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Abstract
In the permanent mold casting process, the distribution of mold coating thickness is a significant variable with respect to 
the coating’s thermal resistance, as it strongly influences the mechanical properties of cast parts and the thermal erosion of 
expensive molds. However, efficient online coating thickness measurement is challenging due to the high working tempera-
tures of the molds. To address this, we propose an indirect monitoring concept based on the analysis of the as-cast surface 
corresponding to the coated area. Our previous research proves linear correlations between the as-cast surface roughness 
parameter known as arithmetical mean height (Sa) and the coating thickness for various coating materials. Based on these 
correlations, we can derive the coating thickness from the analysis of the corresponding as-cast surface. In this work, we 
introduce a method to quickly evaluate the as-cast surface roughness by analyzing optical images with a deep-learning model. 
We tested six different models due to their high accuracies on ImageNet: Vision Transformer (ViT), Multi-Axis Vision Trans-
former (MaxViT), EfficientNetV2-S/M, MobileNetV3, Densely Connected Convolutional Networks (DenseNet), and Wide 
Residual Networks (Wide ResNet). The results show that the Wide ResNet50-2 model achieves the lowest mean absolute 
error (MAE) value of 1.060 µm and the highest R-squared (R2) value of 0.918, and EfficientNetV2-M reaches the highest 
prediction accuracy of 98.39% on the test set. The absolute error of the surface roughness prediction remains well within an 
acceptable tolerance of ca. 2 µm for the top three models. The findings presented in this paper hold significant importance 
for the development of an affordable and efficient online method to evaluate mold coating thickness. In future work, we plan 
to enrich the sample dataset to further enhance the stability of prediction accuracy.
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1 Introduction

Mold coating refers to a material applied to the surface of a 
foundry mold to enhance the overall quality of the resulting 
casting. Additionally, the coating acts as a protective barrier 

between the mold and the molten metal, preventing the 
metal from adhering to the mold. This intervention ensures 
a smooth, refined finish on the cast part, thereby extending 
the operational lifespan of valuable molds. [1, 2] Typically, 
the mold coating material consists of a refractory binder, 
known for its remarkable ability to withstand high tempera-
tures without breaking down or degrading. This binder is Fangtian Deng and Xingyu Rui are both corresponding authors, they 
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combined with other elements such as ceramic powders, 
graphite, and organic additives. [3] These components con-
tribute to an insulating effect during the solidification of the 
cast part in the mold. The thermal resistance of the coat-
ing strongly depends on the coating status, specifically its 
thickness, with a fixed coating material and process. Linear 
correlations between the thermal resistance of mold coatings 
and the coating thickness have been established for ceramic 
and graphite coatings. [4] This thermal resistance can sig-
nificantly impact the temperature field and cooling rate in 
both the cast part and mold surface. [2, 5] Overall, the status 
of the foundry mold coating plays a crucial role in ensuring 
the quality of cast parts and the operational longevity of 
expensive casting molds in the foundry industry.

However, up to this point, there have been no efficient 
inline monitoring methods for assessing the coating status 
on the mold surface, primarily due to the high working tem-
peratures involved in foundry molds. The challenges and 
reasons behind this limitation are extensively discussed in 
our previous work. [2]

To tackle this issue, our focus is on developing an indi-
rect measurement concept for coating thickness, relying on 
the analysis of the as-cast surface quality. Furthermore, in 
our previous research, we found close correlations between 
the as-cast surface roughness parameter, arithmetical mean 
height Sa, and the mold coating thickness for both coat-
ing materials, HA Eco 182 and Cillonlin AL 286. These 
near-line correlations were validated when the coating thick-
nesses exceeded 50 µm and 100 µm, respectively, as illus-
trated in Fig. 1 [2, 5].

The increasing roughness of the as-cast surface can be 
attributed to the rising surface roughness of the coated mold 
as the coating thickness increases. When the mold coating 

is sprayed onto the mold, ceramic powders are randomly 
distributed in limited areas. This random distribution of 
powders on the coated area leads to an elevation in surface 
roughness within a particular range, specifically between 
100 and 400 µm of coating thickness. Although the surface 
roughness of the coating cannot be entirely mirrored by the 
corresponding as-cast surface due to the surface tension of 
the Al alloy melt, the similar trends observed in coating and 
as-cast surface roughness suggest that the coating surface 
plays a significant role in determining the characteristics of 
the as-cast surface due to their close physical contact.

Additionally, in Fig. 1, HA Eco 182 exhibits a notably 
more consistent increase in the surface roughness of the 
coated mold compared to Cillonlin AL 286. This can be 
attributed to the narrower particle distribution of HA Eco 
182, as illustrated in Fig. 2. Despite the substantial dif-
ference in the roughness of the coated mold, the slopes of 
increase and the absolute values of the as-cast surface rough-
ness remain similar for these two distinct coating materials.

Building upon these linear correlations between as-cast 
surface roughness and coating thickness, we introduce an 
indirect inline monitoring concept for mold coating thick-
ness based on the measurement of as-cast surface rough-
ness. However, employing a laser-confocal-microscope for 
this measurement is often slow and sensitive to the cleanli-
ness of the sample surface. In our case, the laser micro-
scope VK-X100 requires approximately 5 min for an area 
of 3 mm × 4 mm, making it unsuitable for achieving a 100% 
inline monitoring rate in a casting production line.

To address this challenge, we propose the implementa-
tion of an optical sensor embedded with deep-learning algo-
rithms to assess as-cast surface roughness with an acceptable 
level of accuracy. Our target speed for the prototype is less 

Fig. 1  Correlation between surface roughness Sa of the coated mold 
and as-cast surface for Cillonlin AL 286 and HA Eco 182

Fig. 2  Particle size distribution of Cillonlin AL 286 and HA Eco 
Coat 182
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than 2 s for this area. This approach enables the indirect 
inline monitoring of mold thickness distribution without 
direct contact with the hot mold. Looking ahead, the stand-
ard for coating status can be defined using feedback data 
from cast part quality and the working time of casting molds.

2  State‑of‑the‑art online methodologies 
for surface roughness evaluation

For the assessment of product surface roughness, numerous 
researchers have explored online methodologies, including 
computer vision and machine learning techniques, to classify 
or predict surface roughness. However, limited research has 
been conducted on evaluating as-cast surface quality using 
computer vision. A notable study of Tsai et al. introduced 
a machine vision system to classify the roughness of as-
cast surfaces into nine classes based on Rz values (ranging 
from 6.3 to 400 µm) for both gray-level and binary images. 
Although achieving 100% classification accuracy, this sys-
tem could not precisely predict roughness values [6].

In contrast, machined surface evaluation has a more 
extensive research history due to its significance in end-
quality assessment. Earlier works by Luk et al. and Patel 
et al. used optical parameters and histogram analysis to esti-
mate roughness for tool-steel samples [7, 8]. Younis et al. 
introduced an inline roughness measurement method based 
on the relationship between surface roughness (Ra) and gray 
level coefficients [9]. Yi et al. developed a grind surface 
roughness measurement using image sharpness evaluation 
under varying illumination [10].

As technology advanced, online roughness prediction 
shifted towards deep learning methods. Hu et al. constructed 
the “optical image-surface roughness” data set for the sur-
face roughness prediction of the aircraft surface after coating 
removal. [11] A specific CNN, the “SSEResNet” (SEResNet: 

Squeeze-and-Excitation Residual Networks), for regression 
prediction of surface roughness (Ra) was also proposed in 
their work. This ResNet model reaches the test MAE (mean 
absolute error) value of 0.245 µm. Routray et al. introduced 
a deep fusion network using both visual and tactile inputs for 
surface roughness classification. [12] Yang et al. employed 
an ANN with various cutting process parameters. [13]

To date, the application feasibility and the performance 
of the state-of-the-art deep learning methods, such as ViT, 
MaxViT, EfficientNet, MobileNet, DenseNet, and ResNet, 
have not been adequately investigated for the prediction of 
as-cast surface roughness parameter Sa. Here, we chose six 
deep-learning models with top performance on the public 
ImageNet dataset for recent years.

3  Experiment

3.1  Design of dataset

3.1.1  Data collection

Figure 3 illustrates an overview of our experimental process. 
In this study, different coating thicknesses were generated 
through spraying with a conventional spray can, ranging 
from approximately 50 µm to around 400 µm. For each coat-
ing process, two cast parts were produced. The second cast 
parts were selected for the analysis of surface roughness.

Before conducting the surface roughness measurement, 
target sampling areas were designated using a laser marking 
device. The geometry of these sampling areas was set as a 
rectangle marked with a black border, measuring 7 mm in 
width and 5 mm in height. Sa (the arithmetical mean height 
of the surface) was employed as the metric to evaluate the 
surface roughness of irregular surface textures. The Sa value 
of the marked area on the as-cast surfaces was measured 

Fig. 3  Experimental construction of dataset
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using a laser scanning microscope, VK-X100, produced by 
Keyence Corporation.

To capture the optical images of the target area, we used 
an industrial camera, IV2-G500MA manufactured by Key-
ence Corporation. The original optical image resolution is 
640 × 480. In our work, a total of 326 optical images were 
collected, and the areal roughness Sa of these corresponding 
marked areas was measured. Among these data, 204 images 
are used as training set, 60 images as validation set, and 62 
images as test set, respectively.

3.1.2  Data preparation

Figure 4 shows the complete process of dataset preparation 
for the prediction model. Firstly, the target sample area in 
each original image is automatically detected and cropped 
using the “Template Matching” method through OpenCV. 
Subsequently, our dataset is enriched by combining offline 
and online data augmentation to fully utilize the collected 
target images.

Secondly, in offline data augmentation, each cropped 
image is flipped horizontally, vertically, and horizontally and 
vertically via OpenCV. This operation not only preserves 
the image features but also mitigates the positional impact 
of these features. Thirdly, each image is resized to specific 
resolutions using bilinear interpolation mode, to ensure 
consistency during model training. In this case, two differ-
ent resolutions, 372 × 270 and 224 × 224, are tested on all 
selected models. Fourthly, for online data augmentation, the 
ColorJitter and Gaussian Blur transforms are implemented 

with Torchvision [14]. The ColorJitter transform randomly 
changes the brightness, contrast, saturation, and hue of 
images in user-defined ranges. This method can enhance the 
model’s stability by accommodating various lighting con-
ditions, color variations, and other factors affecting object 
appearance in real-world scenarios. The Gaussian Blur trans-
form introduces blurring to an image with a Gaussian filter, 
enhancing the model’s robustness against the variations in 
image clarity.

Lastly, the pixel values of the images are normalized to 
a standardized range. This normalization process ensures 
a consistent scale of input data to stabilize the training 
process.

3.1.3  Selected deep‑learning models 

In our work, six models are selected to train on our pre-
pared training set, i.e., Vision Transformer (ViT), Multi-
Axis Vision Transformer (MaxViT), EfficientNetV2-S/M, 
MobileNetV3, Densely Connected Convolutional Networks 
(DenseNet), and Wide Residual Networks (Wide ResNet). 
These models were chosen based on their high accuracies 
on ImageNet. [15]

• Vision Transformer (ViT), proposed by Dosovitskiy 
et al., successfully applies the transformer architecture to 
computer vision, demonstrating its effectiveness in image 
recognition tasks. [16] While achieving a top 1 accuracy 
of 77.91% on ImageNet-1 k when pre-trained, ViT sur-
passes state-of-the-art performance when pre-trained on 

Fig. 4  Dataset preparation for prediction model
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large datasets such as ImageNet-21 k or JFT-300 M, with 
the best model (ViT-H/14) reaching a top 1 accuracy of 
88.55% on ImageNet.

• Multi-Axis Vision Transformer (MaxViT), introduced by 
Tu et al., presents a hybrid architecture that integrates 
convolutional layers with the attention mechanisms of 
Vision Transformers [17]. This integration enhances 
computational efficiency and increases accuracy com-
pared to the “pure” Vision Transformer and Swin Trans-
former. MaxViT achieves a top 1 accuracy of 86.5% on 
ImageNet-1 k without additional pre-training data and a 
higher top 1 accuracy of 88.7% on ImageNet-1 k when 
pre-trained on ImageNet-21 k.

• EfficientNetV2, designed by Tan and Le, is one of the 
most recent convolutional neural network architectures 
that aim to achieve high accuracy with low computa-
tional complexity. [18] It introduces Compound Scal-
ing, Fused Inverted Residual block, Neural Architecture 
Search (NAS), and Progressive Learning with adaptive 
regularization. EfficientNetV2-S and EfficientNetV2-M 
achieved top 1 accuracies of 83.9% and 85.1% on Ima-
geNet. These two variants are chosen in our work based 
on their test performance on our datasets.

• MobileNetV3 introduced by Howard et al. is the most 
accurate and efficient model in the MobileNet series. 
[19] It is designed for running deep neural networks on 
mobile and embedded devices with limited computa-
tional resources. In our work, the variant MobileNetV3-
Large is chosen, achieving state-of-the-art accuracy on 
ImageNet with a parameter count of 5.4 million and a 
top-1 accuracy of 75.2%.

• Wide Residual Networks (Wide ResNet), proposed by 
Zagoruyko and Komodakis, improves the performance 
by increasing the depth (adding more layers) of the neural 
networks based on the Deep Residual Networks (ResNet). 
[20, 21] In our work, the variant Wide ResNet50-2 is 
chosen, which closely resembles ResNet50. The differ-
ence between them is that Wide ResNet50-2 has a dou-
bled number of channels than ResNet50 in the inner 3 × 3 
convolution. The number of channels in outer 1 × 1 con-
volutions remains the same. Wide ResNet50-2 achieves 
78.1% top 1 accuracy on ImageNet.

• Densely Connected Convolutional Networks (DenseNet), 
introduced by Huang and Zhuang Liu et  al., inno-
vates with its densely connected architecture. [22] In 
DenseNet, each layer is connected to every subsequent 
layer (with the same feature-map size) in a feedforward 
fashion. According to this paper, DenseNet requires sig-
nificantly fewer parameters and computational resources 
to deliver comparable results, compared to the prediction 
accuracy of Residual Networks (ResNet). In our work, 
DenseNet-121 is selected.

3.2  Application of the pre‑trained deep‑learning 
models

Deep learning heavily relies on extensive training data, as it 
requires a substantial volume of data to capture the underly-
ing patterns presented in the data. [23] However, the demand 
of a large amount of data can pose challenges in various 
fields due to the high cost or extended time required for data 
acquisition and labeling. Transfer learning in deep learning 
serves as a solution to this problem.

Through the pretraining on large-scale data sets, the 
pre-trained deep models can capture rich hierarchical and 
generic features. Utilizing these learned features as the start-
ing point for training, transfer learning enables effective 
feature extraction for new tasks. This becomes particularly 
valuable when the amount of available training data is lim-
ited. This approach is instrumental in making deep learn-
ing techniques more accessible and applicable in scenarios 
where acquiring large amounts of labeled data is challenging 
or impractical.

In this study, transfer learning of advanced deep learning 
models is conducted utilizing the torchvision.models library. 
As shown in Fig. 5, the pre-trained parameters are obtained 
by training the model on the ImageNet1k dataset, follow-
ing with the image transformation methods defined in the 
training recipe by Vryniotis. [24] ImageNet1k is a public 
dataset constructed by Deng et al., comprising 1,281,167 
training images, 50,000 validation images, and 100,000 test 
images. [15]

The classification models pre-trained on ImageNet1k all 
consist of two blocks. The first block can be considered a 
feature extractor, generating a “feature vector” after its last 
operation. The second block functions as a classifier, taking 
the “feature vector” as input and computing the final output 
of the network. This transfer learning approach leverages the 
knowledge gained from the extensive ImageNet1k dataset to 
initialize the models for the specific task at hand, providing 
a valuable starting point for further training on the target 
dataset.

4  Experiment and results 

4.1  Experimental environment and parameter 
settings

In this work, various Python libraries are utilized, includ-
ing numpy, sys, sklearn, time, matplotlib, os, PIL, random, 
PyTorch, and Torchvision. The software environment details 
are outlined in Table 1. It is widely acknowledged that the 
hyperparameter settings and training strategies significantly 
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impact the training of deep learning models. The hyperpa-
rameter settings in this work are determined based on con-
ventions and several experiments, and they are listed in 
Table 2.

4.2  Evaluation metrics of the prediction results

In comparing the performances of the three models, five 
evaluation metrics are selected. These metrics include the 
mean square error (MSE) loss function, root mean square 
error (RMSE), mean absolute error (MAE), coefficient of 
determination (R2), and the ratio of samples within 20% rela-
tive error tolerance (PR20RET). These metrics are listed in 
Table 3.

The mean square error (MSE) loss function is specifi-
cally well-suited for regression tasks and is employed as 
the evaluation metric during the training process. The other 
metrics are utilized for assessing the prediction results.

4.3  Experimental data of five selected models

The experimental data in Table 4 present the values of the 
five aforementioned evaluation metrics for the selected 
models using input images with two resolutions. For the 
models ViT-B/16 and MaxViT-T, the input images need to 
be resized to the resolution of 224 × 224 to utilize the pre-
trained position embeddings of the ViT models available 
in the Torchvision.models package. Other models exhibit 
different impacts of input image resolution.

Notably, for EfficientNetV2-M and DenseNet-121, the 
smaller resolution of 224 × 224 has a positive influence 
on the experimental results. After comparison, the top 

Fig. 5  Transfer learning of the pre-trained deep-learning models

Table 1  Hyperparameter settings

Batch size 8

Number of training epoch 70
Initial learning rate 0.001
Optimizer Adam (adaptive 

moment estima-
tion)

β1 in Adam 0.9
β2 in Adam 0.99
ε in Adam 10–8

Learning rate decay method stepLR
γ Decay factor of the leaning rate 0.5
Step size of learning rate decay 10

Table 2  Software environment

Operating system Windows 10 (64-Bit)

Graphics card NVIDIA RTX A6000
PyTorch version 1.13.0
CUDA version 11.6
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three-performing models are Wide ResNet50-2 (trained with 
image resolution 372 × 270), EfficientNetV2-S (trained with 
image resolution 372 × 270), and EfficientNetV2-M (trained 
with image resolution 224 × 224), which are highlighted 
as bold text in Table 4. Among them, Wide ResNet50-2 
achieves the highest R2 value of 0.918 and the lowest MAE 
value of 1.060 µm. Additionally, the PR20RET value of 
EfficientNetV2-M exceeds 98%.

4.4  Visualization of the prediction results of the top 
three best‑performance models 

The MSE Loss-epoch progressions depicted in Fig. 6 illus-
trate that the training losses of these three models fall below 
5 µm2 by the  10th epoch, indicating a relatively fast conver-
gence speed. Simultaneously, their corresponding validation 

losses tend to stabilize at around 5 µm2 with slight fluctua-
tions until the end of the training process.

This pattern suggests that the models converge quickly 
during the initial epochs of training, reaching a satisfactory 
level of performance. The stabilization of validation losses 
indicates that the models are not obviously overfitting and 
are generalizing well to the validation data. The observed 
behavior is indicative of effective training and a balanced 
model performance.

Figure 7 illustrates that the absolute error distributions of 
the predicted Sa values are homogeneous. Particularly note-
worthy is that the error value remains less than 2 µm when the 
Sa value is above 23 µm. This indicates that the absolute error 
value does not increase as the surface roughness Sa increases, 
ensuring a satisfactory evaluation result of the rough as-cast 
surface when the corresponding mold coating becomes thick.

Table 3  Evaluation metrics of 
model performance

n the number of the samples
yi the ground truth value of the samples, here is Sa value
ŷi the predicted value of the i-th sample
y the average value of yi
m the number of the samples with the prediction results within 20% relative error tolerance

Evaluation metrics Mathematical expression

Mean square error loss function (MSE)
MSE =

1

n

n∑

i=1

(yi − ŷi)
2

  
Root mean square error (RMSE)

RMSE =

�
1

n

n∑

i=1

(yi − ŷi)
2

  
Mean absolute error (MAE)

MAE =
1

n

n∑

i=1

�
�yi − ŷi

�
�  

Coefficient of determination (R2)
R2 = 1 −

n∑

i=1

(yi−ŷi)
2

n∑

i=1

(yi−y)
2

  
Ratio of the predicted samples within 20% relative 

error tolerance (PR20RET)
PR20RET =

m

n
× 100%

Table 4  Experimental results Model Resolution MSE /µm RMSE /µm MAE /µm R2 PR20RET

ViT-B/16 224 × 224 2.551 1.597 1.315 0.891 93.55% (58/62)
MaxViT-T 224 × 224 2.221 1.490 1.168 0.906 88.71% (55/62)
EfficientNetV2-M 224 × 224 2.089 1.445 1.153 0.911 98.39% (61/62)

372 × 270 2.501 1.581 1.305 0.894 90.32% (56/62)
EfficientNetV2-S 224 × 224 2.629 1.621 1.270 0.888 90.32% (56/62)

372 × 270 2.027 1.424 1.122 0.914 95.16% (59/62)
MobileNetV3 224 × 224 2.965 1.722 1.282 0.874 90.32% (56/62)

372 × 270 2.456 1.567 1.214 0.896 91.94% (57/62)
Wide ResNet50-2 224 × 224 2.387 1.545 1.210 0.898 93.55% (58/62)

372 × 270 1.923 1.387 1.060 0.918 91.94% (57/62)
DenseNet-121 224 × 224 2.097 1.448 1.182 0.911 91.94% (57/62)

372 × 270 2.839 1.685 1.278 0.879 88.71% (55/62)
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The observed pattern in the absolute error distribution 
suggests that the model maintains a consistent level of accu-
racy across different ranges of surface roughness Sa. This is 
crucial for reliable evaluation, especially in scenarios where 
the mold coating thickness varies, and the resulting surface 
roughness spans a broad range.

5  Conclusion

In this paper, the prediction of as-cast surface roughness 
Sa based on optical images using deep-learning methods 
is investigated. The dataset construction involves captur-
ing grayscale images with a resolution of 640 × 480 pixels 
using an affordable industrial camera. Subsequently, a laser 
confocal microscope is employed to evaluate the surface 
roughness parameter Sa, which serves as the labeling for 
these optical images. Online and offline data augmentation 
methods are applied during data preparation to enhance the 

dataset. Based on the experimental results and comparative 
analysis, the conclusions of the end-to-end as-cast surface 
roughness prediction can be summarized as follows:

• EfficientNetV2-M achieves the highest ratio of predicted 
samples within 20% relative error tolerance (PR20RET) 
of 98.39% on the test set.

• Wide ResNet50-2 and EfficientNetV2-S achieve mean abso-
lute error (MAE) values of 1.060 µm and 1.122 µm and R2 
values of 0.918 and 0.914, respectively, on the test set.

• For these three models, the absolute error value of the 
predicted Sa values maintains good tolerance across the 
entire range without exhibiting an increasing tendency.

Among the top three models, Wide ResNet50-2 stands 
out as it achieves a better prediction ratio for a larger portion 
of the test set due to the highest MAE value and R2 value. 
Moreover, these three models demonstrate the capability to 
provide satisfactory prediction results of surface roughness 
directly from optical images after training on a limited dataset.

In a broader context, the linear correlations between mold 
coating thickness and as-cast areal surface roughness Sa, as 
proven in previous work, can be leveraged. This allows for 
the efficient and cost-effective derivation of corresponding 
mold coating thickness based on the prediction results of 
as-cast surface roughness.
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