Gaussian Linear Discriminate Analysis were able to accu-
rately perform these predictions. This means that we can use
relatively few training instances and have good accuracy in
comparison to deep learning methods (e.g., CNN-LSTMs),
which require large amounts of training data. Furthermore,
the computational cost to train, test, and predict is very low,
which makes our NMFk-based ML model attractive for in-
situ AM process monitoring and the recovered basis signals
also allow us to represent the acoustic measurements in a
greatly compressed representation, alleviating data storage
demands.

As opposed to part-level classification, our approach
delivers binary pore versus non-pore statues for a local-
ized patch of build material similar to the approach in [29].
Moreover, we have blindly recovered the spectral pat-
terns necessary to perform classification using novel matrix
decomposition methods, and our recovered basis signals
were shown to corroborate the importance of the broadband
spectral ranges of [29, 36, 37] in a statistically blind fashion.
As such, our methodology elucidates the relevant spectral
content associated with pore formation, which can be lever-
aged in future works to link these acoustic signals to the
physics of the pore formation process.

To conclude, ourMLworkflowdemonstrated the potential
to identify the formation of keyhole pores with high accu-
racy throughout multiple single-layer LPBF experiments.
This capability is a step toward online monitoring of full 3-
dimensional builds where the location and density of keyhole
pores may critically affect the performance of the produced
part. By making this identification in-situ via the acoustic
PSD, manufacturers can make decisions about the criticality
of the density and location of keyhole pores. This may in turn
bolster the quality assurance of LPBF build while also deter-
ring unnecessary scrapping of parts and reducing post-build
evaluations. Moving forward, this work could be augmented
by evaluatingmulti-layer build experiments and investigating
multi-sensor datastreams [30] (e.g., thermal, optical) using
recent advances in tensor decompositions [21, 50]. Lastly,
our pore detection scheme could be further bolstered with
the use of secondary models constructed to explicitly local-
ize pores once the primary detection algorithm has detected
a pore, thus furthering the ability to spatially resolve pore
location in a build.
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