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Abstract
In conventional machining, one of the main tasks is to ensure that the required dimensional accuracy and the desired surface 
quality of a part or product meet the customer needs. The successful accomplishment of these parameters in milling, turn-
ing, milling, drilling, grinding and other conventional machining operations directly depends on the current level of tool 
wear and cutting edge conditions. One of the proven non-contact methods of tool condition monitoring (TCM) is measur-
ing systems based on image processing technologies that allow assessing the current state of the machined surface and the 
quantitative indicators of tool wear. This review article discusses image processing for tool monitoring in the conventional 
machining domain. For the first time, a comprehensive review of the application of image processing techniques for tool 
condition monitoring in conventional machining processes is provided for both direct and indirect measurement methods. 
Here we consider both applications of image processing in conventional machining processes, for the analysis of the tool 
cutting edge and for the control of surface images after machining. It also discusses the predominance, limitations and per-
spectives on the application of imaging systems as a tool for controlling machining processes. The perspectives and trends 
in the development of image processing in Industry 4.0, namely artificial intelligence, smart manufacturing, the internet of 
things and big data, were also elaborated and analysed.

Keywords Image processing · Tool condition monitoring (TCM) · Cutting edge wear · Surface roughness · Machining · 
Sensor systems

 * Danil Yu. Pimenov 
 danil_u@rambler.ru

 * Khaled Giasin 
 khaled.giasin@port.ac.uk

 Leonardo R. R. da Silva 
 leorrs@ufu.br

 Ali Ercetin 
 aercetin@bandirma.edu.tr

 Oğuzhan Der 
 oder@bandirma.edu.tr

 Tadeusz Mikolajczyk 
 tami@pbs.edu.pl

1 Department of Automated Mechanical Engineering, South 
Ural State University, Lenin Prosp. 76, Chelyabinsk 454080, 
Russia

2 Federal University of Uberlandia, Av. João Naves de Ávila, 
2121, Uberlândia, MG 38400-902, Brazil

3 Department of Naval Architecture and Marine Engineering, 
Maritime Faculty, Bandırma Onyedi Eylül University, 
Bandırma, Balıkesir 10200, Turkey

4 Department of Marine Vehicles Management Engineering, 
Maritime Faculty, Bandırma Onyedi Eylül University, 
Bandırma, Balıkesir 10200, Turkey

5 Department of Production Engineering, 
Bydgoszcz University of Science and Technology, 
Al. Prof. S. Kaliskiego, 85-796 Bydgoszcz, Poland

6 School of Mechanical and Design Engineering, University 
of Portsmouth, Portsmouth PO1 3DJ, UK

/ Published online: 30 November 2023

The International Journal of Advanced Manufacturing Technology (2024) 130:57–85

http://orcid.org/0000-0002-5568-8928
http://orcid.org/0000-0003-2777-4500
http://orcid.org/0000-0002-7631-1361
http://orcid.org/0000-0001-5679-2594
http://orcid.org/0000-0002-5253-590X
http://orcid.org/0000-0002-3992-8602
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-12679-1&domain=pdf


1 3

1 Introduction

Conventional machining processes such as turning, mill-
ing, drilling and grinding are among the most commonly 
used subtractive manufacturing processes in the indus-
try [1]. The main task of subtractive manufacturing is to 
ensure the specified accuracy and roughness of machined 
surfaces are met using tools with sharp cutting edges [2]. 
However, the quality of the tool degrades with usage which 
makes its cutting edges dull and increases the contact area 
with the workpiece. This, in return, leads to higher fric-
tion, an increase in cutting forces and elastic deflections 
in the tool due to workpiece vibrations [3]. The rise in tool 
wear during the machining process is also a consequence 
of the loss of surface quality [4]. There was a decrease in 
dimensional accuracy, as well as sudden tool failure and 
breakage.

Before going through the comprehensive review on tool 
condition monitoring (TCM) systems, it is paramount to 
understand the various states of tool wear that significantly 
impact the machining processes. Tool wear is a complex 
phenomenon which occurs in several forms, each affect-
ing the quality and efficiency of a machining process dif-
ferently [5]. Flank wear is a common form of wear that 
occurs on the flank face of the tool, and it can lead to 
dimensional inaccuracies and poor surface finish due to 
the increased friction between the tool and the workpiece 
[6]. Crater wear occurs on the rake face of the tool and is 
often caused by the high temperature and pressure gener-
ated during the cutting process. It can lead to a decrease in 
the tool’s cutting efficiency and rise in cutting forces [7]. 
Edge chipping and notching are the results of mechanical 
and thermal loads, leading to the loss of material along the 
cutting edges, which directly affects the dimensional accu-
racy and surface integrity of the machined components [8]. 
Built-up edge (BUE) is characterized by the accumula-
tion of workpiece material on the tool’s cutting edge. BUE 
is more common when machining metals at high cutting 
speeds when there is a chemical affinity between the ele-
ments that make up the cutting too material or its coating 
and the workpiece material. It impacts the quality of the 
machined surfaces and can also cause deviations in dimen-
sional accuracy [9].

Tool wear has a significant impact on machining qual-
ity, as worn tools yield poor surface finish and induce 
vibrations, leading to unstable machining conditions. Effi-
cient management of tool wear is crucial to maintain integ-
rity in the machining processes and ensure the production 
of high-quality components [10]. The different forms of 
tool wear also influence energy consumption, production 
rate and overall operational costs requiring effective tool 
wear management to avoid increased power consumption 

and slowed production rates as a result of frequent tool 
changes or reduced cutting speeds [11, 12]. In relation to 
these phenomena, it is critical to assess the level of tool 
wear in order to replace the cutting tool before it reaches 
catastrophic values [13]. To manage changes in tool wear 
in conventional machining processes, techniques from 
TCM are used. Traditionally, the systematization of tool 
condition monitoring techniques into direct measurement 
methods and indirect measurement methods was developed 
in the past few decades. Measurement systems based on 
indirect methods cover a variety of sensors for measuring 
cutting forces [14], monitoring vibrations during cutting 
[15] or acoustic emission [16], or for detecting off-current 
and power [17], systems with thermal sensors [18] and 
others. A summary of the direct and indirect tool condition 
monitoring techniques was previously summarised in the 
open literature [15].

Along with these indirect methods, which are widely 
used and well described in review articles, the non-contact 
direct method based on sensorial systems using image pro-
cessing in machining is acquiring importance on a constant 
basis [19]. For example, the overview article for TCM in 
machining operations deals with artificial intelligence (AI) 
techniques, where, among other things, the applications of 
image sensors in machining are also briefly considered [20]. 
However, up to date, there are no comprehensive review 
articles available in the open literature on the current trends 
and development prospects of imaging sensors for tool con-
dition monitoring of regions of the cutting edge or the state 
of machined surface in the conventional machining domain. 
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Fig. 1  Direct and indirect tool condition monitoring using image pro-
cessing
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Some of the most common direct and indirect imaging tech-
niques that are used in TCM are summarised in Fig. 1, some 
of which will be discussed in this review.

In connection with the justifications above, in this review 
article, the goal is to provide a comprehensive analysis and 
research in conventional machining processes with the use of 
image processing techniques for tool condition monitoring 
to highlight the predominance, limitations and perspectives 
of their application. This review includes sections with the 
following content. The systematization of methods of direct 
control and indirect measurement in conventional machin-
ing processes in TCM with image processing is described in 
detail in the second section. Specific examples of the appli-
cation of TCM on machining with image processing tech-
niques as well as discussing the predominance, limitation 
and perspectives are comprehensively explored in the third 
section. The current problems and future trends the industry 
is expected to face in using typical TCM meters with image 
processing systems are shown in the fourth section. The per-
spectives of such sensor systems with image processing for 
Industry 4.0 are also shown, namely artificial intelligence, 
smart manufacturing, internet of things and big data.

2  Tool condition monitoring in conventional 
machining via image processing using 
direct and indirect measurement 
techniques

2.1  Tool condition monitoring via image processing: 
direct measurement techniques

Image processing based on a direct sensor system is a valu-
able technique that can be used in conventional machining 
to monitor tool wear using a microscopic imaging system. 
This system monitors the worn area of the cutting tool by 

temporarily stopping the machining process, as illustrated in 
Fig. 2. To obtain tool wear images, each processing param-
eter is applied, and the microscope is positioned on the mill-
ing machine from the same point as the pin to ensure short 
re-installation time and equal imaging distances. The tool 
wear value is then automatically determined by inputting 
the microscope images into the tool wear control system 
[21]. The use of the tool shape descriptor (TSD) helps to 
identify the critical area of tool wear, which allows for the 
definition of the basic features of the cutting edge and the 
region of interest (ROI). By following the steps in Fig. 2, the 
positions of the worn areas can be verified using TSD, and 
the maximum and minimum widths of the flank wear can be 
accurately computed. Overall, direct sensor system–based 
image processing offers a reliable and efficient method for 
monitoring tool wear in conventional machining [21].

Dai and Zhu [22] studied drill wear recognition and pro-
posed a mechanism for real-time identification and ROI 
determination. The developed system consisted of three 
parts, namely motor driving, image grabbing and RMSD 
counting, which all operated simultaneously. By combin-
ing these three parts, the system was able to detect the wear 
regions of the drill in real time. The ROI was determined 
through a threshold process using 200 values, which helped 
extract the wear regions more accurately. This method 
proved to be highly effective in detecting drill wear and 
minimizing tool damage. The results of the study showed 
that the proposed mechanism was able to detect wear 
regions accurately, which can help prevent the early break-
down of the drill and prolong its lifespan. This technique 
has great potential for use in the manufacturing industry, 
where the tool wear can cause significant production losses 
and increased costs. By using real-time drill wear recog-
nition systems, manufacturers can minimize tool damage 
and improve production efficiency. Figure 3a and b depicts 
the outcomes of the edge-preserving filter and mean filter, 

Fig. 2  Extraction of the tool 
wear regions of interest (ROIs) 
using TSD [21]
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respectively. As shown in Fig. 3a, the worn areas that were 
inadequately extracted through binarization and mean fil-
tering were obtained by aligning the actual and processed 
images [22]. A telecentric micro lens with × 200 magnifi-
cation and an Olympus charge-coupled device (CCD) was 
utilized to capture the tool images. The raw images were 
processed using software written in C +  + . The processed 
images, working principle and actual system are presented 
in Fig. 3c.

Figure 4 presents a series of images that were obtained 
during the area of interest delimitation process in the V2 
view using morphological operations. In Fig. 4a, images of 
the worn area of the tool are displayed. The image process-
ing steps are depicted in Fig. 4b–d. To begin with, the raw 
image is transformed into a binary image, where black is 
represented by pixel 0 and white by pixel 1 using the Otsu 
method. Following this, morphological processes are applied 
to fill the holes, resulting in the largest white region being 
determined in Fig. 4b. The contour points are then defined 
as 20% closer to the centre, moving from the bottom to the 
top, as shown in Fig. 4c. The worn area is then defined by 
the dominant values within the contour points. After all 
non-dominant pixels have been removed, the largest region 
is retained, and the worn part is determined as shown in 

Fig. 4d, thanks to a morphological hole-filling process [23]. 
The method provides a reliable means of determining the 
area of wear in a tool, making it an essential tool for moni-
toring tool wear in machining operations.

Section conclusions Direct sensor system–based image 
processing is a powerful technique that provides real-time 
acquisition and processing of images by synchronizing the 
camera with the cutting tool. This allows for direct meas-
urement of the tool wear from the processed screen images 
without the need for additional equipment. Nevertheless, the 
machining process can lead to image obstructions due to 
chip formations, which can interfere with image processing. 
While coolants are necessary to prevent rapid tool wear, they 
may also cause blurring in the imaging process. In contrast, 
scanning electron microscopy (SEM) images taken from 
the cutting tools after turning and milling operations can 
accurately determine the wear region by applying an algo-
rithm. However, this method requires a temporary suspen-
sion of the machining process for SEM imaging, which is 
both time-consuming and costly. Moreover, it is not well 
suited for continuous monitoring of tool wear during the 
machining process. Despite these limitations, direct sensor 
system–based image processing is still a valuable technique 

Fig. 3  System for drill wear recognition. a, b Outcome of the image conversion into binary format. c Experimental set-up [22]

Fig. 4  Morphological opera-
tions for delimiting the area of 
interest in V2 view. a–d Exam-
ples of obtained images [23]
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for measuring tool wear in specific applications. It offers 
advantages such as real-time measurement, direct imaging 
and high accuracy, making it a valuable tool for quality con-
trol in manufacturing industries.

2.2  Tool condition monitoring via image processing: 
indirect measurement techniques

Indirect TCM refers to the process of monitoring changes in 
other machining process characteristics (during or after) and 
correlate the findings with tool wear. This includes monitor-
ing and collecting the data of the cutting tool temperature, 
machining vibrations, cutting forces and post machining sur-
face finish among others. A variety of sensorial systems are 
used for the monitoring and data collection, some of which 
use imaging techniques as shown previously in Fig. 1. Some 
TCM uses a combination of imaging and non-imaging tech-
niques which collect force and vibration data during machin-
ing to correlate that with tool wear. Tool wear monitoring is 
a crucial aspect of machining operations, and deep learning 
techniques have been explored to monitor tool wear during 
complex part milling. This approach was demonstrated by 
Zhang et al. [24] where the parameters for the method were 
established using wavelet packet decomposition (WPD) and 
a cutting force model. To implement the method, the pro-
cess was divided into several steps. In the first step, cutting 
forces, vibration and tool status parameters were fed into 
a deep autoencoder to perform dimension reduction. This 
helped to reduce the amount of data needed for the process 
and optimize the use of computational resources. Next, a 
deep multi-layer perceptron was installed to respond to sen-
sors in the actual machining environment and predict the 

tool wear status. At this level, only the cutting force was used 
as the signal for tool wear monitoring, which was the third 
step of the process, as shown in Fig. 5. The deep autoen-
coder was then used to transmit the manually set parameters 
of the cutting force signal to the deep multi-layer perceptron 
for estimating the tool wear value. Overall, the framework of 
this tool wear monitoring method demonstrated the potential 
of deep learning techniques to improve tool wear monitoring 
during complex part milling [16].

He et al. [25] conducted a study on tool wear measure-
ment where a chassis was integrated into a personal com-
puter (PC) system equipped with LabVIEW software for 
online data acquisition and recording of temperature param-
eters. The width of the flank wear was extracted using a 
CCD imaging device and a bi-telecentric lens during the 
machining process interruption. The captured image for a 
microscope with a CCD camera was used to calibrate the 
wear values. Figure 6a presents the configuration of the 
measurement system for the dry cutting process. The tem-
perature time-domain signal was used as the actual input 
for the stacked sparse autoencoders (SSAEs), while the 
upmost hidden layer output was used as the input for the 
back propagation neural network (BPNN) to predict tool 
wear. The neural network model for tool wear prediction is 
demonstrated in Fig. 6b. This model is a full neural network, 
which comprehends the tool wear prediction.

In the field of micro-machining, Akkoyun et al. [26] 
conducted a study that aimed to automate the measurement 
process of slots and burrs by developing a software-based 
technique to calculate the borders and lengths of slots from 
images of machined workpieces. Written in C +  + , the soft-
ware utilized the Open Source Computer Vision Library 

Fig. 5  Deep learning–based 
framework for monitoring tool 
wear in complex part milling 
[24]
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(OpenCV) to process SEM images. The algorithm analysed 
peak points and user-defined parameters to determine burr 
parameters and slot dimensions. By taking an SEM image 
as input, the software produced slot and burr parameters 
as outputs. To determine the pixel size, image processing 
techniques such as HSV conversion, thresholding and met-
ric scale reference were used. Vertical and horizontal peaks 
were then calculated and charted to obtain the values. The 
software’s block diagram is presented in Fig. 7. The automa-
tion of slot and burr measurement can potentially reduce the 
time and cost of machining processes, as well as improve 
accuracy and consistency in the measurements.

In another study on chip properties analysis by Pagani 
et al. [27], the images were obtained from a digital cam-
era (Nikon P7000 with a CCD sensor) (Fig. 8). Light bulbs 
were placed using the cross-lightning technique to minimize 
shadowing. The angle of light sources was 30° and 45° for 

the first and second levels, respectively. The exposure time 
is adjusted to obtain chip colours in detail. In the experi-
ment, between 20 and 40 chips were laid on the imaging area 
(25–35  cm2) with white background. The chip shape and 
colour properties are affected by the deviations of optimal 
cutting conditions which are related to tool wear.

Section conclusions Indirect sensor system–based image 
processing has emerged as a highly effective method of esti-
mating tool wear. By measuring changes in various param-
eters such as chip geometry, slot and burr widths, tool tem-
perature, workpiece surface roughness and cutting forces, 
the image processing technique offers a comprehensive 
approach to identifying the extent of tool wear. Out of all the 
available methods, image processing applied over the cutting 
force graph is the most reliable and efficient way to measure 
tool wear accurately and quickly. This method not only helps 

Fig. 6  A CCD camera–based 
system for tool wear analysis. 
a Experimental set-up and 
measurement system. b The 
architecture of the proposed 
model [25]
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in detecting abnormal changes in the cutting force graph 
but also protects the tool and workpiece while saving time 
by stopping the machining process. Despite being a slower 

process, acquiring data for image processing based on chip 
geometry and workpiece surface quality is more predictive, 
enabling a more reliable estimation of tool wear. Thus, by 

Fig. 7  An illustration of the block diagram for automated burr measurement and slot detection software, a study on using SEM images and 
image processing techniques for machined workpieces [26]

Fig. 8  Camera-based system for chip analysis. a Image acquisition set-up. b Cause and effect diagram. Investigating the interplay between 
image-based classification and chip properties [27]
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offering a reliable, efficient and predictive approach, image 
processing plays a vital role in preventing catastrophic fail-
ure of the cutting tool and ensuring the smooth functioning 
of the machining process.

2.3  Image recognition and classification systems 
in image processing

2.3.1  A neural network and BPNN in image processing

Neural networks are composed of interconnected processing 
units that communicate through one-way signal channels 
called connections. They can perform localized information 
processing due to their local memory. Additionally, they 
have a parallel and distributed computing structure. Each 
processing element can be subdivided into multiple side 
connections and branches as needed, with a single output 
connection. The output signal of each processing element is 
of a specified mathematical type. The processes within each 
processing element are localized and depend on the values 
stored in the local memory of the processing element and the 
current input signals [28, 29]. The BPNN is a design consist-
ing of rows of processing units and fully interconnected lay-
ers. Each unit consists of several separate transaction items 
[28]. The BPNN method is straightforward, quick and sim-
ple to program, with no parameters to be set apart from the 
input numbers. It is a method in which the desired functions 
can be learned without specifically specifying the function 
features. However, the performance of the BPNN may be 
influenced by the input data. The algorithm of this approach 
is very susceptible to noisy data, and thus, a matrix-based 
approach should be employed instead of a mini-batch.

2.3.2  Applying Image Tool software in image processing

This software enables direct measurement of parameters 
such as distances, tilt angles, areas and depth on a screen-
shot. Measurements can be made in pixels or standard units 
of length using a conversion factor that is specified. A mag-
nification of × 70 is sufficient to distinguish the desired fea-
tures in a captured image [30]. The program’s parameters 
can be adjusted to the desired extent in the tool image soft-
ware. The corresponding tool wear is then carried out, with 
1 pixel equal to 0.001 mm [30]. A macro is written in the 
tool image script language to capture the parameters of the 
tool wear on an image automatically. This macro can also 
perform the necessary statistical calculations in the experi-
ments that are measured [30]. This application facilitates 
image selection and interpretation, allowing for the real-time 
observation of the dimensions of each image and the pixel 
value of a selected area. However, it is a manual process and, 
therefore, slow when compared to other methods.

2.3.3  Image thresholding methods in image processing

The image thresholding technique is commonly used in 
image segmentation to separate objects from the background 
and objects with different grey levels. Local thresholding 
and global thresholding are two categories of this technique 
[31, 32]. Local thresholding determines a threshold value 
for every pixel based on specific details within the image. In 
contrast, global thresholding employs one single threshold 
value to differentiate the image’s foreground and background 
[32]. Some of the renowned thresholding methods, such as 
the Otsu method and K-means, are explored, along with 
other prevalent methods in the field of image recognition 
and classification.

Otsu method The Otsu method is an effective image thresh-
olding technique aiming to identify the optimal global 
threshold. This method minimizes the variance within the 
class and is efficient for applications requiring computation 
of a grey-level histogram before application [33, 34].

K‑means method The K-means method, on the other hand, 
is efficient for finding the local optimal threshold, particu-
larly beneficial for large datasets and globular clusters due 
to its efficiency, speed and flexibility in computational cost. 
However, it does have limitations, such as expressing the 
uniform effect that results in clusters of the same size when 
input data are of different sizes, and the challenge of estimat-
ing the value of K [33, 34].

Random forest Random forest is a versatile and widely 
adopted ensemble learning method. It constructs a multitude 
of decision trees at training time and outputs the mode of the 
classes (classification) of the individual trees for input data. 
It is eminent for its high accuracy, its ability to handle large 
datasets and its ability to handle thousands of input variables 
without variable deletion [20].

Decision tree The decision tree method is a flowchart-like 
tree structure where an internal node represents a feature (or 
attribute), the branch represents a decision rule, and each 
leaf node represents the outcome. It is simple to understand 
and visualize, requires little data preparation and can handle 
both numerical and categorical data [35, 36].

Bayesian classifier The Bayesian classifier is based on 
Bayes’ theorem, which provides a way of updating prob-
ability estimates. It is highly scalable and can manage 
high-dimensional data with efficacy. This method is mainly 
used when the dimensionality of the inputs is high, and 
it is particularly powerful for text classification problems 
[37]. While the Otsu and K-means methods are substantial 
for image thresholding, incorporating a diverse array of 
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methods such as random forest, decision tree and Bayesian 
classifier enriches the comprehensiveness and adaptability 
of image recognition and classification processes. These 
methods, with their distinctive advantages and limitations, 
offer varied approaches to addressing challenges in image 
processing applications.

2.3.4  Tool shape descriptor

The shape identification technique is a morphometric tool 
used for the contour analysis of near-convex images [38]. 
This technique enables the prediction and classification 
of image shapes, appearance and components using shape 
descriptors. Two types of shape descriptors are available: 
local and global shape descriptors. The local shape descrip-
tor requires connecting edges, which help distinguish one 
shape from another by resolving spatial ambiguity. This 
identifier can be employed to categorize shapes based on 
one or multiple structuring elements and to establish the 
characteristics of the shape, along with the delineation and 
partitioning of the image entity. Configuration items in the 
image object can be detected using certain filters, such as 
on–off filters. The spatial spread of one or more regional 
shapes, sometimes across the image object, allows the iden-
tification of multi-lateral and multi-regional shapes by the 
tool shape descriptor [38, 39]. When comparing region-
based and contour-based shape descriptors, the region-based 
approach uses the area covered within the shape boundary, 
while the contour-based approach uses only the outer bound-
ary of the shape.

3  Application for tool condition monitoring 
in machining using image processing 
techniques

3.1  Application of TCM of the tool cutting edge

A stable chip formation is achieved by a combination of 
adequate cutting parameters and tool geometry. Although the 
cutting parameters can be kept constant during the machin-
ing process, the tool geometry, especially at the cutting edge, 
is always transient since it is a tribological principle that sur-
faces in contact and in relative motion will always undergo 
wear [40]. Based on that, monitoring tool wear becomes one 
of the most critical steps in increasing the overall efficiency 
of a machining system. Despite not being a completely new 
idea [41], the use of image processing is regarded as one of 
the most promising methods of tool wear monitoring [42], 
as it allows direct information on the wear size, morphol-
ogy and mode [43], and applies no external influence at the 
machining interface [44]. In general, the image acquisition 
of the tool wear is performed using a CCD camera [45] or 

complementary metal oxide semiconductor (CMOS) [46]. 
CCD cameras generally allow a better resolution, and CMOS 
cameras have a higher image capture rate [44]. The light-
ing system is one of the most critical aspects of the image 
capturing process since improper illumination can lead to 
insufficient or even misleading (due to shadows) information 
about the condition of the tool [47].

3.1.1  Application of TCM of cutting edge in conventional 
machining using image processing techniques

Using automatic image processing in turning process is 
already a well-established technique, mainly due to the 
stationary position of the tool in relation to the machin-
ing centre and the more stable wear patterns compared to 
processes such as milling and drilling. Mikołajczyk et al. 
[48] evaluated the use of the single category–based classi-
fier neural network in visual images using a CCD camera in 
the C45 carbon steel turning process. Compared to manual 
wear measurements, the authors found that automatic image 
processing via neural networks leads to an average relative 
error of 6.7%, which significantly decreases as the tool wear 
increases. D’Addona et al. [49] found similar results using 
ANN and DNA-based computing techniques to predict tool 
wear in the milling process using images taken from the 
cutting tools. Mikołajczyk et al. [50] evaluated the use of 
machine vision to predict tool life in the turning process 
using artificial neural networks. The images were collected 
using a CCD camera, and the wear recognition was achieved 
using the Neural Wear software. The authors reported a good 
correlation between the measured and predicted tool flank 
wear, with mean errors lower than 2%. Qiu et al. [51] inves-
tigated the diamond tool wear in the lapping process, using 
in-process image measurements acquired through CCD cam-
eras. The tool wear was measured using as a reference the 
ideal tool radius. The authors reported profile tolerances of 
the cutting edge within ± 0.5 µm in 40-min trials.

The use of automatic image acquisition and processing 
systems to identify tool wear is a great challenge in non-
stationary processes such as milling. In this regard, Qin et al. 
[52] developed an automatic system to monitor the tool wear 
during face milling of the S45C steel. The system acquisi-
tion module was composed of an industrial CMOS camera, 
a light source, a camera holder and image acquisition soft-
ware. The images were taken every 5 min, and the tool wear 
was measured based on dynamic image sequencing of a set 
of images that consisted of image processing, selection and 
wear measurement, as shown in Fig. 9. The results indi-
cate that the average error of the measurement, compared to 
using an industrial microscope, was consistently below 10%, 
decreasing to negligible values as the tool wear increased.

Elgargni et al. [53] evaluated tool tracking and recognition 
based on infrared and visual images, using and comparing 
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neural networks coupled with the discrete wavelet transform 
or principal component analysis, aiming to identify tool wear 
in the milling process, as shown in Fig. 10. The authors 
reported that all combinations of images acquiring and pro-
cessing methods presented a detecting rate success of over 
95%, with the infrared image significantly outperforming 
the visual image, with a 100% detection rate when using the 
discrete wavelet transform algorithm.

Bergs et al. [54] assessed the application of deep learn-
ing, convolutional and fully convolutional neural networks 
in the automatic detection of cutting tool wear. They used 
images of tool wear from drilling, ball milling and end mill-
ing operations for this evaluation. As shown in Fig. 11, deep 
learning outperformed the tuned traditional computer vision 
measurement, especially under lower light exposure. Simi-
lar results for using neural networks to improve the overall 
efficiency of tool wear detection using image detection were 
also reported by Jackson et al. [55] using SEM images.

Li and An [56] compared the use of an algorithm based 
on the sum-modified Laplacian (SML) and Markov random 
field (MRF) with the Nobuyuki Otsu algorithm (OTSU), 
in a micro-vision-based tool wear monitoring system using 
CCD cameras in the drilling process of the cold rolled steel 
using carbide tipped tools. The proposed algorithm increases 

Fig. 9  Image processing steps in 
monitoring the tool wear during 
the face milling process [52]

Fig. 10  Infrared and visual 
image acquisition to identify 
tool wear in the milling process 
[53]

Fig. 11  Wear from an insert under different light exposures [54]
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between-class variation to confirm the achieved tool wear 
segmentation. The results showed that the proposed algo-
rithm enabled a more precise and consistent tool wear 
measurement than the OTSU. Fong et al. [57] developed 
an offline on-machine universal monitoring system using a 
CMOS camera based on cross-correlational analysis. The 
authors tested the system under various machining tools 
such as a drill bit, end mill, taper tap and turning carbide 
insert. Despite the system only being capable of measuring 
tool flank wear greater than 100 µm, the authors reported 
that the technique provided a reliable measurement of tool 
wear for all machining tools evaluated. Similar results were 
observed by Castejón et al. [58] in the turning process of the 
AISI SAE 1045 steel using a CCD camera, describing the 
wear using the linear discriminant analysis (LDA) method. 
The method successfully identified the worn region of the 
tool, allowing reliable tool wear monitoring and evalua-
tion. Yu et al. [59] developed a machine vision measure-
ment method for monitoring the tool wear in the chisel edge 
region of the drill using a bidimensional local mean decom-
position (BLMD) algorithm. The steps taken to measure the 
wear were composed of tool image capture using a CMOS 
camera and enhanced using the BLMD algorithm, and the 
contour is extracted using threshold segmentation as illus-
trated in Fig. 12.

The worn contour is compared with the tool’s initial con-
dition, and the difference between the profiles measures the 
wear. The authors reported that the method outperformed 
the traditional camera measurement method, giving results 
closer to manual measurements. Similar results were found 
by Dai and Zhu [22] using a CCD camera to monitor the 
micro-milling of pure copper and T4 steel. García-Ordás 

et al. [60] proposed a low-cost solution combining machine 
vision and machine learning for tool wear monitoring dur-
ing milling process. Parenti et al. [61] evaluated the use of 
high-resolution images from machined holes to quantify 
edge damage in the drilling process of sintered carbide using 
CVD diamond–coated tools. The author’s methodology was 
capable of characterizing the hole profile with an accuracy 
of up to 10–50 µm. Zhang et al. [62] studied the use of deep 
learning (Yolov3-tiny) to increase the accuracy in the tool 
wear detection based on the image processing method. The 
authors reported that the methodology successfully detected 
tool wear at the evaluated spiral of the milling cutter tool.

The greatest advantage of using image processing tech-
niques for conventional machining processes is real-time 
monitoring at a low cost. For processes such as turning, 
where the tool does not rotate, this process is easier, having 
as main challenges the continuous monitoring during the 
cutting process and the accurate measurement of the worn/
adhered volume. In processes where the tool rotates such 
as milling and drilling, the tool wear monitoring process 
can be challenging, as the camera must have a combination 
of high acquisition rate and resolution sufficient to enable 
wear detection. Among the remaining challenges for large-
scale machine vision implementation in identifying the wear 
of cutting tools are light and tool rotation compensations. 
These two factors are aggravated by the high rotations used 
in current machining processes, which can be solved by 
developing cameras with higher resolution and image frame 
rates. However, the large amount of data generated by these 
cameras create another problem regarding the computational 
capacity for real-time processing, so it is recommended to 
continue investigating increasingly optimized algorithms for 
data processing.

3.1.2  Application of TCM of cutting edge 
in micro‑machining and grinding using image 
processing techniques

Because of the smaller size, usually below 100 µm, tool wear 
identification in micro-machining processes is more chal-
lenging than in conventional tools. Micro-machining is more 
challenging due to the lower rigidity of the micro-cutting 
tool; therefore, accurate tool wear monitoring is essential 
to avoid premature tool failure. With increased image reso-
lution and capture rate for both CMOS and CCD cameras 
[63], machine vision is increasingly considered a promising 
method to evaluate tool wear in micro-machining. Malhotra 
and Jha [64] developed an algorithm to evaluate tool wear 
in the micro-milling process using machining vision based 
on colour segmentation using the fuzzy c-means clustering 
technique. The algorithm was composed of three steps, as 
shown in Fig. 13, namely the ROI extraction, wear segmen-
tation and wear measurement.

Fig. 12  Steps for measuring wear in the chisel edge region of a drill 
[59]
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The authors reported errors systematically below 5% 
compared to manual measurement, with a slight tendency of 
the error to decrease as the tool wear increases. Zhu and Yu 
[65] evaluated the use of an algorithm based on morphologi-
cal component analysis (MCA) to monitor tool wear in the 
micro-milling process. The proposed algorithm decomposes 
the image in tool, background and noise then detects the tool 
wear from the tool image. The proposed algorithm also uses 
invariant rotation features to minimize the effects of incon-
sistent tool image orientation. The authors reported that the 
methodology was more accurate in the measurement of the 
width of the wear than its area. Despite mainly being inves-
tigated in the micro-milling process, tool wear analysis by 
machine vision is already gaining interest in micro-drilling 
and micro-turning processes. Chang et al. [66] evaluated 
the use of machine vision in the tool wear assessment of 
micro-drill probe heads. The tool wear was measured using 
SEM images of the drill tip and processed using grayscale 
treatment, histogram equalization and unsharp masking. The 

authors concluded that the proposed method was effective 
in tool wear measurement under the evaluated conditions. 
Similar results were also observed by Su et al. [67] using a 
similar methodology to investigate wear on micro-drills used 
to machine printed circuit boards (PCBs). Micro-turning 
is, by far, the least investigated micro-machining process 
regarding the use of machine vision to access tool wear.

Palani et al. [68] examined an online forecasting approach 
for assessing tool wear during the micro-turning process of 
pure tungsten, utilizing a PCD insert. The authors used a 
multi-response variable approach and an adaptive neuro-
fuzzy inference system (ANFIS) to assist in the data evalu-
ation. The tool wear images were taken using a CCD cam-
era with a 3-megapixel resolution. The authors found that 
machine vision can be successfully employed for an in-pro-
cess prediction of the tool wear and material removal rates. 
Oo et al. [69] investigated the use of machine vision in a 
methodology that combines a random forest classifier (RFC) 
and multiple linear regression (MLR) to evaluate abrasive 

Fig. 13  Algorithm to evaluate 
tool wear in micro-milling [64]
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fracture and detachment in robotic belt grinding. The image 
acquisition set-up is illustrated in Fig. 14a, and the flow-
chart for image processing is shown in Fig. 14b. The authors 
reported that the methodology achieved over 90% accuracy 
in the belt grinding condition monitoring compared to tradi-
tional image processing techniques and over 96% accuracy 
in modelling the remaining tool life.

Kubo et al. [70] evaluated the use of bio-inspired DNA-
based computing (DBC) to evaluate the surface topogra-
phy in the dressing process of CBN grinding wheels. This 
approach correlates mechanical problems with DNA-
RNA–protein-amino acid interactions, using decision rules 
to form different arrays of genetic codes that represent actual 
states in the grinding wheel image. The authors reported that 
the DBC methodology was suitable to monitor the grinding 
wheel state during the dressing process, mainly when the 
image process is processed as Boolean operations between 
the binary images as shown in Fig. 15.

Kang et al. [71] evaluated the use of image processing to 
model the 3D topography of a grinding wheel. The authors 
modelled the alumina abrasives as pyramids with random 

vertices, quantifying them in relation to size, shape, volume 
and distribution. The authors reported that the methodol-
ogy was successful in correlating the grain topography and 
wheel dressing state. Wang et al. [72] used machine vision 
for monitoring a grinding belt wear state using a random for-
est algorithm to process the data. The authors reported that 
the classifying methodology presented an accuracy of up to 
99% in conditions at the accelerated wear stage. Liu et al. 
[73] evaluated the use of a profile reverse algorithm to evalu-
ate the grinding wheel wear based on the image profile of the 
machined integral spiral grooved mills. The authors reported 
that the methodology resulted in successfully modelling the 
grinding wheel wear; however, the methodology is only 
applicable to flat or disc-shaped grinding wheels. Hatami 
et al. [74] investigated the effects of cleaning the grinding 
wheel surface with a compressed air jet in the grinding pro-
cess of Inconel 718. The authors reported that using the air 
jet was possible to achieve a 53% better surface finish (Ra) 
and lower thermal damage.

Micro-machining and grinding are notoriously difficult 
processes to monitor. In the micro-machining process, the 

Fig. 14  Application of image 
processing for a grinding pro-
cess. a Image acquisition set-up 
for grinding belt monitoring; b 
flowchart of image processing.  
Adapted from Oo et al. [69]

Fig. 15  DBC methodology 
proposed to monitor grinding 
wheel dressing [70]
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biggest challenge lies in the small dimensions of the cut-
ting wedge coupled with the high cutting speeds, which 
require an even higher resolution and acquisition rate from 
the cameras, as well as greater accuracy in the methodology 
for characterizing the condition of the tool. In the grind-
ing process, the high contact area between the tool and the 
workpiece as well as the random nature of the abrasives 
make image monitoring a challenge, requiring the use of 
more complex correlation algorithms than for conventional 
machining processes. As in both processes, the rigidity of 
the machine/tool system is essential, so machine vision 
monitoring techniques can therefore be considered ideal for 
monitoring.

3.2  Application of TCM of machined surface 
while machining with image processing 
techniques

In modern manufacturing, high product quality and opera-
tional efficiency are crucial. Machining processes shape and 
finish components to meet specifications, but tool wear and 
damage can degrade the surface quality and increase costs 
[75]. TCM is crucial in machining, allowing timely detection 
of wear, breakage and defects. Real-time monitoring enables 
informed decisions on tool replacement, maintenance and 
process optimization. Traditional TCM relies on indirect 
measurements like forces and vibrations but may miss subtle 
defects and requires extra equipment [76]. Image processing 
techniques revolutionize tool condition monitoring, harness-
ing visual information for analysis, interpretation and data 
extraction [77]. Capturing images of machined surfaces pro-
vides valuable insights into tool wear and surface integrity 
[78]. This part aims to explore image processing techniques 
for monitoring tool conditions in various machining pro-
cesses (turning, milling, drilling, grinding and others). We 
analyse machined surface images to extract parameters like 
tool wear, surface roughness and defects, developing real-
time monitoring algorithms.

Image processing techniques in TCM offer advantages 
over traditional methods. It provides direct visual informa-
tion for detecting subtle defects. Additionally, it enables 
non-destructive, real-time monitoring, reducing downtime 
and enhancing productivity. Furthermore, it facilitates objec-
tive and quantitative assessment, improving decision-making 
for tool replacement, maintenance and process optimization 
[79]. This review explores image processing techniques in 
various machining processes to advance TCM methodolo-
gies. The findings provide insights into image processing 
effectiveness and lay the foundation for real-time automated 
systems detecting and classifying tool wear and surface 
defects. In the following sections, we explore image pro-
cessing techniques for tool condition monitoring in various 
machining processes. Through analysis and evaluation, we 

demonstrate image processing’s potential for enhancing 
TCM and optimizing machining performance.

3.2.1  TCM of machined surfaces using image processing 
techniques in turning operations

Turning is a common and precise machining process for 
cylindrical component creation. Continuous tool-workpiece 
contact in turning leads to tool wear over time, and sur-
face defects like scratches, chatter marks and built-up edge 
impact surface quality [80]. Monitoring starts with capturing 
images of the machined surfaces using integrated cameras 
or strategically positioned external imaging systems. These 
acquired images are processed with various algorithms to 
extract crucial information on tool condition and surface 
quality. In turning, image processing measures tool wear by 
analysing changes in the cutting tool’s geometry. Regularly 
capturing images of the tool during turning reveals wear pat-
terns on the flank and rake faces. Image analysis algorithms 
detect and quantify wear, enabling timely tool replacement 
or reconditioning [81]. Image processing assesses surface 
roughness, a crucial factor in surface quality determination. 
Texture analysis algorithms extract features like Ra, Rq and 
Rz from acquired images, providing insights into surface 
quality [82]. This information guides adjustments in cut-
ting parameters or tool selection for achieving the desired 
surface finish.

Image processing detects real-time surface defects in 
turning, complementing tool wear and surface roughness 
assessment. Defects like scratches, pits and cracks impact 
functionality and aesthetics. Through edge detection and 
morphological operations, image analysis algorithms iden-
tify and characterize defects, measuring dimensions, density 
and distribution. This aids in surface quality assessment and 
identifies process or tooling issues [56]. For efficient tool 
condition monitoring in turning, image processing algo-
rithms can be integrated into a real-time feedback system. 
Continuously analysing images and comparing them to ref-
erences or thresholds, the system alerts the operator or trig-
gers actions like tool replacement, parameter adjustment or 
intervention for surface defects [83]. Applying image pro-
cessing techniques for turning tool condition monitoring 
offers multiple benefits. Firstly, it provides non-destructive, 
real-time monitoring for proactive maintenance of machined 
surface quality. Secondly, it detects subtle changes in tool 
condition and surface quality that may be imperceptible to 
the human eye. Additionally, it enables objective, quanti-
tative assessment of tool wear and surface defects, reduc-
ing reliance on subjective visual inspection [84]. Chethan 
et al. [85] discussed the value of non-contact surface texture 
assessment over more conventional techniques that employ 
a stylus. It claims that instead of focusing on a single line, 
machine vision can evaluate roughness throughout the 
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complete surface area. The study focuses on observing the 
Nimonic75 material’s machined surface while varying the 
spindle speed and feed rate of a coated carbide tool. Histo-
gram analysis, which determines the predominant grey level 
in an image, is used to examine the acquired data. Surface 
images are captured by machine vision cameras and pre-
processed to enhance the image quality as shown in Fig. 16. 
However, difficulties including uneven lighting and image 
noise are noted. These problems are reduced by using image 
segmentation and enhancement algorithms. To calculate sur-
face roughness, the histogram distributions of the surface 
pictures are examined. The findings show that histogram 
analysis is a viable method for measuring surface smooth-
ness and that cutting conditions have little impact on surface 
roughness.

Figure 17 illustrates the experimental design, compari-
sons of surfaces shaped by both a new and a degraded tool 
with their enhanced images and the development process 
of Voronoi divisions, including Canny edge detection and 
Voronoi tessellations for surfaces formed by a new tool. 
The monitoring of cutting tool conditions is crucial for 

Fig. 16  The images of the surface are displayed in grey scale. The 
surface was machined at a speed of 710 revolutions per minute (rpm), 
with a feed rate of 0.05 mm per revolution (mm/rev), and a depth of 
cut of 0.2 mm [85]

Fig. 17  a Experimental set-up, 
b images of surfaces turned 
by a fresh tool, c images of 
surfaces turned by a worn tool 
(VB_average = 362 µm), d preproc-
essed images of b, e preproc-
essed images of c, f construc-
tion of Voronoi tessellation, g 
Canny edge–detected image, h 
Voronoi-tessellated image of b, 
c, d and e [86]
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maintaining product quality during machining. A recent 
study introduced an innovative on-machine tool condition 
monitoring method through analysing turned surface images. 
This method utilizes image texture analysis techniques such 
as the grey level co-occurrence matrix (GLCM), Voronoi 
tessellation (VT) and discrete wavelet transform (DWT). 
Eight key features were extracted to track tool flank wear. 
Voronoi tessellation clusters points based on local neigh-
borhoods to gather precise topological data. In this study, 
it was applied to images of turned surfaces to identify spe-
cific texture primitives like feed marks. Turning experiments 
were conducted on a CNC lathe using C-50 steel. These 
experiments covered varied machining conditions and were 
replicated three times for accuracy. Post-machining, images 
of machined surfaces were captured consistently using a 
camera set-up. Flank wear was measured using an Olympus 
microscope. These surfaces reveal tool wear indicators such 
as waviness, feed mark details and surface roughness. Dif-
ferent texture analyses provided insights into these changes. 
The study compared individual and combined analysis tech-
niques. The combined approach proved to be superior in 
predictive capability, with a maximum 4.9% prediction error, 
making it effective and trustworthy for practical use [50, 86].

3.2.2  TCM of machined surfaces using image processing 
techniques in milling operations

Milling shapes and creates complex components but faces 
challenges of tool wear, chip formation and surface defects 
[87]. This section explores image processing techniques for 
milling tool condition monitoring, aiming to enhance tool 
performance and surface quality. Tool condition monitoring 
in milling begins with capturing images of the machined sur-
faces. Cameras can be integrated into the milling machine or 
positioned externally to capture comprehensive views of the 
cutting zone, ensuring accurate image acquisition through 
strategic placement and synchronization. In milling, analys-
ing flank wear is crucial for tool condition monitoring [88]. 
Image processing techniques enable the quantification of 
flank wear by detecting changes in tool geometry over time. 
Algorithms like edge detection and feature extraction iden-
tify and measure worn areas on the tool’s flank faces. Com-
paring these measurements, such as flank wear land width, 
length and radius, to thresholds or historical data determines 
the remaining tool life. This facilitates timely replacement or 
reconditioning for optimal milling performance [46].

Image processing techniques also enable the monitoring 
and analysis of chip formation and disposal in milling. By 
capturing images of the milling process, chip size, shape and 
evacuation can be assessed [89]. Algorithms like edge detec-
tion and morphological operations identify and measure chip 
dimensions and morphology. Deviations from expected chip 
formation patterns, such as long or irregular chips, may 

indicate cutting tool or cutting condition issues. Real-time 
monitoring detects abnormalities, facilitating adjustments 
to cutting parameters or tool selection for optimized milling 
[90]. Image processing techniques assess surface roughness 
in milling for tool condition monitoring [91]. Algorithms 
for texture analysis scrutinize the texture and topology of a 
surface to derive statistical attributes such as mean surface 
roughness (Ra), root mean square roughness (Rq) and the 
difference between the highest peak and deepest valley (Rz) 
from the images gathered. Continuous monitoring of sur-
face roughness allows adjustments to cutting parameters, 
tool selection or machining strategies for desired surface 
finish and consistent quality [92].

Image processing techniques detect and characterize 
surface defects in milling. Algorithms like edge detection, 
thresholding and pattern recognition identify and classify 
defects based on size, shape and intensity. By comparing 
acquired images with references or predefined models, 
defects are detected in real time, enabling prompt interven-
tion and minimizing scrap or rework. Integrating image pro-
cessing into real-time monitoring enables immediate feed-
back in milling. Continuous analysis and comparison with 
thresholds or reference data trigger alerts, and actions like 
tool replacement or parameter adjustment. Real-time moni-
toring enhances tool performance, improves surface quality 
and optimizes milling processes [93]. Ravimal et al. [94] 
proposed an innovative machine vision system developed 
to effectively examine and classify surface textures seen on 
medium and large mould products. These products are com-
monly used in items like cars, televisions and refrigerators. 
The current methods rely on the manual expertise of skilled 
workers, which leads to inconsistencies and consumes sig-
nificant time. While numerous precise surface inspection and 
measurement approaches exist, their practical application in 
industrial settings or with finishing robots is challenging due 
to issues concerning speed, set-up limitations and reliability. 
This research suggests the use of two image processing algo-
rithms as shown in Fig. 18 to facilitate automated surface 
examination during a lapping process, commonly used to 
remove milling tool marks when performed without human 
supervision. Initially, the state of the machined surface and 
the existence of tool marks are evaluated as the line light 
source moves in a counterclockwise direction. This evalu-
ation involves analysing the form of the reflected light as 
well as the intensity of the near-field contrast image that 
is promptly seized following the specular light reflection. 
Second, by examining the normal map that reconstructs the 
surface, the photometric stereo approach is used to detect 
surface scratches. The suggested methods accurately classify 
data and successfully disclose localized machining patterns.

For the analysis and classification of surfaces using a 
deep learning algorithm, Carbone et al. [95] introduced a 
novel method in this study. The goal is to make it possible 
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for machining centres to assess the acceptability of process 
parameters used during milling operations based on the 
impacts that can be seen on the machined surface. Operators 
can therefore use a reverse engineering technique to recreate 
the original process parameters accountable for the evalu-
ated surface to change the process parameters to improve the 
quality of subsequent components. A shallow convolutional 
neural network was created to analyse surface image patches 
to accomplish this as shown in Fig. 19, utilizing a small 

training dataset made up of good and undesirable cutting 
circumstances. There are three layered convolutional blocks 
in the network design. The fivefold cross-validation method, 
which involved calculating the mean and standard deviation 
of the f1-score metric, was used to assess the effectiveness of 
the suggested solution. Surprisingly, the algorithm’s average 
classification accuracy outperformed the best state-of-the-art 
technique by 4.8% [95].

3.2.3  TCM of machined surfaces using image processing 
techniques in drilling operations

Drilling creates holes in materials but causes tool wear, chip 
formation issues and surface defects [89]. We are investigat-
ing the use of image processing to monitor the condition 
of tools during drilling, to improve both performance and 
the quality of the finished surface. The initial step in using 
image processing methods for monitoring the condition of 
tools during drilling involves capturing images of the sur-
faces being machined. Cameras integrated into the drilling 
set-up or positioned externally capture clear and compre-
hensive views of the process, requiring proper placement 
and synchronization. One crucial aspect of drill condition 
monitoring in drilling is analysing drill wear using image 
processing techniques. Capturing images of the drill at regu-
lar intervals during the process allows for observing and 
measuring changes in tool geometry [96]. Image analysis 
algorithms, like edge detection and feature extraction, can 
detect and measure wear features, such as flank wear and 
chipping, on the drill’s cutting edges. These algorithms use 
techniques like thresholding and segmentation to accurately 
identify the edges and measure wear dimensions. Machine 
learning approaches can also develop predictive models to 
correlate wear features with tool life or remaining useful tool 

Fig. 18  Procedure for detecting tool marks using image processing techniques [94]

Fig. 19  On the left is the original image of a milled surface sample, 
while on the right is the preprocessed version of the same sample 
image. During preprocessing, patches measuring 224 × 224 pixels 
are extracted from the image and subsequently converted to grayscale 
[95]
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life (RUTL), enabling proactive tool replacement or recon-
ditioning for optimal drilling performance [97].

Image processing techniques in drilling facilitate surface 
quality assessment, including surface roughness evaluation 
and defect detection. The analysis of acquired images allows 
texture analysis algorithms to extract statistical attributes 
like average surface roughness (Ra), peak-to-valley height 
(Rz) and root mean square roughness (Rq). These attributes 
quantify the level of surface roughness, offering valuable 
insights into the overall quality of the surface [98]. Image 
processing techniques aid in detecting and characterizing 
surface defects in drilled components by identifying, locat-
ing and classifying defects based on size, shape and inten-
sity. Edge detection, morphological operations and machine 
learning techniques enhance real-time defect detection and 
classification in drilling [99]. This enables prompt actions 
like adjusting parameters, replacing the drill or implement-
ing quality control measures for defect-free components. 
Integrating image processing into real-time monitoring 
enables prompt feedback and decision-making during drill-
ing. Continuous analysis of images allows for timely actions 
based on deviations from desired tool conditions or surface 
quality, including tool replacement, parameter adjustments 
or intervention for surface defects [100].

Fibre-reinforced plastic (FRP) laminates are at risk of 
delamination, particularly during machining operations 
like drilling, when stress is concentrated. Davim et al.’s 
[101] study is to introduce a new method for measuring the 
adjusted delamination factor (Fda) through digital analysis. 
A drilling experiment was designed to evaluate FRP lami-
nates under different cutting conditions. Digital analysis 
was employed to assess the extent of delamination caused 
by drilling with multi-image processing steps as shown in 
Fig. 20. The experimental findings demonstrated that digital 
analysis is a reliable approach for estimating the damage 
caused by drilling carbon fibre-reinforced plastics [101].

Kurek et al. [102] used an innovative application of trans-
fer learning using a convolutional neural network (CNN) 
to discern the state of a drill based on images of holes 
drilled into laminated chipboard. The method categorizes 
the drill state into three classes: red, yellow and green. A 
red classification indicates a worn-out drill necessitating 
immediate replacement, while yellow signals a need for 

manual inspection by the operator. On the other hand, green 
represents a drill in good working condition, suitable for 
continued use. A significant benefit of this transfer learning 
approach is its ability to train a classification model with 
only a small amount of data, unlike traditional CNN methods 
which demand extensive databases for satisfactory recog-
nition accuracy. In the study, the dataset comprised three 
subsets totaling 242-hole images: 102 images for the green 
class, 60 for yellow and 80 for red. Figure 21 provides visual 
examples of each class. Notably, the research employed the 
pretrained AlexNet CNN network, emphasizing its capabil-
ity to achieve accurate drill state recognition with a lim-
ited sample size. Comparatively, results from this method 
outperformed those from traditionally learned CNNs, even 
when the latter used augmented data through rotation and 
scaling techniques. Furthermore, the pretrained network, 
which initially used over 1 million diverse images for 1000 
different classes, required minimal adjustments in its final 
three layers, expediting the training process and enhancing 
the system’s generalization properties in class recognition.

3.2.4  TCM of machined surfaces using image processing 
techniques in grinding operations

In grinding, tool condition monitoring is crucial for opti-
mizing performance and surface quality. Image processing 

Fig. 20  Image processing 
operations are employed to 
ascertain the final shape of the 
damage zone. This process 
involves three steps: a capturing 
a digital image, b conducting 
initial processing and c obtain-
ing the resulting image, which 
represents the ultimate form of 
the damage zone [101]

Fig. 21  Illustrations of void pictures representing three categories of 
data: a green, b yellow and c red [102]

74 The International Journal of Advanced Manufacturing Technology (2024) 130:57–85



1 3

techniques are applied to monitor tool wear, thermal damage 
and surface defects, enhancing grinding operations [103]. 
In grinding, tool condition monitoring starts with captur-
ing high-resolution images of the machined surfaces. Cam-
eras are integrated into the grinding machine or positioned 
externally, considering optimal lighting and camera settings 
for clear and accurate image acquisition. Image processing 
techniques are crucial for monitoring tool wear in grind-
ing. By capturing and comparing images of the cutting tool 
before and after grinding, changes in tool geometry can be 
observed and quantified.

Image analysis algorithms, including edge detection and 
feature extraction, detect and measure wear features like 
flank wear or crater wear on the tool’s surface. Techniques 
like thresholding and segmentation accurately identify the 
tool’s edges and quantify wear dimensions. Machine learn-
ing can develop predictive models linking wear features 
with tool life or RUTL, enabling proactive replacement 
or reconditioning for optimal grinding performance [46]. 
Image processing techniques assess surface quality in grind-
ing by evaluating surface roughness and detecting defects. 
Algorithms for texture analysis scrutinize the images that 
have been gathered, deriving statistical characteristics such 
as mean surface roughness (Ra), root mean square roughness 
(Rq) and the disparity between the tallest peak and the deep-
est valley (Rz). These parameters quantify surface roughness, 
offering insights into the quality of ground surfaces [104].

Image processing techniques detect and character-
ize surface defects in ground components. By analys-
ing acquired images, defects like grinding marks, burns 
or irregularities can be identified, located and classified 
based on size, shape and intensity. Edge detection, mor-
phological operations and machine learning techniques 
enhance defect detection and classification in real time. 
This enables immediate actions like adjusting parameters, 
replacing the wheel or implementing quality control meas-
ures, ensuring high-quality ground components [98]. Inte-
grating image processing techniques into a real-time moni-
toring system enables prompt feedback during grinding. 

Continuous analysis of captured images detects deviations 
from desired conditions or surface quality, allowing timely 
actions such as tool replacement, parameter adjustments 
or defect intervention [69].

For high-precision applications to perform as intended, 
a machined surface’s smoothness and flaws must be care-
fully inspected. Manish et al. [104] introduced uncompli-
cated image processing methods for inspecting the surface 
finish and defects of a ground surface. The study looks at 
how surface finish influences pixel intensity distribution 
and edge identification, using a machine vision system. 
This investigation is conducted on rectangular samples of 
mild steel, employing methods such as Canny edge detec-
tion and histogram analysis. Based on individual pixel 
values, the image’s grayscale intensity distribution is ana-
lysed as shown in Fig. 22. A visual comparison of edge 
recognition across various grinding surface conditions is 
possible thanks to the use of the Canny edge detection 
method. An experimental analysis that tries to categorize 
object surfaces under various surface grinding settings is 
offered as a starting point for further investigation [104].

Grinding is a process of machining that involves abra-
sion and can result in extremely smooth surface finishes. 
However, the chips that are removed from the workpiece 
during grinding and become attached to the gaps between 
the abrasive grains can adversely affect the final surface 
finish of the machined part. To better understand the cut-
ting conditions of the grinding wheel, it is important to 
quantitatively analyse the phenomenon of wheel loading 
by Gopan and Wins [105]. Their study aims to develop a 
system that utilizes image capturing and image processing 
techniques, taking advantage of advancements in machine 
vision and image processing as shown in Fig. 23. Micro-
scope images of the grinding wheel were obtained at a 
magnification of × 20. The loaded sections of the wheel 
were separated from the rest of it using a technique called 
global thresholding for image segmentation. The experi-
mental results demonstrate the practicality of the proposed 
system in quantitatively assessing the loading of the grind-
ing wheel [105].

Fig. 22  The image on the left 
is a grayscale image, while the 
image on the right is the Canny 
edge image. These images 
were captured under conditions 
where the surface was smoothly 
ground [104]
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3.2.5  TCM of machined surfaces using image processing 
techniques in other machining operations

Besides turning, milling, drilling and grinding, other 
machining processes such as broaching, honing, lapping 
and electrical discharge machining (EDM) are widely used 
in manufacturing. These processes involve cutting tools 
that can experience wear and degradation, affecting surface 
quality [106]. In this part, we examine how image process-
ing techniques can monitor tool conditions in these opera-
tions, optimizing performance and ensuring quality surfaces. 
Image processing techniques for tool condition monitoring 
in other machining processes follow the same principle as 
discussed earlier. It begins with capturing images of the 
machined surfaces using integrated or external cameras. 
Good lighting conditions and camera settings are crucial 
for obtaining high-quality images for accurate analysis. 
After acquiring the images, image processing techniques 
are applied to monitor tool wear and evaluate surface qual-
ity. The algorithms and techniques used vary depending on 
the machining process. In broaching, image analysis algo-
rithms detect and measure wear on the cutting edges [107]. 
In honing [108] or lapping [109], image processing assesses 
surface roughness and detects defects. The choice of image 
processing algorithms depends on surface characteristics 
and monitoring goals. Algorithms like edge detection, fea-
ture extraction, texture analysis and machine learning can 
identify wear patterns, quantify dimensions, assess surface 
roughness and detect defects. Continuous analysis of images 
allows for the detection of deviations, prompting actions 
such as tool replacement, parameter adjustments or defect 
interventions [110].

Real-time monitoring systems with image processing 
enable immediate feedback and informed decisions dur-
ing machining. Continuous analysis of images reveals tool 
wear, surface roughness and defects, enabling proactive 
maintenance, parameter optimization and high-quality pro-
duction. Monitoring the wear of tools is crucial to ensure a 
consistently high quality of machined products. In the past, 
tool wear in typical machining operations like turning or 
milling has been thoroughly understood and researched. 

However, when it comes to cutting complex profiles, such 
as linear broaching, the only reported method for quantify-
ing tool wear has been manually characterizing flank wear. 
This approach results in a significant loss of information 
and a large variation in measurements. To overcome these 
drawbacks, Loizou et al. [107] proposed a new measurement 
system that measures broaching tool wear by taking into 
account the total wear area. The suggested solution does not 
require manual interaction because it uses automatic image 
cropping and digital imagery processing tools to identify 
the impacted area. A hexagonal linear broach has been 
used to perform a detailed examination of the measurement 
system to assess the variability produced by the measure-
ment processes and image analysis as shown in Fig. 24. By 
implementing this measurement system, the characteriza-
tion of tool wear in broaching tools becomes more accurate, 
enabling easier collaboration across industries, reducing the 

Fig. 23  a The image of the 
grinding wheel as it appears 
after 90 min. b The grinding 
wheel image after 80 min it has 
been processed [105]

Fig. 24  The left image shows the result after cropping, while the right 
image displays the final binary image obtained from all the steps in 
digital imaging processing (DIP) [107]
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intensity of operator training and enhancing quality control 
practices.

It is essential to have an accurate and automated examina-
tion of the completed surface during the site lapping process 
to successfully deploy robotic machining. Many sectors now 
routinely employ sophisticated inspection systems, which 
make use of smart sensor technology like image process-
ing and machine vision. In addition to increasing inspection 
accuracy, these devices and the idea of a “smart factory” 
also greatly reduce the need for human labour. In a vision 
technique that uses specular light, Dar et al. [111] proposed a 
way for automatically levelling a machined surface based on 
its roughness values as shown in Fig. 25. The study’s major 
goal is to create a technique for levelling surface roughness 
by examining the topography and texture of the surface. This 
method makes use of the basic property of light reflection, 
which causes the reflection to switch from diffuse to specular 
depending on the texture of the surface. Grayscale values 
on a rough surface with tool marks show contrast, which 
decreases intensity value and vice versa. They were able 
to ascertain the underlying grayscale values of the investi-
gated surface by using image processing techniques. As the 
roughness decreased, the data showed a nonlinear increase in 
grayscale values. They aligned the surface normal with the 
perspective centre of the camera to produce the maximum 
image resolution. This idea was expanded to include curved 
and sloped surfaces. They created a multiscale measuring 
approach that can be used for a wide range of roughness to 
acquire precise results with high accuracy. This approach 
depends on altering the camera distance to provide high-
resolution readings rather than an isolated system. The pro-
posed technique exhibited high accuracy and resolution, 

achieving a surface roughness levelling capability of up to 
20 nm (Ra). These findings indicate that this technique can 
be utilized for levelling multiscale free-form metal surfaces.

3.2.6  Conclusions on the subsection

This section discusses the applications of image process-
ing techniques in monitoring tool condition during various 
machining processes. By analysing images obtained dur-
ing machining, these techniques offer valuable information 
about tool wear, surface roughness and defects. This enables 
proactive maintenance and facilitates optimal machining for 
achieving high-quality surfaces. The section delves into dif-
ferent subsections focusing on specific machining processes. 
In the turning subsection, image processing is used to moni-
tor tool wear, assess surface roughness and detect defects. 
Real-time integration of image processing enhances tool per-
formance, productivity and component quality. Similarly, 
in the milling subsection, image processing is employed for 
monitoring tool wear, analysing chip formation, evaluating 
surface roughness and detecting surface defects. By analys-
ing acquired images, milling processes can be optimized, 
ensuring the production of high-quality components. In the 
drilling subsection, image processing techniques are applied 
for tool wear analysis, surface roughness assessment and 
defect detection. Real-time monitoring systems integrated 
with image processing enable timely actions for optimal 
drilling performance and the production of defect-free com-
ponents. In the grinding subsection, image processing is uti-
lized to monitor tool wear, evaluate surface roughness and 
detect defects. Analysis of acquired images facilitates the 

Fig. 25  The algorithm under consideration involves inserting an image, converting it into a binary image, reducing noise and then applying 
region labelling to determine the area of the target region [111]
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optimization of grinding processes, leading to the production 
of high-quality ground components.

Furthermore, the section explores the application of 
image processing in other machining operations, includ-
ing tool wear monitoring, surface roughness assessment 
and defect detection. The integration of image processing 
into real-time monitoring systems ensures proactive main-
tenance and high-quality results across different machining 
processes. Overall, the integration of image processing tech-
niques for tool condition monitoring in machining processes 
offers significant benefits. It provides insights into tool wear, 
surface roughness and surface defects, allowing for timely 
actions to improve tool performance, productivity and sur-
face quality.

In conclusion, the application of image processing tech-
niques in tool condition monitoring during machining pro-
cesses holds great promise. It offers advantages such as 
enhanced tool performance, optimized machining param-
eters and high-quality machined surfaces. However, further 
research is required to advance algorithms, real-time moni-
toring systems and decision-making models to enhance the 
effectiveness and efficiency of tool condition monitoring 
[112].

4  Challenges and future trends

4.1  Overall rating of image processing application 
in machining for recognizing and measuring 
tool wear

In Table 1, examples of image processing using tool wear 
recognized and measured in machining are presented. More 
applications are used for tool wear monitoring in different 
machining processes:

• Turning and micro-turning
• Milling, micro-milling, ball milling and end milling
• Grinding
• Belt grinding
• Lapping
• Tapping
• Drilling
• Dressing

The second type of image processing application is 
indirect methods used to analyse the surface image of the 
machined workpiece for.

• Turning and micro-Turning
• Milling, micro-milling, end milling and face milling
• Grinding

• Drilling

The use of images for TCM requires the use of appropri-
ate technology, which is achieved by using high-resolution 
cameras with both CMOS and CCD sensors. Obtaining a 
still image of excellent quality is not a problem. In some 
applications (milling, grinding, etc.), images of tools in 
motion are required. The blurring effect appears when sav-
ing the image moving workpiece and low speed of image 
capture. This effect can be reduced by using a high-speed 
camera, a better front lighting system and special software 
for the de-blurring of images. Also, it is possible to improve 
the image processing algorithm. However, to cope with the 
computational requirements, the image area for processing 
should be optimized with a simpler algorithm. The bene-
fits of image processing vary according to the usage tech-
niques. Each of these techniques used in image processing 
approaches the image from a different angle. At the core 
of the studies on image processing lies image analysis and 
therefore digitization, and nowadays, image processing, 
design, manufacturing, electronics, machinery, etc. It is a 
general field of study used in many areas, and considering 
the diversity of the areas used, the number of studies in this 
area is large [121]. For this reason, this review aims to make 
a general evaluation of the machining studies in the field of 
image processing.

4.2  Perspectives on using image processing 
in modern manufacturing systems

Image processing makes it possible to assess the condi-
tion of the tool edge in a non-contact way. The presented 
application is an important step toward the development of 
image processing for TCM. This technique provides data on 
the condition of the edge directly (tool image) or indirectly 
(assessment of the condition of the surface treated with the 
analysed tool). These methods of assessing the TCM in the 
production process should be used to support the manufac-
turing process:

• Artificial intelligence
• Smart manufacturing
• Industry 4.0 (internet of things)
• Digital twins
• Big data

In the literature on the application of image analysis 
methods, examples of such implementations of TCM can 
be found.

An example of the application in support of the manu-
facturing process AI was presented in previous studies [48, 
50, 122]. Mikołajczyk et al. [48] presented an AI automatic 
image analysis of cutting edge wear based on a neural 
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Table 1  Image processing 
application in machining

Machining process Year Main application Ref

Surface image of machined workpiece
  Turning 2016 Surface image of machined workpiece [86]
  Turning and milling 2018 Surface image of machined workpiece [113]
  Drilling 2017 Drilling hole image [102]
  Turning 2016 Surface image of machined workpiece [114]
  Grinding and milling 2008 Surface image of machined workpiece [115]
  Milling 2017 Surface image of machined workpiece [116]
  Grinding 2017 Surface image of machined workpiece [117]
  Turning 2016 Surface image of machined workpiece [56]
  End milling 2013 Surface image of machined workpiece [118]
  Micro-turning 2013 Surface image of machined workpiece [68]

Tool image
  Micro-milling 2017 Tool image [65]
  Milling 2020 Tool image [24]
  Turning 2021 Tool image [25]
  Micro-milling 2021 Tool image [26]
  Turning 2020 Tool image [27]
  Milling 2017 Tool image [119]
  Belt grinding 2020 Image of the abrasives [69]
  Milling 2018 Tool image [60]
  Turning 2015 Tool image [49]
  Turning 2013 Tool image [120]
  Milling 2015 Tool image [107]
  Turning 2018 Tool image [50]
  Grinding 2021 Tool image [70]
  Turning 1988 Tool image [41]
  Turning 1983 Tool image [42]
  Milling 2004 Tool image [43]
  Micro-milling 2009 Tool image [45]
  Turning 2021 Tool image [46]
  Milling 1993 Tool image [47]
  Turning 2017 Tool image [48]
  Turning 2015 Tool image [49]
  Turning 2018 Tool image [50]
  Lapping 2011 Tool image [51]
  Milling 2020 Tool image [52]
  Milling 2014 Tool and tool holder image [53]
  Ball and end milling 2020 Tool image [54]
  End milling 2005 Tool image [55]
  Turning 2016 Tool image [56]
  End milling, tapping, drilling 2021 Tool image [57]
  Turning 2007 Tool image [58]
  Drilling 2021 Tool image [59]
  Micro-milling 2018 Tool image [22]
  Micro-milling 2021 Tool image [64]
  Micro-drilling 2012 Tool image [66]
  Micro-drilling 2006 Tool image [67]
  Belt grinding 2020 Tool image [69]
  Dressing 2021 Tool image [70]
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network application. A study conducted by Jackson et al. 
[55] demonstrated the use of neural networks and image 
processing for forecasting the lifespan of tools in turning 
operations. The effect of process parameters on process per-
formance was analysed using machine learning [122] which 
could prolong tool life. The smart manufacturing system was 
defined and discussed based on the current manufacturing 
system and was analysed by contribution to future imple-
mentation of the smart manufacturing system [123]. A smart 
milling tool with indexable inserts was presented as a system 
of cyber-physical configuration [124]. It was realized by cap-
turing features on each edge (force, temperature, vibration). 
This information can be utilized to forecast tool degradation. 
The trained process can prepare messages about the critical 
state of the cutting insert (to be replaced or turned).

Industry 4.0 (or the internet of things) will change the 
way the machining process is approached [125]. Industry 4.0 
streamlines the flow of data to the machine tool—it trans-
mits details on what has been produced, the precision of the 
output and comprehensive data regarding the machine tool’s 
performance. With Industry 4.0, data from all sensors can be 
compiled and utilized for anticipatory maintenance. Ghionea 
et al. [126] presented an implementation for Industry 4.0 of 
measuring mechatronic systems for comparison of machined 
on the lathe with the theoretic CAD model of rail wheel. 
The vision system will be a critical part of automation sys-
tems in Industry 4.0 [127]. This system makes using data 
from digital images for process or quality control possible. 
This is better suited to repetitive tasks than human inspec-
tors. Machine learning used with mathematical modelling 
were presented to tool life estimates for small lot production 
[128]. The cost of the application is reasonable. It was used 
for the development of digital twin for production. Authors 
analyse some models not connected with a system of tool 
wear control. Christiand and Kiswanto [129] show the dig-
ital twin (DT) application in micro tool wear monitoring 
(TWM) of micro-milling process based on spindle motor 
current. The proposed DT shows the possibility of TCM in 
a micro-milling application for Industry 4.0. Xie et al. [130] 
introduced a digital twin system–based tool condition prog-
nosis model to increase prognostic accuracy and reaction 
speed. Vibration and current signals are employed as input 
data. The experimental findings suggest that the presented 
model is effective and generalizable.

As was presented in references, proposed advanced sys-
tems for TCM were based on AI, Internet 4.0, SM, DT, big 
data and cloud computing possibilities. In this review, using 
the presented application of image processing as input data 
is a good way to prepare a new application for an advanced 
manufacturing system based on the knowledge of previous 
events for building models useful in industrial practices. 
Based on vision methods, image recognition of tools’ edges 
or machined surfaces can make tool wear monitoring in real 

time possible. This will be included in the systems being 
built. It is expected that in the future, DT will save data by 
optimizing the performance and parameters of the process 
before starting the actual production process. It avoids the 
cost of trial and error. It should be expected that the rapid 
development of computer technology and mechatronics will 
also apply to solutions for recording images with appropri-
ate resolution and speed (required especially for rotating 
tools). Of course, this requires the development of image 
analysis software as well as the improvement of edge wear 
(life) prediction models based on measurement results and 
prognostic models.

5  Conclusions

Vision systems equipped with image recording and anal-
ysis systems are also used in the industry for monitoring 
machining processes. This paper presents, for the first time, 
a comprehensive review of image processing applications 
in machining for tool condition monitoring (TCM), to rec-
ognize and measure tool wear. Both the direct and indirect 
image processing techniques of the cutting tool were ana-
lysed. Based on the literature analysis presented, conclu-
sions are drawn concerning both the applications of image 
processing for TCM and the prospects for development:

• In direct sensor system–based image processing, by syn-
chronizing the camera with the tool, the instantaneous 
acquisition and processing of images can be performed. 
The tool wear parameter can be easily and quickly meas-
ured, directly on the processed PC screen image without 
using any other device. The direct method is more popu-
lar and is used for turning, milling, drilling, grinding, belt 
grinding and others.

• For direct methods, the set-up was based on a camera 
(CCD or CMOS) equipped with an optical system and 
special system to the light of tool edge zone and testbeds 
specialized for machining methods. The captured image 
was analysed using image processing software. Elabo-
rated on many applications that ensure the extraction of 
the image of the worn cutting edge, both stationary (turn-
ing, milling, drilling) and in motion (mainly milling). 
The assessment of the condition of the edge in motion 
creates greater requirements, but modern systems allow 
such an assessment thanks to the speed of the cameras 
used and the possibilities of computer technology.

• In indirect sensor system–based image processing for 
the tool condition monitoring in machining, tool wear is 
estimated using changes in chip geometry, slot and burr 
widths, tool temperature, workpiece surface roughness 
and cutting force. The image processing method can be 
also useful to protect the tool and workpiece and save 
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time by stopping the machining because of abnormal 
changes in the cutting force graph. In image processing 
measurements based on chip geometry and workpiece 
surface quality, obtaining data for image processing is 
slower and the process is more predictive.

• Machine vision can track the gradual wear and tear of 
tools, tool breakage, non-compliant tolerance levels, 
chatter and vibrations. The shape and design of a tool 
influence the surface that has been machined. Evaluat-
ing images of the machined surfaces allows us to gain 
insights into the current state of the cutting tool.

• The following image recognition and classification sys-
tems in TCM were mainly used:

A neural network and back propagation neural network 
(BPNN) are a flexible method in which the desired 
functions can be learned without specifically mention-
ing the function features. Moreover, good results are 
generally obtained with these standard methods.
Applying Image Tool software within this software, 
parameters such as distances, tilt angles, areas and 
depth can be measured directly on a screenshot. Meas-
urement in pixels or mm is possible with the specified 
conversion factor. A magnification of × 70 is sufficient 
to distinguish the desired features in a captured image. 
The program parameters are adjusted to the desired 
extent in the tool image software. Tool wears are then 
carried out, corresponding to 1 pixel = 0.001 mm.
Image thresholding method (Otsu method and 
K-means). The image thresholding technique can sep-
arate objects from the background and objects with 
different grey levels.
The tool shape descriptor (TSD) is a method used for 
identifying shapes and is part of the dimension-based 
image classification techniques. It serves as a morpho-
metric instrument in the analysis of the contours of 
images that are nearly convex [30]. The shape, appear-
ance or component of the image can be predicted 
and classified with the tool shape descriptor. In this 
method, the shapes of edge-confined objects and basic 
images are compared basically.

• The review article presented many set-ups for applica-
tion of vision methods for TCM. This overview is very 
important for understanding the operation of such sys-
tems. Vision system components are commercially avail-
able. Current applications are not particularly expensive. 
Of course, the operation of vision systems requires the 
use of appropriate software.

The current state of advancement of TCM based on image 
processing both in terms of direct method of tool image anal-
ysis and indirect method for surface condition analysis will 

be used in the production process, and the following devel-
oped models should be used in the development of modern 
techniques to support the manufacturing process:

• Artificial intelligence
• Smart manufacturing
• Industry 4.0 (internet of things)
• Digital twins
• Big data
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